人教版数学八年级上册期末综合练习题
2022-2023学年人教版八年级数学上册期末综合复习模拟训练题(附答案)
2022-2023学年人教版八年级数学上册期末综合复习模拟训练题(附答案)一、单项选择题:本大题共8小题,共24分.1.第24届冬奥会将于2022年2月在北京和张家口举办,下列四个图分别是第24届冬奥会图标中的一部分,其中是轴对称图形的是()A.B.C.D.2.下列计算中正确的是()A.(x2)3=x5B.(﹣3x3y)2=9x9y2C.x6÷x2=x3D.﹣x2•x=﹣x33.要把分式的值扩大为原来的3倍,下面哪种方法是可行的()A.x、y的值都加上3B.x、y的值都扩大为原来的3倍C.x的值不变、y的值扩大为原来的3倍D.x的值扩大为原来的3倍、y的值不变4.分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12③1,2,3;④9,40,41;⑤3,4,5.其中能构成直角三角形的有()组.A.2B.3C.4D.55.在下列各式中,化简正确的是()A.=3B.=±C.=a2D.=x6.某文具店购进A,B两种款式的书包,其中A种书包的单价比B种书包的单价低10%.已知店主购进A种书包用了810元,购进B种书包用了600元,且所购进的A种书包的数量比B种书包多20个.设文具店购进B种款式的书包x个,则所列方程正确的是()A.B.C.D.7.如图,∠MON=45°,P为∠MON内一点,A为OM上一点,B为ON上一点,当△P AB 的周长取最小值时,∠APB的度数为()A.80°B.90°C.110°D.120°8.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.2二、填空题:本大题共6小题,共18分.9.新型冠状病毒有完整的包膜,颗粒呈圆形或椭圆形,其最大直径约为0.00000014nm,将0.00000014nm用科学记数法表示为nm.10.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为.11.实数a在数轴上的位置如图所示,则|a﹣1|+=.12.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.13.关于x的方程的解是正数,则a的取值范围是.14.对于正数x,规定,例如,则的结果是=.三、解答题:本大题共8小题,共58分.15.计算题:(1);(2).16.解分式方程:(1);(2).17.先化简,再求值:()÷(﹣1),其中a=2﹣.18.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为一海港,且点C与直线AB上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E处时,海港C刚好受到影响,当台风运动到点F时,海港C刚好不受影响,即CE=CF=250km,则台风影响该海港持续的时间有多长?19.南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同.(1)求甲、乙两种兰花每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下培育甲、乙两种兰花,若培育乙种兰花的株数比甲种兰花的3倍还多10株,求最多购进甲种兰花多少株?20.上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab+b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0,∴当x=﹣2时,(x+2)2的值最小,最小值是0,∴(x+2)2+1≥1.∴当(x+2)2=0时,(x+2)2+1的值最小,最小值是1,∴x2+4x+5的最小值是1.请你根据上述方法,解答下列各题:(1)当x=时,代数式x2﹣6x+12有最小值;最小值是;(2)若y=﹣x2+2x﹣3,请判断y有最大还是最小值;这个值是多少?此时x等于哪个数?(3)若﹣x2+3x+y+5=0,则y+x=(用含x,y的代数式表示),请求出y+x的最小值.21.计算下列图中阴影部分的面积,其中∠B=∠C=∠D=90°.(1)如图1,AB=2a,BC=CD=DE=a;(2)如图2,AB=m+n,BC=DE=n﹣m(n>m).22.小明在解方程﹣=2时采用了下面的方法:由(﹣)(+)=()2﹣()2=(24﹣x)﹣(8﹣x)=16,又有﹣=2,可得+=8,将这两式相加可得,将=5两边平方可解得x=﹣1,经检验x=﹣1是原方程的解.请你学习小明的方法,解下面的方程:(1)方程的解是;(2)解方程+=4x.参考答案一、单项选择题:本大题共8小题,共24分.1.解:A.不是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项符合题意;C.不是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项不符合题意.故选:B.2.解:A.(x2)3=x6,故此选项不合题意;B.(﹣3x3y)2=9x6y2,故此选项不合题意;C.x6÷x2=x4,故此选项不合题意;D.﹣x2•x=﹣x3,故此选项符合题意.故选:D.3.解:∵把分式的值扩大为原来的3倍,∴算式为==,所以把分式的值扩大为原来的3倍,可行的是x、y的值都扩大为原来的3倍,故选:B.4.解:①∵62+82=36+64=100,102=100,∴62+82=102,∴以6,8,10为边能组成直角三角形;②∵52+122=25+144=169,132=169,∴52+122=132,∴以5,12,13为边能组成直角三角形;③1+2=3,不符合三角形三边关系定理不能组成三角形,也不能组成直角三角形;④∵92+402=81+1600=1681,412=1681,∴92+402=412,∴以9,40,41为边能组成直角三角形;⑤∵(3)2+42=+16=,(5)2=,∴(3)2+42≠(5)2,∴以3,4,5为边不能组成直角三角形;即能构成直角三角形的有3组,故选:B.5.解:A.=,故本选项不符合题意;B.=,故本选项不符合题意;C.=a2,故本选项符合题意;D.当x<0时,==﹣x,故本选项不符合题意;故选:C.6.解:∵文具店购进B种款式的书包x个,且购进的A种书包的数量比B种书包多20个,∴文具店购进A种款式的书包(x+20)个.依题意得:=(1﹣10%).故选:B.7.解:如图,作出P点关于OM、ON的对称点P1,P2连接P1,P2交OM,ON于A、B 两点,此时△P AB的周长最小,由题意可知∠P1PP2=180°﹣∠MON=180°﹣45°=135°,∴∠P1P A+∠P2PB=∠P1+∠P2=180°﹣∠P1PP2=45°,∴∠APB=135°﹣45°=90°.故选:B.8.解:设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4,则(x+y)2=x2+y2+2xy,∴6=4+2xy,∴xy=1,∴这个三角形的面积是xy==0.5,故选:B.二、填空题:本大题共6小题,共18分.9.解:0.00000014=1.4×10﹣7,故答案为:1.4×10﹣7.10.解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.11.解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.12.解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.13.解:去分母得2x+a=x﹣1,解得x=﹣a﹣1,∵关于x的方程的解是正数,∴x>0且x≠1,∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,∴a的取值范围是a<﹣1且a≠﹣2.故答案为:a<﹣1且a≠﹣2.14.解:∵f(2)=,f()=,f(3)=,f()=,…,∴f(2)+f()==1,f(3)+f()==1,∴f(x)+f()=1,∴=[f(2021)+f()]+[f(2020)+f()]+…+[f(2)+f()]+f(1)=1×(2021﹣1)+f(1)=2020+=.故答案为:.三、解答题:本大题共8小题,共58分.15.解:(1)原式=[(﹣2)(+2)]2022+÷×2=(3﹣4)2022+××2=(﹣1)2022+4=1+4;(2)原式=+9+﹣4×+1=+1+4﹣1+1=.16.解:(1)去分母得:2x+2=12x﹣6﹣8x﹣4,解得:x=6,检验:把x=6代入得:2(2x+1)(2x﹣1)≠0,∴分式方程的解为x=6;(2)去分母得:﹣(x+2)2+16=4﹣x2,解得:x=2,检验:把x=2代入得:(x+2)(x﹣2)=0,∴x=2是增根,分式方程无解.17.解:原式=[﹣]÷=•=•=,把a=2﹣代入得:原式=.18.解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受台风影响;(3)当EC=250km,FC=250km时,正好影响C港口,∵ED==70(km),∴EF=140km,∵台风的速度为20千米/小时,∴140÷20=7(小时).答:台风影响该海港持续的时间为7小时.19.解:(1)设每株乙种兰花的成本为x元,则每株甲种兰花的成本为(x+100)元由题意得=,解得,x=300,经检验x=300是分式方程的解,∴x+100=300+100=400,答:每株甲种兰花的成本为400元,每株乙种兰花的成本为300元;(2)设购进甲种兰花a株由题意得400a+300(3a+10)≤30000,解得,a≤,∵a是整数,∴a的最大值为20,答:最多购进甲种兰花20株.20.解:(1)∵x2﹣6x+12=(x﹣3)2+3,∴当x=3时,代数式x2﹣6x+12有最小值3;故答案为:3,3;(2)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,y有最大值﹣2.即y有最大值﹣2,此时x=1;(3)∵﹣x2+3x+y+5=0,∴y+x=x2﹣2x﹣5=(x﹣1)2﹣6,∵(x﹣1)2≥0,∴(x﹣1)2﹣6≥﹣6,∴当x=1时,y+x的最小值为﹣6.故答案为:x2﹣2x﹣5,﹣6.21.解:(1)如图,延长AB,ED交于点F,则AF=3a,EF=2a∴S阴影=S△AEF﹣S正方形BCDF==3a2﹣a2=2a2(2)如图,延长AB,ED,交于点F设CD=x,则BF=x,∴=(m+n+x)(n﹣m)S长方形BCDF=(n﹣m)x,∴S阴影=S△AEF﹣S长方形BCDF==(n﹣m)(m+n)=n2﹣m222.解:(1)()(﹣)=﹣=(x2+42)﹣(x2+10)=32∵,∴﹣=32÷16=2,∴∵=92=81,∴x=±,经检验x=±都是原方程的解,∴方程的解是:x=±;故答案为:x=±.(2)(+)(﹣)==(4x2+6x﹣5)﹣(4x2﹣2x﹣5)=8x∵+=4x,∴﹣=8x÷4x=2,∴,∵,∴4x2+6x﹣5=4x2+4x+1,∴2x=6,解得x=3,经检验x=3是原方程的解,∴方程+=4x的解是:x=3.。
人教版八年级数学第一学期期末综合复习测试题(含答案)
人教版八年级数学第一学期期末综合复习测试题(含答案)一.选择题(共12小题,满分36分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是()A.B.C.D.2.目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5 3.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1B.﹣7C.1D.74.若3和9是一个三角形的两边长,且第三边长为偶数,则该三角形的周长为()A.20B.21C.21或22D.20或225.如果一个正多边形的每一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形6.已知等腰三角形一腰上的高线与另一腰的夹角为40°,那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°7.下列各式正确的是()A.B.C.D.8.下列计算正确的是()A.a m a n=a mn B.(﹣a2)3=a6C.(a﹣1)2=D.a3÷2a=2a29.现有甲、乙、丙三种不同的长方形纸片若干张(边长如图).小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,他选取甲纸片1张,再取乙纸片4张,还需要取丙纸片的张数为()A.1B.2C.3D.410.甲乙两个码头相距s千米,某船在静水中的速度为a千米/时,水流速度为b千米/时,则船一次往返两个码头所需的时间为()小时.A.B.C.D.+11.如图所示,在直角三角形ABC中,已知∠ACB=90°,点E是AB的中点,且DE⊥AB,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5B.4C.3D.212.已知△ABC是边长为10的等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交BC的延长线于F.若AE=4BE,则CF的长为()A.1B.2C.3D.4二.填空题(共6小题,满分18分)13.当x=时,分式无意义.14.如图,自行车是人们日常代步的工具.你发现了没有,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的.15.分解因式:2x2﹣8x+8=.16.已知:a﹣b=1,a2+b2=25,则(a+b)2的值为.17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了赶在雨季前竣工,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,根据题意列方程得.18.已知一张三角形纸片ABC(如图甲),其中AB=AC=10,BC=6.将纸片沿DE折叠,使点A与点B重合(如图乙)时,CE=a;再将纸片沿EF折叠,使得点C恰好与BE边上的G点重合,折痕为EF(如图丙),则△BFG的周长为(用含a的式子表示).三.解答题(共8小题,满分66分)19.计算:(1)(﹣a3)2•(ab)2.(2)(﹣0.25)2020×42021.20.先化简再求值,选择一个你喜欢的x的值代入其中并求值.21.如图,在△ABC中,AB=AC.(1)用尺规完成以下基本作图:作△ABC的边AB的垂直平分线DE,交AB于点D,交AC于点E,连接BE;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若∠A=40°,求∠CBE的度数.22.如图,CE⊥AB,BD⊥AC,垂足分别为E、D,CE,BD相交于O.(1)若∠1=∠2,求证:OB=OC;(2)若OB=OC,求证:∠1=∠2.23.受疫情影响,洗手液需求量猛增,某商场用4000元购进一批洗手液后,供不应求,商场用8800元购进第二批这种洗手液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批洗手液的单价;(2)商场销售这种洗手液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?24.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.25.阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).26.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB 上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,①求证:AF=AE+AD;②求证:AD∥BC.(2)如图2,若AD=AB,那么线段AF,AE,BC之间存在怎样的数量关系.参考答案一.选择题(共12小题,满分36分)1.B.2.B.3.A.4.D.5.A.6.A.7.D.8.C.9.D.10.D.11.B.12.C.二.填空题(共6小题,满分18分)13.﹣3.14.稳定性.15.2(x﹣2)2.16.49.17.﹣=30.18.16﹣2a.三.解答题(共8小题,满分66分)19.解:(1)(﹣a3)2•(ab)2=a6•a2b2=a8b2.(2)(﹣0.25)2020×42021=(﹣)2020×42020×4=(﹣×4)2020×4=1×4=4.20.解:原式=[﹣]÷=()•=•=,由题意得:x≠±1,当x=2时,原式==1.21.解:(1)如图所示.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵DE为线段AB的垂直平分线,∴∠A=∠ABE=40°,∴∠CBE=∠ABC﹣∠ABE=70°﹣40°=30°.22.证明:如图所示:(1)∵CE⊥AB,BD⊥AC,∴∠BEO=∠CDO=90°,又∵∠EOB=∠DOC,∠BEO+∠EOB+∠B=180°,∠CDO+∠DOC+∠C=180°,∴∠B=∠C.在△ABO和△ACO中,,∴△ABO≌△ACO(AAS),∴OB=OC.(2)∵CE⊥AB,BD⊥AC,∴∠OEB=∠ODC=90°,在△BOE和△COD中,,∴△BOE≌△COD(AAS),∴OE=OD,∴AO是∠BAC的角平分线,∴∠1=∠2.23.解:(1)设该商场购进的第一批洗手液的单价为x元/瓶,依题意得:2×=,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:该商场购进的第一批洗手液的单价为10元;(2)共获利:(+﹣200)×13+200×13×0.9﹣(4000+8800)=2540(元).答:在这两笔生意中商场共获得2540元.24.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.25.解:(1)设3﹣x=a,x﹣2=b,则a+b=(3﹣x)+(x﹣2)=1,由完全平方公式可得a2+b2=(a+b)2﹣2ab=12﹣2×(﹣10)=21,即:(3﹣x)2+(x﹣2)2的值为21;(2)设2022﹣x=a,2021﹣x=b,则a﹣b=1,a2+b2=2020,由完全平方公式可得ab==,即:(2022﹣x)(2021﹣x)的值为;(3)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.26.证明:(1)①∵∠BAC=∠EDF=60°,AB=AC,DE=DF,∴△ABC,△DEF为等边三角形,∴BC=AC,CE=CD,∠BCE+∠ACE=∠DCA+∠ECA=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF,即AF=AE+AD;②∵△BCE≌△ACD,∴∠DAC=∠EBC,∵△ABC为等边三角形,∴∠EBC=∠EAC=∠DAC=60°,∴∠EBC+∠EAC+∠DAC=180°,∴AD∥BC;(2)如图2,在F A上截取FM=AE,连接DM,∵∠BAC=∠EDF,∠ANE=∠DNF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF,∴∠ADM=∠BAC,在△ABC和△DAM中,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC。
人教版八年级上数学期末考试试卷(免费、15套)
八年级(上)数学期末综合测试(1)一、相信你一定能选对!(每小题3分,共36分)1.下列各式成立的是()A.a-b+c=a-(b+c)B.a+b-c=a-(b-c)C.a-b-c=a-(b+c)D.a-b+c-d=(a+c)-(b-d)2.直线y=kx+2过点(-1,0),则k的值是()A.2 B.-2 C.-1 D.13.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点4.一个三角形任意一边上的高都是这边上的中线,•则对这个三角形最准确的判断是()A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形5.下图所示的扇形图是对某班学生知道父母生日情况的调查,A•表示只知道父亲生日,B表示只知道母亲生日,C表示知道父母两人的生日,D表示都不知道.•若该班有40名学生,则知道母亲生日的人数有()A.25% B.10 C.22 D.126.下列式子一定成立的是()A.x2+x3=x5; B.(-a)2·(-a3)=-a5C.a0=1 D.(-m3)2=m57.黄瑶拿一张正方形的纸按右图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()8.已知x2+kxy+64y2是一个完全式,则k的值是()A.8 B.±8 C.16 D.±169.下面是一组按规律排列的数:1,2,4,8,16,……,则第2005个数是()A.22005B.22004C.22006D.2200310.已知(x+a)(x+b)=x2-13x+36,则a+b的值分别是()A.13 B.-13 C.36 D.-3611.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交EF于F,若BF=AC,则∠ABC等于()A.45° B.48° C.50° D.60°(11题) (12题) (19题)12.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm二、你能填得又对又快吗?(每小题3分,共24分)13.计算:1232-124×122=_________.14.在实数范围内分解因式:3a3-4ab2=__________.15.已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm,则AC=________.16.点P关于x轴对称的点是(3,-4),则点P关于y轴对称的点的坐标是_______.17.已知a2+b2=13,ab=6,则a+b的值是________.18.直线y=ax+2和直线y=bx-3交于x轴同一点,则a与b的比值是________.19.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b420.如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长a与宽b的比是3:2,装饰布由一个半圆和两个四分之一圆组成,圆的直径都是0.5b,那么当b=4时,•这个窗户未被遮挡的部分的面积是__________.三、认真解答,一定要细心哟!(共60分)21.(5分)先化简再求值:[(x+2y)(x-2y)-(x+4y)2]÷(4y),其中x=5,y=2.22.(7分)求证:等腰三角形两腰上的高的交点到底边两端的距离相等.23.(8分)已知图7中A、B分别表示正方形网格上的两个轴对称图形(阴影部分),其面积分别记为S1、S2(网格中最小的正方形的面积为一个单位面积),请你观察并回答问题.(1)填空:S1:S2的值是__________.(2)请你在图C中的网格上画一个面积为8个平方单位的轴对称图形.24.(9分)每年6月5日是“世界环境日”,保护地球生态环境是世界各国政府和人民应尽的义务.下表是我国近几年来废气污染排放量统计表,请认真阅读该表后,•解答题后的问题.(1)请你在图8中用虚线、实线、粗线分别画出二氧化硫排放总量、烟尘排放总量和工业粉尘排放量的折线走势图;(2)2003年相对于1999年,全国二氧化硫排放总量、•烟尘排放总量和工业粉尘排放量的增长率分别为_________、________、_________(精确到1个百分点).(3)简要评价这三种废气污染物排放量的走势(要求简要说明:总趋势,增减的相对快慢).25.(9分)某批发商欲将一批海产品由A地运往B地,•汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,•汽车和火车的速度分别为60千米/时和100千米/时.两货物公司的收费项目和收费标准如下表所示:运输工具运输费单价(元/吨·千米)冷藏费单价(元/吨·小时)过路费(元)装卸及管理费(元)汽车 2 5 200 0火车 1.8 5 0 1600注:“元/吨·千米”表示每吨货物每千米的运费;“元/•吨小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x(吨),•汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求出y1和y2和与x的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,•他应该选择哪个货运公司承担运输业务?26.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB•交CE 于点F,DF的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.27.(12分)如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?答案:1.C 2.A 3.D 4.C 5.C 6.B 7.C 8.D 9.B 10.B 11.A 12.C 13.•1 14.a3a+2b)3) 15.3m 16.(-3,4) 17.±5 18.-2319.4;6;4 20.24- 21.-20 22.略 23.①9:11;②略24.①略;②-8%,-30%,-29%;③评价:•总体均成下降趋势;二氧化硫排放量下降趋势最小;烟尘排放量下降趋势最大.25.①y1=2×120x+5×(120÷60)x+200=250x+200y2=1.8×120x+5×(120•÷100)x+1600=222x+1600;②若y1=y2,则x=50.∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;•当海产品超过50吨时选择铁路货运公司费用节省一些.26.①证△ACF≌△ADF得∠ACF=∠ADF,∵∠ACF=∠B , ∴∠ADF=∠B , ∴DF ∥BC ;②∵DF ∥BC ,BC ⊥AC , ∴FG ⊥AC , ∵FE ⊥AB ,又AF 平分∠CAB , ∴FG=FE 27.(1)解方程组26y x y x =⎧⎨=-+⎩ 得22x y =⎧⎨=⎩∴C 点坐标为(2,2);(2)作CD ⊥x 轴于点D ,则D (2,0).①s=12x 2(0<x ≤2); ②s=-x 2+6x-6(2<x<3); (3)直线m 平分△AOB 的面积, 则点P 只能在线段OD ,即0<x<2. 又△COB•的面积等于3, 故12x 2=3×12,解之得八年级(上)数学期末测试(2)一、选择题(每小题3分,共30分) 1. 反映某种股票的涨跌情况,应选择 ( )A .条形统计图B .折线统计图C .扇形统计图D .直方图2. 下列各式从左往右计算正确的是 ( ) A .()a b c a b c -+=-+ B .22)2(4-=-x xC .bc ac ab a c a b a -+-=+-2))((D .)0()(33≠=÷-x x x x 3. 如图是跷跷板的示意图,支柱OC 与地面垂直,点O是横板AB 的中点,AB 可以绕着点O 上下转动,当A端落地时,∠OAC =20°,横板上下可转动的最大角度 (即∠A ′OA )是( )A .80°B .60°C .40°D .20° 4. 一个容量为80的样本中,最大值是141,最小值是50,取组距为10,则这个样本可以成( )A .10组B .9组C .8组D .7组5. 下列命题中,不正确的是 ( )A .关于直线对称的两个三角形一定全等B .角是轴对称图形C .等边三角形有3条对称轴D .等腰三角形一边上的高、中线及这边所对角的角平分线重合 6. 等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )A .65°或50°B .80°或40°C .65°或80°D .50°或80° 7.使两个直角三角形全等的条件是 ( )A .一锐角对应相等B .两锐角对应相等C .一条边对应相等D .两条直角边对应相等 8. 直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y9. 如图,AB=AC ,AD=AE ,∠B=50°,∠AEC=120°,则∠DAC 的度数等于( ) A .120° B .70° C .60° D .50°10.已知如图,图中最大的正方形的面积是( )A .2aB .22b a +C .222b ab a ++D .22b ab a ++二、填空题(每小题3分,共24分)11.多项式132-+x x 是 次 项式.12.若1)7(0=-x ,则x 的取值范围为__________________. 13.在一幅扇形统计图中,扇形表示的部分占总体的百分比为20%,则此扇形的圆心角为 °. 14.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、四象限.15.已知在一个样本中有50个数据,它们分别落在5个组内,第一、二、三、四、C(第9AB D E (第10题)五组数据的个数分别为2,8,15,x ,5,则x 等于______,第四组的频率为_________. 16.Rt △ABC 中,∠C=90°,∠B=2∠A ,BC=3cm ,AB=_________cm . 17.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm , BD=7cm ,则点D 到AB 的距离为_____________cm . 18.在平面直角坐标系xOy 中,已知点A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的有_______个. 三、解答题(共20分)19.(4分)计算:(1))22(4)25(22a a a +-+; (2))1)(1(52-+x x x .20.(4分)用乘法公式计算:(1)2.608.59⨯; (2)2198.21.(12分)分解因式:(1)x x -22; (2)1162-x ;(3)32296y y x xy --; (4)2)(9)(124y x y x -+-+.四、解答题(本题共3小题;共14分)22.(5分)先化简,再求值:x y x y x y x 2)])(()[(2÷-++-,其中x =2005,y =2004.23.(5分)求证:等腰三角形两底角相等.24.(4分)作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P ,使点P 到A 、B 两点的距离相等,且P 到∠MON 两边的距离也相等.五、解答题(42分)25.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点. (1)求这个一次函数的解析式;(2)画出这个一次函数的图象; (3)若点(a ,2)在这个函数图象上,求a 的值.26.(7分)金鹰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图). (1)利用图中提供的信息,回答下列问题:在专业知识方面3人得分谁是最过硬的?在工作经验方面3人得分谁是最丰富的?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3, (3)在(2)的条件下,你对落聘者有何建议?27.(6分)已知A (5,5),B (2,4),M 是x 轴上一动点,求使得M A +MB 最小时的点M 的坐标.28.(8分)某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县,已知C 、D 两县运化肥到A 、B 两县的运费(元/吨)如下表所示.(第17题)CBAD仪表形象(第26题)专业知识 工作经验 (第24题)ONM ·· A B(1)设C 县运到A 县的化肥为x 吨,求总运费W (元)与x (吨)的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.29.(12分)如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . (1)当△COD 和△AOB 全等时,求C 、D 两点的坐标;(2)是否存在经过第一、二、三象限的直线CD ,使CD ⊥AB ?如果存在,请求出直线CD八年级(上)数学参考答案一、选择题(每小题3分,共30分)1.B 2.C 3.C 4.A 5.D 6.A 7.D 8.C 9.B 10.C 二、填空题(每小题3分,共24分)11.二、三 12.x ≠7 13.72° 14.0<k 15.20,0.4 16.3217.3 18.4三、解答题(共76分)19.(1)原式=228825a a a --+ …………………………………………………1分=8232-+-a a . …………………………………………………2分(2)原式=)1(522-x x ………………………………………………………1分 =2455x x -. ………………………………………………………2分 20.(1)原式=(60-0.2 )(60+0.2) ……………………………………………1分=222.060-=3599.96. …………………………………………………2分(2)原式=2)2200(- ……………………………………………………………1分=22222002200+⨯⨯-=39204. ………………………………………2分21.(1)原式=)12(-x x . ………………………………………………………3分 (2)原式=)14)(14(-+x x . …………………………………………………3分 (3)原式=)96(22y x xy y -- ………………………………………………1分 =)69(22y xy x y +-- ………………………………………………2分=2)3(y x y --. ………………………………………………………3分(4)原式=[]2)(32y x -+ ………………………………………………………2分=2)233(+-y x . …………………………………………………………3分22.原式=x y x y xy x 2)2(2222÷-++-……………………………………………2分 =x xy x 2)22(2÷-……………………………………………………………3分 =y x -. ……………………………………………………………………4分 当2005x =,2004y =时,原式=2005-2004 =1. …………………………………………………………5分(第29题)23.已知:如图,△ABC 中,AB=AC (包括画图).求证:∠B=∠C . ………………………………………………………………2分 证明:略. ………………………………………………………………………5分 24.作图题.略,角平分线和线段的垂直平分线每画对一个得2分. 25.(1)设一次函数解析式为b kx y +=,由题意,得3549.k b k b +=⎧⎨-+=-⎩,…………………………………………………………………2分解之,得2,1.k b =⎧⎨=-⎩………………………………………………………………4分因此一次函数的解析式为12-=x y .………………………………………5分 (2)图略. ………………………………………………………………………7分 (3)将(a ,2)代入12-=x y ,得212=-a . ……………………………8分解得23=a . ………………………………………………………………9分26.点B 关于x 轴对称的点的坐标是B ′(2,-4).连AB ′,则AB ′与x 轴的交点即为所求. …………………………………1分 设AB ′所在直线的解析式为b kx y +=, 则55,2 4.k b k b +=⎧⎨+=-⎩ ………………………………………………………………2分则3,10.k b =⎧⎨=-⎩ ……………………………………………………………………3分所以直线AB 的解析式为103-=x y . ……………………………………4分 当0=y 时,310=x .故所求的点为)0,310(M . …………………………6分27.(1)乙,甲,丙; ……………………………………………………………3分 (2)甲14.75,乙15.9,丙15.35,录取乙; ………………………………5分(3)略. …………………………………………………………………………7分 28.(1)由题意,得 )40(45)100(30)90(4035-+-+-+=x x x x W104800(4090)x x =+≤≤. …………………………6分 (2)因为W 随着x 的减小而减小,所以当40=x 时,W 最小=10×40+4800=5200(元).答:略. …………………………8分 29.(1)由题意,得A (2,0),B (0,4),即AO =2,OB =4. …………………………………………………………2分 ①当线段CD 在第一象限时,点C (0,4),D (2,0)或C (0,2),D (4,0).………………………4分 ②当线段CD 在第二象限时,点C (0,4),D (-2,0)或C (0,2),D (-4,0).…………………6分 ③当线段CD 在第三象限时,点C (0,-4),D (-2,0)或C (0,-2),D (-4,0).……………8分 ④当线段CD 在第一象限时,点C (0,-4),D (2,0)或C (0,-2),D (4,0) ………………10分 (2)C (0,2),D (-4,0).直线CD 的解析式为221+=x y .…………12分AB CD八 年 级 (上)数 学 期 末 综 合 测 试3一、选择题(每小题3分,共30分)1.下列平面图形中,不是轴对称图形的是 ( )2.关于函数12+-=x y ,下列结论正确的是 ( )A . 图象必经过)1,2(-B . 当21>x 时,0<yC . 图象经过第一、二、三象限D . y 随x 的增大而增大3.一个样本中有80个数据,最大值是141,最小值是50,取组距为10,则样本可分成( )A .10组B .9组C .8组D .7组4.下列计算中,错误的是 ( )A 22221138y x y x =+ B 222594x x x -=- C 05522=-ba b a D m m m 5)2(3=--5.若x 的多项式5382+-x x 与352323+-+x mx x 相加后,不含2x 项,则m 等于( ) A . 2 B . -2 C . -4 D . -86.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( ) A .18 B .16 C .14 D .127.若三点)1,6(),,2(),4,1(-p 在一条直线上,则p 的值为 ( ) A . 2 B . 3 C .-7 D .08.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( ) A .只有① B . 只有② C . 只有①② D . ①②③ 10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 二、填空题(每小题3分,共30分) 11.函数x x y -++=24中,自变量x 的取值范围是 .12.在某次考试中全班50人中有10人获得优秀等级,那么绘制扇形图描述成绩时,优秀等级所在的扇形的圆心角是____________度.A B E CF D O DCA B P A B D C Eαγ β13.已知12335+n b a 与314b a m --的和是单项式,则=m ,=n . 14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD16.把点A (a ,3)向上平移三个单位正好在直线y =-x +1上,则a 的值是 .17.已知,2,522-=+=+b ab ab a 那么=-22b a .18.等腰三角形一腰上的高与另一腰的夹角为40°19.如图,△ABC中,DE 是AC 的垂直平分线,AE =3cm,△ABD 则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分)21.①(5分)计算: )2(3)3(2)2(2222xy y x xy y xy x -+---+-② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,写出画法) 画法:23.(7分)已知直线1+=x y 与直线4+=kx y 交于点),1(n p ,求n k ,的值,及两直线与两坐标轴所围成的四边形的面积.24.(7分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°25.(7分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(7分)初三某班对最近的一次数学考试成绩(得分取整数)进行统计分析,将所有成绩由低到高分成5组,并绘制成如图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有___________(2)在该频数分布直方图中画出频数折线图; (3)若这次考试中,成绩80分以上(不含80分) 为优秀,那么该班这次数学考试的优秀率是多少?27.(8分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CEADBE CBDE CA(第14题)(第15题)CAB···C 50.60.70.90.80.100.5B C NDEMA于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .28.(本题9分) 如图, △ABC 为等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥AD 与Q ,PQ =4,PE =1 (1)求证 ∠BPQ =60° (2)求AD 的长八年级(上)数学期末测试4一 耐心填一填(30分)1 .函数y= 中,自变量x 的取值范围是_______________2 若直线y=-x+a 和直线y=x+b 的交点坐标为(m,8),则a+b=_______________.3 对直线y=3x-15,当x____________时,y<0; 当x__________时,y>0.4 常用的统计图有 __________ , __________ , __________。
人教版八年级数学上册期末考试综合复习练习题(含答案)
人教版八年级数学上册期末考试综合复习练习题(含答案)一、选择题(本题共10个小题,每小题3分,共 30分。
下列各题,每小题只有一个选项符合题意。
)1. 下面四个图形中,是轴对称图形的是( ) A. B. C. D.2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )A. 30.15610-⨯B. 31.5610-⨯C. 41.5610-⨯D. 415.610-⨯3. 下列计算正确的是( )A. x •x 3=x 4B. x 4+x 4=x 8C. (x 2)3=x 5D. x ﹣1=﹣x 4. 若分式224x x +-有意义,则x 的取值范围是( ) A. x ≠2 B. x ≠±2 C. x ≠﹣2 D. x ≥﹣25. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )A. 3B. 4C. 6D. 86. 若点A (﹣3,a )与B (b ,2)关于x 轴对称,则点M (a ,b )所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD8. 计算a ﹣2b 2•(a 2b ﹣2)﹣2正确的结果是( ) A. 66a b B. 66b a C. a 6b 6 D. 661a b9. 如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A. 15︒B. 22.5︒C. 30D. 45︒10. 瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km 的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h ,那么汽车原来的平均速度为( )A. 80km/hB. 75km/hC. 70km/hD. 65km/h二.填空题(共5题,总计 15分)11. 分解因式:5x 4﹣5x 2=________________.12. 若4,8x y a b ==,则232x y -可表示为________(用含a 、b 的代数式表示).13. 若△ABC ≌△DEF ,△ABC 的周长为100,AB =30,DF =25,则BC 为 ________.14. 如图,DE AB ⊥于E ,AD 平分BAC ∠,BD DC =,10AC =cm ,6AB =cm ,则AE =______.15. 如图,△ABC 中,∠BAC =60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE =DF ;②DE +DF =AD ;③DM 平分∠EDF ;④AB +AC =2AE ;其中正确的有________.(填写序号)三.解答题(共8题,总计75分)16. (1)计算:()32(2)32x x x x ---; (2)分解因式:229()()6()x x y y y x xy y x ---+-;17. 先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于y 轴对称的111A B C △.(2)写出点111,,A B C 的坐标(直接写答案).(3)111A B C △的面积为___________19. 如图,已知BF ⊥AC 于F ,CE ⊥AB 于E ,BF 交CE 于D ,且BD =CD ,求证:点D 在∠BAC 的平分线上.20. 如图,直线m 是中BC 边的垂直平分线,点P 是直线m 上的一动点,若6AB =,4AC =,7BC =.(1)求PA PB +的最小值,并说明理由.(2)求APC △周长的最小值.21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式,问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-,则()()203010x x ab --==, 即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=. 请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值.22. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.23. 如图,已知和均为等腰三角形,AB AC =,AD AE =,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若50ABC ACB ADE AED ∠=∠=∠=∠=︒,求证:BAD CAE ≌;(2)在(1)的条件下,求BEC ∠的度数;拓广探索:(3)如图2,若120CAB EAD ∠=∠=︒,4BD =,CF 为BAD 中BE 边上的高,请直接写出BEC ∠的度数和EF 的长度。
人教版八年级数学上册《期末考试综合测试卷》测试题及参考答案
人教版八年级数学上册期末考试综合测试卷(时间:120 分钟,满分:120 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.每小题给出的四个选项中,只有一项符合题目要求)1. 下列计算正确的是().A.x 2·x 3=x 6B.-2x 2+3x 2=-5x 2C.(-3ab )2=9a 2b 2D.(a+b )2=a 2+b 22. 计算 3ab 2·5a 2b 的结果是().A.8a 2b 2B.8a 3b 3C.15a 3b 3D.15a 2b 23. 下列方程无解的是().A. 3=1B.�-2+x=�-2+1�-1�-1�-1C.6 − 6=2D.�-1=2� 3��+1 34. 如图,欲测量内部无法到达的古塔相对两点 A ,B 间的距离,可延长 AO 至点 C ,使 CO=AO ,延长 BO 至点 D ,使 DO=BO ,则△COD ≌△AOB ,从而通过测量 CD 就可测得 A ,B 间的距离,其全等的根据是 ().A.SASB.ASAC.AASD.SSS5. 已知等腰三角形的一边长为 4,一边长为 9,则它的周长是().A.17B.22C.17 或 22D.13 6. 若一个多边形的内角和为 900°,则这个多边形是().A.五边形B.六边形C.七边形D.八边形7.若 a+b=5,ab=-24,则 a 2+b 2 的值为( ).A.73B.49C.43D.238.如图,在△ABC 中,延长BC 边上的中线AD 到点E,使DE=AD,则下列结论成立的是( ).A.DE=DCB.CE=ABC.CE=CBD.AE=BC9.如图,AB∥CD,AE 平分∠CAB 交CD 于点E.若∠C=50°,则∠AED=( ).A.65°B.115°C.125°D.130°10.已知1 = 1 + 1 , 1 = 1 −1 , �1( ).�1 �1�2 �2�2 �1则�2等于A.�1+�2�2-�1B. �1-�2�2+�1C. �2-�1�1+�2D.�2+�1�1-�2二、填空题(本大题共6 小题,每小题4 分,共24 分)11.因式分解:8a2-2= .12.方程2�+2−1=0 的解是.�13.如图,△ABO 是关于x 轴对称的轴对称图形,若点A 的坐标为(1,-2),则点B 的坐标为.14.如图,已知∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,若以“SAS”为依据,还要添加的条件为.15.如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC 的度数等于.16. 如图,∠1 是五边形 ABCDE 的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.三、解答题(本大题共 8 小题,共 66 分)17.(6 分)化简:(�+�)2−2��+(a 2+b 2)0.�2+�2 �2+�218.(6 分)先化简,再求值:(2x+y )2+(x-y )(x+y )-5x (x-y ),其中 x= 2+1,y= 2-1.19.(6 分)已知:线段 a ,∠α.求作:等腰三角形 ABC ,使其腰长 AB 为 a ,底角∠B 为∠α.要求:用尺规作图,不写作法和证明,但要清楚地保留作图痕迹.20.(8 分)如图,已知 AC 平分∠BAD ,∠1=∠2.求证:AB=AD.21.(8 分)先化简,再求值:1-��2+�÷ 1-�-� + 1 ,其中,a= 2-1.�22.(8 分)如图,在△ABC 中,AB=AC,AB 的垂直平分线交AB 于点N,交BC 的延长线于点M,若∠A=40°.(1)∠NMB= ;(2)如果将题中∠A 的度数改为70°,其余条件不变,那么∠NMB= ;(3)你发现有什么样的规律性?试证明;(4)若将题中的∠A 改为钝角,你对这个规律性的认识是否需要加以修改?23.(12 分)如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开, 分成三角形和四边形两部分,求四边形中最大角的度数.24.(12 分)某校原有600 张旧课桌急需维修,经过A,B,C 三个工程队的竞标得知,A,B 两个工程队的工作效率相同,且都为C 工程队的2 倍,若由一个工程队单独完成,C 工程队比A 工程队要多用10 天.学校决定由三个工程队一起施工,要求至多6 天完成维修任务.三个工程队都按原来的工作效率施工2 天时,学校又清理出需要维修的课桌360 张,为了不超过6 天时限,工程队决定从第3 天开始,各自都提高工作效率,A,B 两个工程队提高的工作效率仍然都是C 工程队提高的2 倍.这样他们至少还需要3 天才能完成整个维修任务.(1)求A 工程队原来平均每天维修课桌的张数;(2)求A 工程队提高工作效率后平均每天多维修课桌张数的取值范围.答案与解析一、选择题1.C2.C3.B 选项B 中, �-2,得x=1,但x=1 使分母为0.等式两边同减去�-14.A5.B6.C7.A8.B9.B10.B 1 = �1+�2 , 1 = �1-�2,�1 �1�2 �2 �1�2则s1=�1�2 ,s2= �1�2 .�1+�2 �1-�2�1 =�1�2 ·�1-�2 = �1-�22 1+�2 1 2 1+�2二、填空题11.2(2a+1)(2a-1) 12.x=2 13.(1,2)14.BC=EF(或BE=CF) 15.70°16.425三、解答题所以2 17. 解 (�+�)2 − 2�� +1=�2+2��+�2-2��+1=�2+�2+1=2.�2+�2�2+�2 �2+�2 �2+�218.解 原式=4x 2+4xy+y 2+x 2-y 2-5x 2+5xy=9xy.当 x= 2+1,y= 2-1 时,原式=9xy=9( 2+1)( 2-1)=9.19. 解20. 证明 ∵AC 平分∠BAD ,∴∠BAC=∠DAC.∵∠1=∠2,∴∠ABC=∠ADC.∠B � = ∠B �,在△ABC 和△ADC 中, ∠��� = ∠���, �� = ��,∴△ABC ≌△ADC (AAS).∴AB=AD.21.解 原式= 1-� ÷ 1-� -�2-��(�+1) � �= 1-� ÷1-�-�2+� �(�+1) �= 1-� ÷1-�2 �(�+1) �= 1-� ·��(�+1)= 1 ,(�+1)(1-�)(1+�)当 a= 2-1 时,原式=1= 1.( 2-1+1)2222.解 (1)20° (2)35°(3)∠NMB=1A. : , A 作 AD ⊥BC 于点 D.∠ 证明 如图过点2�� =在Rt △ABD 与Rt △ACD 中, �� = ��,∴Rt △ABD ≌Rt △ACD (HL).∴∠BAD=∠CAD ,∴∠BAD=1 BAC. ∠2∵AD ⊥BC ,∴∠B+∠BAD=90°.∵MN ⊥AB ,∴∠B+∠NMB=90°,∴∠BAD=∠NMB ,∴∠NMB=1BAC. ∠2(4)需要修改.此时上述规律应改为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.23.解 如图,在△ABC 中,∠B=∠C=35°,则∠A=110°.过底边上的点 D 作 DE ⊥BC 交 AB 于点 E ,则∠EDC=90°.所以∠AED=360°-90°-35°-110°=125°,即分成的四边形中最大角的度数为 125°.24.解 (1)设C 工程队原来平均每天维修课桌 x 张, 则A 工程队,B 工程队原来平均每天维修课桌 2x 张. 根据题意, 600 − 600得 � 2� =10.解方程得 x=30.经检验,x=30 是原方程的解,且符合题意, 则 2x=60.故A 工程队原来平均每天维修课桌 60 张.(2)设C 工程队提高工作效率后平均每天多维修课桌 x 张,施工 2 天时,已维修(60+60+30)×2=300(张),从第 3 天起还需维修的课桌应为 300+360=660(张). 根据题意,得 3(2x+2x+x+150)≤660≤4(2x+2x+x+150).解得3≤x≤14,即6≤2x≤28.故A 工程队提高工作效率后平均每天多维修的课桌张数的取值范围是不少于6 张且不多于28 张.。
人教版八年级数学上册期末综合测试卷(附有参考答案)
人教版八年级数学上册期末测试卷(附有参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若三角形的两条边的长度是4cm 和7cm ,则第三条边的长度可能是( )A .2cmB .5cmC .11cmD .12cm2.如图所示,点D ,E 分别是△ABC 的边BC ,AB 上的点,分别连结AD ,DE ,则图中的三角形一共有( )A .3个B .4个C .5个D .6个3.下列各题的计算,正确的是( )A .()3515=a aB .5210a a a ⋅=C .32242a a a -=-D .()3236ab a b -=4.下列等式中不成立的是( )A .()222396x y x xy y -=-+.B .()()22a b c c a b +-=--. C .2221124⎛⎫-=-+ ⎪⎝⎭m n m mn n . D .()22244x y x y -=-. 5.在学校“文明学生”表彰会上,6名获奖者每两位都相互握手祝贺,则他们一共握了多少次手( )A .6B .8C .13D .156.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,内错角相等D .如果两个角都是30°,那么这两个角相等 7.已知实数x 、y 满足33x ?y 27=-,当x 1>时,y 的取值范围是( )A .y 3<-B .3y 0-<<C .y 3<-或y 0>D .3y 0-<<或y 0>8.下列计算中,(1) m n mn a a a ⋅=; (2) ()22m n m n a a ++= ; (3) ()311211263n n n n a b ab a b -++⎛⎫⋅-=- ⎪⎝⎭;(4)633a a a ÷=;正确的有( )A .0个B .1个C .2个D .3个9.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( )A .B .C .D . 10.要使分式21x x +-有意义,x 必须满足的条件是( ) A .1x ≠ B .0x ≠ C .2x ≠- D .2x ≠-且1x ≠11.《居室内空气中甲醛的卫生标准》(GB /T 16127-1995)规定:居室内空气中甲醛的最高容许浓度为0.00008g /m 3.将0.00008用科学记数法可表示为( )A .40.810-⨯B .4810-⨯C .50.810-⨯D .5810-⨯12.如图,AO ⊥OM ,OA=8,点B 为射线OM 上的一个动点,分别以OB 、AB 为直角边,B 为直角顶点,在OM 两侧作等腰Rt △OBF 、等腰Rt △ABE ,连接EF 交OM 于P 点,当点B 在射线OM 上移动时,PB 的长度是 ( )A .3.6B .4C .4.8D .PB 的长度随B 点的运动而变化二、填空题13.已知3x y -=,则代数式()()2122x x y y x +-+-的值为 .14.计算:(1)202220241(4)4⎛⎫-⨯-= ⎪⎝⎭ .(2)10298⨯= .15.在螳螂的示意图中AB DE ∥,ABC 是等腰三角形12672ABC CDE ∠=︒∠=︒,,则ACD ∠的度数是 .16.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是 .17.若()22224x k x x k +=++,则k = .18.一个多边形截去一个角后,形成一个新的多边形内角和为360°,那么原来的多边形的边数为19.如图,在ABC 中,AD 为BC 边上的高线,且AD BC =,点M 为直线BC 上方的一个动点,且ABC 面积为MBC 的面积2倍,则当MB MC +最小时,MBC ∠的度数为 °.20.计算()22x xy x -÷的结果是 .21.如图,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,拼第3个正方形需要16个小正方形……按照这样的方法拼成的第n 个正方形比第(n )1-个正方形多 个小正方形.22.在等边△ABC 中,E 是∠B 的平分线上一点,∠AEB =105°,点P 在△ABC 上,若AE =EP ,则∠AEP 的度数为 .三、解答题23.化简:231124a a a -⎛⎫-÷⎪+-⎝⎭ 24.计算:(1)860.10.1÷;(2)741133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (3)()()3a b a b -÷-;(4)()()53xy xy ÷;25.我们知道多项式的乘法可以利用图形的面积进行解释,例如,(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: .(2)试画出一个图形,使它的面积能表示成(a+b )(a+3b )=a 2+4ab+3b 2.26.有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦12000kg 和14000kg ,已知第一块试验田每公顷的产量比第二块少1500kg .如果设第一块试验田每公顷的产量为xkg ,那么x 满足怎样的分式方程?27.春笋含有丰富的营养成分,是春天的重要食材.今年4月初,某蔬菜批发市场一店主张先生用2000元购进一批春笋,很快售完;张先生又用3200元购进第二批春笋,所购春笋的重量是第一批的2倍,由于进货量增加,第二批春笋的进价比第一批每千克少2元,求第一批春笋每千克进价多少元?28.下表为抄录某运动会票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图如图所示.比赛项目票价(张/元)足球1000男篮800乒乓球x依据上述图表,回答下列问题:(1)其中观看足球比赛的门票有______张,观看乒乓球比赛的门票占全部门票的______%;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是______;(3)若购买乒乓球门票的总款数占全部门票总款数的542,求每张乒乓球门票的价格.29.某高速路修建项目中有一项挖土工程,招标时接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完成.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完成,你将选择哪一种方案?说明理由.30.如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.的边BC,CD上,∠EAF=12(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.线上,∠EAF=12(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.答案: 1.B 2.C 3.A 4.D 5.D 6.C 7.B 8.C 9.A 10.A 11.D 12.B 13.414.16 999615.45︒/45度16.ASA17.1218.5或4或3.19.4520.2x y -21.21n +/1+2n22.90︒或120︒23.2-a24.(1)0.01(2)127-(3)222a ab b -+(4)22x y 25.(1)(a +2b )(2a +b )=2a 2+5ab +2b 226.12000140001500x x =+. 27.第一批春笋每千克进价10元28.(1)50,20;(2)310;(3)每张乒乓球门票的价格为500元. 29.(1)20天(2)方案三30.(1)EF =BE +DF ;(2)EF =DF−BE ;(3)5.。
2022-2023学年人教版数学八年级上册+期末综合试题训练
2022-2023学年人教版数学八年级上册 期末综合试题训练一、单选题1.下列语句:①全等三角形的周长相等.②面积相等的三角形是全等三角形.③若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上.其中正确的有( ) A .0个B .1个C .2个D .3个2.要使11x x -+ 分式有意义,则 x 的取值应满足( ) A .1x =-B .1x =C .1x ≠-D .1x ≠3.下列从左到右的变形正确的是( )A .22()()a b a b a b ---=-B .2211a a a a ---=-- C .226(23)(2)x x x x --=+-D .222469(23)m mn n m n -+=-4.一块三角形形状的玻璃破成如图所示的四块,如果用部分碎片配一块与原来形状相同的玻璃,可以使用的碎片编号为( )A .1,3B .3,4C .1,3,4D .25.下列运算正确的是( )A .246a a a +=B .()222a b a b -=- C .()3263a ba b =D .66a a a ÷=6.若x 满足 xx=1,则x 应为( )A .正数B .非正数C .负数D .非负数7.如图,在等腰直角三角形ABD 中,AD BD =,点F 是AD 上的一个动点,过点A 作AC BF ⊥,交BF 的延长线于点E ,交BD 的延长线于点C ,则下列说法错误的是( )A .CD DF =B .AC BF =C .AD BE =D .45CAD ABF ∠+∠=︒8.下列各式中,计算正确的是( )A .235x y xy +=B .623x x x ÷=C .339(2)6x x -=-D .325a a a ⋅=9.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当∠PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.∠ABC 中,∠BAC=60°,AD∠BC 于D ,且AD= 3 ,E 、F 、G 分别为边BC 、CA 、AB 上的点,则∠EFG 周长的最小值为( )A 3B .2 3C .3D .3 3二、填空题11.计算: ()()323xy x z -⋅-= .12.如上图,在∠ABC 中,∠A=90°,AB=AC ,BD 平分∠ABC ,CE∠BD 于E ,若BD=12,则CE为 .13.关于x 的方程312x ax +=- 的解是正数,则a 的取值范围是 . 14.如图,点A ,D ,B ,E 在同一条直线上,AD =BE ,AC =EF ,要使∠ABC∠∠EDF ,只需添加一个条件,这个条件可以是 .15.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为 .三、计算题16.下列各式分解因式:(1)225x -(2)22363ax axy ay -+17.(1)分解因式:321025x x x -+ (2)解方程:11222x x x-=--- 四、解答题18.如图,点E 、C 在线段BF 上,AC∠DF ,∠A =∠D ,AB =DE ,证明:BE =CF .19.先化简,再求值:221111xx x⎛⎫÷+⎪--⎝⎭,其中x为满足不等式11x->的最小整数.20.如图,∠ABC中,点D、E分别在AB、AC上,∠ABE∠∠ACD.(1)求证:∠BEC∠∠CDB;(2)若∠A=70°,BE∠AC,求∠BCD的度数.21.已知某项工程,乙工程队单独完成所需天数是甲工程队单独完成所需天数的两倍,若甲工程队单独做10天后,再由乙工程队单独做15天,恰好完成该工程的710,共需施工费用85万元,甲工程队每天的施工费用比乙工程队每天的施工费用多1万元.(1)单独完成此项工程,甲、乙两工程对各需要多少天?(2)甲、乙两工程队每天的施工费各为多少万元?(3)若要完成全部工程的施工费用不超过116万元,且乙工程队的施工天数大于10天,求甲工程队施工天数的取值范围?答案解析部分1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】D 5.【答案】C 6.【答案】A 7.【答案】C 8.【答案】D 9.【答案】B 10.【答案】C11.【答案】5327x y z .12.【答案】613.【答案】a <-2且a≠-6 14.【答案】∠A=∠E 或BC=DF 15.【答案】1702n -︒16.【答案】(1)解:原式=(x+5)(x-5);(2)解:原式=3a (x 2-2xy+y 2)=3a (x-y )2.17.【答案】(1)解:原式=()21025x x x -+=()25x x -; (2)解:11222x x x-=---, 11222x x x -=----, ()1122x x -=---, 1124x x -=--+, 2141x x -+=-+-, 2x =,检验,将2x =代入2x -=2-2=0, ∴2x =是原方程的增根.18.【答案】证明:∵AC∠DF ,∴∠ACB=∠DFE , 在∠ACB 和∠DFE 中,ACB DFE A DAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴∠ACB∠∠DFE (AAS ), ∴BC=EF , ∴BE=CF .19.【答案】解: 221111x x x ⎛⎫÷+ ⎪--⎝⎭= ()()211111x x x x x +-÷-+-= ()()2111x x x x x -⋅-+=解不等式 11x -> ,得 x >2∵x 为满足不等式 11x -> 的最小整数 ∴x=3当x=3时,原式=331+ = 34. 20.【答案】(1)证明:∵∠ABE∠∠ACD ,∴AB=AC ,AD=AE ,BE=CD , ∴BD=CE ,在∠BEC 与∠CDB 中, BD=CE ,CD=BE ,BC=CB , ∴∠BEC∠∠CDB.(2)解:∵AB=AC ,∠A=70°, ∴∠ACB=∠ABC=55°, ∵BE∠AC ,∴∠BEC=∠AEB=90°, ∴∠ABE=∠ACD=20°, ∴∠BCD=35°21.【答案】解:(1)设甲工程队单独施工完成此项工程的天数为x 天,乙工程队单独施工完成此项工程的天数为2x 天,根据题意得:10x +152x =710, 解得:x=25,经检验:x=25是原方程的根, 则2x=25×2=50(天),答:甲、乙两工程队各需要25天和50天;(2)设甲工程队每天的施工费为a 万元,则乙工程队每天的施工费为(a ﹣1)万元, 根据题意得:10a+15(a ﹣1)=85, 解得:a=4, 则a ﹣1=3(万元),答:甲工程队每天的施工费为4万元,乙工程队每天的施工费为3万元; (3)设全部完成此项工程中,甲队施工了m 天,则甲完成了此项工程的25m ,乙队完成了此项工程的(1-25m),故乙队在全部完成此项工程中,施工时间为:125150m -=50﹣2m (天),根据题意得:()4350211650210m m m ⎧+-≤⎨->⎩,解得:17≤m <20.答:甲工程队施工天数m 的取值范围是:17≤m <20.。
人教版八年级(上)数学期末综合测评卷(含答案)
八年级上学期期末综合测评卷时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.钢架雪车是2022年北京冬奥会的比赛项目之一,下面这些钢架雪车运动标志的图形是轴对称图形的是( ) A B C D2.在物联网时代的所有芯片中,14 nm芯片成为需求的焦点.已知1 nm=1×10-9 m.将14 nm用科学记数法表示正确的是( )A.1.4×10-8 mB.1.4×10-9 mC.14×10-9 mD.1.4×10-10 m3.下列各式运算正确的是( )A.a2·a4=a12B.(a2)3=a3C.a6÷a2=a3D.(2ab)-2=14a2b24.下列三角形与如图所示的三角形全等的是( )A. B. C. D.5.若a,b是等腰三角形ABC的两边长,且满足|a-3|+(b-7)2=0,则此等腰三角形的周长是( )A.13B.13或17C.17D.206.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.5B.7C.10D.37.如图,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条水平直线上,则∠COF的度数是( )A.74°B.76°C.84°D.86°8.在正数范围内定义一种运算“※”,其运算法则为a※b=1a +1b,如2※4=12+14=34.根据这个法则,方程3※(x+1)=1的解为( )A.12B.1C.-1 D.-129.已知25a·52b=56,4b÷4c=4,则式子a2+ab+3c的值是( )A.3B.6C.7D.810.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC+PE的和最小时,∠CPE=( )A.30°B.45°C.60°D.90°二、填空题(共5小题,每小题3分,共15分)11.若分式x-2x+3的值等于零,则实数x的值是 .12.当a= 时,多项式x2-2(a-1)x+25是一个完全平方式.13.如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5 cm,BD=3 cm,则ED的长为 cm.(第13题) (第14题)14.如图,在平面直角坐标系xOy内有一点A(2,-1),P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为 .15.如图,D为△ABC内一点,AD⊥CD,AD平分∠CAB,且∠DCB=∠B.如果AB=10,AC=6,那么CD= .三、解答题(共8小题,共75分)16.(共2小题,每小题3分,共6分)解答下列各题.(1)计算:(12a3-6a2+3a)÷3a-1.(2)因式分解:16x2-2x3-32x.17.(7分)如图,已知△ABC.利用直尺和圆规,按照下列要求作图(保留作图痕迹,不要求写作法):(1)作∠ABC 的平分线BD 交AC 于点D ;(2)作线段BD 的垂直平分线,分别交AB ,BC 于点E ,F.18.(8分)先化简式子a 2-2a +1a 2-4÷(1-3a +2),再从2,-2,1,-1四个数中选择一个你喜欢的数代入求值.19.(9分)如图,在△ABC 中,∠B=40°,AD 平分∠BAC 交BC 于点D ,线段AD 的垂直平分线交AB 于点E ,交BC 的延长线于点F ,连接AF.(1)求∠CAF 的度数;(2)若AB=BF ,求∠DAC 的度数.20.(9分)如图,△ABC 是等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE=CD.(1)求证:DB=DE.(2)过点D作DF⊥BE交BE于点F,若CF=4,求△ABC的周长.21.(10分)在某城市美化工程招标时,有甲、乙两个工程队投标,经测算,甲队单独完成这项工程需要60天,若由甲队先做20天,则剩下的工程由甲、乙两队合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)已知甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成这项工程省钱,还是由甲、乙两队全程合作完成这项工程省钱.22.(12分)如图(1),有A,B,C三种不同型号的纸板,A型是边长为a的正方形,B型是边长为b的正方形,C型是长为b,宽为a的长方形.现用A型纸板一张,B型纸板一张,C型纸板两张拼成如图(2)所示的大正方形.(1)观察图(2),请你用两种方法表示出图(2)的面积.方法1: ;方法2: .请利用图(2)的面积表示方法,写出一个关于a,b的等式: . (2)已知图(2)总面积为49,一张A型纸板和一张B型纸板的面积之和为25,求ab 的值.(3)用一张A型纸板和一张B型纸板,拼成如图(3)所示的图形,若a+b=8,ab=15,求图(3)中阴影部分的面积.图(1) 图(2) 图(3) 23.(14分)如图(1),△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)请你写出AB与AP所满足的数量关系和位置关系(不必证明);(2)将△EFP沿直线l向左平移到如图(2)的位置时,EP交AC于点O,连接AP,BO,请你写出BO与AP所满足的数量关系和位置关系,并说明理由;(3)将△EFP沿直线l继续向左平移到如图(3)的位置时,EP的延长线交AC的延长线于点O,连接AP,BO.此时,BO与AP还具有(2)中的数量关系和位置关系吗?请说明理由.图(1) 图(2) 图(3)八年级上学期期末综合测评卷选择填空题答案速查12345678910D A D C C A C A B C11.212.-4或613.214.415.21.D2.A. 3.D a2·a4=a6,(a2)3=a6,a6÷a2=a4,(2ab)-2=14a2b24.C 180°-51°-49°=80°,A选项只有两边相等,不能推出两三角形全等;B,D选项两边相等,但夹角不相等,不能推出两三角形全等;C选项符合全等三角形的判定定理SAS,能推出两三角形全等.5.C (分类讨论思想)由题意可得a=3,b=7.当腰长为3时,等腰三角形的三边长为3,3,7,不能构成三角形;当腰长为7时,等腰三角形的三边长为【注意】需根据三角形的三边关系验证是否能组成三角形3,7,7,此时三角形的周长为3+7+7=17.6.A 如图,过点E 作EF ⊥BC 于点F ,∵BE 平分∠ABC ,ED ⊥AB ,∴EF=DE=2,∴△BCE 的面积=12BC ·EF=5.【提示】角平分线上的点到角两边的距离相等7.C 由题意得∠EOF=∠OED=108°,∠BOC=∠OBA=120°,∴∠OEB=72°,∠OBE=60°,∴∠BOE=180°-72°-60°=48°,∴∠COF=360°-108°-48°-120°=84°.8.A 由题意得,3※(x+1)=13+1x +1.∵3※(x+1)=1,∴13+1x +1=1,∴x+1+3=3(x+1),解得x=12.∵当x=12时,3(x+1)≠0,∴这个方程的解为x=12.9.B (整体思想)∵25a ·52b =56,4b ÷4c =4,∴52a ·52b =56,4b-c =4,∴2a+2b=6,b-c=1,∴a+b=3,b-1=c ,∴a 2+ab+3c=a (a+b )+3(b-1)=3a+3b-3=3(a+b )-3=3×3-3=9-3=6.10.C 如图,连接BE ,与AD 交于点P ,此时PC+PE 的和最小.∵△ABC 是等边三角形,∴∠BCE=60°.∵BA=BC ,AE=EC ,∴BE ⊥AC ,∴∠BEC=90°,∴∠EBC=30°.∵AD ⊥BC ,AB=AC ,∴BD=CD ,∴PB=PC ,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.11.210.-4或6 因为x 2-2(a-1)x+25=x 2-2(a-1)x+52是完全平方式,所以-2(a-1)=±2×1×5,解得a=-4或6.【注意】一次项系数的正负都要考虑13.2 在△ACD 和△AED 中,∠CAD =∠EAD ,AD =AD ,∠ADC =∠ADE ,∴△ACD ≌△AED (ASA),∴CD=DE.∵CB=5 cm,BD=3 cm,∴CD=BC-BD=5-3=2(cm),∴DE=CD=2 cm .14.4 连接OA.当OA 为等腰三角形的底边时,符合条件的动点P 有1个;当OA 为等腰三角形的一腰时,符合条件的动点P 有3个.故符合条件的点P 共有4个.15.2 如图,延长CD 交AB 于点E ,∵CD ⊥AD ,∴∠ADE=∠ADC=90°.∵AD 平分∠CAB ,∴∠EAD=∠CAD ,∴∠AED=∠ACD ,∴AE=AC=6,∴DE=CD.∵AB=10,∴BE=10-6=4.∵∠B=∠BCD ,∴CE=BE=4,∴CD=12CE=2.【关键】等腰三角形“三线合一”16.【参考答案 】(1)原式=4a 2-2a+1-1(2分)=4a 2-2a.(3分)(2)原式=2x (8x-x 2-16)=-2x (x 2-8x+16)=-2x (x-4)2.(3分)17.【参考答案】(1)(2)作图如图所示.(7分)18.【参考答案】原式=(a -1)2(a +2)(a -2)÷a +2―3a +2=(a -1)2(a +2)(a -2)·a +2a -1=a -1a -2.(4分)∵a+2≠0,a-2≠0,a-1≠0,∴a只能取-1.(6分)当a=-1时,原式=-1-1-1-2=23.(8分)19.【参考答案】(1)∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ADF=∠B+∠BAD=40°+∠BAD.∵EF垂直平分AD,∴AF=DF,∴∠DAF=∠ADF=40°+∠BAD.∵∠DAF=∠CAD+∠CAF∴∠CAF=40°.(5分)【关键】等量代换(2)∵∠B=40°,AB=BF,∴∠BAF=∠BFA=12(180°-40°)=70°.由(1)知,∠CAF=40°,∴∠BAC=∠BAF-∠CAF=70°-40°=30°.∵AD平分∠BAC,∴∠DAC=12∠BAC=15°.(9分) 20.思路导图(1)等边三角形的性质 ↓∠DEC=∠DBC结论(2)DF ⊥BE ,∠ACB=60°→∠CDF=30°→CD=2CF →AC=2CD →C △ABC =3AC 【参考答案】(1)证明:∵△ABC 是等边三角形,BD 是AC 边上的中线,∴∠ABC=∠ACB=60°,∠DBC=30°.(1分)∵CE=CD ,∴∠CDE=∠CED.又∠BCD=∠CDE+∠CED ,∴∠CDE=∠CED=12∠BCD=30°,(3分)∴∠DBC=∠DEC ,∴DB=DE.(5分)(2)∵DF ⊥BE ,∠ACB=60°,∴∠CDF=30°.(7分)∵CF=4,∴DC=8.∵AD=CD ,∴AC=16,∴△ABC 的周长=3AC=48.(9分)21.【参考答案】(1)设乙队单独完成这项工程需要x 天.根据题意,得160×20+(1x +160)×24=1.解得x=90.经检验,x=90是原分式方程的解.答:乙队单独完成这项工程需要90天.(4分)(2)设甲、乙合作完成需y 天,则有(160+190)×y=1,解得y=36.(7分)①甲队单独完成需付工程款为3.5×60=210(万元);②乙队单独完成超过计划天数不符合题意;③甲、乙两队全程合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙两队全程合作完成这项工程省钱.(10分)22.【参考答案】(1)(a+b)2(或a2+2ab+b2) a2+2ab+b2[或(a+b)2](a+b)2=a2+2ab+b2(3分) (2)由题意得,(a+b)2=a2+2ab+b2=49,a2+b2=25,(5分)∴ab=(a+b)2-(a2+b2)2=49―252=242=12.(7分) (3)由题意得,题图(3)中阴影部分的面积为b2 2+a2-a(a+b)2=b2+2a2-a2-ab2=(a+b)2-3ab2.当a+b=8,ab=15时,(10分) (a+b)2-3ab2=82-3×152=64―452=192.∴题图(3)中阴影部分的面积为192.(12分) 23.【解题思路】(1)由已知条件可得△ABC与△EPF是全等的等腰直角三角形,根据全等三角形及等腰直角三角形的性质即可得解;(2)延长BO交AP于点M,根据“SAS”可证明△BCO≌△ACP,得到BO=AP,∠CBO=∠CAP,等量代换可得∠AMO=90°,即AP⊥BO;(3)同(2)的思路分析即可.【参考答案】(1)AB=AP,AB⊥AP.(2分) (2)BO=AP,BO⊥AP.(3分)理由如下:图(1)如图(1),延长BO交AP于点M.由已知得,EF=FP,EF⊥FP,∴∠EPF=45°.∵AC⊥BC,∴∠COP=∠CPO=45°,∴CO=CP.在△BCO和△ACP中,BC=AC,∠BCO=∠ACP=90°,CO=CP,∴△BCO≌△ACP(SAS).∴BO=AP,∠OBC=∠PAC.(6分)在Rt△BCO中,∠OBC+∠BOC=90°.又∠BOC=∠AOM,∴∠PAC+∠AOM=∠OBC+∠BOC=90°.∴∠OMA=90°.∴BO⊥AP.(8分) (3)BO与AP还具有(2)中的数量关系和位置关系,即BO=AP,BO⊥AP.(9分)理由:如图(2),延长OB交AP于点N.图(2)∵∠EPF=45°,∴∠CPO=45°.又AC⊥BC,∴∠COP=∠CPO=45°,∴CO=CP.在△BCO和△ACP中,BC=AC,∠BCO=∠ACP,CO=CP,∴△BCO≌△ACP(SAS).∴BO=AP,∠BOC=∠APC.(12分)在Rt△BCO中,∠BOC+∠CBO=90°,又∠PBN=∠CBO,∴∠APC+∠PBN=90°,∴∠PNB=90°,∴OB⊥AP.(14分)。
人教版数学八年级上册 期末综合复习卷(有答案)
人教版数学八年级上册期末综合复习卷一、选择题(每题3分,共30分)1.下列“数字”图形中,有且仅有一条对称轴的是()a2.下列运算正确的是()A.a·a2=a2B.(a5)3=a8C.(ab)3=a3b3D.a6÷a2=a33.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠OAD=()A.95°B.85°C.75°D.65°4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076 g.将数0.000 000 076用科学记数法表示为()A.7.6×10-9B.7.6×10-8C.7.6×109D.7.6×1085.下列说法:①满足a+b>c的a,b,c三条线段一定能组成三角形;②三角形的三条高一定交于三角形内一点;③三角形的外角大于它的任何一个内角.其中错误的有() A.0个B.1个C.2个D.3个6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠A=60°,则∠BFC等于()A.100°B.110°C.120°D.150°7.已知2m +3n =5,则4m ·8n =( )A .16B .25C .32D .648.如图,折叠直角三角形纸片的直角,使点C 落在AB 边上的点E 处.若BC =24,∠B =30°,则DE 的长是( )A .12B .10C .8D .69.甲地到乙地之间的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由甲地到乙地的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是( )A.210x -1.8=2101.5xB.210x +1.8=2101.5xC.210x +1.5=2101.8xD.210x -1.5=2101.8x10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于点D ,则DE 的长为( )A.13B.12C.23D .不能确定二、填空题(每题3分,共30分)11.若式子x x -3+(x -4)0有意义,则实数x 的取值范围是____________. 12.若x 2+bx +c =(x +5)(x -3),其中b ,c 为常数,则点P(b ,c)关于y 轴对称的点的坐标是________.13.化简a 2+2ab +b 2a 2-b 2+b a -b的结果是________. 14.一个多边形的每个内角都是150°,这个多边形是________边形.15.如图,AB =AC ,AD =AE ,∠BAC =∠DAE ,点D 在线段BE 上.若∠1=25°,∠2=30°,则∠3=______.16.如图,将长方形ABCD 沿AE 折叠,得到如图的图形,已知∠CEB′=50°,则∠AEB′的度数为________.17.已知点P(1-a ,a +2)关于y 轴的对称点在第二象限,则a 的取值范围是__________.18.一张纸的厚度约为0.000 008 57米,用科学记数法表示其结果是________米.19.若关于x 的方程ax +3x -1-1=0无解,则a 的值为________. 20.如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△PAB 是等腰三角形,则符合条件的P 点共有________个.三、解答题(共60分)21.(8分)计算:(1)x(x -2y)-(x +y)2;(2)⎝⎛⎭⎫3a +2+a -2÷a 2-2a +1a +2.22.(8分) (1)化简求值:(2+a)(2-a)+a(a -2b)+3a 5b÷(-a 2b)4,其中ab =-12.(2)因式分解:a(n -1)2-2a(n -1)+a.23.(8分)解方程:(1)x x -1=3x +1+1;(2)x x -2-1=8x 2-4.24.(8分)如图,已知网格上最小的正方形的边长为1.(1)分别写出A ,B ,C 三点的坐标;(2)作△ABC 关于y 轴对称的△A′B′C′(不写作法),想一想:关于y 轴对称的两个点之间有什么关系?(3)求△ABC 的面积.25.(8分) 如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证∠B=∠D.26.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?27.(10分如图①,在四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)求证:CA平分∠BCD;(3)如图②,若AF是△ABC的边BC上的高,求证:CE=2AF.参考答案一、1.A 2.C 3.B 4.B 5.D 6.C 7.C 8.C 9.D 10.B二、11.x≠3且x≠4 12.(-2,-15) 13.a +2b a -b14.十二 15.55° 16.65° 17.17.-2<a <1 18.8.57×10-6 19.-3或1 20.6 三、21.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2.(2)原式=⎣⎢⎡⎦⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1. 22.22.解:(1)原式=4-a 2+a 2-2ab +3a 5b÷a 8b 4=4-2ab +3a -3b -3. 当ab =-12时,原式=4-2×⎝⎛⎭⎫-12+3×⎝⎛⎭⎫-12-3 =4+1-3⎝⎛⎭⎫123 =5-24=-19.(2)原式=a[(n -1)2-2(n -1)+1]=a(n -1-1)2=a(n -2)2.23.解:(1)方程两边乘x 2-1,得x(x +1)=3(x -1)+x 2-1,解得x =2.检验:当x =2时,x 2-1≠0.∴原分式方程的解为x =2;(2)方程两边同时乘(x +2)(x -2),得x(x +2)-(x +2)(x -2)=8.去括号,得x 2+2x -x 2+4=8.移项、合并同类项,得2x =4.系数化为1,得x =2.检验:当x =2时,(x +2)(x -2)=0,即x =2不是原分式方程的解. 所以原分式方程无解.24.解:(1)A(-3,3),B(-5,1),C(-1,0).(2)图略,关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等(两点连线被y 轴垂直平分).(3)S △ABC =3×4-12×2×3-12×2×2-12×4×1=5. 25.证明:∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD.在△ACB 和△ECD 中,⎩⎪⎨⎪⎧∠A =∠E ,AC =EC ,∠ACB =∠ECD ,∴△ACB ≌△ECD(ASA).∴∠B =∠D.26.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米.根据题意,得1.5×15x =15x -0.5, 解得x =1.5.经检验,x =1.5是原分式方程的解,且符合题意,则x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a)千米,∴乙工程队需要修路15-1.5a 1=(15-1.5a)(天). 由题意可得0.5a +0.4(15-1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.27.证明:(1)∵∠ABC +∠ADC =180°,∠ADE +∠ADC =180°, ∴∠ABC =∠ADE.在△ABC 与△ADE 中,⎩⎪⎨⎪⎧∠BAC =∠DAE ,AB =AD ,∠ABC =∠ADE ,∴△ABC ≌△ADE.(2)∵△ABC ≌△ADE ,∴AC=AE,∠BCA=∠E,∴∠ACD=∠E,∴∠BCA=∠ACD,即CA平分∠BCD.(3)如图,过点A作AM⊥CE,垂足为点M.∵AM⊥CD,AF⊥CF,∠BCA=∠ACD,∴AF=AM.∵∠BAC=∠DAE,∴∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD=90°,∴∠ACE=∠E=45°.∵AM⊥CE,∴M为CE中点.∴CM=AM=ME.又∵AF=AM,∴CE=2AM=2AF.。
2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)
2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)一、选择题:(本大题12个小题,共36分)1.要使代数式有意义,x的取值范围是()A.x=2B.x≠2C.x≥2D.x>2 2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.下列计算正确的是()A.a3•(﹣a)2=a5B.(3a3b)2=3a6b2C.a﹣5÷a2=a﹣3D.a÷b×=a4.下列各式的化简中,正确的是()A.B.C.D.5.下列多项式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x+4C.x2﹣2x+1D.x2+x+1 6.下列变形正确的是()A.=x3B.=C.=x+y D.=﹣17.若分式的值为0,则x的值为()A.x=±1B.x=1C.x=﹣1D.x=08.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.2B.3C.4D.59.下列命题,正确的是()A.三角形三条中线的交点到三角形三个顶点的距离相等B.三角形三条高线的交点到三角形三个顶点的距离相等C.三角形三条角平分线的交点到三角形三个顶点的距离相等D.三角形三边中垂线的交点到三角形三个顶点的距离相等10.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意下列方程正确的是()A.B.C.D.11.若点A(m﹣n,m﹣2n)与点B(m﹣3n,1﹣m)关于y轴对称,则点P(m,n)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限12.若关于x的不等式组无解,且关于y的分式方程=﹣1有非负整数解,那么所有满足条件的整数m的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,共24分)13.初二某班物理课堂上,老师测得一根头发的直径约为0.000075米,请将0.000075米用科学记数法表示为米.14.因式分解:x3﹣x=.15.如图,实数a、b在数轴上对应的点分别为A、B,则=.16.若+=﹣3,则的值为.17.如图,在△ABC中,∠ACB=4∠A,点D在边AC上,将△BDA沿BD折叠,点A落在点A'处,恰好BA'⊥AC于点E且BC∥DA',则∠BDC的度数为度.18.某景区内有一条风光极好的河道和一个人工湖,当地政府因地制宜,计划在景区内打造游船项目,设计者为了让游客达到最好的游船体验,在设计路线时做了两次试验,第一次试验:游船从河道上游A处顺流而下到B处,再经过平静的人工湖到达C处,用时2.5小时;第二次试验:这艘游船由C处出发经过平静的人工湖到B,再到A共用5小时.某天,该人工湖进行开闸放水,人工湖的湖水放水速度恰好与河道中的水流速度一样,从B 流向C,这艘游船从A到B再穿过人工湖到C只需要2小时,在这样的条件下,这艘游船由C按原路返回A,共需要小时.三、解答题(本大题共8个小题,共60分)19.计算:(1)(a+b)2﹣a(2b﹣a);(2)(π﹣3.14)0+(﹣)﹣3+(1﹣2).20.(1)计算:(+)÷;(2)解方程:﹣=1.21.先化简,再求值:÷(a+2b﹣),其中a,b满足+(b+2)2=0.22.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,且B,D,E在同一直线上,连接EC.(1)求证:BD=EC.(2)若∠ACB=55°,求∠BEC的度数.23.小白同学为了能在全国大学英语六级考试中获得好的成绩,于是打算利用若干个星期的时间做完144篇阅读练习.当计划开始的时候,她发现实际每个星期完成阅读练习的量是原计划的1.5倍,这样可以提前4个星期完成她的计划.(1)问实际每个星期完成阅读练习量是多少篇?(2)如果小白同学按实际完成阅读练习的速度持续了3个星期之后,打算再次提高速度,那么她在之后的每个星期至少要完成多少阅读练习,才能使她在6个星期内至少完成144篇阅读练习.24.代数式求值是在已知字母的值或限制条件下,求出给定代数式的值.为了方便求值,我们常常将所求代数式化简或把限制条件进行变形,再将变形后的条件代入化简后的代数式求值.例如:当a=﹣1时,求2a3+7a2﹣2a﹣12的值.为解决本道题,若直接把a=﹣1代入所求式子进行计算,计算量较大,我们可以通过对条件和所求式子变形,对本题进行解答:解:∵a=﹣1,∴a+1=.∴(a+1)2=()2.∴a2+2a﹣4=0.方法一:∵a2+2a﹣4=0,∴a2=4﹣2a.∴原式=2a•a2+7a2﹣2a﹣12=2a(4﹣2a)+7a2﹣2a﹣12=8a﹣4a2+7a2﹣2a﹣12=3a2+6a﹣12=3(a2+2a)﹣12=0.方法二:∵a2+2a﹣4=0,∴a2+2a=4.∴原式=2a(a2+2a)+3a2﹣2a﹣12=8a+3a2﹣2a﹣12=3a2+6a﹣12=3(a2+2a)﹣12=3×4﹣12=0.…本题还有其它类似方法.请参照以上解决问题的思路和方法,解决以下问题:(1)当x2+x﹣1=0时,x3+2x2+5=.(2)当x2﹣2020x+1=0时,求x2﹣2019x+的值.(3)当a=时,求a3﹣2a+3的值.25.如图,在等腰△ABC中,CA=CB,点D是AB边上一点,连接DC,且DA=DC.(1)如图1,CH⊥AB,若∠ACB=78°,求∠HCD的度数.(2)如图2,若点E在BC边上且DE=DB,连接AE.点M为线段CE的中点,过M 点作MN∥DE交AB于点N,求证:CD=BN+DN.26.如图,在平面直角坐标系中,点A和点C在x轴上,点B和点D在y轴上,且点B的坐标为(0,8),∠ABO=30°,已知点D为线段OB的中点,OD=OC,点M为线段AB上一动点,连接MD.(1)当线段MD最小时,求点M的纵坐标;(2)在(1)的条件下,将线段MD所在的直线沿直线CD平移得到直线M′D′,直线M'D'与直线AB交于点P,与直线CD交于点Q,连接PQ、PC,若△PCQ为等腰三角形,请直接写出∠PCQ的度数.参考答案一、选择题:(本大题12个小题,共36分)1.解:由题意得,x﹣2>0,解得x>2.故选:D.2.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.解:A.a3•(﹣a)2=a3•a2=a5,符合题意;B.(3a3b)2=9a6b2,不符合题意;C.a﹣5÷a2=a﹣7=,不符合题意;D.a÷b×=a••=,不符合题意;故选:A.4.解:A.+=2+,不符合题意;B.×==2,符合题意;C.==,不符合题意;D.==13,不符合题意.故选:B.5.解:x2﹣2x+1=(x﹣1)2,故选:C.6.解:A、结果为x4,故本选项错误;B、不能约分,故本选项错误;C、不能约分,故本选项错误;D、结果是﹣1,故本选项正确;故选:D.7.解:由题意可知:|x|﹣1=0且x2+1≠0,解得x=±1.观察选项,只有选项A符合题意.故选:A.8.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得:DE=3,∴CD=3.故选:B.9.解:A、三角形三条中线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.B、三角形三条高线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.C、三角形三条角平分线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.D、三角形三边中垂线的交点到三角形三个顶点的距离相等,正确,本选项符合题意.故选:D.10.解:设每个甲型包装箱可装x个鸡蛋,﹣=10.故选:B.11.解:∵点A(m﹣n,m﹣2n)与点B(m﹣3n,1﹣m)关于y轴对称,∴,解得:则点P(m,n)所在象限为第一象限.故选:A.12.解:解不等式组得:,因为关于x的不等式组无解,所以m+2≥﹣2m﹣1,解得m≥﹣1;解分式方程得:y=,因为关于y的分式方程=﹣1有非负整数解,所以,即m≤4且m≠0,所以使分式方程有非负整数解的m的值为:2,4.所以所有满足条件的整数m的值为:2,4,共2个.故选:B.二、填空题(本大题共6个小题,共24分)13.解:0.000075=7.5×10﹣5,故答案为:7.5×10﹣5.14.解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)15.解:由数轴可得:a﹣b<0,b﹣1<0,∴=﹣(a﹣b)﹣(b﹣1)=﹣a+b﹣b+1=1﹣a.故答案为:1﹣a.16.解:∵+=﹣3,∴n+3m=﹣3mn,∴====﹣.故答案为:﹣.17.解:由折叠可知:∠A=∠A',∠ABD=∠A'BD,∵∠ACB=4∠A,∴∠ACB=4∠A',∵BC∥A'D,∴∠CBE=∠A'=∠A,∴∠ACB=4∠CBE,∵BA'⊥CD,∴∠ACB+∠CBE=90°,∴∠CBE=18°,∠C+∠A=90°,∵∠A+∠C+∠ABC=180°,∴∠ABC=90°,∴∠ABE=90°﹣18°=72°,∴∠ABD=36°,∴∠BDC=∠A+∠ABD=18°+36°=54°.故答案为54.18.解:设水速为x,船速为y,返回时间为z,则放水速度为x,第一次试验:顺流没放水时船行驶的路程为:2.5(x+y),顺流放水时船行驶的速度为:2(2x+y),∵船行驶的路程相等,则2.5(x+y)=2(2x+y),解得:y=3x①,第二次试验:逆流没放水时船行驶的路程为:5(y﹣x),逆流放水时船行驶的路程为:z(y﹣2x),∵船行驶的路程相等,则5(y﹣x)=z(y﹣2x)②,由①和②式得:z=10,这艘游船由C按原路返回A,共需10小时.故答案为:10.三、解答题(本大题共8个小题,共60分)19.解:(1)原式=a2+2ab+b2﹣2ab+a2=2a2+b2;(2)原式=1﹣8﹣4=﹣11.20.解:(1)原式=÷=×=;(2)方程两边同时乘以(x﹣1)(x+2)得:x(x+2)﹣3=(x﹣1)(x+2),x2+2x﹣3=x2+x﹣2,x=1.检验:把x=1代入(x﹣1)(x+2)=0,所以原分式方程无解.21.解:原式==×=,∵+(b+2)2=0,∴a+3=0,b+2=0,解得:a=﹣3,b=﹣2,则原式==﹣.22.证明:(1)∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴BD=EC.解:(2)由(1)知:△ABD≌△ACE,∴∠ADB=∠AEC.∵AB=AC,∴∠ABC=∠ACB=55°.∴∠BAC=180°﹣2∠ABC=70°.∴∠DAE=∠BAC=70°.∵AD=AE,∴∠ADE=∠AED=55°.∴∠ADB=180°﹣∠ADE=125°.∴∠AEC=125°.∴∠BEC=∠AEC﹣AED=125°﹣55°=70°.23.解:(1)设白同学原计划每个星期完成阅读练习量是x篇,则实际每个星期完成阅读练习量是1.5x篇,由题意得:﹣=4,解得:x=12,经检验,x=12是原方程的解,则1.5x=18,答:白同学实际每个星期完成阅读练习量是18篇;(2)设小白同学在之后的每个星期要完成x篇阅读练习,才能使她在6个星期内至少完成144篇阅读练习,由题意得:3×18+(6﹣3)m≥144,解得:m≥30,答:小白同学在之后的每个星期至少要完成30篇阅读练习,才能使她在6个星期内至少完成144篇阅读练习.24.解:(1)∵x2+x+1=0,∴x2+x=1,∴x3+2x2+5=x(x2+x)+x2+5=x+x2+5=1+5=6,故答案为6;(2)∵x2﹣2020x+1=0,∴x2+1=2020x,x+=2020,∴x2﹣2019x+=x2﹣2019x+=2020x﹣1﹣2019x+=x+﹣1=2020﹣1=2019;(3)∵a=,∴2a﹣1=∴(2a﹣1)2=5,∴a2﹣a=1,a2﹣1=a,∴a3﹣2a+3=a(a2﹣1)﹣a+3=a2﹣a+3=4.25.解:(1)∵CA=CB,∠ACB=78°,∴∠A=∠B=51°.∵DA=DC,∴∠ACD=∠A=51°,∴∠ADC=180°﹣2∠A=78°.∵CH⊥AB,∴∠CHD=90°.∴∠HCD=180°﹣∠CHD﹣∠ADC=12°;(2)连接AM,如图,∵DE=DB,∴∠DEB=∠B,∴∠BDE=180°﹣2∠B.∵DA=DC,∴∠ACD=∠CAD.∴∠ADC=180°﹣2∠CAD.∵CA=CB,∴∠CAD=∠B,∴∠CDA=∠BDE.∴∠CDA+∠CDE=∠BDE+∠CDE.即∠ADE=∠CDB.在△ADE和△CDB中,,∴△ADE≌△CDB(SAS).∴AE=CB.∵CB=CA,∴AC=AE.∵点M为线段CE的中点,∴AM⊥CE.∵DE∥MN,∴∠NMB=∠DEB.∴∠NMB=∠B.∴BN=MN.∵∠NMB+∠NMA=90°,∠B+∠∠MAN=90°,∴∠NMA=∠NAM.∴AN=MN.∴AN=BN.∴CD=AD=AN+ND=BN+DN.26.解:(1)如图1中,过点D作DH⊥AB于H,过点H作HJ⊥BD于J.∵B(0,8),∴OB=8,∵D是OB的中点,∴BD=OD=4,在Rt△DBH中,BD=4,∠DHB=90°,∠DBH=30°,∴DH=BD=2,BH===2,∵HJ⊥BD,∴HJ=BH=,∴BJ===3,∴OJ=OB﹣BJ=8﹣3=5,∴H(﹣,5),根据垂线段最短可知,当点M与H重合时,DM的值最小,此时M(﹣,5).(2)如图2中,当QP=QC时,设直线CD交AB于T,∵∠PTQ=∠TBD+∠TDB=30°+45°,∴∠PQT=90°﹣75°=15°,∵QP=PC,∴∠QPC=∠QCP,∵∠PQT=∠QPC+∠QCP,∴∠PCQ=7.5°.如图3中,当CP=CQ时,∠PCQ=180°﹣15°﹣15°=150°.综上所述,满足条件的∠PCQ的值为7.5°或150°.。
人教版八年级数学上册期末综合复习测试题(含答案)
八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学综合练习题
一、填空题(每小题3分,共27分)
1、若函数28
(3)m
y m x-
=-是正比例函数,则常数m的值是。
2、平方根与立方根相等的数是;
3、从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是。
4、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y(元)与水量x(吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为元/吨;若用水超过5吨,超过部分的水费为元/吨。
5.等腰三角形是轴对称图形,它的对称轴
是;
6.等腰三角形的顶角的外角度数为130o,则底角的度数为;
7、如图1,△ABC≌△AED,∠D=40O,∠B=45O,则∠C= ;∠DAE= ;
8.如图2,点A、B、C、D在同一条直线上,AB=CD,DE∥AF,要使△ACF≌△DBE,则还需要添加一个条件:(只需写一个条件)
9、学校阅览室有能坐4 人的方桌,如果多于4 人,就把方桌拼成一行,2张方桌拼成一行能坐6 人,如图所示,请你结合这个规律,填写下表:
3.选择题(每小题3分,共15分,每小题只有一个正确答案)
10.如图,BI,CI分别是∠ABC和∠ACB的平分线,
DE过I点且DE∥BC,则下列结论正确的是()
A.AI平分∠BAC B.I到三边的距离相等
C.AI=AE D.DE=BD+CE
aa B
A
D C
图1
A B
C
F
E
D
图3
11.点A (-3,-4)关于y 轴对称点是( )
A .(3,-4)
B .(-3,4)
C .(3,4)
D .(-4,3)
12、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图 象不经过( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限 13、已知下列等式:①-|-2|=2;②
4
)4(2-=-;③9.081.0=;④π
π-=-33。
其中正确的有( )
个; A 、1 B 、2 C 、3 D 、4
14、如图8,在RT △ABC 中,∠C=90O ,AD 平分∠BAC 交BC 于点D ,若BC=32,且
BD ﹕DC=9﹕7,则点D 到AB 的距离为( )
A 、12
B 、14
C 、16
D 、18
15、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到了终点。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是………( )
A .
B .
C .
D .
三、解答题(第16题和第17题各6分)
16、计算:)6464(25
9
)12(32----; 17、解方程:8(x-1)3=27;
18.(8分)如图将一个直角三角尺ABC 绕着30°角的顶点B 顺时针旋转,使点A 转到CB 的延长线上的点E 处。
(1)三角尺旋转了多少度?(2)判断△CBD 的形状并说明理由;(3)求∠BDC 的度数。
19.(12分)已知:一个正比例函数和一个一次函数的图像交于点P (-2、2)且一次函数的图像与y 轴的交点Q 的纵坐标为4。
(1)求这两个函数的解析式;(2)在同一坐标系中,分别画出这两个函数
A C D
B
图8
的图像;(3)求△PQO的面积。
20、(9分)画出函数26
y x
=+的图象,利用图象:(1)求方程260
x+=的解;(2)求不等式26
x+>0的解;(3)若13
y
-≤≤,求x的取值范围。
21、(10分)小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,请你回答下列问题:
(1)小强到离家最远的地方需要几小时?此时离家多远?
(2)何时开始第一次休息?休息时间多长?
(3)小强何时距家21km?(写出计算过程)
22、(10分)网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网的两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网)。
此外B种上网方式要加收通信费0.02元/分.
(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y
1(元)、y
2
(元),写出y
1
、y
2
与x之间的
函数关系式。
(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
23、(14分)某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套。
已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利45元;做一套N型号的时装需要A种布料1.1m,B种布料0.4 m,可获利50元。
若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元。
(1)求y与x的函数关系式,
(2)求出x的取值范围;
(3)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?
四、附加题(此大题满分20分)
16、如图,直线6
=+与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0)。
y kx
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范
围;
27 8,并说明理由。
(3)探究:当点P运动到什么位置时,△OPA的面积为。