35平面向量的数量积

合集下载

平面向量的运算规则

平面向量的运算规则

平面向量的运算规则平面向量是研究平面上有大小和方向的量,常用于解决几何问题和物理问题。

为了对平面向量进行运算,我们需要了解平面向量的运算规则。

本文将介绍平面向量的加法、减法、数乘和数量积的运算规则,以及向量的共线性和平行性。

一、平面向量的加法规则对于平面上的两个向量A和A,它们的加法规则如下:A + A = A + A即向量的加法满足交换律。

二、平面向量的减法规则对于平面上的两个向量A和A,它们的减法规则如下:A - A≠ A - A向量的减法不满足交换律。

减法运算可以通过将减法转化为加法进行计算:A - A = A + (-A)其中,-A表示向量A的反向向量,即大小相等,方向相反。

三、平面向量的数乘规则对于平面上的向量A和一个实数A,它们的数乘规则如下:AA = AA即数乘满足交换律。

数乘后的向量与原向量大小相等,方向与原向量平行或反向。

四、平面向量的数量积规则平面向量的数量积又称为点积或内积。

对于平面上的两个向量A和A,它们的数量积规则如下:A·A = AA cosθ其中,A·A表示向量A和A的数量积,AA为A和A的模的乘积,θ为A和A之间的夹角。

根据数量积的定义,我们可以得到以下结论:1. 若A·A = 0,则A与A垂直,即A和A互相垂直。

2. 若A·A > 0,则A与A夹角为锐角。

3. 若A·A < 0,则A与A夹角为钝角。

五、平面向量的共线性和平行性对于平面上的两个向量A和A,它们的共线性和平行性判断规则如下:1. 共线性判断:若存在一个实数A,使得A = AA,则A与A共线,且方向相同或相反。

2. 平行性判断:若A与A共线且方向相同或相反,则A与A平行。

总结:平面向量的运算规则包括加法、减法、数乘和数量积。

其中,加法满足交换律,减法不满足交换律,数乘满足交换律。

数量积可以判断向量的垂直性和夹角的锐钝性。

同时,共线性和平行性的判断也是平面向量运算中的重要内容。

平面向量数量积的定义

平面向量数量积的定义

1
A1
c
B1
C
证明: 任取一点 O, 作 OA a , AB b , OC c . 因为 a b (即OB) 在 c 方向上的投影等于 a 、b 在 c 方向上的投影的和. 由此可证,运算律( 3 )成立 (以下见黑板) .
练一练
判断题 (1) (a b)c a(b c)
注: 两个向量的数量积是一个数量,这个数量的大 小与两个向量的长度及其夹角有关. (2)“ a b a b ”能不能写成“ 式? ”或者 ab “ ” 的形
例题分析: 例1 已知|a|=5,|b|=4,a与b的夹角 θ=120°,求a· b。
解:a· b=|a| |b|cosθ=5×4×cos120°
1、已知a
a 与b 的交角为90 o,则a b 0 2, b 3,

(1)a⊥b a · b=0 (判断两向量垂直的依据) 2、若 a
a、b共线,则 a b 3或- b 3, . 3 1,
(2)当a 与b 同向时,a · b =| a | · | b |,当a 与b 反向 时, a · b = -| a | · | b | .( a // b 特别地
B
B b
B
b
b

O a

B1
A
B1Biblioteka Oa A O( B1 ) a
A
θ为锐角时, | b | cosθ>0 a O b B 。 0时,它是 | b |
θ为钝角时, | b | cosθ<0 b A B O
θ为直角时, | b | cosθ=0 a A
θ为
。 θ为 180时,它是 -| b |
向量数量积的性质

数量积

数量积

§5.3 平面向量的数量积1.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是 a·b =0,两个非零向量a 与b 平行的充要条件是 a·b =±|a||b|.2.平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质 (1)e·a =a·e =|a |cos θ;(2)非零向量a ,b ,a ⊥b ⇔a·b =0; (3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =|a |2,|a |=a·a ; (4)cos θ=a·b|a||b|;(5)|a·b |__≤__|a||b|.4.平面向量数量积满足的运算律 (1)a·b =b·a (交换律);(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)△ABC 内有一点O ,满足OA →+OB →+OC →=0,且OA →·OB →=OB →·OC →,则△ABC 一定是等腰三角形.( )(4)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( )(5)两个向量的夹角的范围是[0,π2].( )(6)已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是λ<-43或λ>0.( )1.(2014·重庆)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k 等于( ) A .-92B .0C .3D.1522.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( ) A .150° B .90° C .60° D .30°3.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为________.4.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________.题型一 平面向量数量积的运算例1 (1)(2013·湖北)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( ) A.322B.3152C. -322D .-3152(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.(1)已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为( )A.23 B .-23 C.56 D .-56(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6 D .6题型二 求向量的模与夹角例2 (1)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( ) A.126 B .-126C.112D .-112(2)已知向量a ,b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.(3)(2013·山东)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.(1)(2013·天津)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.(2)(2014·江西)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________. 题型三 数量积的综合应用例3 已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.已知向量m =(2sin(ωx +π3),1),n =(2cos ωx ,-3)(ω>0),函数f (x )=m ·n 的两条相邻对称轴间的距离为π2.(1)求函数f (x )的单调递增区间; (2)当x ∈[-5π6,π12]时,求f (x )的值域.高考中以向量为背景的创新题典例:(1)对任意两个非零的平面向量α和β,定义α∘β=α·ββ·β.若两个非零的平面向量a ,b 满足a 与b 的夹角θ∈(π4,π2),且a ∘b 和b ∘a 都在集合{n2|n ∈Z }中,则a ∘b 等于( )A.52B.32 C .1 D.12(2)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.A 组 专项基础训练 (时间:45分钟)1.若向量a ,b 满足|a |=|b |=|a +b |=1,则a ·b 的值为( ) A .-12 B.12C .-1D .12.已知向量a =(1,3),b =(-1,0),则|a +2b |等于( ) A .1 B. 2 C .2 D .43.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 4.向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( ) A .(-7,8) B .(9,-4) C .(-5,10)D .(7,-6)5.(2013·福建)在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A. 5 B .2 5 C .5 D .106.(2014·北京)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 7.(2013·课标全国Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 8.已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是____________. 9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.10.已知△ABC 的内角为A 、B 、C ,其对边分别为a 、b 、c ,B 为锐角,向量m =(2sin B ,-3),n =(cos 2B,2cos 2B2-1),且m ∥n .(1)求角B 的大小;(2)如果b =2,求S △ABC 的最大值.B 组 专项能力提升 (时间:20分钟)11.△ABC 的外接圆圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB →|,则CA →在CB →方向上的投影为( )A .1B .2 C. 3 D .312.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( ) A.13 B.23 C.43D .2 13.如图所示,在平面四边形ABCD 中,若AC =3,BD =2,则(AB →+DC →)·(AC →+BD →)=________.14.(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.15.已知向量p =(2sin x ,3cos x ),q =(-sin x,2sin x ),函数f (x )=p ·q . (1)求f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=1,c =1,ab =23,且a >b ,求a ,b 的值.§5.4 平面向量应用举例1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题2.平面向量与其他数学知识的交汇平面向量作为一个运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以求解有关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若AB→∥AC→,则A,B,C三点共线.()(2)解析几何中的坐标、直线平行、垂直、长度等问题都可以用向量解决.()(3)实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算.()(4)在△ABC中,若AB→·BC→<0,则△ABC为钝角三角形.()(5)已知平面直角坐标系内有三个定点A(-2,-1),B(0,10),C(8,0),若动点P满足:OP→=OA→+t(AB→+AC→),t∈R,则点P的轨迹方程是x-y+1=0.()1.已知△ABC的三个顶点的坐标分别为A(3,4),B(5,2),C(-1,-4),则这个三角形是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形2.(2014·山东)已知向量a=(1,3),b=(3,m).若向量a,b的夹角为π6,则实数m等于()A .2 3 B. 3 C .0 D .-33.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为__________. 题型一 向量在平面几何中的应用例1 如图所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:P A =EF .(1)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( ) A.3+33B.92C. 3D.94(2)在△ABC 所在平面上有一点P ,满足P A →+PB →+PC →=AB →,则△P AB 与△ABC 的面积的比值是( )A.13B.12C.23D.34题型二 向量在三角函数中的应用例2 已知在锐角△ABC 中,两向量p =(2-2sin A ,cos A +sin A ),q =(sin A -cos A,1+sin A ),且p 与q 是共线向量. (1)求A 的大小; (2)求函数y =2sin 2B +cos ⎝⎛⎭⎫C -3B 2取最大值时,B 的大小.(1)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n=(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( ) A.π6,π3 B.2π3,π6 C.π3,π6D.π3,π3(2)△ABC 的三个内角A ,B ,C 所对的边长分别是a ,b ,c ,设向量m =(a +b ,sin C ),n =(3a +c ,sin B -sin A ),若m ∥n ,则角B 的大小为________. 题型三 平面向量在解析几何中的应用例3 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx=________. 跟踪训练3 (2013·湖南改编)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值为________.三审图形抓特点典例:如图所示,把两块斜边长相等的直角三角板拼在一起,若AD →=xAB →+yAC →,则x =________,y = ________.A 组 专项基础训练 (时间:45分钟)1.(2014·福建)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( ) A.OM → B .2OM → C .3OM →D .4OM →2.平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形D .菱形3.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形4.已知点A (-2,0)、B (3,0),动点P (x ,y )满足P A →·PB →=x 2-6,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线5.若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π6.已知在△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC =________.7.已知|a |=2|b |,|b |≠0且关于x 的方程x 2+|a |x -a·b =0有两相等实根,则向量a 与b 的夹角是________.8.已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.9.已知△ABC 中,∠C 是直角,CA =CB ,D 是CB 的中点,E 是AB 上一点,且AE =2EB ,求证:AD ⊥CE .10.已知A ,B ,C 三点的坐标分别为A (3,0),B (0,3),C (cos α,sin α),其中α∈(π2,3π2).(1)若|AC →|=|BC →|,求角α的值. (2)若AC →·BC →=-1,求tan(α+π4)的值.B 组 专项能力提升 (时间:20分钟)11.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |212.(2013·浙江)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( ) A .∠ABC =90° B .∠BAC =90° C .AB =ACD .AC =BC13.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________.14.已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.15.在△ABC中,设内角A,B,C的对边分别为a,b,c,向量m=(cos A,sin A),向量n =(2-sin A,cos A),若|m+n|=2.(1)求内角A的大小;(2)若b=42,且c=2a,求△ABC的面积.。

原创1:5.3 平面向量的数量积

原创1:5.3 平面向量的数量积
= 2,故选 A. (3)设 P 点坐标为(x,0),则A→P=(x-2,-2),B→P=(x-4,-1). A→P·B→P=(x-2)(x-4)+(-2)×(-1) =x2-6x+10=(x-3)2+1. 当 x=3 时,A→P·B→P有最小值 1 平面向量的夹角与模(高频考点)
A.|a|= a·a
B.|a·b|=|a|·|b|
C.λ(a·b)=λa·b
D.|a·b|≤|a|·|b|
解析:|a·b|=|a||b||cos θ|,只有 a 与 b 共线时,才有|a·b|
=|a||b|,可知选项 B 是错误的.
4.(2015·湖北武汉调研)已知向量 a,b 满足|a|=3,|b|=2 3,
平面向量的夹角与模(高频考点) 向量数量积的综合应用
考点一 平面向量数量积的运算
(1)(2015·沧州模拟)已知平面向量 a=(x1,y1),b =(x2,y2),若|a|=2,|b|=3,a·b=-6,则xx12+ +yy12的值为( B )
2 A.3
B.-23
C.56
D.-56
(2)(2014·高考江苏卷) 如图,在平行四边形 ABCD 中,已
[解] (1)由|a|2=( 3sin x)2+sin2x=4sin2x, |b|2=cos2x+sin2x=1, 及|a|=|b|,得 4sin2x=1. 又 x∈[0,π2 ],从而 sin x=12,所以 x=π6 .
(2)f(x)=a·b= 3sin x·cos x+sin2x
= 23sin 2x-12cos 2x+12=sin(2x-π6 )+12,
故|A→B+A→G+A→C|的最小值为83.
[规律方法] 1.利用数量积求解长度的处理方法: (1)|a|2=a2=a·a; (2)|a±b|2=a2±2a·b+b2; (3)若 a=(x,y),则|a|= x2+y2. 2.求两个非零向量的夹角时要注意: (1)向量的数量积不满足结合律; (2)数量积大于 0 说明不共线的两个向量的夹角为锐角;数 量积等于 0 说明两个向量的夹角为直角;数量积小于 0 且 两个向量不能共线时两个向量的夹角就是钝角.

高三数学平面向量的数量积

高三数学平面向量的数量积

cos θ -sin θ cos θ =0.
∴ a ⊥b . (2)由x⊥y得:x·y=0,
即[a+(t2+3)b]·(-ka+tb)=0,
∴-ka2+(t3+3t)b2+[t-k(t2+3)]a·b=0, ∴-k|a|2+(t3+3t)|b|2=0. 又|a|2=1,|b|2=1, ∴-k+t3+3t=0,∴k=t3+3t.
【答案】 C
5.(2009 年重庆高考)已知|a|=1,|b|=6,a· (b-a)=2,则向 量 a 与 b 的夹角是( A. π 6 π B. 4 π D. 2 )
【思路点拨】 (1)可通过求a²b=0证明a⊥b. (2)由x⊥y得x²y=0,即求出关于k,t的一个方程,从而求出 的代数表达式,消去一个量k,得出关于t的函数,从而求出最小
值.
【自主探究】
π (1)∵a²b=cos(-θ )²cos -θ + 2
π sin(-θ )²sin -θ =sin θ 2
第十节
平面向量的数量积及平面 向量应用举例
1.理解平面向量数量积的含义及其物理意义. 2.了解平面向量的数量积与向量投影的关系. 3.掌握数量积的坐标表达式,会进行平面向量 数量积的运算. 考纲点 4.能运用数量积表示两个向量的夹角,会用数 击 量积判断两个平面向量的垂直关系. 5.会用向量方法解决某些简单的平面几何问题. 6.会用向量方法解决简单的力学问题与其他一 些实际问题. 1.平面向量数量积的运算,模与夹角、平行与 垂直问题是高考命题的热点,多以选择、填 热点提 空题的形式出现,属中低档题,但灵活多变.
2 2 2 2 2 2
=3 +6-2³4 =-17.
平面向量的垂直问题
已知向量a=(cos (-θ ),sin(-θ ) ),

平面向量的数量积

平面向量的数量积
6
三、平面向量数量积的几何意义:
B
b
O | b | cos
a • b a b cos
a
A
rr r
r rr
数量积a b等于a的长度 a 与b在a的
r
方向上的投影数量 b cos的乘积.
7
四、平面向量数量积的运算律:
(1)交换律:a • b b • a
(2)数乘结合律:(a) •b (a •b) a •(b) (3)分配律:(a b) •c a •c b•c
求向量模的依据
5cos a • b 00,180 0 a b 求向量夹角的依据
11
例1 已知 a 5, b 4,a与b的夹角 120o,求a b.
解:a b a b cos
5 4cos120o 510 ( 1)
2 10.
12
பைடு நூலகம்2:求证:
(1)(a b)2 a2 2a b b2; (2)(a b)(a b) a2 b2.
r r 2 r 2 r r r 2
4. a b a 2a • b b
9
五、平面向量数量积的重要性质:

是非零向量,
方向相同的
单位向量,
的夹角,则:
1a • e e • a a cos
2a b a •b 0 判断两个向量垂直的依据
a

b
10
五、平面向量数量积的重要性质:
4a• a a2 a2
1
一、平面向量的夹角:
2
二、平面向量数量积的定义:
已知两个非零向量
r a

r b
,它们的夹角为
rr
,
我们把数量 a b cos 叫做 a 与 b 的数量积

第五章5.3 平面向量的数量积

第五章5.3 平面向量的数量积

30,则 x 等于
(C )
A.6 B.5 C.4 D.3
思维启迪 解析 答案 探究提高
(1) A→B·A→C=(C→B-C→A)·(-C→A) =-C→B·C→A+C→A2=16. (2)∵a=(1,1),b=(2,5),
∴8a-b=(8,8)-(2,5)=(6,3).
又∵(8a-b)·c=30,∴(6,3)·(3, x)=18+3x=30. ∴x=4.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
向量的夹角与向量的模
【例 2】 已知|a|=4,|b|=3,(2a- 思维启迪
解析
探究提高
3b)·(2a+b)=61,
∴|a+b|= 13.
(1)求 a 与 b 的夹角 θ; (2)求|a+b|; (3)若A→B=a,B→C=b,求△ABC 的
当 a 与 b 反向时,a·b=_-__|a_|_|b_|_,
夹角为锐角的必要不
a·a=_a_2 ,|a|=__a_·_a__; a·b
(4)cos θ=_|_a_||_b_|_;
(5)|a·b|_≤__|a||b|. 4.平面向量数量积满足的运算律
充分条件.因为若〈a, b〉=0,则 a·b>0,而 a,b 夹角不是锐角; 另外还要注意区分 △ABC 中,A→B、B→C的
故D→E·D→C的最大值为 1.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
变式训练 1 (2012·北京)已知正方形 ABCD 的边长为 1,点 E 是 AB
边上的动点,则D→E·C→B的值为__1_;D→E·D→C的最大值为_1__.
方法二 由图知,无论 E 点在哪个位置,D→E在C→B方 向上的投影都是 CB=1,∴D→E·C→B=|C→B|·1=1,当 E 运动到 B 点时,D→E在D→C方向上的投影最大即为 DC=1, ∴(D→E·D→C)max=|D→C|·1=1.

平面向量的数量积

平面向量的数量积

平面向量的数量积可以用于判 断两条直线是否平行或垂直
平面向量的数量积可以用于计 算平面上点的坐标和轨迹
04
平面向量的数量积 与向量的模的关系
数量积与向量模的关系
数量积的定义:两个向量的模的乘积与两个向量夹角的余弦值的乘积之和 的平方根
数量积的性质:两个向量的数量积等于它们的模的乘积与它们夹角的余弦 值的乘积

投影:向量a 在向量b上的 投影长度等于 向量a的数量 积除以向量b
的长度
方向:向量a 与向量b的数 量积的正负号 表示两向量的 夹角是锐角还
是钝角
数量积的性质
非零向量的数量积为实数
向量的数量积满足交换律和分配律
向量的数量积为0的充分必要条件是两个向量垂直 向量的数量积与向量的模长和夹角有关,可以用来描述两个向量的 相似程度
05
平面向量的数量积 的运算技巧
代数法计算数量积
定义:两个向量的数量积定义为它们的对应坐标的乘积之和 性质:数量积满足交换律和分配律 坐标法:利用向量的坐标进行计算,公式为:a·b=x1x2+y1y2 几何意义:数量积表示两个向量在垂直方向上的投影长度之积
几何法计算数量积
定义:两个非零向量的夹角余弦值乘以两个向量模的乘积
数量积的运算方法
定义:两个向量的数量积定义为 它们的模长和夹角的余弦值的乘 积
几何意义:表示两个向量在垂直 方向上的投影长度
添加标题
添加标题
添加标题
添加标题
性质:数量积满足交换律和分配 律
计算公式:a · b = |a||b|cosθ, 其中θ为两向量的夹角
03
平面向量的数量积 的应用
在三角形中的应用
平面向量的数量积

平面向量的数量积

平面向量的数量积

3分
2 , 2 2 1 2 ∵ 0°≤θ ≤ 180°,∴θ =45°.
则cos θ =
a b | a || b |
2
5分 6分
(2)∵(a-b)2=a2-2a·b+b2
1 1 1 1 2 , 2 2 2
∴|a-b|=
2 . 2
8分
1 1 5 , 2 2 2
(a+b)2=a2+2a·b+b2=1+2×
∴ka2+(2k-1)a·b-2b2=0.
16k-16(2k-1)-2×64=0,∴k=-7.
思想方法
感悟提高
方法与技巧
1.数量积a·b中间的符号“·”不能省略,也不能用 “×”来替代. 2.要熟练类似( a+μ b)·(sa+tb)= sa2+( t+μ s) a·b+μ tb2的运算律( 、μ 、s、t∈R). 3.求向量模的常用方法:利用公式 |a|2=a2, 将模的运 算转化为向量的数量积的运算. 4.一般地,(a·b)c≠(b·c)a即乘法的结合律不成
立 . 因 a·b 是一个数量,所以 (a·b)c 表示一个与 c
共线的向量,同理右边(b·c)a表示一个与a共线 的向量,而a与c不一定共线,故一般情况下(a·b)c ≠(b·c)a.
失误与防范
1. 零 向 量 :(1)0 与 实 数 0 的 区 别 , 不 可 写 错 :
0a=0≠0,a+(-a)=0≠0,a·0=0≠0;(2)0 的方向是任 意的,并非没有方向, 0 与任何向量平行,我们只 定义了非零向量的垂直关系. 2.a·b=0不能推出a=0或b=0,因为a·b=0 a⊥b.

平面向量的数量积

平面向量的数量积

1、运算律 (1) a ·b = b ·a (交换律); (2) ( a ) ·b=( a ·b )= a ·( b ); (3) ( a + b ) ·c= a ·c + b ·c(分配律);
2、向量不能约分(a b a c b c) 结合律不成立 (a b)c a(b c)

2
θ
a B1
),此时a b
A
0


(
2
,
θa
], 此时a
b0

θa
,此时a
b

0
三、数量积的几何意义
2
数量积 a b等于a的长度|a |与 b 在 a的方向上的
投影| b | cos θ的乘积,结果可以是正数、零或负数
例1、已知 a 5, b 4, a与b的夹角=120,
左边是与c共线的向量,右边是与a共线 的向量,而一般a与c不共线
向量的数 量积不满 足结合律
例3. 证明下列各式: (1)( a+b )2=a2+2a·b+b2; (2)( a+b )·( a-b )=a2-b2.
证明: (1)( a+b )2=( a+b )·( a+b )
=a ·( a+b )+b ·( a+b ) 分配律
F


s
我们知道,数量之间可以进行加、 减、乘、除运算,运算的结果依然 是数量。那么向量呢?
前面,我们对向量进行了加减的运算, 发现它们运算的结果还是向量。那么向 量之间能否进行乘除运算呢?如果能的 话,运算的结果还是向量吗?
一 .引入
物理实例如图,一个物体在力F 的作用下产生位移S,那么力F

求平面向量数量积的5种方法

求平面向量数量积的5种方法

平面向量数量积的5种方法一、定义:(与物理中功的定义一致,两向量通过数量积运算以后是标量或实数。

)(亦称内积)是两向量乘法运算中的一种,2121y y x x b a ⋅+⋅==⋅θ,叫做向量a 与b 的数量积。

θ为向量a 与b 的夹角,注意:求两向量的夹角应把向量的起点移到同一点,注意不能理解成两条直线的夹角,[]0,θπ∈。

二、几何意义为:b a ⋅等于a (或b )与b (或a )在a (或b )方向上的投影cos b θ(θcos a)的乘积。

三、运算率:①交换率:a b b a ⋅=⋅;②分配率:()c b c a c b a ⋅+⋅=⋅+;③不满足结合率:()()c b a c b a ⋅⋅≠⋅⋅,因为前面表示与c 共线的向量,后面表示与a 共线的向量。

四、三种方法:1.定义法:代入到数量积的公式中,对于较简单题(已知两向量的模与夹角),用此法计算。

2.绕法:当两向量的模与夹角不易求时,把两向量通过平行四边形或三角形绕成用已知向量(已知模与夹角的向量)表示,然后代入到数量积公式中。

3.坐标法:如果给出两向量所在图形存在垂直关系(易建系时)时,适当建立直角坐标系,代入坐标计算。

4.投影法:当一个向量在另一个向量上的投影易求时,用此法计算。

5.特殊图形法:如果图形形状不确定,则可取特殊图形,然后利用建系或投影计算。

1、利用定义计算(简单)。

1.(2010年辽宁卷)平面上,,O A B 三点不共线,设,OA a OB b ==,则OAB ∆的面积等于 ( ) 222()a b a b -⋅ 222()a b a b +⋅C.12222()a b a b -⋅ D.()22221ba b a ⋅+2.(2016年新课标全国卷II3)已知向量()()2,3,,1-==b m a 且()b b a ⊥+,则m = ( ) A.-8 B.-6 C.6 D.83.(2012年辽宁卷)已知向量)1,1(-=a ,),2(x b =,若1=⋅b a ,则x = ( ) A.—1 B.—12 C.12D.1 4.(2016年新课标全国卷II4)已知向量b a ,满足1,1-=⋅=b a a ,则()b a a -⋅2= ( ) A.4B.3C.2D.05.(高考题)已知a 是平面内的单位向量,若向量b 满足()0b a b ⋅-=,则||b 的取值范围是 。

平面向量的数量积

平面向量的数量积

平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。

平面向量的数量积及其应用

平面向量的数量积及其应用

解析 解法一:∵|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|=2,且|a+b|+|a-b|≥|(a+b)(a-b)|=2|b|=4, ∴|a+b|+|a-b|≥4,当且仅当a+b与a-b反向时取等号,此时|a+b|+|a-b|取最 小值4.
| a b |2 | a b |2 | a b| | a b| ∵ ≤ = a 2 b 2 = 5 , 2 2
2 2 x12 y12 ,|b|= x2 y2 (2)|a|= .
平面向量的长度问题
( x1 x2 ) 2 ( y1 y2 ) 2 . 2.若A(x1,y1),B(x2,y2),则| AB |=

考点三
平面向量的夹角、两向量垂直及数量积的应用
x1 x2 y1 y2
已知a=(x1,y1),b=(x2,y2). (1)若a与b的夹角为θ,则cos θ= . 2 (2)a⊥b⇔x1x2+y1y2=0.
∴|a+b|+|a-b|≤2 5 . 当且仅当|a+b|=|a-b|时取等号,此时a· b=0.
故当a⊥b时,|a+b|+|a-b|有最大值2 5 .
解法二:设x=|a+b|,由||a|-|b||≤|a+b|≤|a|+|b|, 得1≤x≤3.
设y=|a-b|,同理,1≤y≤3. 而x2+y2=2a2+2b2=10, 故可设x= 10 cos θ, ≤cos θ≤ , y= 10 sin θ, ≤sin θ≤ . 设α1,α2为锐角,且sin α1= ,sin α2= ,
方法 2 求向量夹角问题的方法

平面向量的数量积及运算律

平面向量的数量积及运算律

二、平面向量的数量积的几何意义是什么?
我们规定叫做向量在方向上的投影,当θ为锐角时,为正值;当θ为钝角时,
为负值;当θ=0°时,;当θ=90°时,=0;当θ=180°时,

由此我们得到的几何意义:数量积等于的长度 ||与 在方向上的投影的乘积。
例1.已知, 当(1) ; (2)
2.选A。由得

3.60°。∵, ∴
代入已知求解。
4.。,∴。
5.(1)-37-(2)提示:(1)
代入已知求解。
(2).
6.提示:设BE、CF交于H,设,只须证明即H在AD上。
由,
即得证。
解:由向量的数量积的定义,得a·b=.
∵ m=2a+b, n=a-4b,∴ m2=4a2+4ab+b2=4×4+4+1=21,
∴ n2=a2-8ab+16b2=4-8+16=12,∴ |m|, |n|=.
设m与n的夹角为θ,则m·n=|m||n|cosθ.....①
(5) 当θ=时,cosθ=-1, |b|cosθ=-|b|.由于当θ∈[0,]时,cosθ∈[-1,1],
所以|b|cosθ∈[-|b|,|b|],即|b|cosθ∈[-3,3],又因为,
因此,的最大值为8(此时θ=),最小值为(此时θ=0).
例4、已知一个与水平方向夹角为30°的力,的大小为50N,拉着一个重80N的木块在摩擦系数m=0.02的水平面上运动了20米,求、摩擦做的功分别为多少?
典型题目:
例1.已知向量与的夹角为120°,且||=4, ||=2,
求(1) |+|; (2)|3-4|; (3) (-2)(+).

第五章 5.3平面向量的数量积

第五章 5.3平面向量的数量积

1.两个向量的夹角 (1)定义已知两个非零向量a ,b ,作OA →=a ,OB →=b ,则∠AOB 称作向量a 和向量b 的夹角,记作〈a ,b 〉. (2)范围向量夹角〈a ,b 〉的范围是[0,π],且〈a ,b 〉=〈b ,a 〉. (3)向量垂直如果〈a ,b 〉=π2,则a 与b 垂直,记作a ⊥b .2.向量在轴上的正射影已知向量a 和轴l (如图),作OA →=a ,过点O ,A 分别作轴l 的垂线,垂足分别为O 1,A 1,则向量O 1A 1→叫做向量a 在轴l 上的正射影(简称射影),该射影在轴l 上的坐标,称作a 在轴l 上的数量或在轴l 的方向上的数量.OA →=a 在轴l 上正射影的坐标记作a l ,向量a 的方向与轴l 的正向所成的角为θ,则由三角函数中的余弦定义有a l =|a |cos θ. 3.向量的数量积(1)平面向量的数量积的定义|a||b |cos 〈a ,b 〉叫做向量a 和b 的数量积(或内积),记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)向量数量积的性质①如果e 是单位向量,则a·e =e·a =|a |cos 〈a ,e 〉; ②a ⊥b ⇔a·b =0; ③a·a =|a |2,|a |=a·a ;④cos 〈a ,b 〉=a·b |a||b |(|a||b |≠0);⑤|a·b |__≤__|a||b |. (3)数量积的运算律 ①交换律:a·b =b·a .②对λ∈R ,λ(a·b )=(λa )·b =a ·(λb ). ③分配律:(a +b )·c =a·c +b·c . (4)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则 ①a·b =a 1b 1+a 2b 2; ②a ⊥b ⇔a 1b 1+a 2b 2=0;③|a |=a 21+a 22;④cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22·b 21+b 22.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (2)向量在另一个向量方向上的正射影为数量,而不是向量.( × )(3)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( × ) (4)两个向量的夹角的范围是[0,π2].( × )(5)由a ·b =0可得a =0或b =0.( × ) (6)(a ·b )c =a (b ·c ).( × )1.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( ) A.150° B.90° C.60° D.30°答案 D解析 设向量a 与向量a +2b 的夹角为θ. ∵|a +2b |2=4+4+4a ·b =8+8cos 60°=12, ∴|a +2b |=23, a ·(a +2b )=|a |·|a +2b |·cos θ =2×23cos θ=43cos θ,又a ·(a +2b )=a 2+2a ·b =4+4cos 60°=6, ∴43cos θ=6,cos θ=32, ∵θ∈[0°,180°],∴θ=30°,故选D.2.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.3.已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.答案 3解析 ∵|a |2=a ·a =(3e 1-2e 2)·(3e 1-2e 2)=9|e 1|2-12e 1·e 2+4|e 2|2=9-12×1×1×13+4=9.∴|a |=3.4.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案 90°解析 由AO →=12(AB →+AC →)可知点O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90°.5.(教材改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的正射影的数量为________. 答案 -2解析 由数量积的定义知,b 在a 方向上的正射影的数量为|b |cos θ=4×cos 120°=-2.题型一 平面向量数量积的运算例1 (1)(2015·四川)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A.20B.15C.9D.6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.答案 (1)C (2)1 1 解析 (1)AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9, 故选C.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的正射影都是CB →, ∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的正射影的数量最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.思维升华 (1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用向量的正射影.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP→=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD→-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.(2)由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →) =(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.题型二 用数量积求向量的模、夹角 命题点1 求向量的模例2 (1)已知向量a ,b 均为单位向量,它们的夹角为π3,则|a +b |等于( )A.1B. 2C. 3D.2(2)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案 (1)C (2)7+1解析 (1)因为向量a ,b 均为单位向量,它们的夹角为π3,所以|a +b |=(a +b )2=a 2+2a ·b +b 2=1+2cos π3+1= 3.(2)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)的距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1. 命题点2 求向量的夹角例3 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________________________________________________________________________. 答案 (1)A (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ, 即3|a |2-|a |·|b |·cos θ-2|b |2=0,∴83|b |2-223|b |2·cos θ-2|b |2=0,∴cos θ=22.又∵0≤θ≤π,∴θ=π4.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0, ∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 思维升华 (1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B.2 C. 6D.6答案 (1)223 (2)C解析 (1)∵|a |= (3e 1-2e 2)2=9+4-12×1×1×13=3,|b |=(3e 1-e 2)2=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22 =9-9×1×1×13+2=8,∴cos β=83×22=223.(2)∵AB →·AC →=-1, ∴|AB →|·|AC →|·cos 120°=-1,即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.题型三 平面向量与三角函数例4 (2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1. (2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A.-43B.-45C.45D.34答案 A解析 由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.7.向量夹角范围不清致误典例 (12分)若两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2所成的角为60°,若向量2t e 1+7e 2与向量e 1+t e 2所成的角为钝角,求实数t 的取值范围.易错分析 两个向量所成角的范围是[0,π],两个向量所成的角为钝角,容易误认为所成角π为钝角,导致所求的结果范围扩大. 规范解答解 设向量2t e 1+7e 2与向量e 1+t e 2的夹角为θ,由θ为钝角,知cos θ<0,故 (2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7<0,解得-7<t <-12.[5分] 再设向量2t e 1+7e 2与向量e 1+t e 2反向, 则2t e 1+7e 2=k (e 1+t e 2)(k <0),[7分]从而⎩⎪⎨⎪⎧2t =k ,7=tk ,且k <0,解得⎩⎪⎨⎪⎧t =-142,k =-14,即当t =-142时,两向量所成的角为π.[10分] 所以t 的取值范围是(-7,-142)∪(-142,-12).[12分] 温馨提醒 (1)两个非零向量的夹角范围为[0,π],解题时要注意挖掘题中隐含条件.(2)利用数量积的符号判断两向量的夹角取值范围时,应该注意向量夹角的取值范围,不要忽视两向量共线的情况.若a ·b <0,则〈a ,b 〉∈(π2,π];若a ·b >0,则〈a ,b 〉∈[0,π2).[方法与技巧]1.计算数量积的三种方法:定义法、坐标运算、数量积的几何意义,解题要灵活选用恰当的方法,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [失误与防范]1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.A 组 专项基础训练 (时间:35分钟)1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A.22+ 3 B.2 3 C.4 D.12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos 60°=4+4+2×2×2×12=12,|a +b |=2 3.2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( ) A.32 B.22 C.52D.72 答案 A解析 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为邻边的三角形的面积为12,得12×1×1×sin θ=12,得sin θ=1,所以θ=90°,所以e 1·e 2=0.从而对e 3=12e 1+k e 2两边同时平方得1=14+k 2,解得k =32或-32(舍去).4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A.正三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, 所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269 答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫AC →+13CB →·⎝⎛⎭⎫AB →+13BC →=⎝⎛⎭⎫23AC →+13AB →·⎝⎛⎭⎫13AC →+23AB →=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1, 所以P A →·(PB →+PC →)=P A →·2PM → =2×2×1×cos 180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________. 答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132. 8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”). 答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3, ∴∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的正射影的数量.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35. 因为0<A <π,所以sin A =1-cos 2 A = 1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,故向量BA →在BC →方向上的正射影的数量为|BA →|cos B =c cos B =1×22=22. B 组 专项能力提升(时间:25分钟)11.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC→|的最大值为( )A.6B.7C.8D.9答案 B解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,所以AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,所以x =-1时有最大值49=7,故选B.12.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D.2 答案 B解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23. 13.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在CD 上,若AB →·AF→=2,则AE →·BF →的值是( )A. 2B.2C.0D.1答案 A解析 依题意得AE →·BF →=(AB →+BE →)·(AF →-AB →)=AB →·AF →-AB →2+BE →·AF →-BE →·AB →=2-2+1×2-0=2,故选A.14.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.答案 ⎣⎡⎦⎤-12,12 解析 设Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0) =(2x +π3,12sin x ), 由⎩⎨⎧ c =2x +π3,d =12sin x ,消去x 得d =12sin(12c -π6), 所以y =f (x )=12sin(12x -π6), 易知y =f (x )的值域是⎣⎡⎦⎤-12,12. 15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1.(1)判断△ABC 的形状;(2)求边长c 的值;(3)若|AB →+AC →|=22,求△ABC 的面积.解 (1)由AB →·AC →=BA →·BC →=1,得bc ·cos A =ac ·cos B ,由正弦定理,得sin B cos A =sin A cos B ,∴sin(A -B )=0,∴A =B ,即△ABC 是等腰三角形.(2)由AB →·AC →=1,得bc ·cos A =1,又bc ·b 2+c 2-a 22bc=1,则b 2+c 2-a 2=2, 又a =b ,∴c 2=2,即c = 2.(3)由|AB →+AC →|=22,得2+b 2+2=8,∴b =2,又c =2,∴cos A =24,sin A =144, ∴S △ABC =12bc ·sin A =12×2×2×144=72.。

学习平面向量的数量积应注意的几个问题

学习平面向量的数量积应注意的几个问题

理解数量积的交换律和结合律的区别
• 总结词:了解数量积的交换律和结合律的区别,掌握这两种定律在应用上的不同之处。 • 详细描述:数量积的交换律是指,对于任意两个向量$\overset{\longrightarrow}{AB}$和
$\overset{\longrightarrow}{CD}$,有$\overset{\longrightarrow}{AB} \cdot \overset{\longrightarrow}{CD} = \overset{\longrightarrow}{CD} \cdot \overset{\longrightarrow}{AB}$ 。结合律如上所述。这两种定律在应用上有明显的不同。交换律主要关注两个向量的顺序,而结合律主要关注 向量之间的运算顺序。在使用交换律时,需要注意保证向量的顺序正确,否则计算结果可能不同。而结合律则 更加关注多个向量的综合运算,可以简化复杂的计算过程。
注意平面向量的数量积的应
03
用问题
了解数量积在物理中的应用
了解数量积在力学中的应用,如计算物体的动能、势能、动量等。 理解数量积在电磁学中的应用,如计算电磁场的强度、电势等。
掌握数量积在几何中的应用
掌握数量积在平面几何中的应用,如 计算两点之间的距离、三角形的面积 等。
VS
理解数量积在立体几何中的应用,如 计算两点之间的距离、球的表面积等 。
理解数量积在极坐标系中的表示方法
01 向量的极坐标表示
一个向量的极坐标表示是相对于起点在极轴上的 投影长度和相对于极轴的角度。
02 极坐标系下的数量积
两个向量的数量积可以在极坐标系中计算得到。
03 极坐标系下的运算规则
在极坐标系中,两个向量的数量积满足交换律和Байду номын сангаас结合律。

§5.3 平面向量的数量积

§5.3 平面向量的数量积

§5.3 平面向量的数量积考情考向分析 主要考查利用数量积的定义解决数量积的运算、求模与夹角等问题,考查利用数量积的坐标表示求两个向量的夹角、模以及判断两个平面向量的平行与垂直关系.一般以填空题的形式考查,偶尔会在解答题中出现,属于中档题.1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π]. 2.平面向量的数量积定义:设两个非零向量a ,b 的夹角为θ,则数量|a ||b |·cos θ叫做a 与b 的数量积,记作a ·b .3.平面向量数量积的性质设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ. (2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a ||b |; 当a 与b 反向时,a ·b =-|a ||b |. 特别地,a ·a =|a |2或|a |=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a ||b |.4.平面向量数量积满足的运算律 (1)a ·b =b ·a ;(2)(λa )·b =λ(a ·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a ·c +b ·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离AB =|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.(4)若a ,b 都是非零向量,θ是a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 知识拓展1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线; 两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (2)由a ·b =0可得a =0或b =0.( × ) (3)(a ·b )c =a (b ·c ).( × )(4)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( × )(5)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) 题组二 教材改编2.[P90习题T18]已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =________. 答案 12解析 ∵2a -b =(4,2)-(-1,k )=(5,2-k ), 由a ·(2a -b )=0,得(2,1)·(5,2-k )=0, ∴10+2-k =0,解得k =12.3.[P90练习T19]设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值为________. 答案 -32解析 由已知得c =(1,2)+k (1,1)=(k +1,k +2), 因为b ⊥c ,所以b ·c =0, 因此k +1+k +2=0,解得k =-32.题组三 易错自纠4.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积是________. 答案 52解析 a +2b =(-1+2m,4),2a -b =(-2-m,3), 由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. 5.已知|a |=3,|b |=2,若a ·b =-3,则a 与b 的夹角的大小为________. 答案2π3解析 设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-33×2=-12.又0≤θ≤π,所以θ=2π3.6.已知△ABC 的三边长均为1,且AB →=c ,BC →=a ,CA →=b ,则a ·b +b ·c +a ·c =________. 答案 -32解析 ∵〈a ,b 〉=〈b ,c 〉=〈a ,c 〉=120°,|a |=|b |=|c |=1, ∴a ·b =b ·c =a ·c =1×1×cos 120°=-12,∴a ·b +b ·c +a ·c =-32.题型一 平面向量数量积的运算1.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=________. 答案 9解析 AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9. 2.在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC→=________. 答案 16解析 以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3),设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0,t =83,即E ⎝ ⎛⎭⎪⎫0,83,AE →·BC →=⎝⎛⎭⎪⎫-4,83·(0,6)=16.思维升华 平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(3)利用数量积的几何意义求解.题型二 平面向量数量积的应用命题点1 求向量的模典例 (1)已知向量a ,b 的夹角为60°,|a |=2,|a -2b |=2,则|b |=________. 答案 1解析 由|a -2b |=2,得(a -2b )2=|a |2-4a ·b +4|b |2=4, 即|a |2-4|a||b |cos 60°+4|b |2=4, 则|b |2-|b |=0,解得|b |=0(舍去)或|b |=1.(2)(2017·江苏沛县中学质检)已知AD 是△ABC 的中线,若∠A =120°,AB →·AC →=-2,则|AD →|的最小值是________. 答案 1解析 ∵AB →·AC →=-2=|AB →||AC →|cos A ,∠A =120°,∴|AB →||AC →|=4, ∵|AD →|=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-4)≥14(2|AB →||AC →|-4)=1, 当且仅当AB =AC =2时取等号,∴|AD →|min =1. 命题点2 求向量的夹角典例 (1)已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为______. 答案2π3解析 ∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6, 又|a |=2,|b |=1,∴a ·b =-1, ∴cos 〈a ,b 〉=a ·b |a||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.(2)已知单位向量e 1与e 2的夹角为π3,向量e 1+2e 2与2e 1+λe 2的夹角为2π3,则λ=________.答案 -3 解析 依题意可得|e 1+2e 2|=(e 1)2+4e 1·e 2+(2e 2)2=7, 同理,|2e 1+λe 2|=4+2λ+λ2, 而(e 1+2e 2)·(2e 1+λe 2)=4+52λ,又向量e 1+2e 2与2e 1+λe 2的夹角为2π3,可知(e 1+2e 2)·(2e 1+λe 2)|e 1+2e 2||2e 1+λe 2|=4+52λ7×4+2λ+λ2=-12, 由此解得λ=-23或-3,又4+52λ<0,∴λ=-3.思维升华 (1)求解平面向量模的方法①把几何图形放到适当的坐标系中,写出有关向量的坐标,求向量的长度.如若向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可.②当向量坐标无法表示时,利用向量的线性运算和向量的数量积公式进行求解,关键是会把向量a 的模进行如下转化:|a |=a 2. (2)求平面向量的夹角的方法①定义法:利用向量数量积的定义知,cos θ=a ·b|a||b |,其中两个向量的夹角θ的取值范围为[0,π],求解时应求出三个量:a ·b ,|a |,|b |或者找出这三个量之间的关系. ②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. ③解三角形法:可以把所求两向量的夹角放到三角形中,利用正、余弦定理和三角形的面积公式等进行求解.跟踪训练 (1)(2017·全国Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 3解析 方法一 |a +2b |=(a +2b )2=a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12=12=2 3. 方法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3.(2)(2017·山东)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 答案33解析 由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2. 同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 题型三 平面向量与三角函数典例 (2017·江苏三市调研)如图,A 是单位圆与x 轴正半轴的交点,点B ,P 在单位圆上,且B ⎝ ⎛⎭⎪⎫-35,45,∠AOB =α,∠AOP =θ(0<θ<π),OQ →=OA →+OP →,四边形OAQP 的面积为S .(1)求cos α+sin α;(2)求OA →·OQ →+S 的最大值及此时θ的值θ0.解 (1)∵B ⎝ ⎛⎭⎪⎫-35,45,∠AOB =α, ∴cos α=-35,sin α=45,∴cos α+sin α=15.(2)由已知得,A (1,0),P (cos θ,sin θ), ∴OQ →=(1+cos θ,sin θ), OA →·OQ →=1+cos θ, 又S =sin θ,∴OA →·OQ →+S =sin θ+cos θ+1=2sin ⎝ ⎛⎭⎪⎫θ+π4+1, 又0<θ<π,∴π4<θ+π4<5π4,∴-22<sin ⎝⎛⎭⎪⎫θ+π4≤1, 则OA →·OQ →+S 的最大值为2+1, 此时θ0=π2-π4=π4.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. 跟踪训练 在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.利用数量积求向量夹角典例 已知直线y =2x 上一点P 的横坐标为a ,直线外有两个点A (-1,1),B (3,3).求使向量PA →与PB →夹角为钝角的充要条件. 错解展示:现场纠错解 错解中,cos θ<0包含了θ=π, 即PA →,PB →反向的情况,此时a =1,故PA →,PB →夹角为钝角的充要条件是0<a <2且a ≠1.纠错心得 利用数量积的符号判断两向量夹角的范围时,不要忽视两向量共线的情况.1.(2017·江苏天星湖中学月考)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =________. 答案 1解析 由|a +b |=10得a 2+b 2+2a ·b =10,① 由|a -b |=6得a 2+b 2-2a ·b =6,② ①-②得4a ·b =4,∴a ·b =1.2.已知向量a =(2,1),b =(1,3),则向量2a -b 与a 的夹角为________. 答案 45°解析 由题意可得2a -b =2(2,1)-(1,3)=(3,-1), 则|2a -b |=32+(-1)2=10, |a |=22+12=5,且(2a -b )·a =(3,-1)·(2,1)=6-1=5, 设所求向量的夹角为θ,由题意可得cos θ=(2a -b )·a |2a -b ||a |=510×5=22,则向量2a -b 与a 的夹角为45°.3.已知向量a =(m,2),b =(2,-1),且a ⊥b ,则|2a -b |a ·(a +b )=________.答案 1解析 ∵a ⊥b ,∴2m -2=0,∴m =1,则2a -b =(0,5),a +b =(3,1),∴a ·(a +b )=1×3+2×1=5,|2a -b |=5,∴|2a -b |a ·(a +b )=55=1.4.在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →=________. 答案 32解析 在△ABC 中,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =9+4-102×3×2=14,∴AB →·AC →=|AB →||AC →|cos ∠BAC =3×2×14=32.5.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=____. 答案109解析 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,它们的长不可能为0,所以AB 与AC 垂直,所以△ABC 为直角三角形.以A 为原点,以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝ ⎛⎭⎪⎫23,23,F ⎝ ⎛⎭⎪⎫13,43, 所以AE →=⎝ ⎛⎭⎪⎫23,23,AF →=⎝ ⎛⎭⎪⎫13,43,所以AE →·AF →=23×13+23×43=109.6.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为________三角形.答案 等腰解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0,即CB →·(AB →+AC →)=0,因为AB →-AC →=CB →,所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形.7.(2017·全国Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 答案 7解析 ∵a =(-1,2),b =(m,1),∴a +b =(-1+m,2+1)=(m -1,3).又a +b 与a 垂直,∴(a +b )·a =0,即(m -1)×(-1)+3×2=0,解得m =7.8.(2017·江苏泰州中学期中)向量a =(cos 10°,sin 10°),b =(cos 70°,sin 70°),则|a -2b |=________.答案 3解析 a ·b =cos 70°cos 10°+sin 70°sin 10°=cos 60°=12,|a |=|b |=1,所以|a -2b |=a 2+4b 2-4a ·b =1+4-2= 3.9.已知平面内三个不共线向量a ,b ,c 两两夹角相等,且|a |=|b |=1,|c |=3,则|a +b +c |=________.答案 2解析 因为平面内三个不共线向量a ,b ,c 两两夹角相等,所以由题意可知,a ,b ,c 的夹角为120°,又|a |=|b |=1,|c |=3,所以a ·b =-12,a ·c =b ·c =-32,|a +b +c |= 1+1+9+2×⎝ ⎛⎭⎪⎫-12+2×⎝ ⎛⎭⎪⎫-32+2×⎝ ⎛⎭⎪⎫-32=2. 10.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是______________.答案 ⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞ 解析 a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧ 3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞. 11.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)因为(2a -3b )·(2a +b )=61,所以4|a |2-4a ·b -3|b |2=61.又|a |=4,|b |=3,所以64-4a ·b -27=61,所以a ·b =-6,所以cos θ=a ·b |a||b |=-64×3=-12. 又0≤θ≤π,所以θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,所以|a +b |=13.(3)因为AB →与BC →的夹角θ=2π3, 所以∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,所以S △ABC =12|AB →||BC →|·sin ∠ABC =12×4×3×32=3 3. 12.(2017·江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b ,所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0.于是tan x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x=23cos ⎝⎛⎭⎪⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, 从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32, 于是,当x +π6=π6,即x =0时,f (x )取得最大值3; 当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.13.(2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA→=4,BF →·CF →=-1,则BE →·CE →的值是________.答案 78解析 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b , AF →=23AD →=13a +13b . AE →=13AD →=16a +16b , BF →=BA →+AF →=-a +13a +13b =-23a +13b , CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝ ⎛⎭⎪⎫-23a +13b ⎝ ⎛⎭⎪⎫13a -23b = -29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292. 又BE →=BA →+AE →=-a +16a +16b =-56a +16b . CE →=CA →+AE →=-b +16a +16b =16a -56b , 则BE →·CE →=⎝ ⎛⎭⎪⎫-56a +16b ⎝ ⎛⎭⎪⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78. 14.在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N 为AC 边上的两个动点(M ,N 不与A ,C 重合),且满足|MN →|=2,则BM →·BN →的取值范围为________. 答案 ⎣⎢⎡⎭⎪⎫32,2 解析 不妨设点M 靠近点A ,点N 靠近点C ,以等腰直角三角形ABC 的直角边所在直线为坐标轴建立平面直角坐标系,如图所示,则B (0,0),A (0,2),C (2,0),线段AC 的方程为x +y -2=0(0≤x ≤2).设M (a,2-a ),N (a +1,1-a )(由题意可知0<a <1),∴BM →=(a,2-a ),BN →=(a +1,1-a ),∴BM →·BN →=a (a +1)+(2-a )(1-a )=2a 2-2a +2=2⎝ ⎛⎭⎪⎫a -122+32, ∵0<a <1,∴由二次函数的知识可得BM →·BN →∈⎣⎢⎡⎭⎪⎫32,2.15.设a ,b 为单位向量,且a ⊥b ,若向量c 满足|c -(a +b )|=|a -b |,则|c |的最大值是________.答案 2 2解析 由题意结合a ⊥b ,可设a =(1,0),b =(0,1),c =(x ,y ),则由|c -(a +b )|=|a -b |,得|(x ,y )-(1,1)|=|(1,-1)|,由此可得(x -1)2+(y -1)2=2,即c 对应的点的轨迹在以(1,1)为圆心的圆上,如图所示,∵圆过原点,∴|c |的最大值为圆的直径2 2.16.已知在△ABC 所在平面内有两点P ,Q ,满足PA →+PC →=0,QA →+QB →+QC →=BC →,若|AB →|=4,|AC →|=2,S △APQ =23,则AB →·AC →的值为________. 答案 ±4 3解析 由PA →+PC →=0知,P 是AC 的中点,由QA →+QB →+QC →=BC →,可得QA →+QB →=BC →-QC →,即QA →+QB →=BQ →,即QA →=2BQ →,∴Q 是AB 边靠近B 的三等分点,∴S △APQ =23×12×S △ABC =13S △ABC , ∴S △ABC =3S △APQ =3×23=2. ∵S △ABC =12|AB →||AC →|sin A =12×4×2×sin A =2, ∴sin A =12,∴cos A =±32, ∴AB →·AC →=|AB →||AC →|·cos A =±4 3.。

第35课时—平面向量的数量积 (2)

第35课时—平面向量的数量积 (2)

第五章 平面向量——第35课时:平面向量的数量积一.课题:平面向量的数量积二.教学目标:掌握平面向量的数量积及其性质和运算率,掌握两向量夹角及两向量垂直的 充要条件和向量数量积的简单运用.三.教学重点:平面向量数量积及其应用.四.教学过程:(一)主要知识:1.平面向量数量积的概念;2.平面向量数量积的性质:22||a a =、cos ,||||a b a b a b ⋅<>=; 3.向量垂直的充要条件:0a b a b ⊥⇔⋅=.(二)主要方法:1.注意向量夹角的概念和两向量夹角的范围; 2.垂直的充要条件的应用; 3.当角为锐角或钝角,求参数的范围时注意转化的等价性; 4.距离,角和垂直可以转化到向量的数量积问题来解决.(三)基础训练:1.下列命题中是正确的有①设向量a 与b 不共线,若()()0a b a b +⋅-=,则||||a b =; ②||||||a b a b ⋅=⋅;③a b a c ⋅=⋅,则b c =; ④若()a b c ⊥-,则a b a c ⋅=⋅ 2.已知c b a ,,为非零的平面向量. 甲:则乙,:,c b c a b a =⋅=⋅( )()A 甲是乙的充分条件但不是必要条件()B 甲是乙的必要条件但不是充分条件()C 甲是乙的充要条件 ()D 甲既不是乙的充分条件也不是乙的必要条件3.已知向量(3,4),(2,1)a b ==-,如果向量a xb +与b 垂直,则x 的值为 ( )()A 323 ()B 233 ()C 2 ()D 25- 4.平面向量,a b 中,已知(4,3),||1a b =-=,且5a b ⋅=,则向量b =___ __ ____. 5.已知||=||=2,与的夹角为600,则+在上的投影为 。

6.设向量,a b 满足||||1,|32|3a b a b ==-=,则|3|a b += 。

7.已知向量,a b 的方向相同,且||3,||7a b ==,则|2|a b -=___ ____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【自主纠错】请珍惜每一次训练机会,发现自己存在的问题,重视纠错,总结经验,继续前进!
探究一:数量积的定义及性质
例1.已知 =4, =3, (1)求 与 的夹角 ;(2)求 ;
(3)若 ,求 的面积。
【拓展】(AB层做)已知 ,求(1) ,(2) .
探究二:数量积的应用
例2.已知向量
(1)求 (2)若 的最大值和最小值.
【拓展】(A层做)已知A、B、C为 的三个内角,
(1)若 ,求角A;(2)若 ,求 .
课题:平面向量的数量积
编制人:刘本松杨本才魏红霍川川审核:审批:
【使用说明及学法指导】
1.先仔细阅读教材必修四P107-P122,再思考知识梳理所提问题,有针对性的二次阅读教材,构建知识体系,画出知识树,大约15分钟;2.限时20分钟独立、规范完成合作探究部分,并总结规律方法.
【课程核心】平面向量数量积的性质及其应用。
C.对任意的 ,有 D.
6.如图,已知 的面积为S,且 若 则向量 与 夹角 的取值范围是。
二、填空题:
7.若 (1) ,则 =;(2) ,则 =.
8.在△ABC中,O为中线AM上的一个动点,若AM=2,则 )的最小值是________.
三、解答题:
9.已知△ABC的角A、B、C所对的边分别是 、b、c,设向量 =( ,b),
重点:平面向量数量积的含义;难点:平面向量数量积的运算。
【学习目标】1.牢固掌握平面向量数量积的定义和性质,提高运用向量的数量积解题的能力;
2.自主学习,合作探究,学会利用向量进行计算求值的方法;
3.激情投入,享受学习成功的快乐.
【课前预习】
一、基础知识梳理:
1、两个向量的夹角是怎样定义的?范围是什么?
2、向量在轴上的正射影是怎样的定义的?平面向量数量积的定义是什么?
3、向量的数量积有哪些重要的性质?满足怎样的运算律?
思考①数量积 等于 与 在 方向上正射影的数量 的乘积.正确吗?
思考②若 则 ;
二、练一练:
1.向量 , 满足 且 =2, =4,则 在 方向上正射影的数量为,向量 , 的夹角等于.
=(sin B,sin A), =(b-2, -2).
(1)若 ∥ ,求证:△ABC为等腰三角形;
(2)若 ⊥ ,边长c=2,角C=,求△ABC的面积.
10.(AB层做)设向量
(1)若 与 垂直,求 的值;(2)求 的最大值;
11.(A层做)设两个向量 满足 的夹角为 若向量 与 的夹角为钝角,求实数 的范围。
2.若向量 =(1,1), =(2,5), =(3,x)满足条件(8 - )· =30,则 =.
3. ;
垂直呢?.
4.设 是三个非零平面向量,且它们相互不共线,下列命题:
(1) ;(2) ;(3) 不与 垂直;
(4) ;(5) ;(6) ;
其中正确命题的序号有.
【我的疑问】
【课内探究】
一பைடு நூலகம்讨论、展示、点评、质疑
3.设A、B、C、D是平面上四个不同的点,其中任意三点不共线,若 ,则 是()三角形. A等腰B直角C等腰直角D等边
4.点O是 所在平面内的一点,满足 则点O是 的()
(A)内心(B)外心(C)重心(D)垂心
5.定义平面向量之间的一种运算“ ”如下,对任意的 , ,令 ,下面说法错误的是()
A.若 与 共线,则 B.
二、总结提升
1.知识方面
2.数学思想方法:
课题:平面向量的数量积
【课后训练案】
编制人:刘本松杨本才魏红霍川川审核:审批:
【使用说明】1.限时30分钟完成:2.独立、认真;规范快速。
【课程核心】平面向量数量积的性质及其应用。
重点:平面向量数量积的含义;难点:平面向量数量积的运算。
【学习目标】1.牢固掌握平面向量数量积的定义和性质,提高运用向量的数量积解题的能力;
2.自主学习,合作探究,学会利用向量进行计算求值的方法;
3.激情投入,享受学习成功的快乐.
一、选择题:
1.设a,b是非零向量,若函数f(x)=(xa+b)·(a-xb)的图象是一条直线,则必有()
A.a⊥bB.a∥b
C.|a|=|b|D.|a|≠|b|
2.已知向量 若 与 平行,则实数 的值是()
A.-2B.0C.1D.2
相关文档
最新文档