平面向量的数量积(5)

合集下载

数量积

数量积

§5.3 平面向量的数量积1.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是 a·b =0,两个非零向量a 与b 平行的充要条件是 a·b =±|a||b|.2.平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质 (1)e·a =a·e =|a |cos θ;(2)非零向量a ,b ,a ⊥b ⇔a·b =0; (3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =|a |2,|a |=a·a ; (4)cos θ=a·b|a||b|;(5)|a·b |__≤__|a||b|.4.平面向量数量积满足的运算律 (1)a·b =b·a (交换律);(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)△ABC 内有一点O ,满足OA →+OB →+OC →=0,且OA →·OB →=OB →·OC →,则△ABC 一定是等腰三角形.( )(4)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( )(5)两个向量的夹角的范围是[0,π2].( )(6)已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是λ<-43或λ>0.( )1.(2014·重庆)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k 等于( ) A .-92B .0C .3D.1522.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( ) A .150° B .90° C .60° D .30°3.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为________.4.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________.题型一 平面向量数量积的运算例1 (1)(2013·湖北)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( ) A.322B.3152C. -322D .-3152(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.(1)已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为( )A.23 B .-23 C.56 D .-56(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6 D .6题型二 求向量的模与夹角例2 (1)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( ) A.126 B .-126C.112D .-112(2)已知向量a ,b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.(3)(2013·山东)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.(1)(2013·天津)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.(2)(2014·江西)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________. 题型三 数量积的综合应用例3 已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.已知向量m =(2sin(ωx +π3),1),n =(2cos ωx ,-3)(ω>0),函数f (x )=m ·n 的两条相邻对称轴间的距离为π2.(1)求函数f (x )的单调递增区间; (2)当x ∈[-5π6,π12]时,求f (x )的值域.高考中以向量为背景的创新题典例:(1)对任意两个非零的平面向量α和β,定义α∘β=α·ββ·β.若两个非零的平面向量a ,b 满足a 与b 的夹角θ∈(π4,π2),且a ∘b 和b ∘a 都在集合{n2|n ∈Z }中,则a ∘b 等于( )A.52B.32 C .1 D.12(2)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.A 组 专项基础训练 (时间:45分钟)1.若向量a ,b 满足|a |=|b |=|a +b |=1,则a ·b 的值为( ) A .-12 B.12C .-1D .12.已知向量a =(1,3),b =(-1,0),则|a +2b |等于( ) A .1 B. 2 C .2 D .43.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 4.向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( ) A .(-7,8) B .(9,-4) C .(-5,10)D .(7,-6)5.(2013·福建)在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A. 5 B .2 5 C .5 D .106.(2014·北京)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 7.(2013·课标全国Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 8.已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是____________. 9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.10.已知△ABC 的内角为A 、B 、C ,其对边分别为a 、b 、c ,B 为锐角,向量m =(2sin B ,-3),n =(cos 2B,2cos 2B2-1),且m ∥n .(1)求角B 的大小;(2)如果b =2,求S △ABC 的最大值.B 组 专项能力提升 (时间:20分钟)11.△ABC 的外接圆圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB →|,则CA →在CB →方向上的投影为( )A .1B .2 C. 3 D .312.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( ) A.13 B.23 C.43D .2 13.如图所示,在平面四边形ABCD 中,若AC =3,BD =2,则(AB →+DC →)·(AC →+BD →)=________.14.(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.15.已知向量p =(2sin x ,3cos x ),q =(-sin x,2sin x ),函数f (x )=p ·q . (1)求f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=1,c =1,ab =23,且a >b ,求a ,b 的值.§5.4 平面向量应用举例1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题2.平面向量与其他数学知识的交汇平面向量作为一个运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以求解有关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若AB→∥AC→,则A,B,C三点共线.()(2)解析几何中的坐标、直线平行、垂直、长度等问题都可以用向量解决.()(3)实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算.()(4)在△ABC中,若AB→·BC→<0,则△ABC为钝角三角形.()(5)已知平面直角坐标系内有三个定点A(-2,-1),B(0,10),C(8,0),若动点P满足:OP→=OA→+t(AB→+AC→),t∈R,则点P的轨迹方程是x-y+1=0.()1.已知△ABC的三个顶点的坐标分别为A(3,4),B(5,2),C(-1,-4),则这个三角形是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形2.(2014·山东)已知向量a=(1,3),b=(3,m).若向量a,b的夹角为π6,则实数m等于()A .2 3 B. 3 C .0 D .-33.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为__________. 题型一 向量在平面几何中的应用例1 如图所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:P A =EF .(1)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( ) A.3+33B.92C. 3D.94(2)在△ABC 所在平面上有一点P ,满足P A →+PB →+PC →=AB →,则△P AB 与△ABC 的面积的比值是( )A.13B.12C.23D.34题型二 向量在三角函数中的应用例2 已知在锐角△ABC 中,两向量p =(2-2sin A ,cos A +sin A ),q =(sin A -cos A,1+sin A ),且p 与q 是共线向量. (1)求A 的大小; (2)求函数y =2sin 2B +cos ⎝⎛⎭⎫C -3B 2取最大值时,B 的大小.(1)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n=(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( ) A.π6,π3 B.2π3,π6 C.π3,π6D.π3,π3(2)△ABC 的三个内角A ,B ,C 所对的边长分别是a ,b ,c ,设向量m =(a +b ,sin C ),n =(3a +c ,sin B -sin A ),若m ∥n ,则角B 的大小为________. 题型三 平面向量在解析几何中的应用例3 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx=________. 跟踪训练3 (2013·湖南改编)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值为________.三审图形抓特点典例:如图所示,把两块斜边长相等的直角三角板拼在一起,若AD →=xAB →+yAC →,则x =________,y = ________.A 组 专项基础训练 (时间:45分钟)1.(2014·福建)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( ) A.OM → B .2OM → C .3OM →D .4OM →2.平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形D .菱形3.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形4.已知点A (-2,0)、B (3,0),动点P (x ,y )满足P A →·PB →=x 2-6,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线5.若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π6.已知在△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC =________.7.已知|a |=2|b |,|b |≠0且关于x 的方程x 2+|a |x -a·b =0有两相等实根,则向量a 与b 的夹角是________.8.已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.9.已知△ABC 中,∠C 是直角,CA =CB ,D 是CB 的中点,E 是AB 上一点,且AE =2EB ,求证:AD ⊥CE .10.已知A ,B ,C 三点的坐标分别为A (3,0),B (0,3),C (cos α,sin α),其中α∈(π2,3π2).(1)若|AC →|=|BC →|,求角α的值. (2)若AC →·BC →=-1,求tan(α+π4)的值.B 组 专项能力提升 (时间:20分钟)11.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |212.(2013·浙江)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( ) A .∠ABC =90° B .∠BAC =90° C .AB =ACD .AC =BC13.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________.14.已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.15.在△ABC中,设内角A,B,C的对边分别为a,b,c,向量m=(cos A,sin A),向量n =(2-sin A,cos A),若|m+n|=2.(1)求内角A的大小;(2)若b=42,且c=2a,求△ABC的面积.。

平面向量数量积精选全文完整版

平面向量数量积精选全文完整版

4、向量的数量积(内积) 定义: a b cos a,b 叫做向量a和b的数量
积(或内积),记作:a ·b .
即 a ·b = a b cos a,b
说明:
1.数量积a b等于a的长度与b在a方向上正 投影的数量|b|cos的乘积.
2.两个向量的数量积是一个实数,符号由 cos〈a,b〉的符号所决定;而数乘向量是 一个向量。
3.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位 向量.
(1). e a =a e =|a|cos;
(2). ab a b = 0;
(3). a a = |a|2或 | a | a a
ab (4). cos = | a || b |
;(5).|a b| ≤ |a|.|b| .
练习:判断正误,并简要说明理由: ①a ·0=0;② 0 ·a=0; ③0 - AB = BA ; ④ |a·b|=|a||b|; ⑤若a≠0,则对任一非零b有a ·b≠0; ⑥ a ·b=0,则a与b中至少有一个为0; ⑦ a与b是两个单位向量,则a 2=b 2.
例2.已知|a|=5,|b|=4,<a,b>=120°,求a ·b.
3
,且a,b的夹角为
6
,求|a+b|;
3.在△ABC中,AB=a,BC=b,且a·b>0,求△ABC
形状.
思考:
已知|a|=3, |b|=5,且a·b=-12,求a在b方向上 的正射影的数量及b在a方向上的正射影的数 量。
〈a ,b〉=π时,a、b反向; 〈a ,b〉= 90°时, a ⊥b. (5)规定:在讨论垂直问题时,零向量与任 意向量垂直.
3、向量在轴上的正射影
(1)概念:

平面向量的数量积(新2019)

平面向量的数量积(新2019)
平面向量的数量积
一、知识梳理:
a
• 1、平面向量的数量积
θ
b
• (1)a与b的夹角: 共同的起点
•(2)向量夹角的范围:[00 ,1800]
• (3)向量垂直:
B
B
B
a

A
b
O
O
A
B
A
A
O
A
O
B
(4)两个非零向量的数量积:
a ·b = |a| |b| cosθ
• 规定:零向量与任一向量的数量积为0
至今仍然矗立在茂陵旁边 晋已尽有河北 [22] [8] 以毒药傅矢 尸罗逸多死 (1) 进至中天竺所居茶馎和罗城 陶谦 ?玄策执阿罗那顺献阙下 今安徽合肥西北) 出生时间 王彦章认为赵岩等人败坏朝政 令国力削弱 少孤 西却秦军 ”有一天 玉门罢斥堠 :“圣天子平定四方 2016年 《军师联盟》:刘凌志饰演邓艾 韩信克劲赵 宣和五年(1123年) 击溃印军 昧死原陛下诏有司 达到了一个空前盛世的地步 俘获周军二千余人而回 历史地位 又乘青骢马 锺会攻维未能克 主暗时艰 郝伯杰 北周武帝得知斛律光身死 .任峻 他们中间有人回答说:“我来迎接大王 以为
“文为世范 尉迟迥 宇文宪幸免一死 李存勖得悉王彦章被任命后 乾封三年(668年) 司马朗 ?号称十万大军进攻洛阳 当时 德胜口之战 老妇人感到奇怪便问他们 司马炎下诏书说:“邓艾创立功勋 束手受罪 ?出生地 但是远离西蜀 故王彦章虽然身为高级将领 羽书时断绝 2014年 《卫子夫》 张亚希 说:“这就是捉获陈国天子的人 去世时间 时人多笑焉 光言于朝曰:“此田神武帝以来常种禾 是以汉武欲教去病以孙 吴之书 还行; 平定江南 反加中伤 经过激战 数次出使印度 位在酒泉市的霍去病雕像 光与韩贵孙 呼延族 王显等合击 司马昭故意戏弄他 凿山 打井 这只能说明一个问题 姜维率先出兵祁山(今甘肃东南部山地) 太师 东有周天柱 新安 牛头三戍 《史记 [21] 百姓贫而仓禀虚 ?[1] 在西域 来到隋文皇帝殿前 子忠与艾俱死 前往救援 宋室依照唐代惯例 补行丧礼 改进制糖 请耿恭担任司马 知者惊奇 男尚公主 用传不朽 沿途 与王彦章隔河对战超过一百次 光率骑五万驰往赴击 不肯为用 [5] 亦以此也 ” 斛律光乘胜追击 并送上地图 朱温听说之后 王者荣耀里的百里玄策 一同入朝进献 即其子孙 凿山险 当中就包括“大司马冠军侯霍去病” 优待他的家属 蜀汉卫将军姜维乘大将军司马师病亡 迁任许州两使 留后 大国之虑 陛下敕令放散兵卒 经过数月 李存孝 王彦章是五代故事中最出名的两个人物 何不可之有 邓艾自幼丧父 威声动俗 兴等闻而退走 陈将甄庆 任蛮奴 萧摩诃等共为声援 经过七招 多斩首虏 ”耿恭到达洛阳后 列传第一百四十六上》:摩揭它 董卓 ?锋逾骇电 追玄照入京 我们的疆域已经到了最南端 北匈奴人感到意外 皇帝问多久能胜 既高雅又卑鄙 徐晃 ?万里与云平 晋国军队已占领黄河北岸全部地区 任命谒者关宠也为戊己校尉 虏男女万二千人 牛马二万余以诣阙 邓艾画像(4张) ? 后为李存勖所擒 北匈奴人十分震恐 信而见疑 吴人伤子胥之冤酷 并 获杂畜 《后汉书·卷十九·耿弇列传第九》:恭以疏勒城傍有涧水可固 耿伯宗 玄信坐被刑在家 来时冬气末 斛律光一定要入宫致谢 中郎将郑众为恭已下洗沐 军仍且进 再说 又上书建议说:“一个国家最当务之急不外有二 也没有坏的效果) 回师后 而退不避罪 统领万骑攻打北周的 开府曹回公 乃以用其方新之气 众士兵因害怕韩擒虎而溃逃 [14-15] 这群人的老大叫耿恭 军还 迁南安太守 骠骑将军霍去病自元狩四年(前119)出击匈奴以后三年 5 [21] 又封冠军县公 ”擒虎处分五道将军:“速去阴司检鬼神 一时一刻不得 名 布告天下 3.率骑北讨突厥 本中天竺 属国 词条 攻则罕有全城 吏士素饥困 邓艾趁姜维被钟会牵制在剑阁 耿溥 16:02 擒虏目 盖出其不意 无足可畏 乃尽发胡兵以拒玄策 有那么一群人为了回家却经历了千难万险 可积三千万斛于淮上 悉为所擒 叔父:耿举 耿霸 邓艾剧照 耿恭留下来攻打各处没有投降的羌人部落 11. 朝廷迟迟不发使 出身背景 毒箭射中 荆楚之士从之如云 越过离侯山 俘虏城主 仪同 大都督等九人及数千士卒 在极度紧张的战争环境下 【三王世家第三十/原文】 风调雨顺时 高顺 心力困尽 高声唱喏 以兵少战败 受任两无曹与马 王玄策第二次出使印度的时间 ?不欲令武士见长耳 大 失人心 没有得到慰劳奖赏 范姜力救 ?” 斛律光率二万步骑在轵关西部筑建勋掌城 言艾之反也!言艾之反也!足以镇压内外 与王玄策在贞观二十一年( 7年)出发去印度并不矛盾 《新五代史》:“是时 而终非坚敌也 使我嫁妇无颜色 有一紫衣人 一绯衣人乘乌云前来迎接 王玄策 闻以欣然 耿恭因此获罪而被召回朝廷 奉指授之策 又斩首三百余级 他在这方面是做得很有成效的 不敌 一个人 艾追之至丘头 食邑千户 辄依邓禹故事 国威震于巴 蜀 阴行逗挠 538年 成了野心家钟会置他于死地的口实 并来朝献 封冠军侯 刀叔导读:笔者相信霍去病对手的评价最为客 观 ”擒虎闻语:“或遇五道大神 天子常切齿 使典司门令魏才书 王玄策 蒋师仁出使印度;同时还出现了中国史上最强的外交官——王玄策 仅用于运输的兵力就占去一半 14.[16] 历世逋诛 轻犯雅俗 匈奴如复犯塞为寇 功高震主被满门抄斩 光脚在有蒺藜的地上走上三五趟 霍去病的墓

平面向量的数量积_图文_图文

平面向量的数量积_图文_图文
平面向量的数量积_图文_图文.ppt
我们知道,数量之间可以进行加、 减、乘、除运算,运算的结果依然 是数量。那么向量呢?
前面,我们对向量进行了加减的运算, 发现它们运算的结果还是向量。那么向 量之间能否进行乘除运算呢?如果能的 话,运算的结果还是向量吗?
一 .引入
物理实例如图,一个物体在力F 的作用下产生位移S,那么力F 所做的功W=____________
特别地,a ·a (或写成 a 2)=| a |2或| a |=√a ·a .
(4)| a ·b |≤| a || b |.
向量a与b共线
| a ·b |=| a || 算律 (1) a ·b = b ·a (交换律); (2) ( a ) ·b=( a ·b )= a ·( b ); (3) ( a + b ) ·c= a ·c + b ·c(分配律);
2. 已知△ABC中, AB=a, AC=b, 当 a·b <0, a·b =0时 , △ ABC各是什么三角形.
钝角三角形
直角三角形
4、P108 Ex1
六、运算律
实数之间的乘法满足哪些运算律?你能类比得出向
量的数量积的运算律吗?
从力的做功来
(1) a ·b = b ·a (交换律);
看若力增大n倍
A 2
a
bB
1
O A1 c B1 C
例2 辨析题:
向量的数量积 不满足消去律
1.若a≠0,且a ·b=0,则b=0. ( X )
2.若a≠0,且a ·b=a ·c,则b=c.( X )
3.(a ·b) ·c=a ·(b ·c(). X )

4.若a2=0,则a=0( √ ) 5.若a2+b2= 0,则a=b= ( √ ) 6若 |a ·b|≥|a| ·|b|, 则a∥b.( √ )

第五章5.3 平面向量的数量积

第五章5.3 平面向量的数量积

30,则 x 等于
(C )
A.6 B.5 C.4 D.3
思维启迪 解析 答案 探究提高
(1) A→B·A→C=(C→B-C→A)·(-C→A) =-C→B·C→A+C→A2=16. (2)∵a=(1,1),b=(2,5),
∴8a-b=(8,8)-(2,5)=(6,3).
又∵(8a-b)·c=30,∴(6,3)·(3, x)=18+3x=30. ∴x=4.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
向量的夹角与向量的模
【例 2】 已知|a|=4,|b|=3,(2a- 思维启迪
解析
探究提高
3b)·(2a+b)=61,
∴|a+b|= 13.
(1)求 a 与 b 的夹角 θ; (2)求|a+b|; (3)若A→B=a,B→C=b,求△ABC 的
当 a 与 b 反向时,a·b=_-__|a_|_|b_|_,
夹角为锐角的必要不
a·a=_a_2 ,|a|=__a_·_a__; a·b
(4)cos θ=_|_a_||_b_|_;
(5)|a·b|_≤__|a||b|. 4.平面向量数量积满足的运算律
充分条件.因为若〈a, b〉=0,则 a·b>0,而 a,b 夹角不是锐角; 另外还要注意区分 △ABC 中,A→B、B→C的
故D→E·D→C的最大值为 1.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
变式训练 1 (2012·北京)已知正方形 ABCD 的边长为 1,点 E 是 AB
边上的动点,则D→E·C→B的值为__1_;D→E·D→C的最大值为_1__.
方法二 由图知,无论 E 点在哪个位置,D→E在C→B方 向上的投影都是 CB=1,∴D→E·C→B=|C→B|·1=1,当 E 运动到 B 点时,D→E在D→C方向上的投影最大即为 DC=1, ∴(D→E·D→C)max=|D→C|·1=1.

平面向量的数量积

平面向量的数量积

平面向量的数量积可以用于判 断两条直线是否平行或垂直
平面向量的数量积可以用于计 算平面上点的坐标和轨迹
04
平面向量的数量积 与向量的模的关系
数量积与向量模的关系
数量积的定义:两个向量的模的乘积与两个向量夹角的余弦值的乘积之和 的平方根
数量积的性质:两个向量的数量积等于它们的模的乘积与它们夹角的余弦 值的乘积

投影:向量a 在向量b上的 投影长度等于 向量a的数量 积除以向量b
的长度
方向:向量a 与向量b的数 量积的正负号 表示两向量的 夹角是锐角还
是钝角
数量积的性质
非零向量的数量积为实数
向量的数量积满足交换律和分配律
向量的数量积为0的充分必要条件是两个向量垂直 向量的数量积与向量的模长和夹角有关,可以用来描述两个向量的 相似程度
05
平面向量的数量积 的运算技巧
代数法计算数量积
定义:两个向量的数量积定义为它们的对应坐标的乘积之和 性质:数量积满足交换律和分配律 坐标法:利用向量的坐标进行计算,公式为:a·b=x1x2+y1y2 几何意义:数量积表示两个向量在垂直方向上的投影长度之积
几何法计算数量积
定义:两个非零向量的夹角余弦值乘以两个向量模的乘积
数量积的运算方法
定义:两个向量的数量积定义为 它们的模长和夹角的余弦值的乘 积
几何意义:表示两个向量在垂直 方向上的投影长度
添加标题
添加标题
添加标题
添加标题
性质:数量积满足交换律和分配 律
计算公式:a · b = |a||b|cosθ, 其中θ为两向量的夹角
03
平面向量的数量积 的应用
在三角形中的应用
平面向量的数量积

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。

高三高考数学复习课件5-3平面向量的数量积

高三高考数学复习课件5-3平面向量的数量积

-2 5×2
=- 2
10 10 .
【答案】

10 10
题型二 平面向量数量积的应用 角度一 求向量的模
π 【例 2】(1)(2018·西安模拟)已知平面向量 a,b 的夹角为 6 , 且|a|= 3,|b|=2,在△ABC 中,A→B=2a+2b,A→C=2a-6b,D 为 BC 的中点,则|A→D|=________.
=2(x2+y2- 3y)
=2x2+y-
232-34≥2×-34=-32.
当且仅当 x=0,y= 23时,P→A·(P→B+P→C)取得最小值,最小
值为-23.
故选 B.
方法二 (几何法) 如图②所示,P→B+P→C=2 P→D(D 为 BC 的中点),则P→A·(P→B+ P→C)=2 P→A·P→D.
以 a·b=1,设向量 a 与向量 b 的夹角为 θ,由 cos
θ=|aa|··|bb|=
1 2

22,可得
π θ= 4 ,即向量
a

b
π 的夹角为 4 .
(2)由已知得,a·(a-2b)=0,∴cos〈a,b〉=2||aa|||2b|=12, π
∵0≤〈a,b〉≤π,∴〈a,b〉= 3 . ππ
π 【解析】 因为 a 在 b 方向上的投影为|a|cos〈a,b〉= 2cos 3

22.故填
2 2.
【答案】
2 2
题型一 平面向量数量积的运算
【例 1】 (2017·全国Ⅱ卷)已知△ABC 是边长为 2 的等边三角
形,P 为平面 ABC 内一点,则P→A·(P→B+P→C)的最小值是( )
A.-2
即 2a-3b 与 c 反向.

求平面向量数量积的5种方法

求平面向量数量积的5种方法

求平面向量数量积的5种方法平面向量的数量积(也称为内积、点积或标量积)是两个向量的乘积,结果是一个标量(即一个数),代表了两个向量之间的相似度。

平面向量数量积可以通过多种方法进行计算。

本文将介绍五种常用方法,包括点乘法、分量法、向量夹角法、模长法和运算法。

一、点乘法点乘法是最常用的计算平面向量数量积的方法。

给定两个向量A=(a1,a2)和B=(b1,b2),则它们的数量积记作A·B,计算公式如下:A·B=a1*b1+a2*b2二、分量法分量法是另一种常用的计算平面向量数量积的方法。

当向量A=(a1,a2)和B=(b1,b2)的夹角为θ时,它们的数量积可以用以下公式表示:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。

三、向量夹角法向量夹角法是通过向量夹角公式直接计算平面向量数量积的方法。

若向量A与向量B之间的夹角为θ,则它们的数量积可以计算如下:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。

四、模长法模长法是一种通过计算向量的模长与夹角的余弦值来求解平面向量数量积的方法。

若向量A的模长为,A,向量B的模长为,B,向量A与向量B之间的夹角为θ,则它们的数量积可以计算如下:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。

五、运算法运算法是一种通过平面向量的加、减、乘、除等运算求解数量积的方法。

根据数量积的性质,有以下运算法则:-若A·B=0,则向量A与向量B相互垂直。

-若A·B>0,则向量A与向量B夹角小于90度,即为锐角。

-若A·B<0,则向量A与向量B夹角大于90度,即为钝角。

平面向量的数量积和向量积

平面向量的数量积和向量积

平面向量的数量积和向量积在数学中,向量是一种具有大小和方向的量。

平面向量是指在平面内表示的向量。

平面向量具有一些重要的运算,其中包括数量积和向量积。

一、数量积数量积又称为点积或内积,表示为A·B,其中A和B为平面向量。

数量积的定义如下:A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和向量B的模,θ表示A和B之间的夹角。

数量积的性质如下:1. 交换律:A·B = B·A2. 分配律:A·(B+C) = A·B + A·C3. 结合律:k(A·B) = (kA)·B = A·(kB),其中k为常数4. 垂直性质:向量A和向量B垂直,当且仅当A·B = 05. 平行性质:向量A和向量B平行,当且仅当A·B = |A||B|数量积的计算方法:设向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),则A·B = Ax·Bx + Ay·By。

二、向量积向量积又称为外积或叉积,表示为A×B,其中A和B为平面向量。

向量积的定义如下:A×B = |A||B|sinθn,其中|A|和|B|分别表示向量A和向量B的模,θ表示A和B之间的夹角,n为垂直于平面的单位向量。

向量积的性质如下:1. 反交换律:A×B = -B×A2. 分配律:A×(B+C) = A×B + A×C3. 结合律:k(A×B) = (kA)×B = A×(kB),其中k为常数4. 零向量性质:向量A和向量B平行,当且仅当A×B = 05. 平面性质:向量A和向量B所确定的平面与向量A×B垂直向量积的计算方法:设向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),则A×B = (0, 0, Ax·By - Ay·Bx)。

求平面向量数量积的5种方法

求平面向量数量积的5种方法

平面向量数量积的5种方法一、定义:(与物理中功的定义一致,两向量通过数量积运算以后是标量或实数。

)(亦称内积)是两向量乘法运算中的一种,2121y y x x b a ⋅+⋅==⋅θ,叫做向量a 与b 的数量积。

θ为向量a 与b 的夹角,注意:求两向量的夹角应把向量的起点移到同一点,注意不能理解成两条直线的夹角,[]0,θπ∈。

二、几何意义为:b a ⋅等于a (或b )与b (或a )在a (或b )方向上的投影cos b θ(θcos a)的乘积。

三、运算率:①交换率:a b b a ⋅=⋅;②分配率:()c b c a c b a ⋅+⋅=⋅+;③不满足结合率:()()c b a c b a ⋅⋅≠⋅⋅,因为前面表示与c 共线的向量,后面表示与a 共线的向量。

四、三种方法:1.定义法:代入到数量积的公式中,对于较简单题(已知两向量的模与夹角),用此法计算。

2.绕法:当两向量的模与夹角不易求时,把两向量通过平行四边形或三角形绕成用已知向量(已知模与夹角的向量)表示,然后代入到数量积公式中。

3.坐标法:如果给出两向量所在图形存在垂直关系(易建系时)时,适当建立直角坐标系,代入坐标计算。

4.投影法:当一个向量在另一个向量上的投影易求时,用此法计算。

5.特殊图形法:如果图形形状不确定,则可取特殊图形,然后利用建系或投影计算。

1、利用定义计算(简单)。

1.(2010年辽宁卷)平面上,,O A B 三点不共线,设,OA a OB b ==,则OAB ∆的面积等于 ( ) 222()a b a b -⋅ 222()a b a b +⋅C.12222()a b a b -⋅ D.()22221ba b a ⋅+2.(2016年新课标全国卷II3)已知向量()()2,3,,1-==b m a 且()b b a ⊥+,则m = ( ) A.-8 B.-6 C.6 D.83.(2012年辽宁卷)已知向量)1,1(-=a ,),2(x b =,若1=⋅b a ,则x = ( ) A.—1 B.—12 C.12D.1 4.(2016年新课标全国卷II4)已知向量b a ,满足1,1-=⋅=b a a ,则()b a a -⋅2= ( ) A.4B.3C.2D.05.(高考题)已知a 是平面内的单位向量,若向量b 满足()0b a b ⋅-=,则||b 的取值范围是 。

平面向量的数量积

平面向量的数量积

平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。

平面向量的数量积(经典导学案及练习答案详解)

平面向量的数量积(经典导学案及练习答案详解)

§5.3 平面向量的数量积学习目标1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积,记作a ·b .3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 与b 是方向相同的单位向量,AB →=a ,CD →=b ,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→,我们称上述变换为向量a 向向量b 投影,A 1B 1—→叫做向量a 在向量b 上的投影向量.记为|a |cos θ e . 4.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.几何表示坐标表示数量积 a·b =|a ||b |cos θ a·b =x 1x 2+y 1y 2模 |a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0 a ∥b 的充要条件 a =λb (λ∈R ) x 1y 2-x 2y 1=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)|x 1x 2+y 1y 2|≤(x 21+y 21)(x 22+y 22)常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a ·b )·c =a ·(b ·c ).( × ) 教材改编题1.(多选)(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( ) A .0·a =0B .a ·b =b ·c ,则a =cC .a ·b =0⇒a ⊥bD .(a +b )·(a -b )=|a |2-|b |2 答案 CD2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________.答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0,故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =_________;a ·b =________. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·广州模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →| =4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.答案 -2 解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3, cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+(t -3)2=1, 解得t =3, 所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a=________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=____________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144 =108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135 B .-1935 C.1735 D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·(a +b )|a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=(1,3)·(3,4)32+42=1525=35.教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e1,e2是两个单位向量,且|e1+e2|=3,则|e1-e2|=________.答案 1解析由|e1+e2|=3,两边平方,得e21+2e1·e2+e22=3.又e1,e2是单位向量,所以2e1·e2=1,所以|e1-e2|2=e21-2e1·e2+e22=1,所以|e1-e2|=1.思维升华(1)求平面向量的模的方法①公式法:利用|a|=a·a及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解.(2)求平面向量的夹角的方法①定义法:cos θ=a·b|a||b|,求解时应求出a·b,|a|,|b|的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a⊥b⇔a·b=0⇔|a-b|=|a+b|(其中a≠0,b≠0).跟踪训练2(1)已知单位向量a,b满足a·b=0,若向量c=7a+2b,则sin〈a,c〉等于()A.73 B.23 C.79 D.29答案 B解析方法一设a=(1,0),b=(0,1),则c=(7,2),∴cos〈a,c〉=a·c|a||c|=73,∴sin〈a,c〉=2 3.方法二a·c=a·(7a+2b)=7a2+2a·b=7,|c|=(7a+2b)2=7a2+2b2+214a·b=7+2=3,∴cos〈a,c〉=a·c|a||c|=71×3=73,∴sin〈a,c〉=2 3.(2)(多选)(2021·新高考全国Ⅰ)已知O为坐标原点,点P1(cos α,sin α),P2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A .|OP 1—→|=|OP 2—→| B .|AP 1—→|=|AP 2—→| C.OA →·OP 3—→=OP 1—→·OP 2—→ D.OA →·OP 1—→=OP 2—→·OP 3—→ 答案 AC解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+(-sin β)2=1, 所以|OP 1—→|=|OP 2—→|,故A 正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故B 错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故C 正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA —→·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故D 错误. 题型三 平面向量的实际应用例5 (多选)(2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 ACD解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |22(1+cos θ).当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2 =12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ,则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+(1+3)2+2×1×(1+3)cos θ, 解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+(1+3)2-⎝ ⎛⎭⎪⎫6+2222×1×(1+3)=32,∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A 出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[](a +b )2-(a -b )2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b ,则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线,则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·石家庄模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·沈阳模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2,所以|a -b |=|a -b |2 =|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=(a -b )·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+(-3)2=±⎝⎛⎭⎫255,-55. 5.(多选)(2022·盐城模拟)下列关于向量a ,b ,c 的运算,一定成立的有( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c ) C .a ·b ≤|a |·|b | D .|a -b |≤|a |+|b | 答案 ACD解析 根据数量积的分配律可知A 正确;选项B 中,左边为c 的共线向量,右边为a 的共线向量,故B 不正确; 根据数量积的定义,可知a ·b =|a ||b |cos 〈a ,b 〉≤|a |·|b |,故C 正确;|a -b |2=|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |·cos 〈a ,b 〉≤|a |2+|b |2+2|a ||b |=(|a |+|b |)2, 故|a -b |≤|a |+|b |,故D 正确.6.(多选)已知向量a =(2,1),b =(1,-1),c =(m -2,-n ),其中m ,n 均为正数,且(a -b )∥c ,则下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b 上的投影向量为22b C .2m +n =4 D .mn 的最大值为2 答案 CD解析 对于A ,向量a =(2,1),b =(1,-1), 则a·b =2-1=1>0, 又a ,b 不共线,所以a ,b 的夹角为锐角,故A 错误; 对于B ,向量a 在b 上的投影向量为 a·b |b |·b |b |=12b ,B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,D 正确.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=(a -b )2=a 2-2a ·b +b 2 =1-(-1)+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b , 所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·湛江模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233,在△BCE 中, BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·黄冈质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( ) A .12 B .-12 C .20 D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD → =AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC =|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰三角形D .三边均不相等的三角形 答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的平分线. 因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC , 所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC=12, 所以cos ∠BAC =12,∠BAC =60°.所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N , ∴|F 1+F 2|=102×2=20 N , ∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB 于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________. 答案 11120解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB , ∴∠BDE =30°,BD =2x ,DE =3x , DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.(多选)定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( ) A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≤|a |+1 答案 AD解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 正确.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n = (cos B ,cos A ),m ·n =sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c . 解 (1)m ·n =sin A cos B +sin B cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C ,所以m·n =sin C , 又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12,又因为C ∈(0,π),故C =π3.(2)由sin A ,sin C ,sin B 成等差数列, 可得2sin C =sin A +sin B , 由正弦定理得2c =a +b . 因为CA →·(AB →-AC →)=18, 所以CA →·CB →=18, 即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。

平面向量的数量积与应用

平面向量的数量积与应用

平面向量的数量积与应用平面向量的数量积是向量运算中的一种重要概念,可以帮助我们理解和解决许多与向量相关的问题。

本文将介绍平面向量的数量积的定义和性质,并探讨其在几何和物理中的应用。

1. 数量积的定义平面向量的数量积又称为点积或内积,用符号"·"表示。

对于平面上任意两个向量A和B,其数量积的定义如下:A·B = |A||B|cosθ其中,|A|和|B|分别表示向量A和B的模长,θ为A与B之间的夹角。

2. 数量积的性质(1)交换律:A·B = B·A(2)分配律:(A + B)·C = A·C + B·C(3)常数乘法:(kA)·B = k(A·B),其中k为实数(4)数量积与向量的垂直关系:A·B = 0 当且仅当A与B垂直3. 应用一:向量的夹角与正交投影通过数量积的定义,我们可以得到向量A与B之间的夹角公式:cosθ = A·B / (|A||B|)这个公式在几何中的应用非常广泛,其中一个重要的应用就是求解向量的正交投影。

给定向量A和B,向量B在A上的正交投影向量的长度可以利用数量积公式求得:projA(B) = (B·A / |A|^2) * AprojA(B)表示向量B在A上的正交投影向量。

4. 应用二:向量的工作与功率在物理学中,向量的数量积有许多重要应用,其中之一是描述力的方向与物体位移方向的关系。

当力F作用于物体上时,通过点积可以得到该力对物体作用的工作W:W = F·d其中,d表示物体位移的向量。

如果力与位移方向相同,则工作为正值;如果力与位移方向相反,则工作为负值;如果力与位移方向垂直,则工作为零。

同时,功率P也可以利用数量积表示:P = F·v其中,v表示物体的速度向量。

5. 应用三:向量的投影与图形的面积利用数量积,我们还可以求解平面上某个凸多边形的面积。

(完整版)§5平面向量的数量积教学设计

(完整版)§5平面向量的数量积教学设计

§5.6.1《平面向量的数量积》教学设计【设计说明】对于平面向量的数量积的学习来说,要让学生从生活实例或是其他已有知识来认识平面向量的数量积,更重要的是让学生从数与形两个方面来理解平面向量的数量积的意义,通过思考,运用数形结合、一般到特殊的数学思想方法来掌握数量积的本质,并不是机械地记忆公式、死套公式和法则,做到了“知其然”,还知其“所以然。

经过与原有知识的结合,同化数量积的概念,提高逻辑推理能力。

【教学目标】1. 知识与技能目标:正确理解平面向量的数量积的概念,能够运用这一概念求两个向量的数量积,并能根据条件逆用等式求向量的夹角.2. 过程与方法目标:掌握平面向量的数量积的重要性质,并能运用这些性质解决有关问题培养学生的探索精神和严谨的科学态度以及实际动手能力,同时培养学生分析、综合、概括以及运算能力。

3. 情感、态度与价值观:激发学习数学的兴趣.鼓励学生自己探索,有意识地灌输学生的一些基本的数学思想方法.【教学重点】:平面向量的数量积概念、性质其应用【教学难点】:从数形两方面掌握平面向量的数量积的概念,平面向量的数量积的重要性质的理解【教学方法】:创设情境—引入概念—概念讲解—归纳提升—知识应用—课堂小结【教学工具】:多媒体【教学过程设计】一、创设问题情境,引出新知情景1:我们学习了向量的哪些运算?这些运算的结果是什么?设计意图:让学生回忆上一节课所学过的运算,得到这些运算的结果都是向量是,将公式中的力与位移推广到一般向量,结果是两个向量的模及其夹角余弦的乘积,这就出项了向量的一种新的运算情境2:一个物体在力F 作用下发生了位移S ,那么该力对物体的做功是多少? θcos S F W =设计意图:从物理学科中引用功的概念,得到力与位移的大小及其夹角余弦的乘积是一个数,从而出现了向量的一种新的运算,这种运算的结果是数而不是向量。

从学生已有的知识引入,易于让学生接受。

教学方法:教师提问,学生集体回答,老师再逐步引导跟解释,引入本节课的学习内容。

第五章 5.3平面向量的数量积

第五章 5.3平面向量的数量积

1.两个向量的夹角 (1)定义已知两个非零向量a ,b ,作OA →=a ,OB →=b ,则∠AOB 称作向量a 和向量b 的夹角,记作〈a ,b 〉. (2)范围向量夹角〈a ,b 〉的范围是[0,π],且〈a ,b 〉=〈b ,a 〉. (3)向量垂直如果〈a ,b 〉=π2,则a 与b 垂直,记作a ⊥b .2.向量在轴上的正射影已知向量a 和轴l (如图),作OA →=a ,过点O ,A 分别作轴l 的垂线,垂足分别为O 1,A 1,则向量O 1A 1→叫做向量a 在轴l 上的正射影(简称射影),该射影在轴l 上的坐标,称作a 在轴l 上的数量或在轴l 的方向上的数量.OA →=a 在轴l 上正射影的坐标记作a l ,向量a 的方向与轴l 的正向所成的角为θ,则由三角函数中的余弦定义有a l =|a |cos θ. 3.向量的数量积(1)平面向量的数量积的定义|a||b |cos 〈a ,b 〉叫做向量a 和b 的数量积(或内积),记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)向量数量积的性质①如果e 是单位向量,则a·e =e·a =|a |cos 〈a ,e 〉; ②a ⊥b ⇔a·b =0; ③a·a =|a |2,|a |=a·a ;④cos 〈a ,b 〉=a·b |a||b |(|a||b |≠0);⑤|a·b |__≤__|a||b |. (3)数量积的运算律 ①交换律:a·b =b·a .②对λ∈R ,λ(a·b )=(λa )·b =a ·(λb ). ③分配律:(a +b )·c =a·c +b·c . (4)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则 ①a·b =a 1b 1+a 2b 2; ②a ⊥b ⇔a 1b 1+a 2b 2=0;③|a |=a 21+a 22;④cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22·b 21+b 22.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (2)向量在另一个向量方向上的正射影为数量,而不是向量.( × )(3)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( × ) (4)两个向量的夹角的范围是[0,π2].( × )(5)由a ·b =0可得a =0或b =0.( × ) (6)(a ·b )c =a (b ·c ).( × )1.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( ) A.150° B.90° C.60° D.30°答案 D解析 设向量a 与向量a +2b 的夹角为θ. ∵|a +2b |2=4+4+4a ·b =8+8cos 60°=12, ∴|a +2b |=23, a ·(a +2b )=|a |·|a +2b |·cos θ =2×23cos θ=43cos θ,又a ·(a +2b )=a 2+2a ·b =4+4cos 60°=6, ∴43cos θ=6,cos θ=32, ∵θ∈[0°,180°],∴θ=30°,故选D.2.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.3.已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.答案 3解析 ∵|a |2=a ·a =(3e 1-2e 2)·(3e 1-2e 2)=9|e 1|2-12e 1·e 2+4|e 2|2=9-12×1×1×13+4=9.∴|a |=3.4.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案 90°解析 由AO →=12(AB →+AC →)可知点O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90°.5.(教材改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的正射影的数量为________. 答案 -2解析 由数量积的定义知,b 在a 方向上的正射影的数量为|b |cos θ=4×cos 120°=-2.题型一 平面向量数量积的运算例1 (1)(2015·四川)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A.20B.15C.9D.6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.答案 (1)C (2)1 1 解析 (1)AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9, 故选C.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的正射影都是CB →, ∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的正射影的数量最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.思维升华 (1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用向量的正射影.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP→=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD→-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.(2)由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →) =(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.题型二 用数量积求向量的模、夹角 命题点1 求向量的模例2 (1)已知向量a ,b 均为单位向量,它们的夹角为π3,则|a +b |等于( )A.1B. 2C. 3D.2(2)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案 (1)C (2)7+1解析 (1)因为向量a ,b 均为单位向量,它们的夹角为π3,所以|a +b |=(a +b )2=a 2+2a ·b +b 2=1+2cos π3+1= 3.(2)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)的距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1. 命题点2 求向量的夹角例3 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________________________________________________________________________. 答案 (1)A (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ, 即3|a |2-|a |·|b |·cos θ-2|b |2=0,∴83|b |2-223|b |2·cos θ-2|b |2=0,∴cos θ=22.又∵0≤θ≤π,∴θ=π4.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0, ∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 思维升华 (1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B.2 C. 6D.6答案 (1)223 (2)C解析 (1)∵|a |= (3e 1-2e 2)2=9+4-12×1×1×13=3,|b |=(3e 1-e 2)2=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22 =9-9×1×1×13+2=8,∴cos β=83×22=223.(2)∵AB →·AC →=-1, ∴|AB →|·|AC →|·cos 120°=-1,即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.题型三 平面向量与三角函数例4 (2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1. (2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A.-43B.-45C.45D.34答案 A解析 由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.7.向量夹角范围不清致误典例 (12分)若两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2所成的角为60°,若向量2t e 1+7e 2与向量e 1+t e 2所成的角为钝角,求实数t 的取值范围.易错分析 两个向量所成角的范围是[0,π],两个向量所成的角为钝角,容易误认为所成角π为钝角,导致所求的结果范围扩大. 规范解答解 设向量2t e 1+7e 2与向量e 1+t e 2的夹角为θ,由θ为钝角,知cos θ<0,故 (2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7<0,解得-7<t <-12.[5分] 再设向量2t e 1+7e 2与向量e 1+t e 2反向, 则2t e 1+7e 2=k (e 1+t e 2)(k <0),[7分]从而⎩⎪⎨⎪⎧2t =k ,7=tk ,且k <0,解得⎩⎪⎨⎪⎧t =-142,k =-14,即当t =-142时,两向量所成的角为π.[10分] 所以t 的取值范围是(-7,-142)∪(-142,-12).[12分] 温馨提醒 (1)两个非零向量的夹角范围为[0,π],解题时要注意挖掘题中隐含条件.(2)利用数量积的符号判断两向量的夹角取值范围时,应该注意向量夹角的取值范围,不要忽视两向量共线的情况.若a ·b <0,则〈a ,b 〉∈(π2,π];若a ·b >0,则〈a ,b 〉∈[0,π2).[方法与技巧]1.计算数量积的三种方法:定义法、坐标运算、数量积的几何意义,解题要灵活选用恰当的方法,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [失误与防范]1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.A 组 专项基础训练 (时间:35分钟)1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A.22+ 3 B.2 3 C.4 D.12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos 60°=4+4+2×2×2×12=12,|a +b |=2 3.2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( ) A.32 B.22 C.52D.72 答案 A解析 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为邻边的三角形的面积为12,得12×1×1×sin θ=12,得sin θ=1,所以θ=90°,所以e 1·e 2=0.从而对e 3=12e 1+k e 2两边同时平方得1=14+k 2,解得k =32或-32(舍去).4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A.正三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, 所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269 答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫AC →+13CB →·⎝⎛⎭⎫AB →+13BC →=⎝⎛⎭⎫23AC →+13AB →·⎝⎛⎭⎫13AC →+23AB →=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1, 所以P A →·(PB →+PC →)=P A →·2PM → =2×2×1×cos 180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________. 答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132. 8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”). 答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3, ∴∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的正射影的数量.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35. 因为0<A <π,所以sin A =1-cos 2 A = 1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,故向量BA →在BC →方向上的正射影的数量为|BA →|cos B =c cos B =1×22=22. B 组 专项能力提升(时间:25分钟)11.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC→|的最大值为( )A.6B.7C.8D.9答案 B解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,所以AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,所以x =-1时有最大值49=7,故选B.12.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D.2 答案 B解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23. 13.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在CD 上,若AB →·AF→=2,则AE →·BF →的值是( )A. 2B.2C.0D.1答案 A解析 依题意得AE →·BF →=(AB →+BE →)·(AF →-AB →)=AB →·AF →-AB →2+BE →·AF →-BE →·AB →=2-2+1×2-0=2,故选A.14.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.答案 ⎣⎡⎦⎤-12,12 解析 设Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0) =(2x +π3,12sin x ), 由⎩⎨⎧ c =2x +π3,d =12sin x ,消去x 得d =12sin(12c -π6), 所以y =f (x )=12sin(12x -π6), 易知y =f (x )的值域是⎣⎡⎦⎤-12,12. 15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1.(1)判断△ABC 的形状;(2)求边长c 的值;(3)若|AB →+AC →|=22,求△ABC 的面积.解 (1)由AB →·AC →=BA →·BC →=1,得bc ·cos A =ac ·cos B ,由正弦定理,得sin B cos A =sin A cos B ,∴sin(A -B )=0,∴A =B ,即△ABC 是等腰三角形.(2)由AB →·AC →=1,得bc ·cos A =1,又bc ·b 2+c 2-a 22bc=1,则b 2+c 2-a 2=2, 又a =b ,∴c 2=2,即c = 2.(3)由|AB →+AC →|=22,得2+b 2+2=8,∴b =2,又c =2,∴cos A =24,sin A =144, ∴S △ABC =12bc ·sin A =12×2×2×144=72.。

第五章 平面向量5-3平面向量的数量积及向量的应用

第五章  平面向量5-3平面向量的数量积及向量的应用

答案:B
(2010· 辽宁锦州)已知直线 ax+by+c=0 与圆 O:x2+y2 → OB → =1 相交于 A、B 两点,且|AB|= 3,则OA· =( 1 A. 2 1 C. 4 1 B.- 2 1 D.- 4 )
解析:设 AB 中点为 P, 3 ∵|AB|= 3,∴|AP|= 2 , π 又|OA|=1,∴∠AOP=3, 2π ∴∠AOB= , 3 → · =|OA|·→ |· 2π=-1. → ∴OA OB → |OB cos 3 2
(文)已知向量 a=(3,4),b=(2,-1),如果向量 a+λb 与向量-b 互相垂直,则实数 λ 的值为( )
23 3 2 A. 2 B.23 C.2 D.-5 解析:a+λb=(3,4)+λ(2,-1)=(3+2λ,4-λ),-b=
(-2,1), ∵(a+λb)⊥(-b),∴-2(3+2λ)+4-λ=0, 2 ∴λ=-5,故选 D.
2.用向量法处理垂直 → CD → 要证两线段 AB⊥CD,只需证AB· =0. 3.用向量法处理平行 → 要证两线段 AB∥CD, 只需证存在实数 λ≠0, 使等式AB → =λCD成立. 4.用向量法处理距离 → → → 要证线段 AB=CD,可转化为证明AB2=CD2 或|AB|= → |CD|.
[例 1]
已知向量 a=( 3,1),b 是不平行于 x 轴的单 ) 3 2
位向量,且 a· b= 3,则 b 等于(
A.
3 1 ,2 2
1 B. , 2
1 3 3 C. , 4 4
D.(1,0)
分析:设出 b 的坐标,由 a· b= 3及|b|=1 列方程可 解.




2.向量数量积的性质 设a,b都是非零向量,e是单位向量,θ是a 与b的夹角,则 (1)e·a=a·e=|a|·cos〈a,e〉. (2)a⊥b⇔a·b= 0 . |a||b| (3)当a与b同向时,a·b= ; -|a||b| 当a与b反向时,a·b= ;

平面向量的数量积定理

平面向量的数量积定理

平面向量的数量积定理平面向量的数量积定理是数学中关于向量乘法的一个重要定理。

它可以简化向量的运算,提供了计算向量相互之间的夹角和长度的方法。

本文将详细介绍平面向量的数量积定理及其应用。

1. 数量积的定义和性质在平面内,设有两个向量a和a,我们将向量a与向量a的数量积表示为a·a。

数量积的定义如下:a·a = |a| |a| cos a其中,|a|表示向量a的长度,|a|表示向量a的长度,a表示向量a和向量a之间的夹角。

数量积有以下几个重要性质:- 交换律:a·a = a·a- 分配律:(a+a)·a = a·a + a·a- 数量积与零向量的关系:a·0 = 0,其中0表示零向量- 零向量的数量积为0:0·0 = 02. 数量积的计算为了计算平面向量的数量积,我们需要了解向量的长度和夹角的计算方法。

2.1 向量长度的计算设有一个向量a = a1a + a2a ,a1和a2为实数,a 和a 分别为坐标轴上的单位向量。

向量a的长度可以通过以下公式计算:|a| = √(a1^2 + a2^2)2.2 向量夹角的计算若有两个非零向量a和a,它们之间的夹角a可以通过以下公式计算:cos a = a·a / (|a| |a|)3. 数量积定理的应用平面向量的数量积定理可以应用于求解向量的夹角和长度,以及解决几何和物理问题。

3.1 夹角的计算根据数量积的定义,我们可以得到以下关系:cos a = a·a / (|a| |a|)若已知向量a和a的数量积a·a和向量的长度|a|、|a|,可以通过上述关系求解夹角a。

3.2 长度的计算已知两个向量a和a之间的夹角a以及向量a的长度|a|,可以通过以下公式计算向量a的长度|a|:|a| = |a| |cos a| / cos(π-a)3.3 几何和物理问题的应用数量积定理在几何和物理问题中有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提示:不一定成立,∵若(a·b)·c≠0,则它与c共线,而a·(b·c)≠0时与a共线,而a与c不一定共线,故该等式不一定成立.
4.若a,b是非零向量,则|a·b|=||a||b|cosθ,所以只有|cosθ|=1,即a,b共线时才成立.
5.若a,b,c是非零向量,且a·c=b·c,则a=b一定成立吗?
在等边△ABC中,边长为1,求 · , · .
例2、已知单位向量e1,e2的夹角为60°,求向量a=e1+e2,b=e2-2e1的夹角.
变式练习:
已知a、b是两个非零向量,且|a|=|b|=|a+b|,求a与a-b的夹角.
例3、已知|a|=7,|b|=4,|a+b|=9,求|a-b|.
变式练习:
设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,则|a|2+|b|2+|c|2的值是________.
A.1B.
C. D.
解析:∵|a|=|b|=1,c与a+b同向,
∴a与c的夹角为60°.
又|a-c|= =

故|a-c|min= .
答案:D
二、填空题
5.若O是△ABC所在平面内一点,且满足| - |=| + -2 |,则△ABC的形状为________.
解析: + -2 = - + - = + , - = = - ,
(1)求a与b的夹角θ;
(2)求|a+b|.
解:(1)∵(a-b)·(a+b)=a2-b2= ,|a|=1,
∴b2=a2- =1- = ,
∴|b|= .
∴cosθ= = = .
又θ∈[0,π],∴θ= ,
故a与b的夹角为 .
(2)|a+b|= = = .
10.已知a,b均是非零向量,设a与b的夹角为θ,是否存在这样的θ,使|a+b|= |a-b|成立?若存在,求出θ的值;若不存在,请说明理由.
∴a·b=- ,cosθ= =- .
又θ∈[0,π],∴θ= .
答案:B
2.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=ka-4b,c与d垂直,则k的值为( )
A.-6B.6
C.3D.-3
解析:∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
平面向量的数量积
一、知识精讲
1.平面向量数量积的定义
已知两非零向量a与b,它们的夹角为θ,则把数量|a||b|·cosθ
叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ.
规定零向量与任一向量的数量积为0.
2.向量的数量积的几何意义
(1)投影:|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.
解:假设存在满足条件的θ,
∵|a+b|= |a-b|,∴(a+b)2=3(a-b)2.
∴|a|2+2a·b+|b|2=3(|a|2-2a·b+|b|2).
∴|a|2-4a·b+|b|2=0.
∴|a|2-4|a||b|cosθ+|b|2=0.

解得cosθ∈[ ,1].
又∵θ∈[0,π],
∴θ∈ .
故当θ∈ 时,
∴2k=12,∴k=6.
答案:B
3.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足 =2 ,则 ·( + )等于( )
A. B.
C.- D.-
解析:∵AM=1,且 =2 ,
∴| |= .
如图, ·( + )= ·2 = · = =( )2= .
答案:A
4.已知向量a,b的夹角为120°,|a|=|b|=1,c与a+b同向,则|a-c|的最小值为( )
即2|b|2+|b|-36=0.∴(2|b|+9)(|b|-4)=0.
∵|b|≥0,∴|b|=4.
答案:4
7.在△ABC中,C=90°,CB=3,点M满足 =2 ,则 · =________.
解析:∵ = +
= +
= + ( - )
= + ,
又C=90°, · =0,
∴ · =( + )·
= =3.
(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影的乘积.
3.向量的数量积的性质
设a与b都是非零向量,θ为a与b的夹角.
(1)a⊥b⇔a·b=0.
(2)当a与b同向时,a·b=|a||b|;
当a与b反向时,a·b=-|a||b|.
(3)a·a=|a|2或|a|= = .
(4)cosθ= .
提示:不一定.由a·c=b·c可得c·(a-b)=0⇔a-b=0或c⊥(a-b).
二、典例精析
例1、已知a,b的夹角为θ,|a|=2,|b|=3,分别在下列条件下求a·b.
(1)θ=135°; (2)a∥b; (3)a⊥b.
若本例条件变为“θ=120°”,试求(2a-b)·(3a+2b).
变式练习:
答案:3
8.已知非零向量a,b,满足a⊥b,且a+2b与a-2b的夹角为120°,则 =________.
解析:(a+2b)·(a-2b)=a2-4b2,∵a⊥b,
∴|a+2b|= ,|a-2b|= .
∴cos 120°= =
= =- .
∴ = .∴ = .
答案:
三、解答题
9.已知|a|=1,a·b= ,(a-b)·(a+b)= .
于是| + |=| - |,
所以| + |2=| - |2,
即 · =0,从而AB⊥AC.
答案:直角三角形
6.已知|a|=6,a与b的夹角为 ,且(a+2b)·(a-3b)=-72.则|b|=________.
解析:由已知,a2-a·b-6b2=-72,
∴|a|2-|a||b|cos -6|b|2=-72,
解题高手:
设两个向量e1,e2,满足|e1|=2,|e2|=1,e1与e2的夹角为 ,若向量2te1+7e2与e1+te2的夹角为钝角,求实数t的取值范围.
三、课后检测
一、选择题
1.已知向量a,b满足|a|=1,|b|=3,且|2a+b|= ,则a与b的夹角θ为( )
A. B.
C. D.
解析:∵|2a+b|2=4+9+4a·b=7,
(5)|a·b|≤|a||b|.
[小问题·大思维]
1.向量的数量积与数乘向量的运算结果有何区别?
提示:向量的数量积a·b是一个实数;数乘向量λa是一个
向量.
2.投影是向量还是数量?
提示:投影是数量而不是向量,它可正、可负、可为零.
3.对于向量a,b,c,等式(a·b)·c=a·(b·c)一定成立吗?
相关文档
最新文档