勾股定理有关几何证明专题
探究:关于勾股定理的那点事(勾股的历史、证明,勾股数探究等)

探究:关于勾股定理的证明的那点事在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”(Pythagoras Theorem)。
数学公式中常写作a2+b2=c2勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。
据说毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理指出:直角三角形两直角边(即“勾”“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^2+b^2=c^2 (为了编辑省时,以下“a2”用“a^2”代替)勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理其实是余弦定理的一种特殊形式。
我国古代著名数学家商高说:“若勾三,股四,则弦五。
”它被记录在了《九章算术》中。
勾股数组满足勾股定理方程a^2+b^2=c^2的正整数组(a,b,c)。
例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
勾股数组的通式:a=m^2-n^2b=2mnc=m^2+n^2(m>n,m,n为正整数)推广1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。
即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
2、勾股定理是余弦定理的特殊情况。
勾股定理定理如果直角三角形两直角边分别为a,b,斜边为c,那么a^2+b^ 2=c^2;;即直角三角形两直角边的平方和等于斜边的平方。
古埃及人利用打结作Rt如果三角形的三条边a,b,c满足a^2+b^2=c^2;,还有变形公式:A B=根号(AC^2+BC^2),如:一条直角边是3,另一条直角边是4,斜边就是3×3+4×4=x×x,x=5。
勾股定理专题

专题复习 勾股定理(郑默言)本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。
如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。
2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。
常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=专题一、勾股定理与面积1、、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则Rt ▲ABC 的面积S= 。
2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为:3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为4、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。
5、三条边分别是5,12,13的三角形的面积是。
6、如果一个三角形的三边长分别为a,b,c 且满足:a2+b 2+c 2+50=6a+8b+10c,则这个三角形的面积为 。
7、如图,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?l321S 4S 3S 2S 18、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm ,BC=15cm ,P 是到∆ABC 三边距离相等的点,求点P 到∆ABC 三边的距离。
9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形ABCD 的面积。
10、如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3 .(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,那么S 1、S 2、S 3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;(3) 若分别以直角三角形ABC 三边为边向外作三个正多边形,其面积分别用S 1、S 2、S 3表示,请你猜想S 1、S 2、S 3之间的关系?.专题二、勾股定理与折叠1、如图,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理) 是一个,是人类早期发现并证明的重要数学定理之一,用思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
是的一个特例。
约有400种证明方法,是数学定理中证明方法最多的之一。
“”是勾股定理最基本的公式。
勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。
(3,4,5)就是。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1如果的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2如果的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o,∴ABCD 是一个边长为c 的正方形,它的面积等于c2.∵EF=FG=GH=HE=b―a,∠HEF=90o.∴EFGH 是一个边长为b―a 的正方形,它的面积等于.∴∴.【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等.即,整理得.【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o.∴ΔDEC 是一个等腰直角三角形,它的面积等于.又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ABCD 是一个直角梯形,它的面积等于 ∴.∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
《勾股定理》专题复习(含答案)

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180—60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E 1E1D 1C 1B 4C 3C 2C图3122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C)222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7。
勾股定理专题培优学案(勾股定理和几何计算、勾股定理和几何证明和勾股弦图)

勾股定理辅助线一、本章概述本章共分为勾股定理与几何计算、勾股定理与几何证明和勾股弦图三部分,都是勾股定理的重难点内容二、知识回顾1.勾股定理(1)直角三角形两直角边的平方和等于斜边c的平方和。
(即:)2.勾股定理的逆定理(2)如果三角形的三边长:。
满足关系,那么这个三角形是直角三角形。
3.勾股定理的证明:(3)勾股定理的证明方法很多,常见的是拼图方法,用拼图的方法验证勾股定理的思路是:①图形进行割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
(4)常见方法如下:方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积。
方法三:美国第二十任总统伽菲尔德的“总统证法”.1. 勾股定理与几何计算一、本节概述本节主要讲解勾股定理常见的三个辅助线模型,将斜三角形问题,转化为直角三角形问题。
当遇到三角形内的几何计算,特别是长度计算时,可以考虑用勾股定理解决。
在没有直角三角形时,我们就构造直角三角形,方法就是作高。
要尽量作与题中条件有关系的高,总有一条适合你的,比如特殊角所对的高。
二、典例精析知识点:勾股定理与几何计算【例1】如图,已知AC=2,思路分析:标记条件,题目中给出三角形的两个角和一条边,符合“AAS”,故三角形形状固定,可通过作高转化为勾股定理来解决,作高的时候,要充分利用特殊角。
作AB角形问题。
解:,先从右边已知一边和一角的直角三角形入手,这是个()的特殊直角三角形。
得到CD后,再看左边已知一边和一角的直角三角形,这是个()的特殊直角三角形。
方法总结这是利用勾股定理时常见的辅助线做法之一:三角形给出的条件满足“AAS”,作高的时候要充分利用特殊角,使分割后得到的直角三角形可求解即可,此例题是垂线在三角形内,并获得特殊直角三角形的例子。
【例2】思路分析:标记条件,给出的三角形符合“SAS”,故形状固定,可通过作高解决,作高时要充分利用特殊三角形,因为给出的特殊角是钝角,故可利用它的补角。
专题勾股定理培优版(综合)

专题 勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题1.如图,在△ABC 中,AB =AC ,(1)若P 为边BC 上的中点,连结AP ,求证:BP ×CP =AB 2-AP 2;(2)若P 是BC 边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P 是BC 边延长线上一点,线段AB 、AP 、BP 、CP 之间有什么样的关系?请证明你的结论.(二)最值问题2.如图,E 为正方形ABCD 的边AB 上一点,AE =3 ,BE =1,P 为AC 上的动点,则PB +PE 的最小值是ABPCBCPADPED C C将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为13 时,求正方形的边长.D C CD C C长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD 和AB 的长.图① 图②DB C图2图1A'PPA ABCBC5.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ',当点A 落在C A '上时,此题可解(如图2).请你回答:AP 的最大值是 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)6.如图,P 是等边三角形ABC 内一点,AP=3,BP=4,CP=5,求∠APB的度数. BAC图3CABP变式1:∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数变式2:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决. 请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹); (2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3CBAPCA BEF MN图① 7. 已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在∠ACE 的内部旋转时,如图①,求证:222BN AM MN +=;(2)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.变式1:如图,在Rt ABC ∆中, 90,,45BAC AC AB DAE ∠=︒=∠=︒ 且3BD =,4CE =,则DE =变式2:如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕 点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ≌△ACD ; ③BE DC DE +=;④222BE DC DE +=其中正确的是( ) CABE F MN 图②BCDEFA(三)其它应用7. 在ABC △中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为2a 、13a 、17a (0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △中有两边的长分别为2a 、10a (0a >),且ABC △的面积为22a ,试运用构图..法.在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.8.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F.(1)如图1,若AB=32,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=32,设BP=x,以QF为边的等边三角形的面积y,求y关于x的关系式.。
勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理) 是一个,是人类早期发现并证明的重要数学定理之一,用思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
是的一个特例。
约有400种证明方法,是数学定理中证明方法最多的之一。
“”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90º.∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴∴ .【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理五种证明方法

勾股定理五种证明方法1. 几何证明法勾股定理是数学中的基本定理之一,用于描述直角三角形的边长关系。
根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。
几何证明法是最直观的证明方法之一。
我们可以通过绘制一个正方形来证明勾股定理。
假设直角三角形的两个直角边分别为a和b,斜边为c。
我们可以将这个三角形绘制在一个边长为a+b的正方形内。
将正方形分成四个小正方形,其中三个小正方形的边长分别为a,b和c。
通过计算小正方形的面积,我们可以得出结论:c^2 = a^2 + b^2。
2. 代数证明法代数证明法是另一种常用的证明勾股定理的方法。
这种方法使用代数运算和方程的性质来证明定理。
假设直角三角形的两个直角边分别为a和b,斜边为c。
我们可以通过使用平方的性质来证明勾股定理。
根据勾股定理,我们有:c^2 = a^2 + b^2。
我们可以将c^2展开为(a + b)2,即:c2 = (a + b)^2 = a^2 + 2ab + b^2。
通过对比等式两边的表达式,我们可以得出结论:2ab = 0。
由于直角三角形的边长必须为正数,因此我们可以得出结论:ab = 0。
这意味着a或b至少有一个为0。
如果a为0,那么直角三角形就变成了一个直角边长为b的直角三角形,此时勾股定理显然成立。
同样地,如果b为0,那么直角三角形就变成了一个直角边长为a的直角三角形,此时勾股定理也成立。
综上所述,勾股定理成立。
3. 数学归纳法证明数学归纳法是一种常用的证明数学命题的方法,它通常用于证明自然数的性质。
虽然勾股定理是针对直角三角形的,但我们可以通过数学归纳法证明勾股定理对于所有正整数的直角三角形都成立。
首先,我们证明当直角三角形的直角边长度为1时,勾股定理成立。
这是显而易见的,因为直角三角形的斜边长度必然大于1,所以直角边长度为1的直角三角形一定满足勾股定理。
然后,我们假设当直角三角形的直角边长度为k时,勾股定理成立。
即假设a^2 + b^2 = c^2,其中a和b分别为直角三角形的直角边,c为斜边。
(完整版)勾股定理经典题目及答案

勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
②如果k 是大于1的奇数,那么k, ,是一组勾股数。
212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。
122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。
勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的证明及其在几何学中的应用

勾股定理的证明及其在几何学中的应用勾股定理,又称毕达哥拉斯定理,是数学中的一条基本定理,它揭示了直角三角形中边与边之间的关系。
在几何学中,勾股定理具有广泛的应用,不仅在解决实际问题时有重要意义,也在研究纯粹的几何问题时扮演着关键角色。
一、勾股定理的证明勾股定理的证明历史悠久,最早可追溯至公元前中国和印度。
欧几里德给出了一种经典的证明方法,被广泛接受并应用至今。
欧几里德的证明方法基于几何关系,具体来说就是利用三角形的相似性和平行线的性质来展开。
首先,取一个直角三角形,假设较短的两条边分别为a和b,斜边为c。
然后,通过作图,将三角形分割成两个直角三角形,其中一个直角三角形的两条边长度分别是a和b,另一个直角三角形的两条边分别是b和c-a。
接下来,我们可以看出这两个直角三角形的内角和相等,并根据相似三角形的性质得到下述等式:a/b = c-a/b进一步计算可得:a^2 + b^2 = c^2这就是勾股定理的证明过程。
这个证明方法简洁明了,且具有普适性,适用于各种类型的直角三角形。
二、勾股定理在几何学中的应用勾股定理在几何学中有广泛的应用,下面将介绍它在几何学中的两个经典应用。
1. 测量三角形的边长勾股定理可以应用于测量三角形的边长。
当我们已知一个直角三角形的两个边长时,可以利用勾股定理求解第三条边的长度。
例如,我们已知一个直角三角形的两条边分别为3 cm和4 cm,通过勾股定理,可以计算出斜边的长度为5 cm。
这种应用在实际测量及工程设计中非常常见。
2. 判断三角形是否为直角三角形勾股定理也可用于判断一个三角形是否为直角三角形。
当一个三角形的边长符合勾股定理时,我们就可以得出结论,该三角形是个直角三角形。
例如,如果一个三角形的边长分别为5 cm、12 cm和13 cm,通过计算可以得到:5^2 + 12^2 = 13^2,满足勾股定理。
因此,可以确定该三角形是一个直角三角形。
勾股定理还有很多其他的应用,如在导航中计算位置、在工程建设中测算角度及角度变化等等。
勾股定理及常见题型分类

勾股定理及常见题型分类一、知识要点:1.勾股定理是指直角三角形斜边的平方等于两直角边平方和。
2.勾股定理的证明方法包括几何证明和代数证明,其中几何证明使用勾股树。
3.勾股定理的逆定理是指若一个三角形的三边满足勾股定理,则该三角形是直角三角形。
4.勾股定理常见题型包括勾股定理的应用、勾股定理的证明和勾股定理的逆定理。
二、典型题题型一:“勾股树”及其拓展类型求面积1.如图所示,正方形A、B、C、D构成了一棵勾股树,求最大正方形E的面积。
2.如图所示,直线l上有三个正方形a、b、c,已知a、c 的边长分别为6和8,求b的面积。
3.如图所示,以Rt△ABC的三边为直径分别向外作三个半圆,探索三个半圆的面积之间的关系。
4.如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是S1+S2=S3.5.如图所示,依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是4、5、6、7.题型二:勾股定理与图形问题1.如图所示,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,依此类推,第n个等腰直角三角形的斜边长是n+1.2.如图所示,求该四边形的面积。
3.如图所示,已知在△ABC中,∠A=45°,AC=2,AB=3+1,则边BC的长为3.4.如图所示,某公司的大门为长方形ABCD,上部为以AD为直径的半圆,已知AB=2.3m,BC=2m,卡车高2.5m,宽1.6m,判断卡车是否能通过公司的大门,并说明理由。
5.如图所示,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。
题型三:已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm、2cm,则斜边长为√5cm。
2.已知直角三角形的两边长为3cm、2cm,则另一条边长的平方是5cm²。
勾股定理的证明(比较全的证明方法)课件

总统证明法
美国总统加菲尔德在1876年独 立发现了勾股定理的一种新的 证明方法,后来被称为“总统 证明法”。
总统证明法利用了代数和三角 恒等式来证明勾股定理,这种 方法与前两种几何证明方法有 所不同。
总统证明法不仅证明了勾股定 理,而且也展示了数学中代数 和三角学的紧密联系。
05
勾股定理的推广
勾股定理的逆定理
勾股定理的逆定理
如果三角形三边满足勾股定理, 则这个三角形是直角三角形。
证明方法
利用勾股定理和三角形的性质, 通过反证法证明。假设三角形不 是直角三角形,则其三边不满足 勾股定理,与已知条件矛盾。
勾股定理的推广形式
勾股定理的推广
对于任意多边形,如果其内角和为 180度,则其边长满足勾股定理。
对未来研究的展望
深入研究和探索
勾股定理的证明方法有很多种,但还有很多 值得探索和研究的地方。例如,如何将不同 的证明方法进行比较和整合,如何进一步简 化证明过程等。这些问题的研究和探索,有 助于推动数学教育的发展和进步。
与其他学科的交叉研究
勾股定理不仅在数学中有应用,在其他学科 如物理学、工程学、经济学等也有广泛的应 用。如何将勾股定理与其他学科进行交叉研 究,发挥其在解决实际问题中的作用,也是 未来研究的一个重要方向。
03
勾股定理的代数证明方法
哈里奥特证明法
哈里奥特证明法是一种基于无穷小差分的代数证明方法。它 通过将直角三角形转化为等腰直角三角形,利用无穷小差分 的性质,推导出勾股定理。
哈里奥特证明法不仅证明了勾股定理,还为微积分学的发展 奠定了基础。
欧拉证明法
勾股定理专题复习课

详细描述
根据勾股定理,直角三角形的面积可以通过两条直角边的长度和斜边的高来计算。面积 = (1/2) × 直角边1 × 直角边2 = (1/2) × 斜边 × 高。
示例
在直角三角形ABC中,已知直角边a=3和b=4,斜边c=5,斜边上的高h可以通过面积公式计 算为h=12/5。
等。
05 勾股定理的易错点解析
勾股定理适用条件的误解
总结词
理解不准确
01
总结词
应用范围限制
03
总结词
忽视前提条件
05
02
详细描述
勾股定理适用于直角三角形,但学生常常误 以为它适用于所有三角形,导致在解题时出 现错误。
04
详细描述
勾股定理只适用于直角三角形,对于 非直角三角形,需要使用其他定理和 公式进行计算。
06
详细描述
勾股定理的前提是三角形必须是直角三角形, 如果忽视这个前提,会导致计算结果不准确。
勾股定理计算中的常见错误
在此添加您的文本17字
总结词:计算错误
在此添加您的文本16字
详细描述:学生在使用勾股定理进行计算时,常常因为粗 心或对公式理解不准确而出现计算错误。
在此添加您的文本16字
总结词:单位不统一
勾股定理与三角函数的关系
总结词
勾股定理与三角函数之间存在密 切关系,可以通过三角函数来求 解相关问题。
详细描述
在解决与直角三角形相关的三角 函数问题时,勾股定理常常被用 来计算边长或角度。例如,在求 解三角函数的实际应用问题时, 可以使用勾股定理来计算相关物 体的长度或距离。
示例
在解决与航海、测量和几何学相 关的实际问题时,常常需要使用 勾股定理和三角函数来求解角度 和距离。
勾股定理证明-初中数学常见的模型方法专题

勾股定理证明方法1 商高证明法证明:∵222()2S a b a b ab =+=++大正方形,4S S S =+大正方形直角三角形小正方形2142ab c =⨯+22c ab =+,∴22222a b ab c ab ++=+,∴222+=a b c .方法2 赵爽弦图2、以a 、b 为直角边()b a >,以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于12ab .把这四个直角三角形拼成如图所示形状.∵Rt Rt DAH ABE ≌,∴HDA EAB ∠=∠.∵90HAD HAD ∠+∠=︒,∴90EAB HAD ∠+∠=︒,∴ABCD 是一个边长为c 的正方形,它的面积等于2c .∵EF FG GH HE b a ====-,90HEF ∠=︒.∴EFGH 是一个边长为b a -的正方形,它的面积等于2()b a -.∴2214()2ab b a c ⨯+-=. ∴222+=a b c .方法3 刘徽证明方法——青朱出入图3、勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方才幂.开方除之,即弦也.——《九章算术注》222+=a b c方法4 加菲尔德方法——梯形面积法4、以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于12ab .把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵Rt Rt EAD CBE ≌,∴ADE BEC ∠=∠.∵90AED ADE ∠+∠=︒,∴90AED BEC ∠+∠=︒.∴1809090DEC ∠=︒-︒=︒. ∴DEC 是一个等腰直角三角形,它的面积等于212c . 又∵90DAE ∠=︒,90EBC ∠=︒,∴//AD BC .∴ABCD 是一个直角梯形,它的面积等于21()2a b +. ∴22111()2222a b ab c +=⨯+.∴222+=a b c .方法55.张景中证明方法1——对角线垂直的四边形CEBD ABE ADC S S S =+222111222c a b =+ 222c a b =+方法66.张景中证明方法2——悬挂模型矩形DECF ADE BFD ≌()2a b CE CF +== ABC ADB S S S =+正221112()4222a b ab c ⎛⎫+=+ ⎪ ⎪⎝⎭222+=a b c方法7欧几里得证明7、做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示的形状,使H 、C 、B 三点在一条直线上,连结BF 、CD .过C 作CL DE ⊥,交AB 于点M ,交DE 于点L .∵AF AC =,AB AD =,FAB GAD ∠=∠,∴FAB GAD ≌. ∵FAB 的面积等于212a ,GAD 的面积等于矩形ADLM 的面积的一半, ∴矩形ADLM 的面积2a =.同理可证,矩形MLEB 的面积2b =.∵正方形ADEB 的面积=矩形ADLM 的面积+矩形MLEB 的面积∴222c a b =+,即222+=a b c .注意:面积Ⅰ:Ⅱ:Ⅲ222::a b c =注意:面积Ⅰ:Ⅱ:Ⅲ222::a b c =注意:面积Ⅰ:Ⅱ:Ⅲ222::a b c =注意:面积Ⅰ:Ⅱ:Ⅲ222::a b c =方法8杨作玫证明8、做两个全等直角三角形,设它们的两条直角边长分别为a 、()b b a >,斜边长为c .再作一个边长为c 的正方形.把它们拼成如图所示的多边形.过A 作AF AC ⊥,AF 交GT 于F ,AF 交DT 于R .过B 作BP AF ⊥,垂足为P .过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 与H .∵90BAD ∠=︒,90PAC ∠=︒,∴DAH BAC ∠=∠.又∵90∠=︒DHA ,90BCA ∠=︒,AD AB c ==,∴Rt Rt DHA BCA ≌.∴DH BC a ==,AH AC b ==.由作法可知,PBCA 是一个矩形,所以Rt Rt APB BCA ≌.即PB CA b ==,AP a =,从而PH b a =-.∵Rt Rt DGT BCA ≌,Rt Rt DHA BCA ≌,∴Rt Rt DGT DHA ≌,∴DH DG a ==,GDT HDA ∠=∠.有∵90DGT ∠=︒,90DHF ∠=︒方法9陈杰证明9、设直角三角形两直角边的长分别为a 、()b b a >,斜边的成为c ,做两个边长分别为a 、b 的正方形()b a >,把它们拼成如图所示的形状,使E 、H 、M 三点在一条直线上.用数字表示面积的编号(如图).在EH b =上截取ED a =,连结DA 、DC ,则AD c =.∵EM EH HM b a =+=+,ED a =,∴()DM EM ED b a a b =-=+-=.又∵90CMD ∠=︒,CM a =,90AED ∠=︒,AE b =∴Rt Rt AED DMC ≌.∴EAD MDC ∠=∠,DC AD c ==.∵180ADE ADC MDC ∠+∠+∠=︒,90ADE MDC ADE EAD ∠+∠=∠+∠=︒,∴90ADC ∠=︒.∴作//AB DC ,//CB DA ,则ABCD 是一个边长为c 的正方形.∵90BAF FAD DAE FAD ∠+∠=∠+∠=︒,∴BAF DAE ∠=∠.连结FB ,在ABF 和ADE 中,∵AB AD c ==,AE AF b ==,BAF DAE ∠=∠,∴ABF ADE △≌△.∴90AFB AED ∠=∠=︒,==BF DE a .∴点B 、F 、G 、H 在一条直线上.在Rt ABF 和Rt BCG 中,∵AB BC c ==,BF CG a ==,∴Rt Rt ABF BCG ≌.∵22345c S S S S =+++,2126b S S S =++,237a S S =+, 15467S S S S S ===+, ∴7223126a b S S S S S +=++++ ()23176S S S S S =++++ 2345S S S S =+++ 2c =∴222+=a b c .方法10李锐证明10、设直角三角形两直角边长分别为a 、()b b a >,斜边的长为c .做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上.用数字表示面积的编号(如图).∵90TBE ABH ∠=∠=︒,∴TBH ABE ∠=∠.又∵90BTH BEA ∠=∠=︒,BT BE b ==,∴Rt Rt HBT ABE ≌.∴HT AE a ==.∴GH GT HT b a =-=-.又∵90GHF BHT ∠+∠=︒,90DBC BHT TBH BHT ∠+∠=∠+∠=︒,∴GHF DBC ∠=∠.∵DB EB ED b a =-=-,90HGF BDC ∠=∠=︒,∴Rt Rt HGF BDC ≌.即27S S =.过Q 作QM AG ⊥,垂足是M .由90BAQ BEA ∠=∠=︒,可知ABE QAM ∠=∠,而AB AQ c ==,∴Rt Rt ABE QAM ≌.又Rt Rt HBT ABE ≌.所以Rt Rt ABE QAM ≌.即85S S =.由Rt Rt ABE QAM ≌,有得QM AE a ==,AQM BAE ∠=∠.∵90AQM FQM ∠+∠=︒,90BAE CAR ∠+∠=︒,AQM BAE ∠=∠,∴FQM CAR ∠=∠.又∵90QMF ARC ∠=∠=︒,QM AR a ==,∴Rt Rt QMF ARC ≌.即46S S =.∵212345c S S S S S =++++,216a S S =+,2378b S S S =++,又∵27S S =,85S S =,46S S =,∴2216378a b S S S S S +=++++14325S S S S S =++++2c =,即222+=a b c .【拓展】1. 如图所示,在正方形ABCD 的四边AB ,BC ,CD ,DA 上分别取点E ,H ,G ,F ,使得BE CH GD AF ===,求证:四边形EHGF 是正方形.【答案】见解析【解析】【分析】根据正方形的性质证明Rt AEF Rt BHE Rt CGH Rt DFG △≌△≌△≌△,然后证明90FEH ∠=即可得到答案.【详解】解:∵四边形ABCD 是正方形∴AB CD BC AD ===,90A B C D ∠=∠=∠=∠=︒∵BE CH GD FA ===,∴AE BH CG FD ===,∴Rt AEF Rt BHE Rt CGH Rt DFG △≌△≌△≌△,∴EF HE GH FG ===,AFE BEH ∠=∠.∵90AEF AFE ∠+∠=,∴90AEF BEH ∠+∠=,∴90FEH ∠=,∴四边形EHGF 是正方形.【点睛】本题主要考查了正方形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.2. 如图所示,在正方形ABCD 的四边AB ,BC ,CD ,DA 上分别取点E ,H ,G ,F ,使得BE CH GD AF ===,此外//EQ BC ,HP//CD ,GO//DA ,FR//AB ,求证:四边形ORQP 是正方形.【答案】见解析【解析】【分析】根据已知条件得到四边形AFRE 、四边形EBHQ 、四边形HCGP 、四边形FOGD 均为长方形,在根据三角形全等证明即可;【详解】∵//EQ BC ,HP//CD ,GO//AD ,FR//AB ,且90A B C D ∠=∠=∠=∠=︒,∴四边形AFRE 、四边形EBHQ 、四边形HCGP 、四边形FOGD 均为长方形, ∴AEF RFE BHE QEH CGH PHG DFG OGF ≌≌≌≌≌≌≌, ∴FR EQ HP GO ===,ER HQ GP FO ===,∴OR RQ QP PO ===,且18090POR FOG ∠=︒-∠=︒,∴四边形ORQP 为正方形. 【点睛】本题主要考查了正方形的判定,结合三角形全等的判定与性质、矩形的判定与性质证明是解题的关键.3. 如图所示,在正方形ABCD 的四边AB ,BC ,CD ,DA 上分别取点E ,H ,G ,F ,使得BE CH GD AF ===,此外//EQ BC ,HP//CD ,GO//DA ,FR//AB .求证:(1)4AEF ABCD EHGF S S S =+正方形正方形; (2)4FRE EHGF ORQPS S S =+正方形正方形; (3)ABCD EHGF EHGF ORQP S S S S -=-正方形正方形正方形正方形.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析【解析】【分析】(1)根据正方形的性质证明Rt AEF Rt BHE Rt CGH Rt DFG △≌△≌△≌△,然后证明90FEH ∠=即可得到答案;(2)先证明AEF RFE △≌△,然后同理可以得到RFE QEH PHG OGF △≌△≌△≌△,然后证明四边形ORQP 是正方形,即可得到结论;(3)根据(1)(2)的结论求解即可.【详解】解:(1)∵四边形ABCD 是正方形∴AB CD BC AD ===,90A B C D ∠=∠=∠=∠=∵BE CH GD FA ===,∴AE BH CG FD ===,∴Rt AEF Rt BHE Rt CGH Rt DFG △≌△≌△≌△,∴EF HE GH FG ===,AFE BEH ∠=∠,AEF BHE CGH DFGS S S S ==△△△△= ∵90AEF AFE ∠+∠=,∴90AEF BEH ∠+∠=,∴90FEH ∠=,∴四边形EHGF 是正方形.∴4AEF ABCD EHGF S S S =+正方形正方形(2)∵四边形EHGF 是正方形∴EH HG GF FE ===,90FEH EHG HGF GFE ∠=∠=∠=∠=∵//EQ BC , FR//AB∴四边形AERF 是平行四边形∵∠A =90°∴四边形AERF 是矩形∴AEF RFE △≌△∴90A=ERF=∠∠同理可以得到BHE QEH △≌△,CGH PHG △≌△,DFG OGF △≌△ ∴RFE QEH PHG OGF △≌△≌△≌△∴RFE QEH PHG OGFS S S S △△△△===,RE QH PG OE ===,RF QE PH OG ===∴OR RQ QP PO === ∵90A=ERF=∠∠ ∴90ORQ=∠∴四边形ORQP 是正方形 ∴4FREEHGF ORQPS S S=+正方形正方形(3)∵4AEFABCDEHGFSSS-=△正方形正方形,4FRE EHGF ORQP =S S S -正方形正方形△, 又∴AEF RFE △≌△∴AEF RFES S △△= ∴ABCD EHGF EHGF ORQP S S S S -=-正方形正方形正方形正方形【点睛】本题主要考查了正方形的性质与判定,全等三角形的性质与判定,矩形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.例题4. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A. 9B. 6C. 4D. 3【答案】D 【解析】【分析】已知ab∴8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长. 【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=每一个直角三角形的面积为:,214ab a b 252(),∴⨯+-=2a b 25169∴-=-=(), a b 3∴-=,故选D.【点睛】本题考查勾股定理的推导∴有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.变式15. 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于( )A. 8B. 6C. 4D. 5【答案】B【解析】【详解】根据面积的差得出a+b的值,再利用a∴b=2,解得a∴b的值代入即可. 解:∵AB=10∴EF=2∴∴大正方形的面积是100,小正方形的面积是4∴∴四个直角三角形面积和为100∴4=96,设AE为a∴DE为b,即4×ab=96∴∴2ab=96∴a2+b2=100∴∴∴a+b∴2=a2+b2+2ab=100+96=196∴∴a+b=14∴∵a∴b=2,解得:a=8∴b=6∴∴AE=8∴DE=6∴∴AH=8∴2=6∴故选B∴变式26. 如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形的面积是17,小正方形的面积是5,直角三角形较长直角边为a,较短直角边为b,则 ab的值是( )A. 4B. 6C. 8D. 10【答案】B【解析】【分析】小正方形、大正方形的面积可以分别用a、b 表示,进而两式相减即可求出ab 的值.【详解】由勾股定理,得大正方形的面积为:2217a b +=,又小正方形的面积为2()5a b -=即2225a b ab +-= ∴1725ab -= ∴ab =6 故选:B .【点睛】本题是以弦图为背景的计算题,考查了勾股定理,图形的面积,关键是用a 、b 表示大小正方形的面积.巩固练习7. 勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是( )A. B. C.D.【答案】D 【解析】【分析】利用两个以a 和b 为直角边三角形面积与一个直角边为c 的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积推导勾股定理可判断A , 利用以a 与b 为两直角边四个全等三角形面积与边长为c 的小正方形面积和等于以a+b 的和为边正方形面积推导勾股定理可判断B ,利用以a 与(a+b )为两直角边四个全等三角形面积与边长为b 的小正方形面积和等于以c 为边正方形面积推导勾股定理可判断C ,利用四个小图形面积和等于大正方形面积推导完全平方公式可判断D .【详解】解: A 、两个以a 和b 为直角边三角形面积与一个直角边为c 的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积,故()2211112222ab ab c a b ++=+,整理得: 222a b c +=,即能证明勾股定理,故本选项不符合题意;B 、以a 与b 为两直角边四个全等三角形面积与边长为c 的小正方形面积和等于以a+b 的和为边正方形面积,故()22142ab c a b ⨯+=+,整理得: 222a b c +=,即能证明勾股定理,故本选项不符合题意;C 、以a 与(a+b )为两直角边四个全等三角形面积与边长为b 的小正方形面积和等于以c 为边正方形面积,()22142a ab bc ⨯++=,整理得: 222a b c +=,即能证明勾股定理,故本选项不符合题意;D 、四个小图形面积和等于大正方形面积,()2222ab a b a b ++=+ ,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意; 故选:D .【点睛】本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公公式是关键.8. 我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若12321S S S ++=,则S 2的值是( )A. 9B. 8C. 7D. 6【答案】C 【解析】【分析】根据图形的特征得出线段之间的关系,进而利用勾股定理求出各边之间的关系,从而得出答案.【详解】解:∵图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,∴CG =NG ,CF =DG =NF , ∴S 1=(CG +DG )2 =CG 2+DG 2+2CG •DG =GF 2+2CG •DG , S 2=GF 2,S 3=(NG ﹣NF )2=NG 2+NF 2﹣2NG •NF ,∵S 1+S 2+S 3=21=GF 2+2CG •DG +GF 2+NG 2+NF 2﹣2NG •NF =3GF 2, ∴S 2的值是:7. 故选:C .【点睛】此题主要考查了勾股定理的应用,根据已知得出S 1+S 2+S 3=21=GF 2+2CG •DG +GF 2+NG 2+NF 2﹣2NG •NF =3GF 2是解决问题的关键. 9. 如图,在ABC 中,90A ∠=︒,则三个半圆面积S 1,S 2,S 3的关系为___________.【答案】123S S S =+ 【解析】【分析】分别用AB 、BC 和AC 表示出1S 、2S 、3S ,然后根据222BC AB AC =+即可得出1S 、2S 、3S 的关系.【详解】解:在ABC ∆中,90A ∠=︒,222BC AB AC ∴=+,22311()228S AC AC ππ==,22211()228S AB AB ππ==,22111()228S BC BC ππ==, 222321()88SS AC AB BC S ππ∴+=+==,即123S S S =+. 故答案为:123S S S =+.【点睛】本题主要考查了勾股定理的应用.解题的关键是勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10. 勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止己有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中b a >,点 E 在线段AC 上,点B D 、在边AC 两侧,试证明: 222+=a b c .【答案】见解析. 【解析】【分析】首先连结BD ,作DF BC ⊥延长线于F ,则AEb a ,根据Rt ABCRt DAE ,易证90DAB ︒∠=,再根据 ADEABCADFBDFCES SS S四边形四边形, ADBDFBADFBSSS∆∆=+四边形,两者相等,整理即可得证. 【详解】证明:连结BD ,作DF BC ⊥延长线于F ,则AEb aADEABCADFBDFCESSSS四边形四边形1122ab ab ba b2ab b ab =+-2b =Rt ABC Rt DAE ∆≅∆ABADcADE BAC ∴∠=∠90ADE DAE90BACDAE即90DAB ︒∠=, ∴AD AB ⊥ ∴A D BD F BA D F BSSS∆∆=+四边形21122c a bba222111222c b a =+- 即有:2222111222b c b a ∴222+=a b c【点睛】本题考查了勾股定理的证明,用两种方法表示出四边形ADFB 的面积是解本题的关键.11. (1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日发表在《新英格兰教育日志》上),现请你尝试证明过程.说明:222C a b =+.【答案】(1)222()2a b a ab b +=++;(2)证明见解析.【解析】【分析】(1)根据正方形面积计算公式解答; (2)利用面积法证明即可得到结论. 【详解】(1)222()2a b a ab b +=++;(2)如图,∴Rt △DEC ≌Rt △EAB , ∴∠DEC =∠EAB ,DE=AE , ∴90EAB AEB ∠+∠=︒, ∴90DEC AEB ∠+∠=︒, ∴△AED 为等腰直角三角形, ∴Rt ABERt DCERt DEAABCDSSSS=++梯形,∴21111()()2222b a a b ab abc ++=++,即22()2a b ab c +=+, ∴222()2a b a ab b +=++, ∴22222a ab b ab c ++=+, ∴222c a b =+.【点睛】此题考查勾股定理的证明,完全平方公式在几何图形中的应用,正确理解各部分图形之间的关系,正确分析它们之间的面积等量关系是解题的关键.培优12. 阅读理解: 【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积.从而得数学等式:(a+b)2=c2+4×12ab,化简证得勾股定理:a2+b2=c2.【初步运用】(1)如图1,若b=2a,则小正方形面积:大正方形面积= ;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6,此时空白部分的面积为 ;(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC=3,求该风车状图案的面积.(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2= .【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.【答案】【初步运用】(1)5:9;(2)28;(3)24;(4)403;【迁移运用】a 2+b 2﹣ab=c 2,证明见解析 【解析】【分析】初步运用:(1)如图1,求出小正方形的面积,大正方形的面积即可; (2)根据空白部分的面积=小正方形的面积﹣2个直角三角形的面积计算即可; (3)可设AC =x ,根据勾股定理列出方程可求x ,再根据直角三角形面积公式计算即可求解;(4)根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出S 1,S 2,S 3,得出答案即可.迁移运用:根据大正三角形面积=三个全等三角形面积+小正三角形面积,构建关系式即可.【详解】解:【初步运用】(1)由题意:b =2a ,c =5a , ∴小正方形面积:大正方形面积=5a 2:9a 2=5:9, 故答案为:5:9;(2)空白部分的面积为=52﹣2×12×4×6=28,故答案为:28; (3)24÷4=6,设AC =x ,依题意有:(x +3)2+32=(6﹣x )2, 解得x =1,∴面积为:12×(3+1)×3×4=12×4×3×4 =24,故该飞镖状图案的面积是24;(4)将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=40,∴S 1=8y +x ,S 2=4y +x ,S 3=x , ∴S 1+S 2+S 3=3x +12y =40,∴x+4y=403,∴S2=x+4y=403,故答案为:403;[迁移运用]结论:a2+b2﹣ab=c2.理由:由题意:大正三角形面积=三个全等三角形面积+小正三角形面积,可得:12(a+b)×k(a+b)=3×12×b×ka+12×c×ck,∴(a+b)2=3ab+c2,∴a2+b2﹣ab=c2.【点睛】本题考查勾股定理的证明和应用,根据图形得出面积关系是解题的关键.21。
勾股定理500种证明方法

勾股定理500种证明方法
勾股定理,又称毕达哥拉斯定理,是数学几何中最著名的定理之一、它表明,在一个直角三角形中,直角边的平方之和等于斜边的平方,即$a^2+b^2=c^2$。
据说有许多不同的证明方法,至少有500种不同的证明方法。
下面将简单介绍几种常见的证明方法:
1.欧几里得的证明:这是最早的证明方法之一,通过构造相似三角形和利用平行线的性质,证明三角形的内角和为180度。
由此可以得到
$a^2+b^2=c^2$。
2.利用面积的证明:可以将直角三角形划分成两个直角三角形,然后利用面积的性质证明等式的成立。
3.利用复数的证明:可以利用复数的平方模等于平方和的性质,将直角三角形的顶点表示为复数,然后利用复数运算的性质进行计算,最终得到$a^2+b^2=c^2$。
4.利用向量的证明:将三边向量化,将向量的长度平方与向量的点积进行计算,最终得到$a^2+b^2=c^2$。
5.利用相似三角形的证明:通过构造相似的三角形,可以通过比较对应边长的比例关系,推导出$a^2+b^2=c^2$。
这只是其中几种比较常见的证明方法,实际上还有很多其他的证明方法,包括利用解析几何、三角函数、几何画法等等。
每一种证明方法都有自己的特点和逻辑,通过研究和理解这些不同的证明方法,可以更好地理解勾股定理的本质和几何背后的原理。
《几何证明(二)-勾股定理》知识讲练(学生版)

2023-2024学年沪教版数学八年级上册章节知识讲练知识点01:直角三角形1. 直角三角形全等的判定(1)直角三角形全等一般判定定理:直角三角形是特殊的三角形,一般三角形全等的判定方法也适用于直角三角形,即(SAS、ASA、SSS、AAS)(2)直角三角形全等的HL判定定理:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为:HL)综上:直角三角形全等的判定方法有SAS、ASA、SSS、AAS、HL.2.直角三角形的性质定理:直角三角形的两个锐角互余;定理:直角三角形斜边上的中线等于斜边的一半;推论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;推论:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.3.勾股定理定理:在直角三角形中,斜边大于直角边;勾股定理:直角三角形两条直角边的平方和,等于斜边的平方;勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形;勾股定理证明思路:面积分割法(勾股定理逆定理证明思路:三角形全等)勾股数组:如果正整数满足,那么叫做勾股数组,常见的勾股数组有:3、4、5;5、12、13;7、24、25;8、15、17.4.两点之间的距离公式如果直角坐标平面内有两点,那么A 、B 两点的距离为: .两种特殊情况:(1)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:(2)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:易错点拨: 几何证明的分析思路:(1)从结论出发,即:根据所要证明的结论→去寻找条件.例如:要证线段相等,则需先证:①⊿全等,然后利用全等三角形性质得到线段相等;②角相等,然后利用等角对等边(前提:在同一个三角形中)③寻找中间变量,然后利用等量代换得出结论;④观察图形,看是否可以直接利用线段的垂直平分线定理或角平分线定理来得出结论;要证角相等,则需先证:①⊿全等,然后利用全等三角形性质得到角相等;②线段相等,然后利用等边对等角(前提:在同一个三角形中)③寻找中间变量,然后利用等量代换得出结论;④观察图形,看是否可以直接利用角平分线逆定理来得出结论;要证垂直,则需先证:①两条直线所夹的角为90°;②先证等腰三角形,然后利用“三线合一”来得出结论(前提:在同一个三角形中);要证三角形全等,则需先要从已知找条件,看要判定全等还却什么条件,然后再去寻找.(2)从已知出发,即:根据所给条件、利用相关定理→直接可得的结论.例如:c b a 、、222c b a =+c b a 、、()()2211,,y x B y x A 、()()221221y y x x AB -+-=x x ()()y x B y x A ,,21、()()()212212221x x x x y y x x AB -=-=-+-=y y ()()21,,y x B y x A 、()()()212212212y y y y y y x x AB -=-=-+-=已知线段的垂直平分线→线段相等;已知角平分线→到角的两边距离相等或角相等;已知直线平行→角相等;已知边相等→角相等(前提:在同一三角形中).一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021秋•奉贤区校级期末)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D.942.(2分)(2021秋•宝山区期末)如图,在Rt△ABC中,∠ACB=90°,如果CD、CM分别是斜边上的高和中线,AC=2,BC=4,那么下列结论中错误的是()A.∠ACD=∠B B.CM=C.∠B=30°D.CD=3.(2分)(2020秋•奉贤区期末)在△ABC中,∠A、∠B、∠C的对边分别是a,b,c.下列条件中,不能说明△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.∠C=∠A﹣∠BC.b2=a2﹣c2D.a:b:c=5:12:134.(2分)(2022秋•青浦区校级期末)如图,在△ABC中,BD、CE是高,点G、F分别是BC、DE的中点,则下列结论中错误的是()A.GE=GD B.GF⊥DE C.∠DGE=60°D.GF平分∠DGE5.(2分)(2021秋•普陀区期末)用下列几组边长构成的三角形中哪一组不是直角三角形()A.8,15,17 B.,,C.,2,D.1,2,6.(2分)(2021秋•普陀区期末)现有四块正方形纸片,面积分别是2,3,4,5,选取其中三块按如图的方式围成一个三角形,如果要使这个三角形是直角三角形,那么选取的三块纸片的面积分别是()A.2,3,4 B.2,3,5 C.2,4,5 D.3,4,57.(2分)(2020秋•浦东新区校级期末)如图,在Rt△ABC中,∠ACB=90°,如果CD、CM分别是斜边上的高和中线,那么下列结论不一定成立的是()A.∠ACM=∠BCD B.∠ACD=∠B C.∠ACD=∠BCM D.∠ACD=∠MCD8.(2分)(2022秋•宝山区期末)机场入口处的铭牌上说明,飞机行李架是一个50cm×40cm×20cm的长方体空间,有位旅客想购买一件画卷随身携带,现有4种长度的画卷①38cm;②40cm;③60cm;④68cm,请问这位旅客可以购买的尺寸是()A.①②B.①②③C.①②③④D.①9.(2分)(2022秋•徐汇区期末)如图,在△ABC中,∠C=90°,AB=2BC,BD平分∠ABC,BD=2,则以下结论错误的是()A.点D在AB的垂直平分线上B.点D到直线AB的距离为1C.点A到直线BD的距离为2D.点B到直线AC的距离为10.(2分)(2022秋•青浦区校级期末)美国数学家伽菲尔德在1876年提出了证明勾股定理的一种巧妙方法,如图,在直角梯形ABCD中,AB∥CD,∠B=90°,E是边BC上一点,且BE=CD=a,AB=EC=b.如果△ABE的面积为1,且a﹣b=1,那么△ADE的面积为()A.1 B.2 C.2.5 D.5二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021秋•嘉定区期末)一个直角三角形两条直角边的比是3:4,斜边长为10cm,那么这个直角三角形面积为.12.(2分)(2021秋•宝山区期末)已知在△ABC中,∠BAC=90°,点D在BC延长线上,且AD=,若∠D=50°,则∠B=.13.(2分)(2021秋•徐汇区期末)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=.14.(2分)(2022秋•青浦区校级期末)如果一个直角三角形斜边上的中线与斜边夹角为70°,那么这个直角三角形的较小的内角是°.15.(2分)(2022秋•青浦区校级期末)如图,在△ABC中,AB=AC,点D为AB上一点,联结CD,BD=5,DC=12,BC=13,则AB=.16.(2分)(2022秋•黄浦区校级期末)在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,且AD=5,AC=10.则AB=.17.(2分)(2022秋•徐汇区期末)已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的顶角等于.18.(2分)(2021秋•奉贤区校级期末)已知:如图在Rt△ABC中,∠BAC=90°且AB=AC,D是边BC上一点,E是边AC上一点,AD=AE,若△ABD为等腰三角形,则∠CDE的度数为.19.(2分)(2022秋•青浦区校级期末)在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成一个大正方形(如图所示,AB<BC).如果小正方形的面积是25,大正方形的面积为49,那么=.20.(2分)(2022秋•闵行区期中)阅读材料:在直角三角形中,斜边和两条直角边满足定理:两条直角边的平方和,等于斜边的平方.因此如果已知两条边的长,根据定理就能求出第三边的长.例如:在Rt△ABC中,已知∠C=90°,AC=3,BC=4,由定理得AC2+BC2=AB2,代入数据计算求得AB=5.请结合上述材料和已学几何知识解答以下问题:已知:如图,∠C=90°,AB∥CD,AB=5,CD=11,AC=8,点E是BD的中点,那么AE的长为.三.解答题(共8小题,满分60分)21.(6分)(2022秋•闵行区校级期中)如图,在△ABC中,点D是AB上一点,BD=AD=CD,过点B作BE⊥CD,分别交AC于点E,交CD于点F.(1)求证:∠ACB=90°;(2)如果BE=CD,求证:AC=2BC.22.(6分)(2022秋•杨浦区期末)已知,如图,在△ABC中,AD为BC边上的中线,且AD=BC,AE⊥BC.(1)求证:∠CAE=∠B;(2)若∠CAE=30°,CE=2,求AB的长.23.(8分)(2022秋•宝山区期末)如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.24.(8分)(2021秋•普陀区期末)在Rt△ABC中,∠ACB=90°,∠BAC=30°,AD平分∠BAC,MN是AD的垂直平分线,交AD于点M,交AB于点N,已知DC=2,求AN的长.25.(8分)(2021秋•徐汇区校级期末)已知,如图,在三角形ABC中,AD是边BC边上的高,CE是中线,F是CE中点,DF垂直于CE,求证:CD=AB.26.(8分)(2021秋•宝山区校级期中)阅读材料:两点间的距离公式:如果直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=.则AB2=(x1﹣x2)2+(y1﹣y2)2.例如:若点A(4,1),B(2,3),则AB=,根据上面材料完成下列各题:(1)若点A(﹣2,3),B(1,﹣3),则A、B两点间的距离是.(2)若点A(﹣2,3),点B在坐标轴上,且A、B两点间的距离是5,求B点坐标.(3)若点A(x,3),B(3,x+1),且A、B两点间的距离是5,求x的值.27.(8分)(2022秋•黄浦区校级期末)如图,已知△ABC中,∠C=2∠B,AH⊥BC于点H,D是AC中点,DE ∥AB,求证:EH=AC.28.(8分)(2021秋•青浦区校级期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长.。
勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理及经典例题

一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。
满足222a b c +=的三个正整数称为勾股数。
练习题:1. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm (B )8 cm (C )10 cm (D )12 cm2. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )643.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )13几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明) 1.三角形的角平分线定义: 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) A B CD 几何表达式举例: (1) ∵AD 平分∠BAC ∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD 是角平分线2.三角形的中线定义: 在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)A BC D 几何表达式举例: (1) ∵AD 是三角形的中线 ∴ BD = CD (2) ∵ BD = CD ∴AD 是三角形的中线E A B C D从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. (如图)ABC D(1) ∵AD 是ΔABC 的高 ∴∠ADB=90° (2) ∵∠ADB=90° ∴AD 是ΔABC 的高※4.三角形的三边关系定理: 三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)AB C几何表达式举例: (1) ∵AB+BC >AC ∴……………(2) ∵ AB-BC <AC ∴……………5.等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形. (如图) A B C几何表达式举例: (1) ∵ΔABC 是等腰三角形 ∴ AB = AC (2) ∵AB = AC∴ΔABC 是等腰三角形6.等边三角形的定义: 有三条边相等的三角形叫做等边三角形. (如图) A BC几何表达式举例:(1)∵ΔABC 是等边三角形∴AB=BC=AC (2) ∵AB=BC=AC∴ΔABC 是等边三角形 7.三角形的内角和定理及推论: (1)三角形的内角和180°;(如图) (2)直角三角形的两个锐角互余;(如图) (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图) ※(4)三角形的一个外角大于任何一个和它不相邻的内角.(1) (2) (3)(4)几何表达式举例: (1) ∵∠A+∠B+∠C=180° ∴………………… (2) ∵∠C=90° ∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B ∴………………… (4) ∵∠ACD >∠A ∴………………… 8.直角三角形的定义: 有一个角是直角的三角形叫直角三角形.(如图)A B C几何表达式举例: (1) ∵∠C=90° ∴ΔABC 是直角三角形 (2) ∵ΔABC 是直角三角形∴∠C=90° D AB C A B C AB C两条直角边相等的直角三角形叫等腰直角三角形.(如图) AB C(1) ∵∠C=90° CA=CB ∴ΔABC 是等腰直角三角形 (2) ∵ΔABC 是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质: (1)全等三角形的对应边相等;(如图) (2)全等三角形的对应角相等.(如图) 几何表达式举例: (1) ∵ΔABC ≌ΔEFG ∴ AB = EF ……… (2) ∵ΔABC ≌ΔEFG∴∠A=∠E ……… 11.全等三角形的判定: “SAS ”“ASA ”“AAS ”“SSS ”“HL ”. (如图) (1)(2) (3) 几何表达式举例: (1) ∵ AB = EF ∵ ∠B=∠F 又∵ BC = FG ∴ΔABC ≌ΔEFG(2) ………………(3)在Rt ΔABC 和Rt ΔEFG中 ∵ AB=EF又∵ AC = EG ∴Rt ΔABC ≌Rt ΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相等;(如图) (2)到角的两边距离相等的点在角平分线上.(如图)A O BC DE 几何表达式举例: (1)∵OC 平分∠AOB 又∵CD ⊥OA CE ⊥OB ∴ CD = CE (2) ∵CD ⊥OA CE ⊥OB又∵CD = CE∴OC 是角平分线 13.线段垂直平分线的定义: 垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图) A B E FO 几何表达式举例: (1) ∵EF 垂直平分AB ∴EF ⊥AB OA=OB (2) ∵EF ⊥AB OA=OB ∴EF 是AB 的垂直平分线A B C G EFA B C G E FA B C E F G14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)A BCMNP几何表达式举例:(1) ∵MN是线段AB的垂直平分线∴PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)AB C(1)AB CD(2)AB C(3)几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于60°的等腰三角形是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)AB C(1)AB C(2)(3)ABC(4)几何表达式举例:(1) ∵∠B=∠C∴AB = AC(2) ∵∠A=∠B=∠C∴ΔABC是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC是等边三角形(4) ∵∠C=90°∠B=30°∴AC =21AB17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AEEFMOABCNG18.勾股定理及逆定理:(1)直角三角形的两直角边a 、b 的平方和等于斜边c 的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)ABC几何表达式举例:(1) ∵ΔABC 是直角三角形∴a2+b2=c2 (2) ∵a2+b2=c2∴ΔABC 是直角三角形19.Rt Δ斜边中线定理及逆定理: (1)直角三角形中,斜边上的中线是斜边的一半;(如图) (2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)DA BC几何表达式举例:∵ΔABC 是直角三角形 ∵D 是AB 的中点∴CD = 21AB(2) ∵CD=AD=BD∴ΔABC 是直角三角形练习题:一、选择题1.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。