地基承载力

合集下载

10种地基承载力检测方法

10种地基承载力检测方法

10种地基承载力检测方法
地基承载力检测是对地基的力学性能进行测试和评估,以确定地基的稳定性和承载力。

以下是10种常用的地基承载力检测方法:
1.观测法:通过对建筑物或结构的变形进行长期观测和监测,分析变形数据和变形规律来评估地基承载力。

2.静载试验法:在地基上施加静载,并通过对地基的变形和应力的测量来评估地基承载力。

3.动力触发试验法:通过在地基上施加冲击或振动负荷并测量动力响应,从而评估地基的承载能力。

4.孔隙水压力法:通过测量孔隙水压力变化来评估地基的承载力,即通过观察孔隙水压力随时间的变化来识别地基的应力变化。

5.动力穿透试验法:通过在地基中插入钻杆、探头或钻头等工具,利用重锤或冲击器给地基施加冲击负荷,并测量反弹力以评估地基承载力。

6.地基桩静载试验法:将静载作用于地基桩,并通过测量桩顶位移和桩身应力来评估地基的承载力。

7.地基桩动载试验法:将振动或冲击力作用于地基桩,并通过测量振动响应来评估地基承载力。

8.土压力室试验法:利用土压力室对地基进行模拟试验,通过测量土体的变形、压缩和刚度等参数来评估地基的承载力。

9.地雷试验法:利用地雷设备在地基表面或孔中施加冲击负荷,通过测量振动响应来评估地基承载力。

10.地基应变测试法:在地基中安装应变计或应变仪器,通过测量地基中的应变量和应变变化来评估地基的承载力。

这些方法各有特点,在不同工程项目中选择适用的方法进行地基承载力检测,可以有效评估地基的稳定性和承载能力,为工程设计和建设提供依据。

常见地基承载力

常见地基承载力

常见地基承载力一、地基承载力的定义与意义1.1 定义地基承载力是指地基在承受建筑物或其他结构载荷作用下所能承受的最大应力或最大变形能力。

1.2 意义地基承载力的确定对于建筑物的稳定性、安全性和经济性都具有重要意义。

合理确定地基承载力可以避免建筑物的沉降、倾斜和变形,确保建筑物的正常使用和寿命。

二、常见的地基承载力计算方法2.1 经验法经验法是一种简化的计算方法,根据已有的工程经验和实际观测数据,估算地基承载力。

经验法适用于中小型建筑物和中低地震区。

2.2 规范法规范法是根据建筑物的用途、规模和设计要求,按照国家或地区相关建筑规范的规定计算地基承载力。

规范法考虑到了各种因素的综合影响,适用于大型建筑物和重要工程。

2.3 理论分析法理论分析法是通过土力学理论和力学原理,利用数学模型和计算方法计算地基承载力。

理论分析法考虑了土壤的力学性质和建筑物的荷载特点,精度较高,适用于复杂或特殊情况下的计算。

三、地基承载力计算的影响因素3.1 土壤特性土壤的类型、密实度、水分含量、粘聚力等性质会直接影响地基承载力的大小。

3.2 地下水位地下水位的高低与地基承载力密切相关。

地下水位较高会降低地基承载力,因为水分会降低土壤的强度和稳定性。

3.3 土层厚度土层厚度越大,地基承载力越大。

因为较厚的土层可以分散建筑物的荷载,减小荷载对地基的影响。

3.4 建筑物荷载建筑物的荷载包括自重、使用荷载和地震荷载等。

荷载的大小和类型直接影响地基承载力的计算结果。

四、地基承载力提高方法4.1 夯实土壤夯实土壤是一种常见的提高地基承载力的方法。

通过机械或人工的方式,对土壤进行夯实,增加土体的密实度和强度。

4.2 地基加固地基加固是指对地基进行加固处理,提高地基的稳定性和承载力。

常见的地基加固方法包括钢筋混凝土桩、灌注桩和地基基础加固等。

4.3 土体改良土体改良通过改变土壤的物理和化学性质,提高土壤的强度和稳定性,从而增加地基的承载力。

常见的土体改良方法包括土壤固化、土壤增强和土壤改性等。

地基承载力

地基承载力

8-6 影响地基承载力的因素
二.土的容重及地下水位(2) 地下水位在地面或地面以上
1 f u ' BN ' DN q cN c 2
8-6 影响地基承载力的因素
三.土的容重及地下水位(3) 地下水位基底齐平
1 f u ' BN DN q cN c 2
f f k b ( B 3) d 0 ( D 0.5)
8-5 按荷载试验和静力触探试验确定地基承载力
一.现场荷载试验确定地基承载力
一、确定承载力基本值fo
P-s线有明显比例界限时,f0=fc 极限荷载能确定,且fu<1.5fc时, f0=0.5fu
二、基本值的平均值作标准值 三、将标准值修正为设计值
根据地基土的物理力学性质指标,从表中查得承载力基本值f0 将承载力基本值f0修正得承载力标准值fk 回归修正系数
f k f 0 f
2.844 7.918 f 1 2 n n
d=变异系数
n=参加统计的土性指标的个数,>=6;


i 2 n 2
确定容许承载力
8-6 影响地基承载力的因素
1 f u BN DN q cN c 2
主要因素:
(1)物理力学性质r、c、f,
(2)基础宽度; (3)基础埋深;
8-6 影响地基承载力的因素
一.土的容重及地下水位(1) 地下水位在滑动面以下
1 f u BN DN q cN c 2

Nq 1

ctg

2

ctg Nc ctg
2
8-2 按塑性区开展深度确定地基的容许承载力

地基承载力的评估及计算方法

地基承载力的评估及计算方法

地基的临界荷载
式(6-6)与式(6-7)中,第一项中的γ为基底面以下地基土的重度;第二项中的γ为基础埋置深度范围内土的重度;如系均质土地基则重度相同。另外,如地基中存在地下水时,则位于水位以下的地基土取浮重度γ′值计算。
按极限荷载确定地基承载力 极限荷载即地基达到完全剪切破坏时的最小压力。极限荷载除以安全系数可作为地基的承载力设计值。 极限承载力的理论推导目前只能针对整体剪切破坏模式进行。确定极限承载力的计算公式:一类是假定滑动面法,先假定在极限荷载作用时土中滑动面的形状,然后根据滑动土体的静力平衡条件求解;另一类是理论解,根据塑性平衡理论导出在已知边界条件下,滑动面的数学方程式来求解。 公式基本形式pu=γbNγ+Nqq+Ncc。在平面问题中浅基础应用较多的是太沙基与汉森公式。
按工程规范确定地基承载力
规范承载力表是在总结科研成果和工程实践经验的基础上制定的,利用现场勘查资料或室内试验资料直接查表得到承载力的标准值或承载力的基本值。 当基础宽度b≤3m,基础埋深d=0.5m,可按《规范》各表所列的数值确定地基承载力的标准值或基本值。如果实际工程的b、d超过上述范围,则地基承载力需进行宽度与深度修正,修正后为地基承载力的设计值(或称容许承载力)
概 述
地基土沉降变形
建筑物基础沉降和沉降差
变形要求
概 述
荷载过大超过地基承载力
地基产生滑动破坏
稳定要求
概 述
确定地基承载力的方法有载荷试验法、理论计算法、规范查表法、经验估算法等 在工程设计中为了保证地基土不发生剪切破坏而失去稳定,同时也为使建筑物不致因基础产生过大的沉降和差异沉降,而影响其正常使用,必须限制建筑物基础底面的压力,使其不得超过地基的承载力设计值

地基承载力PPT课件

地基承载力PPT课件

载 Ⅲ2 c 的
ⅡⅡ b
c
Ⅱ区:普朗特尔区, 边界是对数螺线
计 算
将无限长,底面光滑的荷载板至于无质
量的土(=0)的表面上,荷载板下土体处
于塑性平衡状态时,塑性区分成五个区
Ⅲ区:被动朗肯区,
1水平向,破裂面与 水平面成45o- / 2
2. 地基的极限承载力pu可以表示为:
pu qNq cNc
基础两侧 均布荷载所 产生的抗力
其中承载力系数:
滑裂面上 粘聚力所 产生抗力
二、极限承载力的一般计算公式 索科洛夫斯基把地基土当成如下两 种介质的总和:
1. 理想散粒体,即
c0 0 0
2. 无重的纯粘性体,即
c0 0 0
三、用极限平衡理论求地基极限承载 力方法讨论
(一)影响极限承载力的因素
基础两侧 滑裂面上 滑裂土体自重 均布荷载所 粘聚力所 所产生的抗力 产生的抗力 产生抗力
解:1.判断地基的破坏形式

刚性指标
Ir
E
2(1 )(c qtg)
58.8

临界刚性
指标
I r (cr)
1 2
exp[(3.30 0.45
B )ctg(45o L
)]
2
80.5

∵ Ir< Ir(cr)∴地基将发生局部剪切破坏
2.用太沙基公式求地基极限承载力
pu
B
2
Nr
2c 3
Nc
qNq

N
(1) 3
3
ctg
2
2
q D
三、按地基规范承载力表确定地基容许承载力
土 力
❖承载力基本值(f0):是指按有关规范规定的一定 的基础宽度和埋深条件下的地基承载能力,按有关规 范查表确定。 ❖承载力标准值(fk):是指按有关规范规定的标准 方法试验并经统计处理后的地基承载能力。

地基承载力特性分类

地基承载力特性分类

地基承载力特性分类地基承载力特性分类地基承载力是指地面或地基能够承受的压力大小,它是设计和施工过程中的一个重要参数。

了解地基承载力的特性和分类对于确保工程的稳定性和安全性至关重要。

本文将深入探讨地基承载力的特性分类,并分享一些观点和理解。

一、地基承载力的特性1. 承载能力:地基承载力是地面或地基能够承受的最大压力。

它取决于土壤的物理和力学特性,如土壤的密度、孔隙比、抗剪强度等。

承载能力通常以单位面积的承载力(kN/m²)表示。

2. 压缩性:压缩性是指地基在受到外部荷载作用时会发生压缩变形的能力。

土壤的压缩性取决于其组成和排列方式。

某些土壤具有较好的压缩性,可以适应较大的荷载,而其他土壤则具有较差的压缩性,容易发生较大的沉降。

3. 塑性:塑性是指土壤在受到荷载作用时会发生塑性变形的能力。

土壤的塑性取决于其含水量、粒径组成和粘聚力等因素。

某些具有较高塑性的土壤在遇到荷载时会发生较大的位移和变形,这可能导致工程的不稳定性。

4. 强度:地基的强度是指土壤的抗剪强度,即土壤抵抗剪切应力的能力。

强度主要取决于土壤的颗粒结构和结合力。

不同类型的土壤具有不同的强度,例如粘土通常比砂质土壤有更高的抗剪强度。

二、地基承载力的分类地基承载力根据不同的参数和特性可以进行多种分类。

下面是常见的几种分类方法:1. 按照承载能力:- 强承载力地基:具有较高的承载能力,可以支持重型结构或承受大荷载。

- 中等承载力地基:具有适中的承载能力,可以支持一般建筑物或承受中等荷载。

- 弱承载力地基:具有较低的承载能力,只能支持轻型结构或承受较小荷载。

2. 按照地基的物理性质:- 粉质地基:主要由粉状颗粒组成,通常承载能力较低。

- 砂质地基:主要由砂状颗粒组成,承载能力一般较强。

- 粘土地基:主要由粘土状颗粒组成,具有较高的承载能力和较大的压缩变形。

- 岩石地基:由坚硬的岩石组成,承载能力非常高。

3. 按照地基的结构和成因:- 自然地基:由原始地层形成,通常需要较少的处理和改良。

各种土层的地基承载力

各种土层的地基承载力

各种土层的地基承载力
地基承载力是指地基土层承受结构物荷载的能力。

各种土层的地基承载力不同,下面将对不同土层的地基承载力进行解释。

1. 砂土的地基承载力:砂土是由颗粒状物质组成的土壤,其地基承载力受到土颗粒大小、形状、密度、含水率等因素的影响。

砂土受压时,颗粒之间的摩擦力会产生抗剪强度,因此砂土的地基承载力较高。

2. 黏土的地基承载力:黏土是由粘性物质组成的土壤,其地基承载力受到黏性物质的含量、粘性物质的类型、含水率等因素的影响。

黏土受压时,粘性物质的作用会产生抗剪强度,因此黏土的地基承载力较高。

3. 粘性土的地基承载力:粘性土是介于砂土和黏土之间的土壤类型,其地基承载力受到粘性物质和颗粒的比例、含水率等因素的影响。

粘性土的地基承载力一般介于砂土和黏土之间。

4. 石质土的地基承载力:石质土是由含量较高的石块和颗粒状物质组成的土壤类型,其地基承载力受到石块含量、石块大小、颗粒大小等因素的影响。

石质土的地基承载力较高,但其不均匀性较大,需要进行更为精确的地基承载力计算。

总之,各种土层的地基承载力受到多种因素的影响,需要根据实际情况进行准确
的计算和评估。

地基承载力

地基承载力

地基勘探
锥状探头
穿心锤 锤垫 触探杆
尖锤头
轻型动力触探 10kg 中型动力触探 28kg 重型动力触探 63.5kg
地基勘探
(2) 静力触探Static Cone Penetration
• 单桥探头 端部Ps=Q/A 比贯入阻力 双桥探头 端部和侧壁 • 土的密实度 • 压缩性 电缆 传感器 • 强度 传感器 传感器 • 桩和地基的承载力
四、确定地基容许承载力的方法
确定地基容许承载力的方法,一般有以下三种: 1. 根据载荷试验的p-s曲线来确定地基容许承载力; 2. 根据设计规范确定(新规范已取消); 3. 根据地基承载力理论公式确定地基容许承载力。
主要内容 -本课程重点
地基勘探 Site investigation 地基承载力
Bearing Capacity of Foundation Soil
局部剪切破坏p-s曲线转折点不明显,没有明显的直线 段,其破坏的特征为: 随着荷载的增加,基础下也产生压密区I及塑性区II,但 塑性区仅仅发展到地基某一范围内,土中滑动面并不延伸 到地面,基础两侧地面微微隆起,没有出现明显的裂缝。 其p-s曲线如图中曲线b所示。 p-s曲线在转折点后, 其沉降量增长率虽较前一 阶段为大,但不象整体剪 切破坏那样急剧增加,在 转折点之后,p-s曲线还是 呈线性关系。 局部剪切破坏常发生 于中等密实砂土中。 于中等密实砂土中。
地基承载力: 地基承载力:地基土单位面积上所能承受荷载的能力。 极限承载力(p 极限承载力 u): 地基不致失稳时单位面积能承受的最大荷载。 地基容许承载力(p 地基容许承载力 a): 考虑一定安全储备后的地基承载力。
二、地基变形的三个阶段
0 pcr a
s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 地基承载力第一节 概述地基随建筑物荷载的作用后,内部应力发生变化,表现在两方面:一种是由于地基土在建筑物荷载作用下产生压缩变形,引起基础过大的沉降量或沉降差,使上部结构倾斜,造成建筑物沉降;另一种是由于建筑物的荷载过大,超过了基础下持力层土所能承受荷载的能力而使地基产生滑动破坏。

因此在设计建筑物基础时,必须满足下列条件: 地基: 强度——承载力——容许承载力变形——变形量(沉降量)——容许沉降量一、几个名词1、地基承载力:指地基土单位面积上所能随荷载的能力。

地基承载力问题属于地基的强度和稳定问题。

2、容许承载力:指同时兼顾地基强度、稳定性和变形要求这两个条件时的承载力。

它是一个变量,是和建筑物允许变形值密切联系在一起。

3、地基承载力标准值:是根据野外鉴别结果确定的承载力值。

包括:标贯试验、静力触探、旁压及其它原位测试得到的值。

4、地基承载力基本值:是根据室内物理、力学指标平均值,查表确定的承载力值,包括载荷试验得到的值)。

通常0f f f k ψ=5、极限承载力:指地基即将丧失稳定性时的承载力。

二、地基承载力确定的途径 目前确定方法有:1.根据原位试验确定:载荷试验、标准贯入、静力触探等。

每种试验都有一定的适用条件。

2.根据地基承载力的理论公式确定。

3.根据《建筑地基基础设计规范》确定。

根据大量测试资料和建筑经验,通过统计分析,总结出各种类型的土在某种条件下的容许承载力,查表。

一般:一级建筑物:载荷试验,理论公式及原位测试确定f ;二级建筑物:规范查出,原位测试;尚应结合理论公式; 三级建筑物:邻近建筑经验。

三、确定地基承载力应考虑的因素地基承载力不仅决定于地基的性质,还受到以下影响因素的制约。

1.基础形状的影响:在用极限荷载理论公式计算地基承载力时是按条形基础考虑的,对于非条形基础应考虑形状不同地基承载的影响。

2.荷载倾斜与偏心的影响:在用理论公式计算地基承载力时,均是按中心受荷考虑的,但荷载的倾斜荷偏心对地基承载力是有影响的。

3.覆盖层抗剪强度的影响:基底以上覆盖层抗剪强度越高,地基承载力显然越高,因而基坑开挖的大小和施工回填质量的好坏对地基承载力有影响。

4.地下水的影响:地下水水位上升会降低土的承载力。

5.下卧层的影响:确定地基持力层的承载力设计值,应对下卧层的影响作具体的分析和验算。

6.此外还有基底倾斜和地面倾斜的影响:地基土压缩性和试验底板与实际基础尺寸比例的影响。

相邻基础的影响,加荷速率的影响和地基与上部结构共同作用的影响等。

在确定地基承载力时,应根据建筑物的重要性及结构特点,对上述影响因素作具体分析。

第二节地基的变形和失稳一.临塑荷载Per和极限承载力Pu现场荷载试验表明:地基从开始发生变形到失去稳定的发展过程,典型的S-P曲线可以分成顺序发生的三个阶段,即压密变形阶段(oa)、局部剪损阶段(ab)和整体剪切破坏阶段(b以后)见图8-2(见教材P275),三个阶段之间存在着两个界限荷载。

第一个界限荷载(临塑荷载Per):就是指基础下的地基中,塑性区的发展深度限制在一定范围内时的基础底面压力。

当P>Per标志压密阶段进入局部剪损阶段。

第二个界限荷载(极限承载力Pu):当地基土中由于塑性的不断扩大,而形成一个连续的滑动面时,使得基础连同地基一起滑动,这时相应的基础底面压力称为极限承载力Pu。

当P>Pu标志着地基土从局部剪损破坏阶段进入整体破坏阶段,地基丧失稳定。

二.竖直荷载下地基的破坏形式在荷载作用下,建筑物由于承载能力不足而引起的破坏,通常是由于基础下持力层土的剪切破坏所造成的,而这种剪切破坏的形成一般又可分为整体剪切、局部剪切和冲剪三种。

1.整体剪切破坏的特征:当基础上的荷载较小时,基础压力与沉降的关系近乎直线变化,此时属弹性变形阶段,如图中oa段。

随着荷载的增大,并达到某一数值时,首先在基础边缘处的土开始出现剪切破坏,如图中a点。

随着荷载的增大,剪切破坏地区也相应的扩大,此时压力与沉降关系呈曲线形状,属弹性塑性变形阶段,如图ab段。

若荷载继续增大,越过b点,则处于塑性破坏阶段。

2.局部剪切破坏的特征:局部剪切破坏的过程与整体剪切破坏相似,破坏也从基础边缘下开始,随着荷载增大,剪切破坏地区也相应地扩大。

区别:局部剪切破坏时,其压力与沉降的关系,从一开始就呈现非线性的变化,并且当达到破坏时,均无明显地出现转折现象。

对于这种情况,常取压力与沉降曲线上坡度发生显著变化的点所对应的压力,作为相应的地基承载力。

3.冲剪破坏的特征:它不是在基础下出现明显的连续滑动面,而是随着荷载的增加,基础将随着土的压缩近乎垂直向下移动。

当荷载继续增加并达到某数值时,基础随着土的压缩连续刺入,最后因基础侧面附近土的垂直剪切而破坏。

冲剪破坏的压力与沉降关系曲线类似局部剪切破坏的情况,也不出现明显的转折现象。

对于地基土破坏形式的定量判别,Vesic ,A ,B 提出用刚度指标Ir 的方法。

地基土的刚度指标,可用下式表示:))(1(2φγqtg c EI r ++=式中:E 为变形模量υ为泊松比C 为地基土的粘聚力 φ为内摩擦角q 为基础的側面荷载,q=rD ,D 为埋置深度,r 为埋置深度以上土的容重。

Vesic ,A.B 还提出判别整体剪切破坏和局部剪切破坏的临界值,称为临界刚度指标 Ir(er))]245()45.03.3exp[(210φ--=ctg L B Ir er 当Ir 大于Ir (er )时,地基将发生整体剪切破坏,反之则发生局部剪切破坏或冲剪破坏。

三.倾斜荷载下地基的破坏形式对于挡水和挡土结构的地基,除承受竖直荷载Pv 外,还受水平荷载P h 的作用。

Pv 与P h 的合力就成为倾斜荷载。

当倾斜荷载较大而引起地基失稳时,其破坏形成有两种:一种是沿基底产生表层滑动,主要是P h 过大所造成的,是挡水或挡土建筑物常见的失稳形式;另一种是深层整体滑动破坏,主要是由于P h 不大而Pv 较大导致地基失稳而造成的。

第三节 原位试验确定地基承载力 一.现场荷载试验荷载试验是对现场试坑中的天然土层中的承压板施加竖直荷载,测定承压板压力与地基变形的关系,从而确定地基土承载力和变形模量等指标。

承压板面积为0.25~0.5平方米(一般尺寸:50×50cm 2,70×70cm 2)加荷等级不少于8级,第一级荷载(包括设备重量)的最大加载量不应少于设计荷载的2倍,一般相当于基础埋深范围的土重。

每级加载按10,10,10,15,15分钟间隔测读沉降,以后隔半小时测读,当连续2小时内,每小时沉降小于0.1mm 时,则认为已稳定,可加下一级荷载。

直到地基达到极限状态为至。

将成果绘成压力~沉降关系曲线,从曲线上可以得到地基极限承载力Pu 和容许承载力的基本值f 0=Per二.静力触探试验静力触探试验就是用静压力将装有探头的触探器压入土中通过压力传感器及电阻应变仪测出土层对探头的贯入阻力Ps ,用下列公式确定地基承载力的大小设计值。

1.梅耶霍夫公式:)1(36BDBPs f +=式中Ps :贯入阻力(kPa ) B :基础宽度 D :埋置深度2.国内建议公式:4658-=ps f k kPa)5.0()3(01-+-+=D r B r f f d B k ηη式中:f ——承载力设计值,f k ——标准值 , r 1——天然容重, r 0——为基底以上土的加权平均容重,地下水以下取浮容重;η B ,ηD ——相应于基础宽度和埋置深度的承载力修正系数。

按教材P302表8-14查用。

三.标准贯入试验根据试验测得的标准贯入击数N 63.5,用下列方法平价地基的承载力。

试验时,先清钻孔,把标准贯入器放入孔底,然后用重量N (63.5Kg )的锤,从76cm 的高度自由下落将贯入器击入土中30cm ,记录N 。

1.《建筑地基基础设计规范》确定地基的承载力标准值。

2.太沙基和皮克(R.Peek)公式当沉降量不超过25mm 的前提下,若B ≤1.3m 时,[f]=N 63.5/8 kg/cm 2B >1.3m 时,)3.01(12][5.63BN f += kg/cm 2 3.梅耶霍夫公式)1(105.63BDN f +=kg/cm 2 四 旁压试验略(自学)第四节 按塑性区开展深度确定地基的容许承载力按塑性区开展深度确定地基容许承载力的方法,就是将地基中的剪切破坏区限制在某一范围内,视地基土能相应地承受多大的基底压力,该压力即为欲求的容许承载力。

条形基础均匀压力作用下容许承载力的近似计算方法如图所示(见教材P297图8-25):根据弹性理论,地基中任意点M 由条形均布压力所引起的附加大、小主应力为:)2sin 2(31ββπσσ±-=∆∆rdp (1) 式中:2β——M 点与基底两侧连线的夹角,称为视角。

在M 点上还有地基本身重量所引起的自重压力。

设极限平衡区土的静止侧压力系数K 0=1,则由土自重所引起的法向应力在各个方向都相同,均等于r(D +Z)。

基底压力与土自重在M 点引起的大、小主应力之和为:)2sin 2(31ββπσσ±-=∆∆rdp +r(D+Z) (2) 当M 点达到平衡时,其大小主应力应满足下列关系:)245(2)245(231φφσσ+++=ctg tg (3)将式(2)代入(3)式并经整理后,得D rtg cr rd p z ----=φβφβπ)2sin 2sin ( (4) 式中r, c,ψ,p, D 为已知时,Z 值随着β值而变。

对(4)式β求导数,并令其等于零,即:0)1sin 2cos (2=--=φβπβr rd p d dz 即φβsin 2cos = φπβ-=⇒22将φπβ-=⇒22代入(4)式,即可得到塑性区开展的最大深度为D rtg cctg r rd p Z --+--=φφπφπ)2(max (5) 如果我们规定了塑性区开展深度的容许值[Z],那么:若Zmax ≤[Z],地基是稳定的;若Zmax >[Z],地基的稳定是没有保证的。

经验公式:[Z]=(1/4-1/3)B , B 为条形基础的宽度, 将式(5)改写为:)2()21(2max φπφφπφπφπφπφπ+-++-+++-=ctg ctg c ctg rD ctg Z r p (6) 当Zmax =0,即塑性区开展深度为0;)2()21(φπφφπφπφπ+-++-+=ctg ctg c ctg rD p er (7) 当Zmax =1/4B (中心受压基础),)2()21()2(4][41φπφφπφπφπφπφπ+-++-+++-==ctg ctg c ctg rD ctg rBp p (8)当Zmax =1/3B 时(偏心受压基础),)2()21()2(3][31φπφφπφπφπφπφπ+-++-+++-==ctg ctg c ctg rD ctg rBp p (9) 式(7),(8),(9)可以用普遍的形式来表示,即c q r cN rdB rBN p ++=21][ (10) 式中:[P]:地基容许承载力(kN/m 2)Nr ,Nc ,Nq 为承载力系数,它们是土的内摩擦角的函数,可查下表。

相关文档
最新文档