初中数学课件-二次函数的图像与性质6 最新
合集下载
二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
二次函数的图象和性质课件

最大值出现在顶点处。
解决实际问题
实际应用场景
二次函数在许多实际问题中都有应用,如物体运动、经济 活动等。通过建立数学模型,我们可以利用二次函数来描 述和解决这些实际问题。
实际问题的求解策略
对于实际问题,我们通常需要结合二次函数的性质和实际 问题的特点来制定求解策略。这可能包括分析函数的单调 性、最值、零点等。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的最值点即为顶点。对于一般形式的二次函数y=ax^2+bx+c,其顶点的x坐标为-b/2a,y坐 标为c-b^2/4a。Biblioteka 二次函数的对称轴总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是由二次函数的最值性质决定的,对称轴上 方的函数值与对称轴下方的函数值相等。
二次函数图象的绘制
01
02
03
步骤一
确定二次函数的表达式, 例如 $f(x) = ax^2 + bx + c$。
步骤二
选择一个或多个点,代入 二次函数表达式中,计算 出对应的y值。
步骤三
在坐标系上标出这些点, 通过这些点绘制出二次函 数的图象。
二次函数图象的形状
形状特征一
二次函数图象是一个抛物 线。根据a的值(正或负) ,抛物线开口向上或向下 。
二次函数的图象和性质课 件
• 二次函数的基本概念 • 二次函数的图象 • 二次函数的性质 • 二次函数的解析式 • 二次函数的应用
01
二次函数的基本概念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
解决实际问题
实际应用场景
二次函数在许多实际问题中都有应用,如物体运动、经济 活动等。通过建立数学模型,我们可以利用二次函数来描 述和解决这些实际问题。
实际问题的求解策略
对于实际问题,我们通常需要结合二次函数的性质和实际 问题的特点来制定求解策略。这可能包括分析函数的单调 性、最值、零点等。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的最值点即为顶点。对于一般形式的二次函数y=ax^2+bx+c,其顶点的x坐标为-b/2a,y坐 标为c-b^2/4a。Biblioteka 二次函数的对称轴总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是由二次函数的最值性质决定的,对称轴上 方的函数值与对称轴下方的函数值相等。
二次函数图象的绘制
01
02
03
步骤一
确定二次函数的表达式, 例如 $f(x) = ax^2 + bx + c$。
步骤二
选择一个或多个点,代入 二次函数表达式中,计算 出对应的y值。
步骤三
在坐标系上标出这些点, 通过这些点绘制出二次函 数的图象。
二次函数图象的形状
形状特征一
二次函数图象是一个抛物 线。根据a的值(正或负) ,抛物线开口向上或向下 。
二次函数的图象和性质课 件
• 二次函数的基本概念 • 二次函数的图象 • 二次函数的性质 • 二次函数的解析式 • 二次函数的应用
01
二次函数的基本概念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
《二次函数的图像和性质》PPT课件 人教版九年级数学

2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
二次函数的图像和性质初中数学经典课件

________________,对称轴是过顶点且平行于_____的一条直线. (2) 若a>0,则当x=______时,二次函数y=ax2+bx+c有最_____值,为
________ ; 若 a < 0 , 则 当 x = _____ 时 , 二 次 函 数 y = ax2 + bx + c 有 最 _____值,为________. 2. 用 配方 法 可 将二 次 函 数 y = ax2 + bx + c(a≠0) 转 化 为 y= a(x + ____)2 + _______.
5.2 二次函数的图像和性质
1.理解二次函数y=ax2+bx+c与y=a(x+h)2+k之间的关系 2.掌握二次函数y=ax2+bx+c的图像和性质
3.体会二次函数y=ax2+bx+c的图像与a,b,c之间的关
系
思考(一) 请说出抛物线y=ax²+k, y=a(x+h)²,y=a(x+h)²+k 的开口方向、对称轴和顶点坐标.
(2)若该函数的图像不经过第三象限,当-5≤x≤1时,函
数的最大值与最小值之差为16,求b的值.
∴最大值与最小值之差是 25(不合题意,舍去). 当 b>0 时,c>0,若函数的图像不经过第三象限,则 b2 -4×2b≤0,∴0<b≤8.∴-4≤-b2<0. 当-5≤x≤1 时,函数有最小值-b42+2b, 当-b2≤-2,即 b≥4 时,函数有最大值 1+3b; 当-b2>-2,即 b<4 时,函数有最大值 25-3b.
1. “提”:提出 二次项系数;
方
y= - (x+2)2-1.
y= - (x2+4x+4-4)-5 y= - (x+2) 2-5+4 y= - (x+2) 2-1
________ ; 若 a < 0 , 则 当 x = _____ 时 , 二 次 函 数 y = ax2 + bx + c 有 最 _____值,为________. 2. 用 配方 法 可 将二 次 函 数 y = ax2 + bx + c(a≠0) 转 化 为 y= a(x + ____)2 + _______.
5.2 二次函数的图像和性质
1.理解二次函数y=ax2+bx+c与y=a(x+h)2+k之间的关系 2.掌握二次函数y=ax2+bx+c的图像和性质
3.体会二次函数y=ax2+bx+c的图像与a,b,c之间的关
系
思考(一) 请说出抛物线y=ax²+k, y=a(x+h)²,y=a(x+h)²+k 的开口方向、对称轴和顶点坐标.
(2)若该函数的图像不经过第三象限,当-5≤x≤1时,函
数的最大值与最小值之差为16,求b的值.
∴最大值与最小值之差是 25(不合题意,舍去). 当 b>0 时,c>0,若函数的图像不经过第三象限,则 b2 -4×2b≤0,∴0<b≤8.∴-4≤-b2<0. 当-5≤x≤1 时,函数有最小值-b42+2b, 当-b2≤-2,即 b≥4 时,函数有最大值 1+3b; 当-b2>-2,即 b<4 时,函数有最大值 25-3b.
1. “提”:提出 二次项系数;
方
y= - (x+2)2-1.
y= - (x2+4x+4-4)-5 y= - (x+2) 2-5+4 y= - (x+2) 2-1
二次函数的图像与性质-完整版课件

二次函数与一元二次方程关系
一元二次方程 $ax^2 + bx + c = 0$($a neq 0$)的解即为二次函数 $y = ax^2 + bx + c$ 与 $x$ 轴交点的横坐标。
当 $Delta = b^2 - 4ac > 0$ 时,二次函数与 $x$ 轴有两个交点;当 $Delta = 0$ 时,有 一个交点;当 $Delta < 0$ 时,没有交点。
• 分析:根据题意设交点坐标为$(-1, y_1)$和$(3, y_2)$,代入直线方程可得两个方程。又因为这两个点也在抛 物线上,所以代入抛物线方程也可得两个方程。联立这四个方程即可求出二次函数的解析式。
• 示例2:已知二次函数$y = ax^2 + bx + c (a • eq 0)$的图像与直线$y = x + m (m • eq 0)$相交于两点,且这两点关于原点对称,求二次函数的解析式。 • 分析:根据题意设交点坐标为$(x_1, y_1)$和$(x_2, y_2)$,由于两点关于原点对称,所以有$x_1 = -x_2$和
BIG DATA EMPOWERS TO CREATE A NEW ERA
二次函数的图像与性质-完
整版课件
汇报人:XXX
2024-01-29
• 二次函数基本概念 • 二次函数图像特征 • 二次函数性质探讨 • 典型例题分析与解答 • 实际应用场景举例说明 • 总结回顾与拓展延伸
目录
CONTENTS
零点存在性及个数判断方法
零点定义
二次函数零点存在 性判断方法
对于函数f(x),若存在x0∈D, 使得f(x0)=0,则称x0为函数 f(x)的零点。
通过判别式Δ=b^2-4ac来判断 。当Δ>0时,二次函数有两个 不相等的零点;当Δ=0时,二 次函数有两个相等的零点(即 一个重根);当Δ<0时,二次 函数无零点。
二次函数的图像和性质PPT课件(共21张PPT)

相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
二次函数的图像和性质ppt课件

二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件
目
CONTENCT
录
• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答
二次函数的图像和性质PPT课件

顶点形式
二次函数的顶点形式是f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。
二次函数图像的性质
对称轴
二次函数的对称轴是x = -最大值。
开口方向
二次函数开口向上当且仅当a > 0,开口向下当且仅当a < 0。
二次函数的变换
导数
二次函数的导数是一条直线,表示了函数的变化率。
凹性质
二次函数的凹性质取决于a的值,a > 0时函数向上凹,a < 0时函数向下凹。
凸性质
二次函数的凸性质取决于a的值,a > 0时函数向上凸,a < 0时函数向下凸。
二次函数的非负和非正性质
1 非负性质
2 非正性质
当a > 0时,二次函数的图像位于x轴以上。
建筑
物理
二次函数的图像和性质可应用 于建筑设计,优化结构和形状。
P物理实验中,二次函数可以 用于描述运动曲线和力学模型。
总结和展望
通过本课程,我们深入了解了二次函数的图像和性质,掌握了解析和图像求 解的方法,并应用于实际领域。希望你喜欢这次学习!继续思考和探索,创 造性地应用二次函数。
1
平移
平移变换可通过改变顶点来实现,横向平移表示为f(x ± h),纵向平移表示为f(x) ± k。
2
缩放
缩放变换可通过改变a的值来实现,a > 1时函数变窄,0 < a < 1时函数变宽。
3
反转
反转变换可通过改变a的符号来实现,a > 0时函数朝上,a < 0时函数朝下。
二次函数的导数和凹凸性质
二次函数的图像和性质
欢迎来到二次函数的图像和性质课程!通过本课程,您将学习二次函数的定 义和表达形式,并探索其图像的性质和变换。让我们开始吧!
二次函数的顶点形式是f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。
二次函数图像的性质
对称轴
二次函数的对称轴是x = -最大值。
开口方向
二次函数开口向上当且仅当a > 0,开口向下当且仅当a < 0。
二次函数的变换
导数
二次函数的导数是一条直线,表示了函数的变化率。
凹性质
二次函数的凹性质取决于a的值,a > 0时函数向上凹,a < 0时函数向下凹。
凸性质
二次函数的凸性质取决于a的值,a > 0时函数向上凸,a < 0时函数向下凸。
二次函数的非负和非正性质
1 非负性质
2 非正性质
当a > 0时,二次函数的图像位于x轴以上。
建筑
物理
二次函数的图像和性质可应用 于建筑设计,优化结构和形状。
P物理实验中,二次函数可以 用于描述运动曲线和力学模型。
总结和展望
通过本课程,我们深入了解了二次函数的图像和性质,掌握了解析和图像求 解的方法,并应用于实际领域。希望你喜欢这次学习!继续思考和探索,创 造性地应用二次函数。
1
平移
平移变换可通过改变顶点来实现,横向平移表示为f(x ± h),纵向平移表示为f(x) ± k。
2
缩放
缩放变换可通过改变a的值来实现,a > 1时函数变窄,0 < a < 1时函数变宽。
3
反转
反转变换可通过改变a的符号来实现,a > 0时函数朝上,a < 0时函数朝下。
二次函数的导数和凹凸性质
二次函数的图像和性质
欢迎来到二次函数的图像和性质课程!通过本课程,您将学习二次函数的定 义和表达形式,并探索其图像的性质和变换。让我们开始吧!
二次函数的图像与性质课件

面积问题
矩形面积问题
通过二次函数表示矩形面 积与边长之间的关系,解 决最大面积问题。
三角形面积问题
利用二次函数表示三角形 面积与高或底之间的关系, 求解最大或最小面积。
梯形面积问题
通过二次函数表示梯形面 积与上底、下底和高之间 的关系,解决面积优化问 题。
利润问题
总利润与销售量关系
利用二次函数表示总利润与销售量之间的关系,找到最大利润点。
韦达定理的应用
韦达定理可用于求解一元二次方程的两个根的平方和、倒数和等问题,简化计算过程。同时,在解决 与二次函数相关的问题时,韦达定理也具有重要的应用价值。例如,在求解二次函数的顶点坐标、对 称轴等问题时,可以利用韦达定理进行求解。
PART 05
二次函数在实际问题中应 用
REPORTING
WENKU DESIGN
定价策略
通过二次函数分析商品定价与销售量、成本之间的关系,制定最优 定价策略。
成本控制
利用二次函数表示成本与产量之间的关系,寻求最低成本方案。
抛物线型问题
抛物线顶点与对称轴
01
通过二次函数的图像分析,确定抛物线的顶点坐标和对称轴方
程。
抛物线开口方向与最值
02
根据二次函数的系数判断抛物线的开口方向,并找到函数的最
与x轴交点
二次函数与x轴的交点即为方程的根。当Δ=b^2-4ac>0时,方程有两个不相等的实根,图像 与x轴有两个交点;当Δ=0时,方程有两个相等的实根(重根),图像与x轴有一个交点;当 Δ<0时,方程无实根,图像与x轴无交点。
PART 03
二次函数性质探讨
REPORTING
WENKU DESIGN
伸缩变换
二次函数 的图象和性质 (课件)

(x>0),y随x的增大而 增大。 抛物线与x轴的交点是(0,0)。 与y轴也交于此点,是图像的 最 低 点,也叫顶点。
2.若点A(2,m)在抛物线y=x2上, 则点A关于y轴对称点的坐标是?
解: 因为A(2,m)在抛物线y=x2上 所以m=4,即A(2,4)
则点A(2,4)关于y轴对称点的坐标 是(-2,4)
3.已知y=mxm2+1 的图像是不在第一、
二象限的抛物线,则m=_______.
解:由题意的: m2+1=2 且 m<0 解得m=-1
4.二次函数y=mxm2-1 的图像有最低点
则m是多少?
小结:二次函数y=± x2的性质
在对称轴左侧,y随x的增大而减小,
在对称轴右侧,y随x的增大而增大.
在y=-x2的图象中正好相反.
3.y=x2有最低点,y=-x2有最高点
即 y=x2有最小值而y=-x2有最大值
y=x2
x
y=-x2
二次函数y=x2 与 y=-x2 的异同点:
相同点:
1. 形状:图像都是抛物线 2.图象都与y轴交于点( 0,0 ) 3.图象都关于y轴对称.
当x=1时,y=1 当x=2时,y=4
向上,并且向上无限
伸展;当x=0时,函数y
的值最小,最小值是ww0w.
探究二次函数y=-x2的图象
二次函数y=-x2的图象是什么形状?先想一想,然后作出
它的图象,它与二次函数y=x2的图象有什么关系?与同伴进行
交流。
y
y=x2
y 它与抛物线y=x2
(1)满足条件的m 的值;
(2)m为何值时,抛物线有最低点?求 出这个最低点,
2.若点A(2,m)在抛物线y=x2上, 则点A关于y轴对称点的坐标是?
解: 因为A(2,m)在抛物线y=x2上 所以m=4,即A(2,4)
则点A(2,4)关于y轴对称点的坐标 是(-2,4)
3.已知y=mxm2+1 的图像是不在第一、
二象限的抛物线,则m=_______.
解:由题意的: m2+1=2 且 m<0 解得m=-1
4.二次函数y=mxm2-1 的图像有最低点
则m是多少?
小结:二次函数y=± x2的性质
在对称轴左侧,y随x的增大而减小,
在对称轴右侧,y随x的增大而增大.
在y=-x2的图象中正好相反.
3.y=x2有最低点,y=-x2有最高点
即 y=x2有最小值而y=-x2有最大值
y=x2
x
y=-x2
二次函数y=x2 与 y=-x2 的异同点:
相同点:
1. 形状:图像都是抛物线 2.图象都与y轴交于点( 0,0 ) 3.图象都关于y轴对称.
当x=1时,y=1 当x=2时,y=4
向上,并且向上无限
伸展;当x=0时,函数y
的值最小,最小值是ww0w.
探究二次函数y=-x2的图象
二次函数y=-x2的图象是什么形状?先想一想,然后作出
它的图象,它与二次函数y=x2的图象有什么关系?与同伴进行
交流。
y
y=x2
y 它与抛物线y=x2
(1)满足条件的m 的值;
(2)m为何值时,抛物线有最低点?求 出这个最低点,