北师大版高中数学必修3全册导学案

合集下载

高中数学北师大版必修3 3.2 教学设计 《互斥事件》(数学北师大必修3)

高中数学北师大版必修3 3.2 教学设计 《互斥事件》(数学北师大必修3)

《互斥事件》互斥事件与对立事件是北师大版数学必修3第三章第2节的内容,新课标的要求是:理解互斥事件概念,掌握互斥事件和对立事件的区别和联系,为以后学习相互独立事件和次独立重复试验做好铺垫,因此这节课有着深化知识层面,拓展能力范围的作用,是本章的重要内容。

之 【知识与能力目标】理解互斥事件和对立事件的概念,并根据概率计算公式的应用范围和具体运算法则解决简单的概率问题。

【过程与方法目标】通过引导学生判断互斥事件和互为对立事件两个概念的对比学习,提高学生的类比、归纳、探寻事物的能力。

通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高学生的合作能力和创造的历程,提高学生的合作解题能力和利用数学知识解决实际应用问题的能力。

【情感与态度目标】通过课堂上学生独立思考、合作讨论,有意识、有目的的培养学生自主学习的学习习惯与协作共进的团队精神;让学生体验成功,激发其求知欲,树立求真知的信心;培养学生的辩证唯物主义观点。

◆ 教材分析◆教学目标【教学重点】:互斥事件和对立事件的概念以及互斥事件的概率计算公式。

【教学难点】:互斥事件与对立事件的区别与联系。

多媒体课件一、互斥事件1.互斥事件的定义:不能同时发生的两个事件称为互斥事件例如,在一个盒子里放有大小相同的10个小球,其中有7个红球,2个绿球,1个黄球.从盒中摸出1个小球得到的结果可能是红球,也可能是绿球或黄球,并且只能是其中一种情况.我们把“从盒中摸出1个小球,得到红球”叫做事件A ,“从盒中摸出1个小球,得到绿球”叫做事件B ,“从盒中摸出1个小球,得到黄球”叫做事件C ,那么这里的事件A 、事件B 、事件C 中的任何两个是不可能同时发生的.事件A 与事件B 、事件B 与事件C 都是互斥事件.从集合的角度来看,事件A 与事件B 是互斥事件,则事件A 所包含的基本事件构成的集合与事件B 所包含的基本事件构成的集合的交集是空集.2.互斥事件有一个发生的概率设A 、B 为互斥事件,当事件A 、B 有一个发生时,我们把这个事件记作A+B .事件A+B 发生的概率等于事件A 、B 分别发生的概率的和,即P (A+B )=P (A )+P (B ),此公式也称概率和公式.例如上例中“从盒中摸出1个小球,得到红球”叫做事件A ,则P (A )=0.7;“从盒中摸出1个小球,得到绿球”叫做事件B ,则P (B )=0.2.若记“从盒中摸出1个小球,得到红球或绿球”为事件D ,则D=A+B ,此时P (D )=P (A )+P (B )=0.7+0.2=0.9.3.一般地,如果事件A1,A2,…,An 中的任何两个都是互斥事件,就说事件A1,A2,…,An 彼此互斥.从集合的角度看,几个事件彼此互斥是指由各个事件所含的结果组成的集合彼此没有公共元素,即两两交集都是空集.一般地,如果事件A 1,A 2,…,A n 两两互斥,则P (A 1+A 2+…+A n )=P (A 1)+P (A 2)◆ 教学重难点 ◆ ◆ 课前准备◆◆ 教学过程。

人教版高中数学必修第三册全册WORD讲义《导学案》

人教版高中数学必修第三册全册WORD讲义《导学案》

8.1.1向量数量积的概念(教师独具内容)课程标准:1.通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.教学重点:平面向量数量积的含义及几何意义.教学难点:向量的投影及数量积的几何意义.知识点一两个向量的夹角(1)定义:给定两个01非零向量a,b(如图所示),在平面内任选一点O,作OA→=a,OB→=b,则称02[0,π]内的∠AOB为向量a与向量b的夹角,记作03〈a,b〉.(2)根据向量夹角的定义可知,两个非零向量的夹角是唯一确定的,而且040≤〈a,b〉≤π,〈a,b〉=05〈b,a〉.时,称向量a与向量b垂直,记作07a⊥b.在(3)垂直:当〈a,b〉=06π2讨论垂直问题时,规定08零向量与任意向量垂直.知识点二向量数量积(内积)的定义一般地,当a与b都是非零向量时,称01|a||b|cos〈a,b〉为向量a与b的数量积(也称为内积),记作a·b,即a·b=02|a||b|cos〈a,b〉.由定义可知,两个非零向量a与b的数量积是一个实数.知识点三平面向量的数量积的性质(1)当e是单位向量时,因为|e|=1,所以a·e=01|a|·cos〈a,e〉.(2)a⊥b⇔02a·b=0.(3)a·a=03|a|2,即04|a|=a·a.(4)cos〈a,b〉=05a·b(|a||b|≠0).|a||b|(5)|a·b|06≤|a||b|,当且仅当a∥b时等号成立.知识点四向量的投影如图1,设非零向量AB→=a,过A,B分别作直线l的垂线,垂足分别为A′,B′,则称向量为向量a在直线l上的01投影向量或投影.类似地,给定平面上的一个非零向量b,设b所在的直线为l,则a在直线l 上的投影称为a在向量b上的02投影.如图2中,向量a在向量b上的投影为03.可以看出,一个向量在一个非零向量上的投影,一定与这个非零向量04共线,但它们的方向既有可能05相同,也有可能06相反.知识点五向量数量积的几何意义如图(1)(2)(3)所示.当〈a ,b 〉<π2时,A ′B ′→的方向与b 的方向01相同,而且||=02|a |cos〈a ,b 〉;当〈a ,b 〉=π2时,为零向量,即||=030;当〈a ,b 〉>π2时,的方向与b 的方向04相反,而且||=05-|a |cos 〈a ,b 〉.一般地,如果a ,b 都是非零向量,则称06|a |cos 〈a ,b 〉为向量a 在向量b 上的投影的数量.投影的数量与投影的长度有关,但是投影的数量既可能是07非负数,也可能是08负数.两个非零向量a ,b 的数量积a ·b ,等于a 在向量b 上的投影的数量与b 的模的乘积.这就是两个向量数量积的几何意义.1.a 在b 方向上的投影的数量也可以写成a ·b|b |,它的符号取决于角θ的余弦值.2.在运用数量积公式解题时,一定要注意两向量夹角的范围是0°≤θ≤180°.3.a ·b 的符号与a 与b 的夹角θ的关系设两个非零向量a与b的夹角为θ,则(1)若a·b>0⇔θ为锐角或零角.当θ=0°时,a与b共线同向,a·b>0.或a与b中至少有一个为0.(2)a·b=0⇔θ=π2(3)a·b<0⇔θ为钝角或平角,当θ=180°时,a与b共线反向,a·b<0.特别注意a,b共线同向与共线反向的特殊情况,即a·b>0(<0),向量夹角不一定为锐角(钝角).4.向量的数量积a·b=|a||b|cosθ的主要应用(1)利用公式求数量积,应先求向量的模,正确求出向量的夹角(向量的夹角由向量的方向确定).求夹角,应正确求出两个整体:数量积a·b与模(2)利用公式变式cosθ=a·b|a||b|积|a||b|,同时注意θ∈[0,π].(3)利用a·b=0证明垂直问题.1.判一判(正确的打“√”,错误的打“×”)(1)若a·b=0,则a⊥b.()(2)两个向量的数量积是一个向量.()(3)当a∥b时,|a·b|=|a||b|.()答案(1)√(2)×(3)√2.做一做(1)已知向量a与向量b的夹角为30°且|a|=3,则a在b上的投影的数量为____.(2)已知|a|=4,|b|=22,且a与b的夹角为135°,则a·b=____.(3)在直角坐标系xOy内,已知向量AB→与x轴和y轴正向的夹角分别为120°和30°,则BA→在x轴、y轴上的投影的数量分别为____和____.答案(1)32(2)-8(3)12|AB→|-32|AB→|题型一两个向量夹角的定义例1已知向量a,b的夹角为60°,试求下列向量的夹角:(1)-a,b;(2)2a,23b.[解]如图,由向量夹角的定义可知:(1)向量-a,b的夹角为120°.(2)向量2a,23b的夹角为60°.(1)向量的夹角是针对非零向量定义的.(2)注意向量的夹角是[0°,180°].(3)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC不是向量CA→与AB→的夹角,作AD→=CA→,则∠BAD才是向量CA→与AB→的夹角.|a|,求a-b与a的夹角.[跟踪训练1]已知向量a与b的夹角为60°且|b|=12解如图,作OA→=a,OB→=b,则∠BOA=60°,连接BA,则BA→=a-b.取OA的中点D,连接BD,∵|b|=1|a|,∴OD=OB=BD=DA,2∴∠BDO=60°=2∠BAO,∴∠BAO=30°.∴a-b与a的夹角为30°.题型二向量数量积的定义例2(1)已知|a|=5,|b|=2,若①a∥b;②a⊥b;③a与b的夹角为30°,分别求a·b.(2)已知|a|=4,|b|=2,b2-a2=3a·b,求向量a与向量b的夹角.[解](1)①当a∥b时,若a与b同向,则它们的夹角为0°,∴a·b=|a||b|cos0°=5×2×1=10;若a与b反向,则它们的夹角为180°,∴a·b=|a||b|cos180°=5×2×(-1)=-10.②当a⊥b时,则它们的夹角为90°,∴a ·b =|a ||b |cos90°=5×2×0=0.③当a 与b 的夹角为30°时,a ·b =|a ||b |cos30°=5×2×32=53.(2)由题意,得4-16=3a ·b ,∴a ·b =-4,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,向量a 与向量b 的夹角为120°.1.求向量数量积的一般步骤及注意事项(1)确定向量的模和夹角,根据定义求出数量积.(2)a 与b 垂直当且仅当a ·b =0.(3)非零向量a 与b 共线当且仅当a ·b =±|a ||b |.2.求向量夹角的一般步骤及注意事项(1)确定向量的模和数量积,根据夹角公式求出向量夹角的余弦值.(2)注意向量夹角的范围为[0,π],从而确定夹角的大小.[跟踪训练2](1)已知|a |=4,|b |=5,向量a 与b 的夹角θ=π3,求a ·b .(2)已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,求a 与b 的夹角.解(1)a ·b =|a ||b |cos θ=4×5×12=10.(2)设a 与b 的夹角为θ,cos θ=a ·b |a ||b |=21×4=12,又因为θ∈[0,π],所以θ=π3.题型三向量的投影例3已知直线l ,(1)|OA →|=4,〈OA→,l 〉=60°,求OA →在l 上的投影的数量OA 1;(2)|OB →|=4,〈OB →,l 〉=90°,求OB →在l 上的投影的数量OB 1;(3)|OC→|=4,〈OC→,l〉=120°,求OC→在l上的投影的数量OC1.=2.[解](1)OA1=4cos60°=4×12(2)OB1=4cos90°=4×0=0.(3)OC1=4cos120°=4 2.对向量投影的理解从定义上看,向量b在直线(或非零向量)上的投影是一个向量,投影的数量可正、可负、可为零.(1)当θ(2)当θ(3)当θ=0时,该数量为|b|.(4)当θ=π时,该数量为-|b|.注意:此处b为非零向量.时,该数量为0.(5)当θ=π2时,a在e方向[跟踪训练3]已知|a|=8,e为单位向量,当它们的夹角为π3上的投影的数量为()A.43B.4C.42D.8+32答案B解析因为a在e方向上的投影的数量为|a|cosπ=4,故选B.3题型四向量数量积的几何意义及应用例4(1)已知|b |=3,a 在b 方向上的投影的数量是32,则a ·b 为()A .3 B.92C .2D.12(2)如图,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,且AB =2DC =4.E 为腰BC 上的动点.求AE→·AB →的取值范围.[解析](1)设a 与b 的夹角为θ,a ·b =|a ||b |cos θ=|b ||a |cos θ=3×32=92.(2)如图,过E 作EE ′⊥AB ,垂足为E ′,过C 作CC ′⊥AB ,垂足为C ′.则AE →在AB →上的投影为AE ′→,∴AE →在AB →上的投影的数量为|AE ′→|,由向量数量积的几何意义知AE →·AB →=|AE ′→||AB →|=4|AE ′→|.∵E 在腰BC 上运动,∴点E ′在线段C ′B 上运动,∴|AC ′→|≤|AE ′→|≤|AB→|,∴2≤|AE ′→|≤4,∴8≤4|AE ′→|≤16,∴AE→·AB→的取值范围是[8,16].[答案](1)B(2)见解析利用向量数量积的几何意义求两向量的数量积需明确两个关键点:相关向量的模和一个向量在另一向量方向上的投影的数量,代入向量数量积的公式即可.利用向量数量积判断几何图形形状或解决最值范围问题时,常结合图形直观分析得到结果.[跟踪训练4](1)若E,F,G,H分别为四边形ABCD所在边的中点,且(AB→+BC→)·(BC→+CD→)=0,则四边形EFGH是()A.梯形B.菱形C.矩形D.正方形(2)已知a·b=16,若a在b方向上的投影的数量为4,则|b|=____.答案(1)C(2)4解析(1)因为(AB→+BC→)·(BC→+CD→)=0,所以AC→·BD→=0,所以AC→⊥BD→.又因为E,F,G,H分别为四边形ABCD所在边的中点,所以四边形EFGH的两组对边分别与AC,BD平行,且EF⊥EH,所以四边形EFGH为矩形.(2)设a与b的夹角为θ,因为a·b=16,所以|a||b|cosθ=16.又a在b方向上的投影的数量为4,所以|a|cosθ=4,所以|b|=4.1.已知|a|=3,|b|=5,且a·b=12,则向量a在向量b上的投影的数量为()A.125B.3C.4D.5答案A解析设a与b的夹角为θ,则向量a在b上的投影的数量为|a|cosθ=a·b|b|=12 5.2.已知|a|=4,|b|=2,当它们之间的夹角为π3时,a·b=() A.43B.4C.83D.8答案B解析根据向量数量积的定义得a·b=|a||b|cos〈a,b〉=4×2×cosπ3=4.3.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b的夹角θ的取值范围是()A.0,π6 B.π3,πC.π3,2π3 D.π6,π答案B解析由题意可得,Δ=|a|2-4a·b≥0,∵|a|=2|b|,∴cosθ≤12θ∈π3,π.故选B.4.(多选)已知两个单位向量e1,e2的夹角为θ,则下列结论正确的是() A.e1在e2上的投影的数量为sinθB.e21=e22C.任给θ∈[0,π],(e1+e2)⊥(e1-e2)D.不存在θ,使e1·e2=2答案BCD解析对于A,因为e1,e2为单位向量,所以e1在e2上的投影的数量为|e1|cosθ=cosθ,A错误;对于B,e21=e22=1,B正确;对于C,如图,设AB→=e1,AD→=e2,则易知四边形ABCD是菱形,AC⊥BD,即(e1+e2)⊥(e1-e2),C正确;对于D,e1·e2=1×1×cosθ=cosθ≤1,所以D正确.5.在△ABC中,已知|AB→|=|AC→|=6,且AB→·AC→=18,则△ABC的形状是____.答案等边三角形解析∵AB→·AC→=|AB→||AC→|cos∠BAC,∴cos∠BAC=12,∴∠BAC=60°.又|AB→|=|AC→|,∴△ABC为等边三角形.一、选择题1.若|a|=2,|b|=12,〈a,b〉=60°,则a·b等于()A.1 2B.1 4C.1D.2答案A解析a·b=|a||b|cos〈a,b〉=2×12×12=12.2.在Rt△ABC中,角C=90°,AC=4,则AB→·AC→等于()A.-16B.-8C.8D.16答案D解析解法一:∵AB→·AC→=|AB→||AC→|cos A,△ACB为直角三角形,∴AB→·AC→=|AB→|·|AC→|·|AC→||AB→|=|AC→|2=16.故选D.解法二:∵△ACB为直角三角形,∴AB→在AC→上的投影为AC→,∴AB→·AC→=AC→2=16.故选D.3.向量a的模为10,它与x轴正方向的夹角为150°,则它在x轴正方向上的投影的数量为()A.-53B.5C.-5D.53答案A解析a在x轴正方向上的投影的数量为|a|cos150°=-53.4.已知向量a,b满足|a|=4,|a·b|≥10,则|a-2b|的最小值是()A.1B.2C.3D.4答案A解析设a,b的夹角为θ,因为|a·b|=4|b||cosθ|≥10,所以|b|≥104|cosθ|≥52,由向量形式的三角不等式得,|a-2b|≥||a|-|2b||=|2|b|-4|≥|2×52-4|=1.5.(多选)关于菱形ABCD的下列说法中,正确的是()A.AB→∥CD→B.(AB→+BC→)⊥(BC→+CD→)C.(AB→-AD→)·(BA→-BC→)=0D.AB→·AD→=BC→·CD→答案ABC解析∵四边形ABCD为菱形,∴AB∥CD,∴AB→∥CD→,A正确;∵对角线AC 与BD互相垂直,且AB→+BC→=AC→,BC→+CD→=BD→,∴AC→⊥BD→,即(AB→+BC→)⊥(BC→+CD→),B正确;∵AB→-AD→=DB→,BA→-BC→=CA→,∵DB→⊥CA→,即DB→·CA→=0,∴(AB→-AD→)·(BA→-BC→)=0,C正确;易知〈AB→,AD→〉=180°-〈BC→,CD→〉,且|AB→|=|AD→|=|BC→|=|CD→|,∴AB→·AD→=-BC→·CD→,D错误.故选ABC.二、填空题6.△ABC中,∠A,∠B,∠C的对边长分别为a,b,c,a=3,b=1,∠C=30°,则BC→·CA→等于____.答案-332解析BC→·CA→=|BC→||CA→|cos(180°-30°)=ab cos150°=-332.7.若|a|=2,b=-2a,则a·b=____.答案-8解析|b|=2|a|=4,且b与a反向,∴〈a,b〉=180°.∴a·b=|a||b|cos180°=2×4×(-1)=-8.8.给出下列命题:①若a=0,则对任一向量b,有a·b=0;②若a≠0,则对任意一个非零向量b,有a·b≠0;③若a≠0,a·b=0,则b=0;④若a·b=0,则a,b至少有一个为0;⑤若a≠0,a·b=a·c,则b=c;⑥若a·b=a·c,且b≠c,当且仅当a=0时成立.其中真命题为____.答案①解析由数量积的定义逐一判断可知,只有①正确.三、解答题9.已知正方形ABCD的边长为1,分别求:(1)AB→·CD→;(2)AB→·AD→;(3)AC→·DA→.解如图,(1)〈AB→,CD→〉=π,∴AB→·CD→=-1.(2)〈AB →,AD→〉=π2,∴AB →·AD →=0.(3)〈AC →,DA →〉=3π4,∴AC →·DA →=2×1×cos 3π4=-1.10.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ.求θ的取值范围.解∵AB→·BC →=|AB →||BC →|cos θ=6>0,∴cos θ>0,∴θ为锐角,如图,过C 作CD ⊥AB ,垂足为D ,则|CD |=|BC |sin θ.由题意,知AB→·BC →=|AB →||BC →|cos θ=6,①S =12|AB ||CD |=12|AB →||BC →|sin θ.②由②÷①得S 6=12tan θ,即3tan θ=S .∵3≤S ≤3,∴3≤3tan θ≤3,即33≤tan θ≤1.又θ为AB →与BC →的夹角,θ∈[0,π],∴θ∈π6,π4.1.(多选)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,AH 为BC 边上的高,给出以下结论,其中正确的是()A.AH→·(AC→-AB→)=0B.AB→·BC→<0⇒△ABC为钝角三角形C.AC→·AH→|AH→|=c sin BD.BC→·(AC→-AB→)=a2答案ACD解析因为AC→-AB→=BC→,且AH⊥BC,所以AH→·(AC→-AB→)=0,故A正确;在△ABC中,由AB→·BC→<0,只能得出角B为锐角,不能判断出△ABC的形状,故B不正确;AH→|AH→|是AH→的单位向量,依据数量积的几何意义可知AC→·AH→|AH→|为AC→在AH→方向上的投影,为b sin C=c sin B,故C正确;因为AC→-AB→=BC→,所以BC→·(AC→-AB→)=|BC→|2=a2,故D正确.2.已知a,b是两个非零向量.(1)若|a|=3,|b|=4,|a·b|=6,求a与b的夹角;(2)若|a|=|b|=|a-b|,求a与a+b的夹角.解(1)∵a·b=|a||b|cos〈a,b〉,∴|a·b|=||a||b|cos〈a,b〉|=|a||b||cos〈a,b〉|=6.又|a|=3,|b|=4,∴|cos〈a,b〉|=6|a||b|=63×4=12,∴cos〈a,b〉=±12.∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π3或2π3.(2)如图所示,在平面内取一点O ,作OA→=a ,OB →=b ,以OA →,OB →为邻边作平行四边形OACB ,使|OA →|=|OB →|,所以四边形OACB 为菱形,OC 平分∠AOB ,这时OC→=a +b ,BA →=a -b .由于|a |=|b |=|a -b |,即|OA→|=|OB →|=|AB →|,所以∠AOC =π6,即a 与a +b 的夹角为π6.8.1.2向量数量积的运算律(教师独具内容)课程标准:理解掌握数量积的性质和运算律.教学重点:向量数量积的性质与运算律及其应用.教学难点:平面向量数量积的运算律的证明.知识点平面向量数量积的运算律已知向量a ,b ,c 与实数λ,则交换律a ·b =01b ·a结合律(λa)·b=02λ(a·b)=03a·(λb)分配律(a+b)·c=04a·c+b·c对向量数量积的运算律的几点说明(1)向量数量积不满足消去律:设a,b,c均为非零向量且a·c=b·c,不能得到a=b.事实上,如右图所示,OA→=a,OB→=b,OC→=c,AB⊥OC于D,可以看出,a,b在向量c上的投影分别为|a|cos∠AOD,|b|cos∠BOD,此时|b|cos∠BOD=|a|cos∠AOD=OD.即a·c=b·c.但很显然b≠a.(2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a·b)c≠a(b·c),这是由于a·b,b·c都是实数,(a·b)c表示与c方向相同或相反的向量,a(b·c)表示与a方向相同或相反的向量,而a与c不一定共线.1.判一判(正确的打“√”,错误的打“×”)(1)对于向量a,b,c等式(a·b)·c=a·(b·c)恒成立.()(2)若a·b=a·c(a≠0),则b=c.()(3)(a+b)·(a-b)=a2-b2.()答案(1)×(2)×(3)√2.做一做(1)已知|a|=2,b在a上的投影的数量为-2,则a·(a-b)=____.(2)已知|a|=3,|b|=4,则(a+b)·(a-b)=____.(3)已知|a|=6,|b|=8,〈a,b〉=120°,则|a2-b2|=____,|a-b|=____,|a2+b2|=____.答案(1)8(2)-7(3)28237100题型一求向量的数量积例1已知|a|=2,|b|=3,a与b的夹角为120°,求:(1)a·b;(2)a2-b2;(3)(2a-b)·(a+3b).[解](1)a·b=|a||b|cos120°=2×3 3.(2)a2-b2=|a|2-|b|2=4-9=-5.(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|cos120°-3|b|2=8-15-27=-34.求向量的数量积的两个关键点求向量的数量积时,需明确两个关键点:相关向量的模和夹角.若相关向量是两个或两个以上向量的线性运算,则需先利用向量数量积的运算律及多项式乘法的相关公式进行化简.[跟踪训练1]在边长为1的正三角形ABC中,设BC→=2BD→,CA→=3CE→,则AD→·BE→=____.答案-14解析由已知得AD→=12(AB→+AC→),AE→=23AC→,BE→=BA→+AE→=23AC→-AB→,所以AD→·BE→=12(AB→+AC→)·-=12×→|2-|AB→|2-13AB→·=1 2×1-13cos60°=-14.题型二求向量的夹角例2已知单位向量e1,e2的夹角为60°,求向量a=e1+e2,b=e2-2e1的夹角.[解]设a,b的夹角为θ,∵单位向量e1,e2的夹角为60°,∴e1·e2=|e1||e2|cos60°=12.∴a·b=(e1+e2)·(e2-2e1)=e1·e2+e22-2e21-2e1·e2=e22-2e21-e1·e2=1-2-12=-32,|a|=a2=(e1+e2)2=|e1|2+|e2|2+2e1·e2=1+1+1=3.|b|=b2=(e2-2e1)2=|e2|2-4e1·e2+4|e1|2=1+4-4×12=3.∴cosθ=a·b|a||b|=-323×3=-12.∵θ∈[0,π],∴θ=120°.求向量a,b夹角θ的思路(1)解题流程求|a|,|b|→计算a·b→计算cosθ=a·b|a||b|→结合θ∈[0,π],求出θ(2)解题思想:由于|a|,|b|及a·b都是实数,因此在涉及有关|a|,|b|及a·b的相应等式中,可用方程的思想求解(或表示)未知量.[跟踪训练2]已知|a|=3,|b|=5,|a+b|=7,求a·b及a与b的夹角.解∵|a+b|=7,∴(a+b)2=a2+2a·b+b2=|a|2+2a·b+|b|2=34+2a·b=49,∴a·b=152.设a与b的夹角为θ,则cosθ=a·b|a||b|=1523×5=12又θ∈[0,π],故a与b的夹角θ=60°.题型三求向量的模例3已知x=1是方程x2+|a|x+a·b=0的根,且a2=4,〈a,b〉=120°.求:(1)向量b的模;(2)向量2b+a的模.[解](1)∵a2=4,∴|a|2=4,即|a|=2.把x=1代入方程x2+|a|x+a·b=0,得1+|a|+a·b=0,∴a·b=-3,则a·b=|a||b|cos〈a,b〉=2|b|cos120°=-3,∴|b|=3.(2)(2b+a)2=4b2+a2+4a·b=4×9+4+4×(-3)=28,∴|2b+a|=27.极化恒等式求模长(1)两个结论①(a+b)2=a2+2a·b+b2;②(a+b)·(a-b)=a2-b2.证明:①(a+b)2=(a+b)·(a+b)=a·a+a·b+b·a+b·b=a2+2a·b+b2.②(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.说明:下列结论也是成立的:(a-b)2=a2-2a·b+b2,(a+b)·(c+d)=a·c+a·d+b·c+b·d.(2)由上述结论,我们不难得到4a·b=(a+b)2-(a-b)2,即a·b=1[(a+b)2-(a-b)2].4我们把该恒等式称为“极化恒等式”.(3)应用向量数量积的运算律求向量的模的方法①求模问题一般转化为求模平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.②一些常见的等式应熟记,如(a±b)2=a2±2a·b+b2,(a+b)(a-b)=a2-b2等.提醒:向量的模是非负实数;一个向量与自身的数量积等于它的模的平方.,求|a-b|,|a+b|.[跟踪训练3]已知|a|=|b|=5,向量a与b的夹角为π3解解法一:|a+b|=(a+b)2=a2+b2+2a·b=|a|2+|b|2+2|a||b|cos〈a,b〉=53.=52+52+2×5×5×cosπ3|a-b|=(a-b)2=a2+b2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉=5.=52+52-2×5×5×cosπ3解法二:以a,b为邻边作▱ABCD,设AC,BD相交于点E,如图所示.∵|a|=|b|且∠DAB=π3,∴△ABD为正三角形,∴|a-b|=|DB→|=5,|a+b|=|AC→|=2|AE→|=2|AB→|2-|BE→|2=252-5 2253.题型四用向量数量积解决垂直问题例4已知平面上三个向量a,b,c的模均为1,它们相互之间的夹角为120°,求证:(a-b)⊥c.[证明]证法一:∵|a|=|b|=|c|=1,且a,b,c之间的夹角均为120°,∴(a-b)·c=a·c-b·c=|a||c|·cos120°-|b||c|cos120°=0.∴(a-b)⊥c.证法二:如图,设OA→=a,OB→=b,OC→=c,连接AB,AC,BC,三条线段围成正三角形ABC,O为△ABC的中心,∴OC ⊥AB.又BA→=a-b,∴(a-b)⊥c.要解决的问题是用向量表示,它往往对应一个几何图形;如果是几何的形式表示,它往往对应一个向量关系式.要善于发现这二者之间的关系,从一种形式转化为另一种形式,用哪种形式解决问题方便就选用哪种形式.[跟踪训练4]如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明设AD→=a ,AB →=b ,则|a |=|b |,a ·b =0,又DE→=DA →+AE →=-a +b 2,AF →=AB →+BF →=b +a 2,所以AF →·DE →a 12a 2-34a ·b +b 22=-12|a |2+12|b |2=0.故AF →⊥DE→,即AF ⊥DE .1.若向量a 的方向是正北方向,向量b 的方向是西偏南30°方向,且|a |=|b |=1,则(-3a )·(a +b )等于()A.32B .-32C.23D .-23答案B解析由题意知a 与b 的夹角为120°,∴a ·b =-12.∴(-3a )·(a +b )=-3a 2-3a ·b =-32.2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a -b |等于()A.1 B.2C.3D.2答案A解析|a-b|=(a-b)2=a2+b2-2a·b=12+12-2·1·cos〈a,b〉=2-2cos60°=1.3.若O为△ABC所在平面内一点,且满足(OB→-OC→)·(OB→+OC→-2OA→)=0,则△ABC的形状为()A.正三角形B.直角三角形C.等腰三角形D.以上均不正确答案C解析由(OB→-OC→)·(OB→+OC→-2OA→)=0,得CB→·(AB→+AC→)=0,又CB→=AB→-AC→,∴(AB→-AC→)·(AB→+AC→)=0,即|AB→|2-|AC→|2=0.∴|AB→|=|AC→|.∴△ABC为等腰三角形.,则4.已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3实数λ=____.答案-8或5解析由3a+λb+7c=0,可得7c=-(3a+λb),则49c2=9a2+λ2b2+6λa·b.,即λ2+3λ-40由a,b,c为单位向量,得a2=b2=c2=1,则49=9+λ2+6λcosπ3=0,解得λ=-8或λ=5.5.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61,(1)求a与b的夹角θ;(2)求|a+b|和|a-b|.解(1)因为(2a-3b)·(2a+b)=61,所以4a2-4a·b-3b2=61,,所以4×42-4×4×3cosθ-3×32=61,cosθ=-12又因为θ∈[0,π],所以θ=120°.(2)因为|a+b|2=a2+2a·b+b2=16+2×4×3cos120°+9=13,所以|a+b|=13,同理可求得|a-b|=37.一、选择题1.已知向量a,b满足|a|=2,|b|=1,(a-b)·b=0,那么向量a与b的夹角为()A.30°B.45°C.60°D.90°答案C,解析由题意可得a·b-b2=0,设a与b的夹角为θ,则2cosθ=1,cosθ=12又θ∈[0,π],∴θ为60°.2.已知平面向量a,b满足|a|=3,|b|=2,a·b=-3,则|a+2b|=()A.1 B.7C.4+3D.27答案B解析根据题意,得|a+2b|=a2+4a·b+4b2=7.3.若AB →·BC →+AB →2=0,则△ABC 为()A .直角三角形B .钝角三角形C .锐角三角形D .等腰直角三角形答案A解析∵0=AB→·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →,∴AB →⊥AC →,∴∠BAC =90°.故选A.4.如图,O ,A ,B 是平面上的三点,C 为线段AB 的中点,向量OA→=a ,OB →=b ,设P 为线段AB 的垂直平分线上任意一点,向量OP →=p .若|a |=4,|b |=2,则p ·(a -b )=()A .1B .3C .5D .6答案D解析由题图知CP →⊥BA →,则CP →·BA →=0,p =OP→=OC →+CP →=12(OA →+OB →)+CP →,则p ·(a -b )=12(a +b )+CP →·(a -b )=12(a +b )·(a -b )+CP→·(a -b )=12(a 2-b 2)+CP →·BA →=12(|a |2-|b |2)+0=12×(42-22)=6.5.(多选)设a ,b ,c 是任意的非零向量,且它们相互不共线,则下列结论正确的是()A .a ·c -b ·c =(a -b )·cB .(b ·c )·a -(c ·a )·b 不与c 垂直C .|a |-|b |<|a -b |D .(3a +2b )·(3a -2b )=9|a |2-4|b |2答案ACD解析因为a ,b ,c 是任意的非零向量,且它们相互不共线,则由向量数量积的运算律,知A ,D 正确;由向量减法的三角形法则,知C 正确;因为[(b ·c )·a -(c ·a )·b ]·c =(b ·c )·(a ·c )-(c ·a )·(b ·c )=0.所以(b ·c )·a -(c ·a )·b 与c 垂直,B 错误.故选ACD.二、填空题6.若a ⊥b ,c 与a 及与b 的夹角均为60°,|a |=1,|b |=2,|c |=3,则(a +2b -c )2=____.答案11解析原式展开,得|a |2+4|b |2+|c |2+4|a ||b |cos90°-2|a ||c |cos60°-4|b ||c |cos60°=11.7.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 的夹角的余弦值为____.答案-13解析由|a |=3|b |,得|b ||a |=13.由|a |=|a +2b |,两边平方得|a |2=|a +2b |2=|a |2+4|b |2+4a ·b ,整理得a ·b =-|b |2.设a ,b 的夹角为θ,则cos θ=a ·b |a ||b |=-|b |2|a ||b |=-|b ||a |=-13.8.已知向量AB→与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为____.答案712解析因为向量AB→与AC→的夹角为120°,且|AB→|=3,|AC→|=2,所以AB→·AC→=|AB→||AC→|cos120°=3×2 3.由AP→⊥BC→,得AP→·BC→=0,即AP→·BC→=(λAB→+AC→)·(AC→-AB→)=0,所以AC→2-λAB→2+(λ-1)AB→·AC→=0,即4-9λ-3(λ-1)=0,解得λ=7.12三、解答题9.已知|a|=4,|b|=8,a与b的夹角是120°.(1)计算|4a-2b|;(2)当k为何值时,(a+2b)⊥(k a-b).解由已知,得a·b=4×816.(1)∵(4a-2b)2=16a2-16a·b+4b2=16×16-16×(-16)+4×64=3×162,∴|4a-2b|=16 3.(2)若(a+2b)⊥(k a-b),则(a+2b)·(k a-b)=0.∴k a2+(2k-1)a·b-2b2=0,即16k-16(2k-1)-2×64=0,∴k=-7.10.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足AP→=λPB→.(1)若λ=12,用向量OA →,OB →表示OP →;(2)若|OA→|=4,|OB →|=3,且∠AOB =60°,求OP →·AB →的取值范围.解(1)∵AP →=12PB →,∴OP →-OA →=12(OB →-OP →).∴32OP →=OA →+12OB →,即OP →=23OA →+13OB →.(2)OA→·OB →=|OA →||OB →|cos60°=6.∵AP→=λPB →,∴OP→-OA →=λ(OB →-OP →),(1+λ)OP →=OA →+λOB →,∴OP →=11+λOA →+λ1+λOB →.∵AB→=OB →-OA →,∴OP →·AB →+λ1+λOB OB →-OA →)=-11+λOA →2+λ1+λOB →2·OB →=-16+9λ+6-6λ1+λ=3λ-101+λ=3-131+λ.∵λ>0,∴3-131+λ∈(-10,3).∴OP→·AB →的取值范围是(-10,3).1.已知向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,OP→=tOA→,OQ→=(1-t)OB→,t∈R,|PQ→|在t=t0时取得最小值,当0<t0<15时,夹角θ的取值范围是()A.0,π3π3,π2C.π2,2π30,2π3答案C解析因为向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,所以OA→·OB→=2cosθ,由PQ→=OQ→-OP→=(1-t)OB→-tOA→,得|PQ→|2=PQ→2=(1-t)2OB→2-2t(1-t)·OA→·OB→+t2OA→2=(5+4cosθ)t2-(2+4cosθ)t+1,所以t0=1+2cosθ5+4cosθ,由0<1+2cosθ5+4cosθ<15,解得-1 2<cosθ<0,因为0≤θ≤π,所以π2<θ<2π3.故选C.2.平面四边形ABCD中,AB→=a,BC→=b,CD→=c,DA→=d,且a·b=b·c=c·d=d·a,试问四边形ABCD的形状.解∵AB→+BC→+CD→+DA→=0,即a+b+c+d=0,∴a+b=-(c+d),由上式可得(a+b)2=(c+d)2,即a2+2a·b+b2=c2+2c·d+d2.又a·b=c·d,故a2+b2=c2+d2.①同理可得a2+d2=b2+c2②由①②,得a2=c2,且b2=d2,即|a|=|c|,且|b|=|d|,也即AB=CD,且BC=DA.∴四边形ABCD为平行四边形.故AB→=-CD→,即a=-c,∴a·b=b·c=-a·b,即a·b=0,∴a⊥b,即AB→⊥BC→.综上知,四边形ABCD为矩形.8.1.3向量数量积的坐标运算(教师独具内容)课程标准:1.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角.2.能用坐标表示平面向量垂直的条件.教学重点:平面向量数量积的坐标表示以及模、角度、垂直关系的坐标表示.教学难点:用坐标法处理模、角度、垂直问题.知识点一向量数量积的坐标运算已知a=(x1,y1),b=(x2,y2),则a·b=01x1x2+y1y2,即两个向量的数量积等于02它们对应坐标乘积的和.知识点二向量的长度已知a=(x1,y1),则|a|=01x21+y21,即向量的长度等于02它的坐标平方和的算术平方根.知识点三两向量夹角的余弦设a=(x1,y1),b=(x2,y2),则cos〈a,b〉=01x1x2+y1y2x21+y21x22+y22.知识点四两点间的距离如果A(x1,y1),B(x2,y2),则|AB→|=01(x2-x1)2+(y2-y1)2.知识点五用坐标表示两向量垂直设a=(x1,y1),b=(x2,y2),则a⊥b⇔01x1x2+y1y2=0.1.两个向量垂直的条件已知a=(x1,y1),b=(x2,y2),如果a⊥b,则x1x2+y1y2=0;反之,如果x1x2+y1y2=0,则a⊥b.运用向量垂直的条件,既可以判定两向量是否垂直,又可以由垂直关系去求参数.如果a⊥b,则向量(x1,y1)与(-y2,x2)平行.这是因为a⊥b,有x1x2+y1y2=0(*),当x2y2≠0时,(*)式可以表示为x1-y2=y1x2,即向量(x1,y1)与向量(-y2,x2)平行.对任意的实数k,向量k(-y2,x2)与向量(x2,y2)垂直.2.不等式|a·b|≤|a||b|的代数形式若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,|a |=x 21+y 21,|b |=x 22+y 22.由|a·b |≤|a ||b |得|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22,当且仅当a ∥b ,即x 1y 2-x 2y 1=0时取等号,即不等式(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22)成立.1.判一判(正确的打“√”,错误的打“×”)(1)若a =(1,1),b =(-2,2),则a·b =0.()(2)若a =(4,2),b =(6,m )且a ⊥b ,则m =-12.()(3)若a·b >0(a ,b 均为非零向量),则〈a ,b 〉为锐角.()答案(1)√(2)√(3)×2.做一做(1)已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为____.(2)已知a =(1,3),b =(-2,0),则|a +b |=____.(3)设a =(2,0),|b |=1,〈a ,b 〉=60°,则a·b =____.(4)已知a =(3,4),则与a 垂直的单位向量有________,与a 共线的单位向量有________.答案(1)π6(2)2(3)1-45,-35,-题型一向量数量积的坐标运算例1已知向量a 与b 同向,b =(1,2),a ·b =10,求:(1)向量a 的坐标;(2)若c=(2,-1),求(a·c)b.[解](1)∵a与b同向,且b=(1,2),∴a=λb=(λ,2λ)(λ>0).又a·b=10,∴λ+4λ=10,∴λ=2,∴a=(2,4).(2)∵a·c=2×2+(-1)×4=0,∴(a·c)b=0.(1)通过向量的坐标表示实现向量问题代数化,应注意与方程、函数等知识的联系.(2)向量问题的处理有两种思路:一种是纯向量式,另一种是坐标式,两者互相补充.[跟踪训练1]已知a=(2,-1),b=(3,-2),求(3a-b)·(a-2b).解解法一:(3a-b)·(a-2b)=3a2-7a·b+2b2.∵a·b=2×3+(-1)×(-2)=8,a2=22+(-1)2=5,b2=32+(-2)2=13,∴(3a-b)·(a-2b)=3×5-7×8+2×13=-15.解法二:∵a=(2,-1),b=(3,-2),∴3a-b=(6,-3)-(3,-2)=(3,-1),a-2b=(2,-1)-(6,-4)=(-4,3),∴(3a-b)·(a-2b)=3×(-4)+(-1)×3=-15.题型二向量的夹角问题例2已知a+b=(2,-8),a-b=(-8,16),求a与b的数量积及a与b的夹角的余弦值.[解]+b =(2,-8),-b =(-8,16),=(-3,4),=(5,-12).∴a ·b =(-3,4)·(5,-12)=(-3)×5+4×(-12)=-63.cos 〈a ,b 〉=a ·b |a ||b |=-63(-3)2+42×52+(-12)2=-635×13=-6365.∴a 与b 的夹角的余弦值为-6365.利用数量积求两向量夹角的步骤特别提醒:已知两个非零向量的坐标,就可以利用该公式求得两个向量的夹角,因为向量的夹角范围为[0,π],故不存在讨论角的终边所在象限的问题.[跟踪训练2]设向量a =(-2sin α,2cos α)(0≤α≤π),b =(-25,0),则a 与b 的夹角为____.答案|π2-α|解析设a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22=45sin α2×25=sin α,∵α∈[0,π],∴θ=|π2-α|.题型三向量的长度、距离问题例3已知向量a,b满足|a|=|b|=1,且|3a-2b|=3.求|3a+b|的值.[解]设a=(x1,y1),b=(x2,y2).∵|a|=|b|=1,∴x21+y21=1,x22+y22=1,3a-2b=3(x1,y1)-2(x2,y2)=(3x1-2x2,3y1-2y2),∵|3a-2b|=(3x1-2x2)2+(3y1-2y2)2=3,∴9x21-12x1x2+4x22+9y21-12y1y2+4y22=9,∴13-12(x1x2+y1y2)=9.∴x1x2+y1y2=13.∵3a+b=3(x1,y1)+(x2,y2)=(3x1+x2,3y1+y2),∴|3a+b|=(3x1+x2)2+(3y1+y2)2=9x21+6x1x2+x22+9y21+6y1y2+y22=10+6(x1x2+y1y2)=10+6×13=23.(1)在上述解题过程中,根据|a|=|b|=1,可以设a=(cosβ,sinβ),b=(cosα,sinα).(2)利用本题的解法可解决下面的一般性问题:若向量a,b满足|a|=|b|=r1,及|λ1a+μ1b|=r2求|λ2a+μ2b|的值.(3)注意区别m=n与|m|=|n|,其中m=n表示的是向量关系,即(x1,y1)=(x2,y2),而|m|=|n|表示的是数量关系,即x21+y21=x22+y22.[跟踪训练3]若向量OA→=(1,-3),|OA→|=|OB→|,OA→·OB→=0,则|AB→|=____.答案25解析解法一:设OB→=(x,y),由|OA→|=|OB→|,知x2+y2=10.①由题意知OA→·OB→=x-3y=0.②=3,=1=-3,=-1.当x=3,y=1时,AB→=OB→-OA→=(2,4),则|AB→|=25;当x=-3,y=-1时,AB→=(-4,2),则|AB→|=25.故|AB→|=25.解法二:由题意知,|AB→|就是以OA→,OB→对应线段为邻边的正方形的对角线长,因为|OA→|=10,所以|AB→|=2×10=25.题型四两向量垂直条件的应用例4如图所示,以原点O和点A(5,2)为两个顶点作等腰直角三角形AOB,使∠B=90°,求点B的坐标.[解]设点B(x,y),则OB→=(x,y),AB→=(x-5,y-2).因为∠B=90°,所以x(x-5)+y(y-2)=0,又|AB→|=|OB→|,所以x2+y2=(x-5)2+(y-2)2,2+y 2-5x -2y =0,x +4y =29,1=72,1=-322=32,2=72.即点B利用向量可以解决与长度、角度、垂直、平行等有关的几何问题,解题的关键在于把其他语言转化为向量语言,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.常用方法是建立平面直角坐标系,借助向量的坐标运算再将向量问题转化为代数问题来解决.[跟踪训练4]在等腰直角三角形ABC 中,∠ACB 是直角,AC =BC ,D 是BC 的中点,E 是AB 上一点,且AE =2EB .求证:AD ⊥CE .证明建立如图所示的平面直角坐标系,设CA =CB =2,则A (2,0),B (0,2),C (0,0),设E (x ,y ).∵D 为BC 的中点,∴D (0,1).∵AE =2EB ,∴AE →=23AB →,∴(x -2,y )=23(-2,2),-2=-43,=43,=23,=43,∴∴AD→·CE→=(-=-43+43=0,∴AD→⊥CE→,∴AD⊥CE.题型五向量数量积的综合应用例5若函数f(x)=-2<x<10)的图像与x轴交于点A,过点A的直线l与函数的图像交于B,C两点,O为坐标原点,则(OB→+OC→)·OA→=() A.-32B.-16C.16D.32[解析]令f(x)=0,得π6x+π3kπ,k∈Z,∴x=6k-2,k∈Z.∵-2<x<10,∴x=4,即A(4,0).设B(x1,y1),C(x2,y2),∵过点A的直线l与函数的图像交于B,C两点,∴B,C两点关于点A对称,即x1+x2=8,y1+y2=0.故(OB→+OC→)·OA→=(x1+x2,y1+y2)·(4,0)=4(x1+x2)=32.[答案]D与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点问题.解此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、夹角的坐标运算公式外,还应掌握三角函数的图像和性质等知识.[跟踪训练5]设O(0,0),A(1,0),B(0,1),点P是线段AB上的一个动点,AP→=λAB→.若OP→·AB→≥P A→·PB→,则实数λ的取值范围是()A.12≤λ≤1B.1-22≤λ≤1C.12≤λ≤1+22D.1-22≤λ≤1+22答案B解析设P(x,y),则由AP→=λAB→,得(x-1,y)=λ(-1,1),-1=-λ,=λ,∴x-1+y=0.①又OP→·AB→≥PA→·PB→,∴(x,y)·(-1,1)≥(1-x,-y)·(-x,1-y).整理,得x2+y2-2y≤0,即x2+(y -1)2≤1.②将①整理,得x=1-y,代入②中,得(y-1)2≤12.即-22≤y-1≤22.∴1-22≤y≤1+22.结合题意,得1-22≤y≤1,即1-22≤λ≤1.故选B.1.若a=(2,-3),b=(x,2x),且3a·b=4,则x等于()A.3 B.13C.-13D.-3答案C解析∵3a·b=(6,-9)·(x,2x)=-12x=4,∴x=-13.2.已知A(1,2),B(4,0),C(8,6),D(5,8)四点,则四边形ABCD是() A.梯形B.矩形C.菱形D.正方形答案B解析∵AB→=(3,-2),DC →=(3,-2),∴AB →=DC →,又AD→=(4,6),∴AB →·AD →=0,∴AB →⊥AD →.∵|AB→|≠|AD →|,∴选B.3.正三角形ABC 的边长为1,设AB →=c ,BC →=a ,CA →=b ,那么a ·b +b ·c +c ·a 的值是____.答案-32解析解法一:如图,以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则A (0,0),B (1,0),∴a -12,b -12,-c =(1,0),∴a ·b +32×=-12,同理b ·c =c ·a =-12,∴a ·b +b ·c +c ·a =-32.解法二:a·b +b·c +c·a =1×1×cos120°+1×1×cos120°+1×1×cos120°=3=-32.4.设向量a 与b 的夹角为α,且a =(3,3),2b -a =(-1,1),则cos α=____.答案31010解析∵a =(3,3),由2b -a =(-1,1)可得b =(1,2),∴cos α=a ·b |a ||b |=918×5=31010.5.如图,已知△ABC 的面积为32,AB =2,AB→·BC →=1,求边AC 的长.解以点A 为坐标原点,AB →为x 轴正方向建立平面直角坐标系,设点C 的坐标为(x ,y )(y >0),因为AB =2,∴点B 的坐标是(2,0),∴AB→=(2,0),BC →=(x -2,y ).∵AB →·BC →=1,∴2(x -2)=1,解得x =52.又S △ABC =32,∴12·|AB |·y =32,∴y =32,∴C AC →∴|AC→|==342,故边AC 的长为342.一、选择题1.已知a=(-3,4),b=(5,2),则a·b=()A.23B.7C.-23D.-7答案D解析a·b=(-3)×5+4×2=-7.2.已知A(1,2),B(2,3),C(-2,5),则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形答案A解析∵AB→=(1,1),AC→=(-3,3),∴AB→·AC→=1×(-3)+1×3=0,∴AB→⊥AC→,∴A=90°,故选A.3.已知a=(2,-3),b=(1,-2),且c⊥a,b·c=1,则c的坐标为() A.(3,-2)B.(3,2)C.(-3,-2)D.(-3,2)答案C解析设c=(x,y)2x-3y=0,x-2y=1,x=-3,y=-2.4.与已知向量a 72,12,b12,-72的夹角相等,且模为1的向量是()-45,-223,答案B解析设与向量ab1的向量为(x,y)+y2=1,+12y=12x-72y,=45,=-35=-45,=35,故选B.5.(多选)设A(a,1),B(2,b),C(4,5)为坐标平面上的三点,O为坐标原点.若OA→与OB→在OC→方向上的投影相同,则a,b的取值可能为()A.a=2,b=1B.a=7,b=5C.a=9,b=6D.a=12,b=9答案ABD解析由图知,要使OA→与OB→在OC→方向上的投影相同,只需使AB→⊥OC→,即(2-a,b-1)·(4,5)=0,得4a-5b-3=0,则a,b需满足关系式4a-5b=3,结合选项可知,A,B,D中a,b的取值满足条件.故选ABD.二、填空题6.若a=(x,2),b=(-3,5),且a与b的夹角是钝角,则实数x的取值范围是____.答案103,+∞解析x应满足(x,2)·(-3,5)<0且a,b不共线.解得x>103且x≠-65,∴x>103.7.已知向量a=(1,2),b=(-2,-4),|c|=5,若(a+b)·c=52,则a与c的夹角为____.答案120°解析由已知,得a+b=-a,∴a与c的夹角与c与a+b的夹角互补.又cos〈a+b,c〉=(a+b)·c|a+b||c|=12.∴〈a+b,c〉=60°.∴a与c的夹角是120°.8.已知向量a=(cos2θ,sin2θ),向量b=(2,0),则|2a-b|的最大值是____.答案22解析令t=cos2θ(0≤t≤1),则a=(t,1-t),所以|2a-b|2=(2t-2)2+(2-2t)2=8(t-1)2.所以|2a-b|=22|t-1|=22(1-t),故当t=0时,|2a-b|取得最大值22.三、解答题9.在△ABC中,A(2,-1),B(3,2),C(-3,-1),AD是BC边上的高,求。

高中数学新北师大版精品教案《北师大版高中数学必修3 2.3循环结构》

高中数学新北师大版精品教案《北师大版高中数学必修3 2.3循环结构》

§循环结构宿州市第二中学白彬一、教学内容的分析1.教材的地位和作用《循环结构》是北京师范大学出版社课程教材研究所编著的普通高中课程标准实验教科书数学(必修3)中§的内容,是新课标教材的新增内容。

算法是数学及其应用的重要组成部分,是计算机科学的重要基础.算法的程序化思想已成为现代人应具备的一种数学素养。

培养算法思想对高中学生养成思考、分析问题的条理性和逻辑思维的严谨性有着积极、深远的意义。

本节课所学习的是算法三种基本逻辑结构中的循环结构,是算法中最重要、最核心的一种结构;循环结构是算法三大基本逻辑结构中最灵活,内涵最丰富的一种结构,该算法结构充分体现了算法的优势。

循环结构的学习,对于学生体会算法的基本思想以及算法的重要性和有效性,有重要的意义循环结构广泛存在于许多著名算法设计中,譬如二分法,欧几里德算法,秦九韶算法等,且循环结构是学习循环语句的基础,循环结构中蕴含的“递推”思想为必修五数列的学习奠定了基础,是整个算法教学的重点与难点,同时也是高考关注的重点。

本节课是在学习了顺序结构,条件结构和赋值语句的基础上进行的,安排1课时。

2.教学的重点和难点由于循环变量赋初值、循环体、循环的终止条件是在顺序结构和条件结构未出现的概念,同时也是掌握循环结构的关键,由此确立本节课的重难点是:重点:循环结构的三要素的理解;难点:循环三要素的确定以及循环执行时变量的变化规律;3学情分析学生已经学习了算法的概念、顺序结构、条件结构及简单的赋值问题。

高一学生形象思维、感性认识较强,理性思维、抽象认识能力还很薄弱,因此教学中选择学生熟悉的,易懂的实例引入,通过对例子的分析,使学生逐步经历循环结构设计的全过程,学会有条理的思考问题,表达循环结构,并整理成程序框图。

二、学习目标分析1、知识与技能通过模仿、操作、探索的过程,引导学生能理解循环结构概念。

学会画简单的循环结构框图,把握循环结构的三要素:循环的初始值、循环体、循环的终止条件;能识别和理解循环结构的框图以及功能。

江西省信丰县第二中学高中数学 2.1.1 算法的基本思想(

江西省信丰县第二中学高中数学 2.1.1 算法的基本思想(

学案必修三第二章第一节第一课时算法的基本思想(一)一、学习目标1.了解算法的含义,体会算法的思想。

2.能够用自然语言叙述算法,掌握正确的算法应满足的要求。

3.培养学生逻辑思维能力与表达能力.二、重点、难点重点: 算法概念以及用自然语言描述算法计。

难点: 用自然语言描述算法三、课前预习[情景材料]算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学学习中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.阅读教材相关内容,填写下列空白:1.算法的概念算法是___________________________________。

在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成..2.算法的特点:(1)有限性:一个算法的步骤序列是__________,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到________结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.3. __________的思想在算法设计中是一个最基本的思想,也是数学中思考的一个重要思想。

2013~~2014学年北师大版高中数学必修3优化设计全套导学案

2013~~2014学年北师大版高中数学必修3优化设计全套导学案

2013~2014学年北师大版高中数学必修3优化设计全套导学案目录第一章§1从普查到抽样导学案第一章§2.1简单随机抽样导学案第一章§2.2分层抽样与系统抽样导学案第一章§4数据的数字特征导学案第一章§5.2估计总体的数字特征导学案第一章§6统计活动结婚年龄的变化导学案第一章§7相关性导学案第一章§8最小二乘估计导学案第二章§2.1顺序结构与选择结构导学案第二章§2.3循环结构导学案第二章§3.1条件语句导学案第二章§3.2循环语句导学案第三章§1随机事件的概率导学案第三章§2.3互斥事件导学案第三章§3模拟方法概率的应用导学案§1从普查到抽样1.了解普查的意义.2.结合具体的实际问题情境,理解随机抽样的必要性和重要性.1.普查普查是为了了解总体的一般情况,对__________都无一例外地进行调查,也称整体调查或全面调查.当普查的对象________时,普查是一项非常好的调查方式,所取得的资料大,要耗费大量的人力、物力与财力,并且组织工作繁重、时间长.更值得注意的是,在很多情况下,普查工作难以实现.【做一做1】下列调查中,必须采用“普查”的是().A.调查某品牌电视机的市场占有率B.调查某电视连续剧在全国的收视率C.调查高一一班的男女同学的比例D.调查某型号炮弹代表性,才能反映总体的基本特征.抽样调查的优点:(1)_____________;(2)______________.【做一做2-1】下列调查所抽取的样本具有代表性的是().A.利用当地的七月份的日平均最高气温值估计当地全年的日平均最高气温B.在农村调查市民的平均寿命C.利用一块实验水稻田的亩产量估计水稻的实际亩产量D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验【做一做2-2】为了调查全国城镇居民的寿命,抽查了十一个省(市况下,总是通过抽取样本来研究总体.题型一理解统计的有关概念【例题1】为了了解全校240名学生的身高情况,从中抽取40名学生测量其身高,下列说法正确的是().A.总体是240B.个体是每一个学生C.样本是40名学生D.总体是全校240名学生的身高题型二普查【例题2】你的班主任想全面了解你班学生的学习和思想状况,请你帮助班主任设计一个调查方案.分析:在总体中的对象不是很多的情况下,普查是全面获取信息最可靠的方法,它有两个特点:(1)所得资料更加全面、系统;(2)能够得到某个时期的信息总量.反思:在进行普查时,一定要注意普查的两个特点:(1)所取得的资料全面、系统;(2)主要调查在特定时段、特定情2为了了解某校4500名学生的课外阅读时间情况,从中抽取200名学生进行调查,下列说法正确的是().A.总体是4500名学生B.总体是某校4500名学生的课外阅读时间C.样本是200名学生D.个体是200名学生3下列调查工作,必须采用“抽样调查”的是().A.调查某城市今年7月份的温度变化情况B.调查某一品牌5万包袋装鲜奶是否符合卫生标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班50名学生100米短跑的成绩4下面的各事件中,适合抽样调查的有______.①调查除夕之夜我国有多少人观看中央电视台春节联欢晚会;②调查某工厂生产的一万件胶卷中有无不合格产品;③评价一个班级升学考试的成绩;④调查当今中学生中,答案:基础知识·梳理1.所有的对象很少很多【做一做1】C2.一部分全体样本(1)迅速、及时(2)节约人力、物力和财力【做一做2-1】D【做一做2-2】样本全国每个城镇居民的寿命都是个体,抽出的2500名城镇居民的寿命是从总体中抽取的一个样本.典型例题·领悟【例题1】D总体是240名学生的身高,所以A项不正确,D项正确;个体是每一个学生的身高,所以B项不正确;样本是40名学生的身高,所包括同学们对学习的各种看法,同学们的爱好、心理和思想状况等,然后发放给每一个学生,并全部收回,然后进行统计.这样就可以全面了解每个学生的学习和思想状况了.【例题3】解:应该用抽样调查的方法对该批小包装饼干进随堂练习·巩固1.D2.B3.B4.①②④⑤5.分析:利用普查的特点进行判断.解:由于一个学校的电灯电路数目不算大,且对创建“和§2抽样方法2.1简单随机抽样1.了解简单随机抽样的定义.2.在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本.1.简单随机抽样(1)定义:如果在抽样过程中,________地抽取一部分个体,然后对抽取的对明:常用到的简单随机抽样方法有两种:________(抓阄法)和________.简单随机抽样具备下列特点:①总体中的个体数N 是有限的;②简单随机抽样抽取的样本数n 不大于总体中的个体数N ;③简单随机抽样是从总体中逐个抽取的,是一种不放回的抽样,也就是每次从总体中抽取元素后不再将这个元素放回总体;④简单随机抽样的每个个体入样的可能性均为n N;⑤当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本.【做一做1-1】对于简单随机抽样,每个个体每次被抽到的机会都().A.相等B.不相等C.无法确定D.无关系【做一做1-2】下列抽样方法是简单随机抽样的是().A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中逐个抽取10个数分析奇偶性D.运动员从8个跑道中随机地抽取一个跑道2.抽签法(1)先把总体中的N 个个体编号,并把号签写在________、________相同的签上(签可以是纸条、卡片或小球等),然后将这些号签放在同一个箱子里________搅拌.每次随机地从中抽取______个,然后将号签均匀搅拌,再进行下一次抽取.如此下去,直至抽到预先设定的样本数.根据实际需要,如果每次抽取后再______,就称为③规定读取数字的方向;④开始读取数字,若不在编号中,则________,前面已经读过的也跳过,若在编号中,则________,依次取下去,直到取满为止,相同的号只取一次;⑤根据选定的号码抽取样本.①抽签法的操作要点是:编号、制签、搅匀、抽取;随机数法的操作要点是:编号、选起始数、读数、获取样本.②抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平.随机数法的优点与抽签法相同,缺点是当总体应用随机数法抽取样本时,怎样对随机数的时间.题型一简单随机抽样的判断【例题1】下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样【例题3】现有一批零件,共600个,现从中抽取10个进行质量检查,若用随机数法,怎样设计方案?分析:本题按随机数法抽样的一般步骤写出抽样方案即可,具体流程为:将个体编号→选定开始的数字→确定读数方向→获取样本号码.反思:利用随机数法抽取样本时,关键是事先确定以表中的哪个数(哪行哪列)作为起点,以及读数的方向,向左、向右、向上或向下都可以.同时,读数时结合编号特点进行读取,编号为两位,则两位、两位地读取,编号为三位数,则三位、三位地读取,如果出现重号则跳过,接着读取.题型四简单随机.A.①②③④B.①③④②C.③②①④D.④③①②4常用的简单随机抽样方法有________和________.5下列抽取样本的方式是否属于简单随机抽样?说明基础知识·梳理1.(1)随机概率(2)抽签法随机数法【做一做1-1】A由定义可知选A.【做一做1-2】D选项A错在“一次性”抽取;选项B错在“有放回地”抽取;选项C错在总体容量无限.2.(1)形状大小均匀一放回不放回(2)①编号②工具【做一做2】B3.(1)摸球样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【例题2】解:第一步将18名志愿者编号,号码为1,2, (18)第二步将号码分别写在18张纸条上,揉成团,制成号签.第三步将所有号签放入一个箱子中,充分搅匀.第四步依次取出6个号签,并记录其编号.第五步将对应编号的志愿者选出.【例题3】解:第一步将这批零件编号,分别为001,002, (600)第二步在教材表12随机数表中任选一数作为开始,到下一行从左到右继续读数.如此下去直到得出在00~29之间的10个两位数.这10个号码对应的零件就是所要抽取的样本.随堂练习·巩固1.D2.D3.B4.抽签法随机数法5.分析:依据简单随机抽样的特点来判断.解:(1)不是简单随机抽样,由于被抽取样本的总体个体数是无限的,而不是有限的.(2)不是简单随机抽样,由于它是有放回的抽样.2.2分层抽样与系统抽样1.理解分层抽样与系统抽样的概念.2.通过对实例的分析,了解分层抽样与系统抽样的方法.1.分层抽样(1)定义:将总体按其________分成若干类型(有时称作层),然后在每个类型中按照________随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.(2)分层抽样的步骤:①分层:按某种________将总体分成若干部分(层).②按________确定每层抽取个体的个数.③各层分别按简单随机抽样或其他的抽样方法抽取样本.④综合每层抽样,组成样本.应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构的一致性.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与该层个体数量的比与样本容量与总体容量的比相等.(3)当总体个体差异明显时,采用分层抽样.【做一做1-1】某社区有500户家A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2000个电子元件中随机抽取5个入样C.从某厂生产的2000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样【做一做2-2】一个总体中有1000个个体,按照预先制定的规则,从每一部分中抽取1个个体,得到所需样本.由于抽样的间隔相等,因此系统抽样又称为等距抽样(或叫机械抽样),所以系统抽样中必须对总体中的每个个体进行合理(即等距)分段.若从容量为N 的总体中抽取容量为n 的样本,用系统抽样时,应先将总体中的各个个体编号,再确定分段间隔k ,以便对总体进行分段.当N n 是整数时,取k =N n 为分段间隔即可,如N =100,n =20,则分段间隔k =10020=5,也就是将100个个体平均每5个分为一段(组).当N n不是整数时,应先从总体中随机剔除一些个体,使剩余个体数N ′能被n 整除,这时分段间隔k =N ′n,如N =101,n =20,则应先用简单随机抽样从总体中剔除1个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k =10020=5,也就是说,只需将100个个体平均分为20段(组).一般地,用简单随机抽样的方法从总体中剔除部分个体,其个数为总体中的抽样法抽取样本的过程是公平的.2.分层抽样中各层入样的个体数应如何确定?剖析:当总体由差异明显的几部分组成时,应将总体分成互不交叉的几部分,其中所分成的每一部分叫层,然后按照各部分所占的比例,从各部分中独立抽取一定数量的个体,再将各部分抽出的个体合在一起作为样本,这就是分层抽样.由于层与层之间有明显的区别,而层内个体间差异不明显,为了使样本更能充分地反映总体的情况,抽取样本时,必须照顾到各个层的个体.所以每层中所抽取的个体数应按各层个体数在总体中所占的比例抽取,也就是各层抽取的比例都等于样本容量在总体中的比例,即抽样比=样本容量总体容量.这样抽取能使所得到的样本结构与总体结构相同,可以提高样本对总体的代表性.在实际操作时,应先计算出抽样比k =样本容量总体容量,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.题型一分层抽样中的计算问题【例题1】某校共有师生1600人,其中教师有100人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取的学生数为__________.反思:一个总体中有m 个个体,用分层抽样方法从中抽取一个容量为n (n <m )的样本,某层中含有x (x<m )个个体,在该层中抽取的个体数目为y ,则有nx m=y ,该等式中含有四个量,已知其中任意三个量,就能求出第四个量.题型二分层抽样的应用【例题2】某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表所示:很喜爱喜爱一般不喜爱2435456739261072电视台为了进一步了解观众的具体想法和意见,打算从中再抽取60人进行更为详细的调查,应怎样进行抽样?分析:人数多,差异大→分层抽样→确定每层抽取比例→在各层中分别抽取→合在一起得样本反思:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比.题型三Nn为整数的系统抽样问题【例题3】为了了解某地区今年高一学生期末考试的数10013名学生中抽取100名进行健康检查,采用何种抽样方法较好,并写出过程.错而获得整个样本.错因分析:上面的解法违背了系统抽样的等距均分原理,抽出的个体不都是处在每段的同一位置上,前87段与后13段各自处的位置不一样,导致抽样的不公平性,所以解法是错误的,必须先要随机地剔除13人.1下列问题中,最适合用分层抽样抽取样本的是().A.从10名同学中抽取3人参加座谈会B.某社区有300户家庭,其中高收入的家庭75户,中等收入的家庭180户,低收入的家庭45户,为了了解生活购买力的某项指标,要从中抽取一个容量为50户的样本C.从1000名工人中,抽取100人调查上班途中所用的时间D.从生产流水线上,抽取样本检查产品质量2(2011西安市一中月考,1)我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是().A.分层抽样B.抽签抽样C.随机抽样D.系统抽样3(为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取__________名学生.4若总体中含有1645个个体,采用系统抽样的方法从中抽取容量为35的样本,则编号后确定编号分为__________段,分段间隔k =__________,每段有__________个个体.5某学校有在编人员200人,其中行政人员20人,教师140人,后勤人员40人,教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽样,并写出抽样过程.答案:基础知识·梳理1.(1)属性特征所占比例(2)①征②所占比例【做一做1-1】B【做一做1-2】A 抽样比是90360+270+180=19,则应从甲社区中抽取低收入家庭的户数为360×1940.2.(1)简单随机抽样分组的间隔(3)①编号③一④加【做一做2-1】C【做一做2-2】10010典型例题·领悟【例题1】75抽样比为801600=120,该校有学生1600-100=1500人,则抽取的学生数为1500×120=75.【例题2】解:采用分层抽样的方法,抽样比为6012000.“很喜爱”的有2第一步先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k =80080=10个个体;第三步从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.【例题5】正解:由于总体个数为10013,数量较大,而且都是学生,差别不大,因而应采用系统抽样法,具体过程如下:由系统抽样的步骤可知编号分段时,10013÷100不为整数,先从总体中随机剔除13人,再按如下步骤操作:①采用随机的方式将总体中的个体编号为1,2,3, (10000)②把总体分成100段,每段10000100§3统计图表1.通过实例初步体会分布的意义和作用.2.在表示数据的过程中,复习几种统计图表(包括条形、扇形、折线统计图),学习茎叶图,体会它们各自的特点和用途.3.能根据问题的需要选择合适的统计图表,并能用自己的方式进行表示.统计图表统计图表是表达和分析________的重要工具,它不仅可以帮助我们从数据中获取有用的信息,还可以帮助我们直观、准确地理解相应的________.统计图表有:________统计图、________统计图、________统计图、茎叶图.利用科学抽样方法收集了样本数据后,下一步要做的工作就是分析和处理数据,其中较理想的方法是将所得数据进行适当的整理、分析,并转化为直观的图形形式表现出来,以便从中获取相应的信息,帮助我们制定恰当的决策.1.条形面积的大小反映____________________.扇形统计图可以很清楚地表示各部分数量同总数之间的关系,即扇形统计图能清楚地表示出各部分在总体中所占的__________.【做一做2】如图为某校高三(1)班的男女比例图表,已知该班共有学生55人,则该班男生比女生约多().A.13人B.21人C.24人D.34人3.折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连结起来.折线统计图不但可以表示出__________,而且能够清楚地表示__________,即折线统计图能够清晰地反映数据的________情况.【做一做3】如图是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7天中,日温差最大的一天是().A.5月1日B.5月2日C.5月3日D.5月5日4.茎叶图.(1)制作方法:将所有两位数的十位数字作为______,个位数字作为______,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶可以按从大到小(或从小到大)的顺序同行列出(也可以没有大小顺序).(2)优点:一是茎叶图上没有________的损失,所有的原始数据都可以从茎叶图中得到;二是茎叶图可以随时________,方便表示与比较.缺点:当数据量很大或有多组数据时,茎叶图就不那么直观、清晰了.【做一做4】如图表示8位销售员一个月销售商品数量的茎叶图,则销售数据分别为________________(单位:百件).础上,再根据不同的需要选择适当的统计图进行表示.如果只需大致判断一些数据的分布规律,了解数据中各元素所占比例的大小情况可以使用扇形统计图.例如统计一个农村种植的各种农作物的比例.如果需要根据反思:该例题中条形统计图的横轴是分组,纵轴是各组所含的个体数目.题型二扇形统计图的应用【例题2】如图是甲、乙、丙、丁四组人数的扇形统计图的部分结果,根据扇形统计图的情况可以知道丙、丁两组人数和为().A.250B.150C.400D.300反思:扇形统计图中各百分比是该组个体数目与总体数目的比,所有组的个体数目之和等于总体数目,所有组的百分比之和等于1.题型三折线统计图的应用【例题3】下表给出了2010年A,B两地的降水量(单位:mm):1月2月3月4月5月6月A9.2 4.9 5.418.638.0106.3B41.453.3178.8273.5384.9432.47月8月9月10月11月12月A54.4128.962.973.626.210.6B67.5228.5201.4147.328.019.1为了直观表示2010年A,B两地的降水量的差异和变化趋势,请用适当的统计,415,421,423,423,427,430,430,434,443,445,445 ,451,454;品种B:363,371,374,383,3394,395,397,397,400,401,401,403,406,407,410,412,415,416 ,422,430.(1)根据上面数据画出茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.分析:(1)茎图上没有原始信息的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛时随时记录,方便记录和表示.1当收集到的数据量很大或有多组数据时,需要比较各种数量的多少,用哪种统计图较合适().A.茎叶图B.条形统计图C.折线统计图D.扇形统计图2如图是2009年元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶图,则最低分和最高分分别为().A.79,93B.84,87C.48,78D.39,973某班学生在课外活动中参加文娱、美术、体育小组的人数之比为3∶1∶6,则在扇形统计图中表示参加体育小组人数的扇形圆心角是().A.108°B.216°C.60°D.36°4甲、乙两个班级各随机选出15名同学进行测验,成绩的茎叶图如图所示,则甲班、乙班的最高成绩各是________,从图中看,________班的平均成绩较高.5某地农村某户农民年收入如下(单位:元):土地收入打工收入养殖收入其他收入432036002357843请用不同的统计图来表示上面的数据.答案:基础知识·梳理数据结果条形扇形折线1.一个单位长度数目【做一做1】B2.总体部分占总体的百分比的大小百分比【做一做2】A3.数量的多少数量增减变化的情况变化【做一做3】D4.(1)茎叶(2)信息记录【做一做4】45,45,52,56,57,58,60,63由茎叶图可知销售数据都是两位数,分别为45,45,52,56,57,58,60,63.典型例题·领悟【例题1】0.1参加羽毛球活动的人数是4,则频率为440=0.1.【例题2】A甲组人数是120,占30%,则题3】解:用折线统计图表示题中的数据,如图.其中虚线为B地降水量,实线为A地降水量.【例题4】解:(1)茎叶图如图所示.(2)用茎叶图处理现有的数据不仅可以看出数据的分布状况,B由于需要比较各种数量的多少,并且收集到的数据量很大或有多组数据,符合条形统计图的特点.2.A3.B参加体育小组人数占总人数的63+1+6×100%=60%,则扇形圆心角是360°×60%=216°.4.96,92乙5.分析:题意的要求是将此四个数据用统计图表示出来,可利用条形统计图、折线统计图、扇形统计图来表示.解:用条形统计图表示,如图所示.用折线统计图表示,如图所示.用扇形统计图表示,如图所示.§4数据的数字特征1.能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息.2.通过实例理解数据标准差的意义.(2)特征:一组数据中的中位数是________的,反映了该组数据的________.中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点.【做一做1】某班50名学生右眼视力的检查结果如下表所示:视力0.10.20.30.40.50.60.70.8 1.0 1.2 1.5人数113434468106则该班学生右眼视力的众数为__________,中位数为__________.3.平均标准差是样本数据到平均数的一种平均距离,一般用s表示,通常用以下公式来计算s=________________________________________________________________________.可以用(2)特征:与标准差的作用________,描述一组数据围绕平均数波动的大小.(3)取值范围:________.数据组x1,x2,…,x n的平均数为x,方差为s2,标准差为s,则数据组ax1+b,ax2+b,…,ax n+b(a,b为非零常数)的平均数为a x+b,方差为a2s2,标准差为as.【做一做4】下列能刻画一组数据离散程度的是().A.平均数B.方差C.中位数D.众数6.极差(1)定义:一组数据的最______值与最______值的差称为这组数据的极差.(2)特征:表示该组数据之间的差异情况.极差利用了数据组中最大和最小的两个值,对极值过于敏感.但由于只涉及两个数据,便于得到,所以极差在实际中也经常应用.【做一做5】一组数据3,-1,0,2,x的极差是5,则x=__________.平均数与标准差(方差)这两个数字特征在实际问题中如何应用?剖析:平均数反映的是数据的平均水平,在实际应用中,平均数常被理解为平均水平.标准差反映的是数据的离散程度的大小,反映了各个样本数据聚集于样本平均数周围的程度,标准差越小表明在样本平均数的周围越集中;反之,标准差越大,表明各个样本数据在样本平均数的两边越分散.在实际应用中,标准差常被理解为稳定性,常常与平均数结合起来解决问题.例如,要从甲、乙两名射击运动员中选一名参加2012年伦敦奥运会,如果你是教练,你会制定怎样的选拔标准?制定怎样的选拔方案?。

2.1.1算法的基本思想导学案-高中数学北师大版必修3

2.1.1算法的基本思想导学案-高中数学北师大版必修3

§2.1算法的基本思想【学习目标】1.通过对解决具体问题过程与步骤的分析,体会算法的思想,了解算法的含义及其基本特征。

(重点)2.能分析具体问题,抽象出算法的过程,培养抽象概括能力、语言表达能力和逻辑思维能力。

(难点)3.通过算法的学习,让学生体验到数学与现实世界的关系、数学与计算机技术的关系,从而提高学生学习数学的兴趣。

一、知识记忆与理解【自主预习】阅读教材P75~P83“练习”以上部分,完成下列问题。

1、算法的概念:2、算法的基本思想:3、算法的特征:4、是不是任何一个算法都有明确的结果?5、做任何一件事情都得有算法吗?6、算法与解法的区别与关系.【预习检测】1、完成课本78p页练习1,2题及习题。

2、判断(正确的打“√”,错误的打“×”)(1)求解某一类问题的算法是唯一的.( )(2)算法执行后一定产生确定的结果.( )(3)算法只能解决一个问题,不能重复使用.( )(4)算法的步骤必须有限.( )3、下列对算法的理解不.正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤C.算法中的每一步都应当有效地执行,并得到确定的结果D.一个问题只能设计出一个算法4、下列语句中是算法的有( )①做饭需要刷锅、淘米、加水、加热这些步骤;②解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;③方程x2-1=0有两个实根;④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果是10.A.1个B.2个C.3个D.4个二、思维探究与创新【问题探究】一、数值型计算问题的算法探究一:写出解方程x2-2x-3=0的一个算法.整理反思变式训练1:写出求方程组⎩⎪⎨⎪⎧3x -2y =14, ①x +y =-2 ②的解的算法.二、非数值型计算问题的算法探究二:各种比赛在计算选手最后得分时,要去掉所有评委对该选手所打分数中的最高分和最低分,试设计一个找出最高分的算法.变式训练2: 在解放战争中,有一名战士接到命令,要求在最短的时间内配制出三副炸药,但是由于条件艰苦,称量物品的天平只剩下50 g 和5 g 两个砝码.现有465 g 硫黄,要平均分成三份,如何设计算法才能使称量的次数最少?需称量多少次?三、技能应用与拓展 【当堂检测】1.下列说法正确的是( ) A .算法就是某个问题的解题过程 B .算法执行后可以产生不同的结论 C .解决某一个具体问题,算法不同所得的结果不同D .算法执行步骤的次数不可以很大,否则无法实施2.下列四种自然语言叙述中,能称作算法的是( )A .在家里一般是妈妈做饭B .在野外做饭叫野炊C .研究函数奇偶性可以按“判断定义域是否关于原点对称,考查f (x )与f (-x )满足的关系”的程序进行D .做饭必须要有米3.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用( ) A .13分钟 B .14分钟 C .15分钟 D .23分钟 4.有以下六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法________.(写序号) 【拓展延伸】已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分,求他的总分S 和平均成绩x 的一个算法为: 1.取A =89,B =96,C =99; 2.________; 3.________; 4.输出计算的结果.整理 反思。

北师大版高中数学高一必修3学案古典概型的特征和概率计算公式

北师大版高中数学高一必修3学案古典概型的特征和概率计算公式

2.1古典概型的特征和概率计算公式预习课本P130~133,思考并完成以下问题(1)古典概型的定义是什么?(2)古典概型的概率公式是什么?[新知初探]1.古典概型的定义如果一个试验满足:(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.我们把具有这样两个特征的随机试验的数学模型称为古典概型(古典的概率模型).2.古典概型的概率公式对于古典概型,如果试验的所有可能结果(基本事件数)为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=m n.[点睛]在一次试验中可能出现的每一个结果称为基本事件,它们是试验中不能再分的最简单的随机事件.例如,掷一枚骰子,出现“1点”“2点”“3点”“4点”“5点”“6点”共6个结果,就是该随机试验的6个基本事件.[小试身手]1.一个家庭有两个小孩,则所有的基本事件是()A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)解析:选C用坐标法表示:将第一个小孩的性别放在横坐标位置,第二个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女,男),(女,女).2.下列试验是古典概型的为()①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;②同时掷两颗骰子,点数和为7的概率; ③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率; A .①② B .②④ C .①②④D .③④解析:选C ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.3.从100台电脑中任抽5台进行质量检测,每台电脑被抽到的概率是( ) A.1100 B.15 C.16D.120解析:选D 每台电脑被抽到的概率为5100=120.4.从1,2,3,4中随机取出两个数,则其和为奇数的概率为________.解析:不同的取法包括(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件,每个基本事件发生的可能性相同,因此是古典概型.和为奇数包括(1,2),(1,4),(2,3),(3,4),共4个基本事件,故所求概率为46=23.答案:23古典概型的判定[典例] (1)从区间[1,10]内任意取出一个实数,求取到实数2的概率; (2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率. [解] (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.只有同时满足有限性和等可能性这两个条件的试验才是古典概型,两个条件只要有一个不满足就不是古典概型.[活学活用]下列随机事件:①某射手射击一次,可能命中0环,1环,2环,…,10环;②一个小组有男生5人,女生3人,从中任选1人进行活动汇报;③一只使用中的灯泡寿命长短;④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.这些事件中,属于古典概型的有________.解析:题号判断原因分析①不属于命中0环,1环,2环,…,10环的概率不一定相同②属于任选1人与学生的性别无关,仍是等可能的③不属于灯泡的寿命是任何一个非负实数,有无限多种可能④属于该试验结果只有“正”“反”两种,且机会均等⑤不属于该品牌月饼评“优”与“差”的概率不一定相同古典概型的概率计算[典例](1)点数之和为5的概率;(2)点数之和为7的概率;(3)出现两个4点的概率.[解]在抛掷两粒均匀的骰子的试验中,每粒骰子均可出现1点,2点,…,6点,共6种结果.两粒骰子出现的点数可以用有序实数对(x,y)来表示,它与直角坐标系内的一个点对应,则所有的基本事件包括:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个.(1)记“点数之和为5”为事件A,从图中可以看到事件A包含的基本事件数共有4个:(1,4),(2,3),(3,2),(4,1),所以P(A)=436=19.(2)记“点数之和为7”为事件B,从图中可以看到事件B包含的基本事件数共有6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P(B)=636=16.(3)记“出现两个4点”为事件C,则从图中可以看到事件C包含的基本事件数只有1个:(4,4),所以P(C)=1 36.求解古典概型的概率“四步”法[活学活用]先后抛掷均匀的壹分、贰分、伍分硬币各一次.(1)一共可能出现多少种结果?(2)出现“2枚正面朝上,1枚反面朝上”的结果有多少种?(3)出现“2枚正面朝上,1枚反面朝上”的概率是多少?解:(1)先后抛掷壹分、贰分、伍分硬币时,可能出现的结果共有8种,即(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).(2)用A 表示事件“2枚正面朝上,1枚反面朝上”,所有结果有3种,即(正,正,反),(正,反,正),(反,正,正).(3)因为每种结果出现的可能性相等,所以事件A 的概率P (A )=38.[层级一 学业水平达标]1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A.16 B.13 C.12D.23解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P =26=13.故选B.2.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29D.19解析:选D 个位数与十位数之和为奇数的两位数一共有45个,其中个位数为0的有5个,概率为19.3.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 4.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.解析:从3男3女中选出2名同学,共有以下15种情况:(男1,男2),(男1,男3),(男2,男3),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(男3,女1),(男3,女2),(男3,女3),(女1,女2),(女1,女3),(女2,女3),其中2名都是女同学的有3种情况,故所求的概率P =15.答案:15[层级二 应试能力达标]1.两个骰子的点数分别为b ,c ,则方程x 2+bx +c =0有两个实根的概率为( ) A.12 B.1536 C.1936D.56解析:选C (b ,c )共有36个结果,方程有解,则Δ=b 2-4c ≥0,∴b 2≥4c ,满足条件的数记为(b 2,4c ),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P =1936.2.将一个各个面上涂有颜色的正方体锯成27个同样大小的小正方体,从中任取一个小正方体,其中恰有3面涂有颜色的概率为( )A.427B.827C.18D.14解析:选B 在这27个小正方体中,只有原正方体的8个顶点所对应的小正方体的3面是涂色的,故概率P =827.3.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )A.310B.25C.12D.35解析:选C 从五种不同属性的物质中随机抽取两种,出现的情况有:(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木,土),(水,火),(水,土),(火,土)共10种等可能情况,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.4.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45解析:选B 袋中的1个红球、2个白球和3个黑球分别记为a ,b 1,b 2,c 1,c 2,c 3. 从袋中任取两球有{a ,b 1},{a ,b 2},{a ,c 1},{a ,c 2},{a ,c 3},{b 1,b 2},{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},{c 1,c 2},{c 1,c 3},{c 2,c 3},共15个基本事件.其中满足两球颜色为一白一黑的有{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},共6个基本事件.所以所求事件的概率为615=25.5.设a ,b 随机取自集合{1,2,3},则直线ax +by +3=0与圆x 2+y 2=1有公共点的概率是________.解析:将a ,b 的取值记为(a ,b ),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.当直线与圆有公共点时,可得3a 2+b 2≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为59.答案:596.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110.答案:1107.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.解析:从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为34.答案:348.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a ,b (2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1. (2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.9.甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数则甲赢,否则乙赢.(1)若以A 表示事件“和为6”,求P (A );(2)若以B 表示事件“和大于4而小于9”,求P (B ); (3)这种游戏公平吗?试说明理由. 解:将所有可能情况列表如下:甲乙 123451 (1,1) (1,2) (1,3) (1,4) (1,5)2 (2,1) (2,2) (2,3) (2,4) (2,5)3 (3,1) (3,2) (3,3) (3,4) (3,5)4 (4,1) (4,2) (4,3) (4,4) (4,5) 5(5,1)(5,2)(5,3)(5,4)(5,5)由上表可知,该试验共包括25个等可能发生的基本事件,属于古典概型.(1)“和为6”的结果有:(1,5),(2,4),(3,3),(4,2),(5,1),共5种结果,故所求的概率为525=15. (2)“和大于4而小于9”包含了(1,4),(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),共16个基本事件,所以P (B )=1625.(3)这种游戏不公平.因为“和为偶数”包括13个基本事件,即甲赢的概率为1325,乙赢的概率为25-1325=1225,所以它不公平.。

北师大版高中数学必修3课件3.2互斥事件课件(数学北师大必修3)

北师大版高中数学必修3课件3.2互斥事件课件(数学北师大必修3)
北京师范大学出版社 高二 | 必修3
第三章 · 概率
§2.3 互斥事件
北京师范大学出版社 高二 | 必修3
学目标
1.理解互斥事件、对立事件的含义,会判断所给事件的类型; 2.掌握互斥事件的概率加法公式并会应用; 3.正确理解互斥、对立事件的关系并能正确区分、判断.
北京师范大学出版社 高二 | 必修3
理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌
”,两个事件不可能同时发生,且其中必有一个发生,所以它们既是互斥事 件,又是对立事件.
北京师范大学出版社 高二 | 必修3
(3)不是互斥事件,当然不可能是对立事件.
理由是:从40张扑克牌中任意抽取 1张,“抽出的牌的点数为 5的倍数”与 “抽出的牌的点数大于9”这两个事件可能同时发生,如抽得点数为10,因 此,二者不是互斥事件,当然不可能是对立事件.
P(A1)+P(A2)+… +P(An)
北京师范大学出版社 高二 | 必修3
3.对立事件 (1)两个互斥事件必有一个发生,则称这两个事件为对立事件,事件A的对立 事件记为. (2)对立事件A与必有一个发生,故A+是必然事件,从而,我们可以得到一 个重要公式:P()=1-P(A).
北京师范大学出版社 高二 | 必修3
m = ,几何概型的概率计算公式为P 2.古典概型的概率计算公式为P=P _______ n
d的测度 P= D的测度 =____________.
北京师范大学出版社 高二 | 必修3
知新益能
1.互斥事件
不能同时发生 的两个事件称为互斥事件. (1)_______________ (2) 如 果 事 件 A1 , A2 , … , An 中 的 任何两个都是 _____________ 互斥事件 ,就说事件A1,A2,…,An彼此互斥. __________ (3) 设 A , B为互斥事件,若事件 A , B__________ 至少有一个 发生,我们把这个事件记 作A+B.

人教版高中数学B版必修三导学案(全册)

人教版高中数学B版必修三导学案(全册)

学案:1.1.1-1.1.2算法与程序框图一、【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。

二、【重点难点】1、体会算法的思想,了解算法的含义。

2、能说明解决简单问题的步骤,提高逻辑思维能力。

三、【学习目标】1、通过实例,发展对解决具体问题的过程与步骤进行分析的能力,发展应用算法的能力。

问题的能力;2初步了解高斯消去法的思想四、自主学习1、算法的要求例1、写出二元一次方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩的算法例2:用数学语言写出对任意3个整数. ,,a b c 求出最大值的算法。

五、合作探究1.试写出判断直线0Ax By C ++=与圆222()()x a y b r -+-=的位置关系算法。

2. 用数学语言写出对任意3个整数. ,,a b c 求出最小值的算法。

3正三棱锥S ABC -的侧棱长为l ,底面边长为a 写出求此三棱锥S ABC -体积的一个算法。

4.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃菜,设计过河的算法。

六、总结升华1、知识与方法:2、数学思想及方法:七、当堂检测(见大屏幕)导学案:1.1.3(1)算法的三种基本逻辑结构和框图表示一、【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。

二、【重点难点】1、重点是利用三种逻辑结构编写框图;2、解决实际问题。

三、【学习目标】1、理解三种框图的逻辑结构;2、会利用三种逻辑结构编写框图;3、通过设计程序框图解决实际问题;四、自主学习1、框图的三种逻辑结构有哪些?例1、已知点00(,)p x y 和直线:0l Ax By C ++=,求点00(,)p x y 到直线:0l Ax By C ++=的距离d 的算法,及其程序框图。

北师大版高中高二数学必修3《算法初步》教案及教学反思

北师大版高中高二数学必修3《算法初步》教案及教学反思

北师大版高中高二数学必修3《算法初步》教案及教学反思一、教学内容概述本节课的教学内容为《算法初步》,是高中高二数学必修3的一部分。

主要包括算法的概念、常见算法的分类、算法的思路以及问题的解法。

学生需要掌握算法的基本概念,理解常见的算法分类,学会利用具体的案例来解决问题。

在本课的教学过程中,着重培养学生的算法思维能力和实际解决问题的能力。

二、教学目标1.掌握算法的基本概念和常见的算法分类。

2.了解算法在实际问题中的应用。

3.培养学生的算法思维能力。

4.提高学生的实际运用算法进行问题解决的能力。

三、教学过程1. 导入环节我首先通过一个简单的小问题导入本节课的内容:假设你要在电脑里存储一些数据,如何更好地进行数据管理?通过这个问题引导学生思考如何应用算法来进行数据管理。

然后我向学生介绍了本节课的教学内容:算法初步。

我解释了什么是算法以及算法的重要性。

在此基础上,我向学生介绍了常见的算法分类以及算法的思路。

2. 讲解及演示我通过PPT讲解了各种算法分类的特点、应用以及实现方法,并结合具体的案例进行演示。

在演示过程中,我让学生自己动手模拟数据来实践演算法。

通过实践操作,学生可以更深刻地理解算法的思路和应用。

同时,我也让学生分享自己对于算法的理解和应用经验,鼓励他们在实际操作中不断地思考和总结。

3. 练习及测试在演示和讲解完毕之后,我设置了一些练习题来巩固学生掌握的知识,并通过一些测试题来检验学生的学习成果。

测试题设置了多种不同难度的问题,包括选择题、填空题和解答题等,帮助学生更全面地掌握算法的基本概念和使用方法。

4. 总结最后,我通过一些问题来总结本节课所学的内容,以便学生回顾整个学习过程并让他们更加深刻地理解算法的重要性和应用。

同时,我还向学生介绍了如何在日常生活中进行算法思维的应用,鼓励他们发挥创造力、勇于努力,将所学应用到生活中去。

四、教学反思通过本节课的教学,我发现学生在算法的理解和应用方面存在一些困难。

【北师大版】高中数学必修四全册学案(全册共340页 附答案)

【北师大版】高中数学必修四全册学案(全册共340页 附答案)

【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。

高中数学 第三章 概率 2.2 建立概率模型教案 北师大版必修3-北师大版高一必修3数学教案

高中数学 第三章 概率 2.2 建立概率模型教案 北师大版必修3-北师大版高一必修3数学教案

2.2 建立概率模型整体设计教学分析本节教材通过例2的四种模型的所有可能结果数越来越少,调动起学生思考探究的兴趣;教师在教学中要注意通过引导学生体会不同模型的特点以及对各种方法进行比较,提高学生分析和解决问题的能力.三维目标1.使学生能建立概率模型来解决简单的实际问题,提高学生分析问题和解决问题的能力.2.通过学习建立概率模型,培养学生的应用能力.重点难点教学重点:建立古典概型.教学难点:建立古典概型.课时安排1课时教学过程导入新课思路1.计算事件发生概率的大小时,要建立概率模型,把什么看成一个基本事件是人为规定的.今天我们学习如何建立概率模型,教师点出课题.思路2.解决实际应用问题时,要转化为数学问题来解决,即建立数学模型,这是高中数学的重点内容之一,也是高考的必考内容,同样解决概率问题也要建立概率模型,教师点出课题.推进新课新知探究提出问题1.回顾解应用题的步骤?2.什么样的概率属于古典概型?讨论结果:1.解应用题的一般程序:①读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.②建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.③解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.④答:将数学结论还原给实际问题的结果.2.同时满足以下两个条件的概率属于古典概型:①试验的所有基本事件只有有限个,每次试验只出现其中一个基本事件;②每一次试验中,每个基本事件出现的可能性相等.应用示例思路1例1 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球.试计算第二个人摸到白球的概率.分析:我们只需找出4个人按顺序依次摸球的所有可能结果数和第二个人摸到白球的可能结果数.为此考虑用列举法列出所有可能结果.解法一:用A 表示事件“第二个人摸到白球”.把2个白球编上序号1,2;2个黑球也编上序号1,2.于是,4个人按顺序依次从袋中摸出一球的所有可能结果,可用树状图直观地表示出来(如图1).图1树状图是进行列举的一种常用方法.从上面的树状图可以看出,试验的所有可能结果数为24.由于口袋内的4个球除颜色外完全相同,因此,这24种结果的出现是等可能的,试验属于古典概型.在这24种结果中,第二个人摸到白球的结果有12种,因此“第二个人摸到白球”的概率P(A)=2412=21, 这与第一节的模拟结果是一致的.还可以建立另外的模型来计算“第二个人摸到白球”的概率.如果建立的模型能使得试验的所有可能结果数变少,那么我们计算起来就更简便.解法二:因为是计算“第二个人摸到白球”的概率,所以我们可以只考虑前两人摸球的情况.前两人依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图2).图2从上面的树状图可以看出,这个模型的所有可能结果数为12,因为口袋里的4个球除颜色外完全相同,因此,这12种结果的出现是等可能的,这个模型也是古典概型.在上面12种结果中,第二个人摸到白球的结果有6种,因此“第二个人摸到白球”的概率P(A)=126=21. 这里,我们是根据事件“第二个人摸到白球”的特点,利用试验结果的对称性,只考虑前两人摸球的情况,从而简化了模型.还可以从另外一个角度来考虑这个问题.因为口袋里的4个球除颜色外完全相同,因此,可以对2个白球不加区别,对2个黑球也不加区别,这样建立的模型的所有可能结果数就会更少,由此得到例2的另一种解法.解法三:只考虑球的颜色,4个人按顺序依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图3).图3试验的所有可能结果数为6,并且这6种结果的出现是等可能的,这个模型是古典概型.在这6种结果中,第二个人摸到白球的结果有3种,因此“第二个人摸到白球”的概率P(A)=63=21. 下面再给出一种更为简单的解法.解法四:只考虑第二个人摸出的球的情况,他可能摸到这4个球中的任何一个,这4种结果出现的可能性是相同的.第二个人摸到白球的结果有2种,因此“第二个人摸到白球”的概率P(A)=42=21. 点评:画树状图进行列举是计算结果个数的基本方法之一.解法一利用树状图列出了4个人依次从袋中摸出一球的所有可能结果,共有24种,其中第二个人摸到白球的结果有12种,因此算得“第二个人摸到白球”的概率为21. 解法二利用试验结果的对称性,只考虑前两人摸球的情况,所有可能结果减少为12种,简化了模型.解法三只考虑球的颜色,对2个白球不加区别,对2个黑球也不加区别,所有可能结果只有6种.解法四只考虑第二个人摸出的球的情况,所有可能结果变为4种,这个模型最简单.尽管解法二,三,四建立的模型在解决该问题时比解法一简便,但解法一也有它的优势,利用解法一可以计算出4个人顺次摸球的任何一个事件的概率,而解法二,三,四却不能做到.教师要提醒学生,本章古典概率的计算,解法一是最基本的方法.对于一个实际问题,有时从不同的角度考虑,可以建立不同的古典概型来解决.变式训练小明和小刚正在做掷骰子游戏,两人各掷一枚骰子,当两枚骰子点数之和为奇数时,小刚得1分,否则小明得1分.这个游戏公平吗?分析:计算双方获胜的概率,来判断游戏是否公平.解:设(x,y)表示小明抛掷骰子点数是x ,小刚抛掷骰子点数是y ,则该概率属于古典概型.所有的基本事件是:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3), (4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),即有36种基本事件.其中点数之和为奇数的基本事件有:(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5).即有18种.所以小刚得1分的概率是3618=21. 则小明得1分的概率是1-21=21. 则小明获胜的概率与小刚获胜的概率相同,游戏公平.思路2例1 (2007广东高考,文8)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A.103 B.51 C.101 D.121 分析:用(x,y)(x≠y)表示从这5个球中随机取出2个小球上数字的结果,其结果有: (1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),即共有10种,取出的小球标注的数字之和为3或6的结果有:(1,2)、(1,5)、(2,4),共有3种,所以取出的小球标注的数字之和为3或6的概率为P(A)= 103. 答案:A点评:求古典概型的概率的步骤:①利用枚举法计算基本事件的总数;②利用枚举法计算所求事件所含基本事件的个数;③代入古典概型的概率计算公式求得.变式训练1.(2007全国高考卷Ⅰ,文13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):该自动包装机包装的食盐质量在497.5 g —501.5 g 之间的概率约为___________.分析:观察表格可得在497.5 g —501.5 g 之间的食盐有:498,501,500,501,499共5袋,则食盐质量在497.5 g —501.5 g 之间的概率P(A)=205=0.25. 答案:0.252.某校要从高一、高二、高三共2 007名学生中选取50名组成访问团,若采用下面的方法选取:先用分层抽样的方法从2 007人中剔除7人,剩下的2 000人再按简单随机抽样的方法进行,则每人入选的概率( ) A.不全相等 B.均不相等C.都相等且为200750D.都相等且为401 分析:按分层抽样抽取样本时,每个个体被抽到的概率是相等的,都等于200750. 答案:C知能训练1.袋中有4个红球,5个白球,2个黑球,从里面任意摸2个小球,不是基本事件.( )A.{正好2个红球}B.{正好2个黑球}C.{正好2个白球}D.{至少一个红球}分析:至少一个红球包含:一红一白或一红一黑或2个红球,所以{至少一个红球}不是基本事件,其他事件都是基本事件.答案:D2.抛掷一枚质地均匀的硬币,如果连续抛掷10 000次,那么第9 999次出现正面朝上的概率是( )A.99991B.100001C.100009999D.21 答案:D3.有4条线段,长度分别为1、3、5、7,从这四条线段中任取三条,则所取三条线段能够成一个三角形的概率是( )A.41B.31C.21D.52 答案:A4.(2007全国高考卷Ⅱ,文13)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为____________.分析:按简单随机抽样抽取样本时,每个个体被抽到的概率是相等的,都等于1005,即201. 答案:201 5.某小组有5名女生,3名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是__________.答案:81 6.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)事件A :取出的两球都是白球;(2)事件B :取出1个是白球,另1个是红球.分析:首先应求出任取两球的基本事件的总数,然后需分别求出事件A 的个数和事件B 的个数,运用公式求解即可.解:设4个白球的编号为1,2,3,4,两个红球的编号为5,6.从袋中的6个小球中任取两个的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)取出的全是白球的基本事件,共有6个,即为(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),∴取出的两个球都是白球的概率为P(A)=156. (2)取出一个红球,而另一个为白球的基本事件,共有8个,即为(1,5),(1,6), (2,5),(2,6), (3,5),(3,6), (4,5),(4,6),∴取出的两个球一个是白球,另一个是红球的概率为P(B)=158. 拓展提升1.连续掷两次骰子,以先后得到的点数m,n 为点P(m,n)的坐标,设圆Q 的方程为x 2+y 2=17.(1)求点P 在圆Q 上的概率;(2)求点P 在圆Q 外部的概率.解:m 的值的所有可能是1,2,3,4,5,6,n 的值的所有可能是1,2,3,4,5,6,所以,点P(m ,n)的所有可能情况有6×6=36种,且每一种可能出现的可能性相等,本问题属古典概型问题.(1)点P 在圆Q 上只有P(1,4),P(4,1)两种情况,根据古典概型公式,点P 在圆Q 上的概率为181362=. (2)点P 在圆Q 内的坐标是:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共有8点,所以点P 在圆Q 外部的概率为1-18133682=+. 2.将一枚质地均匀的硬币连续投掷3次,求以下事件的概率:(1)3次正面向上;(2)2次正面向上,1次反面向上.解:(1)将一枚质地均匀的硬币连续投掷3次的基本事件总数为8,又事件“3次正面向上”共有基本事件数为1,设事件“3次正面向上”为A, ∴P(A)=81. ∴事件“3次正面向上”发生的概率为81. (2)又事件“2次正面向上,1次反面向上”共有基本事件数为3,设事件“2次正面向上,1次反面向上”为B,∴P(B)=83. ∴事件“2次正面向上,一次反面向上”发生的概率为83. 课堂小结本节课学习了同一个古典概型的概率计算问题,可以建立不同的概率模型来解决. 作业习题3-2 A 组 7、8.设计感想本节教学设计过程中,注重培养学生的应用能力,以及古典概型的计算方法.在实际教学过程中,教师要根据学生的实际,重点指导学生如何建立古典概型.。

2019-2020年高中数学北师大版选修1-1《导数的概念与几何意义》word导学案

2019-2020年高中数学北师大版选修1-1《导数的概念与几何意义》word导学案

2019-2020年高中数学北师大版选修1-1《导数的概念与几何意义》word导学案1.理解导数的概念,能利用导数的定义求函数的导数.2.理解函数在某点处的导数的几何意义是该函数图像在该点的切线的斜率,并利用其几何意义解决有关的问题.3.掌握应用导数几何意义求解曲线切线方程的方法.4.在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法.如图,当点P n(x n,f(x n))(n=1,2,3,4)沿着曲线f(x)趋近点P(x0,f(x0))时,割线PP n的变化趋势是什么?问题1:根据创设的情境,割线PP n的变化趋势是.问题2:导数的概念与求法:我们将函数f(x)在x=x0处的瞬时变化率称为f(x)在x=x0处的导数,即有f'(x0)==,所以求导数的步骤为:(1)求函数的增量:Δy=f(x0+Δx)-f(x0);(2)算比值:=;(3)求极限:y'=.问题3:函数y=f(x)在x=x0处的导数,就是曲线y=f(x)在x=x0处的切线的斜率k=f'(x0)=.相应的切线方程是:.问题4:曲线上每一点处的切线斜率反映了什么?直线与曲线有且只有一个公共点时,直线是曲线的切线吗?它反映的是函数的情况,体现的是数形结合,以曲代直的思想.不一定是,有些直线与曲线相交,但只有一个公共点.相反,有些切线与曲线的交点.1.下列说法正确的是().A.曲线的切线和曲线有且只有一个交点B.过曲线上的一点作曲线的切线,这点一定是切点C.若f'(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线D.若y=f(x)在点(x0,f (x0))处有切线,则f'(x0)不一定存在2.如果曲线y=f (x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么().A.f'(x0)>0B.f'(x0)<0C.f'(x0)=0D.f'(x0)不存在3.设P0为曲线f(x)=x3+x-2上的点,且曲线在P0处的切线平行于直线y=4x-1,则P0点的坐标为.4.函数y=3x+2上有一点(x0,y0),求该点处的导数f'(x0).导数概念的理解已知f'(x0)=2,求.求切线方程已知曲线y=上两点P(2,-1),Q(-1,).(1)求曲线在点P,Q处的切线的斜率;(2)求曲线在P,Q处的切线方程.导数几何意义的综合应用抛物线y=x2在点P处的切线与直线4x-y+2=0平行,求P点的坐标及切线方程.已知f(x)=x3-8x,则= ; = ;= .过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率,并求曲线在点P处的切线的斜率.已知曲线C:y=x3.(1)求曲线C上横坐标为1的点处的切线方程;(2)上述切线与曲线C是否还有其他公共点?1.已知函数y=f(x)的图像如图,则f'(x A)与f'(x B)的大小关系是( ).A.f'(x A)>f'(x B)B.f'(x A)<f'(x B)C.f'(x A)=f'(x B)D.不能确定2.已知y=,则y'的值是( ).A.B.C.2D.3.已知y=ax2+b在点(1,3)处的切线斜率为2,则= .4.求y=x2在点A(1,1)处的切线方程.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是x-2y+1=0,则f(1)+2f'(1)的值是().A. B.1 C.D.2考题变式(我来改编):第2课时导数的概念与几何意义知识体系梳理问题1:点P n趋近于点P时,割线PP n趋近于确定的位置PT,PT为曲线的切线问题3:= y-f(x0)=f'(x0)(x-x0)问题4:瞬时变化不止一个基础学习交流1.D当切线平行于y轴时,切线斜率不存在,则f'(x0)不存在.2.B由x+2y-3=0知斜率k=-,∴f'(x0)=-<0.3.(1,0)或(-1,-4)f'(x)===3x2+1,由于曲线f(x)=x3+x-2在P0处的切线平行于直线y=4x-1,所以f(x)在P0处的导数值等于4,设P0(x0,y0),有f'(x0)=3+1=4,解得x0=±1,这时P0点的坐标为(1,0)或(-1,-4).4.解:f'(x0)===3.重点难点探究探究一:【解析】由已知得:=2,当h→0,2h→0,-4h→0,==2.[问题]上面的解答遵循导数的定义吗?[结论]没有,在导数的定义形式中,增量Δx的形式多种多样,但是无论增量Δx选择哪种形式,Δy必须保持相应的形式.即:f'(x0)===(其中a为非零常数).于是,正确解答为:=-4=-4=-4f'(x0)=-8.【小结】对极限的理解和计算,也是对导数概念的准确理解.通过此题可以看出学生是否掌握了导数的概念.探究二:【解析】将P(2,-1)代入y=,得t=1,∴y=.∴===.(1)曲线在点P处的切线斜率为y'|x=2==1,曲线在点Q处的切线斜率为y'|x=-1=.(2)曲线在点P处的切线方程为y-(-1)=x-2,即x-y-3=0,曲线在点Q处的切线方程为y-=[x-(-1)],即x-4y+3=0.【小结】1.因为“在某点处”和“过某点的”切线方程求法不同,所以解答这类问题需判断点是否在曲线上.2.求曲线y=f(x)在点(x0, f(x0))处的切线方程.(1)函数y=f(x)在点x0处的导数f'(x0)即为切线的斜率.(2)根据直线的点斜式方程,得切线方程为y-f(x0)=f'(x0)(x-x0).(3)若曲线y=f(x)在点P(x0,f(x0))处的导数f'(x0)不存在,则切线与x轴垂直;若f'(x0)>0,则切线与x轴正向夹角为锐角;若f'(x0)<0,则切线与x轴正向夹角为钝角;若f'(x0)=0,则切线与y轴垂直.探究三:【解析】设P点坐标为(x0,y0),y'====(2x+Δx)=2x.∴y'=2x0,又由切线与直线4x-y+2=0平行,∴2x0=4,∴x0=2.∵P(2,y0)在抛物线y=x2上,∴y0=4,∴点P的坐标为(2,4),∴切线方程为y-4=4(x-2),即4x-y-4=0.【小结】1.解决本题应用了方程的思想,这其实是已知切点求切线方程的逆应用过程.2.根据斜率求切点坐标的方法步骤为:(1)先设切点坐标(x0,y0);(2)求导函数f'(x);(3)求切线的斜率f'(x0);(4)由斜率间的关系列出关于x0的方程,解方程求x0;(5)点(x0,y0)在曲线f(x)上,将(x0,y0)代入求y0,得切点坐标.思维拓展应用应用一:44-2f'(x)====(3x2+3x·Δx+Δx2-8)=3x2-8,∴f'(2)=4.=f'(2)=4.==f'(2)=4.=-=-f'(2)=-2.应用二:∵Δy=f(1+Δx)-f(1)=(1+Δx)3-1=3Δx+3(Δx)2+(Δx)3,==(Δx)2+3Δx+3.当Δx=0.1时,割线PQ的斜率为k1==(0.1)2+3×0.1+3=3.31.曲线在点P处的切线的斜率为k2==3.应用三:(1)将x=1代入y=x3得y=1,∴切点P(1,1),y'====3x2.∴y'|x=1=3,∴点P处的切线方程为y=3x-2.(2)由得(x-1)(x2+x-2)=0,∴x=1或-2.∴公共点为(1,1)或(-2,-8),∴还有其他公共点(-2,-8).基础智能检测1.B f'(x A)与f'(x B)分别表示函数图像在点A, B处的切线斜率,故f'(x A)<f'(x B).2.BΔy=-,=,===’∴y'=.3.2由题意=(aΔx+2a)=2a=2,∴a=1,又3=a×12+b,∴b=2,∴=2.4.解:f'(1)=====(Δx+2)=2,即切线的斜率k=2,所以y=x2在点A(1,1)处的切线方程为y-1=2(x-1),即2x-y-1=0.全新视角拓展D∵点(1,f(1))在切线x-2y+1=0上,∴f(1)=1,又f'(1)=,∴f(1)+2f'(1)=1+2×=2.。

高中数学 第三章 指数函数和对数函数 3.5 对数函数问题导学案 北师大版必修1-北师大版高一必修1

高中数学 第三章 指数函数和对数函数 3.5 对数函数问题导学案 北师大版必修1-北师大版高一必修1

§3.5 对数函数问题导学一、对数函数的概念及对数函数与指数函数的关系活动与探究1(1)下列函数是对数函数的是( ). A .y =log 2(3x ) B .y =log 2x 3C .14log y x =D .121log y x= (2)写出下列函数的反函数:①y =⎝ ⎛⎭⎪⎫12x;②y =ln x.迁移与应用1.若对数函数f (x )的图像经过点(16,-2),那么f (x )的解析式为__________.2.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,其图像经过点(a ,a ),则f (x )等于( ).A .log 2xB .12log x C .12x D .x 2(1)判断一个函数是否是对数函数,主要根据解析式的特征来判定,求对数函数解析式时,主要利用待定系数法求出底数a 的值.(2)函数y =log a x 的反函数是y =a x (a >0,且a ≠1);函数y =a x的反函数是y =log a x (a >0,且a ≠1).二、求与对数函数有关的函数的定义域活动与探究2求下列函数的定义域:(1)f (x )=lg(4-x )x -3;(2)y =log 0.1(4x -3).迁移与应用求下列函数的定义域:(1)y =1lg(x +1)-3;(2)y =log 3x -1.求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要注意对数函数自身的要求:真数大于零.三、对数函数的图像活动与探究3作出函数f (x )=|log 3x |的图像,并求出其值域和单调区间.迁移与应用函数f (x )=log 41x的大致图像为( ).1.作函数的图像通常采用描点法和图像变换法,可灵活选用; 2.一般地,函数y =-f (x )与y =f (x )的图像关于x 轴对称,函数y =f (-x )与y =f (x )的图像关于y 轴对称,函数y =-f (-x )与y =f (x )的图像关于原点对称.四、对数函数单调性的应用活动与探究4(1)比较下列各组数的大小:①124log 5与log 1267;②12log 3与15log 3;③log a 2与log a 3.(2)若log a (1-2x )>log a (1+2x ),求实数x 的取值范围.迁移与应用1.设a =log 2π,b =log 23,c =log 32,则( ). A .a >b >c B .a >c >b C .b >a >c D .b >c >a2.若log a 3<1,求a 的取值范围.(1)比较两个对数值的大小,常用方法有:①底数相同,真数不同时,用对数函数的单调性来比较;②底数不同,而真数相同时,常借助图像比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.④分类讨论:当底数与1的大小关系不确定时,要对底数与1比较,分类讨论.(2)解与对数有关的取值范围问题通常转化为不等式(组)求解,其依据是对数函数的单调性.(3)解决与对数函数相关的问题时,要遵循“定义域优先”的原则,切勿忘记真数大于0这一条件.当堂检测1.若函数f (x )=⎝ ⎛⎭⎪⎫13x的反函数是y =g (x ),则g (3)=( ).A .127B .27C .-1D .12.若log 5x <-1,则x 的取值范围是( ).A .x <15B .0<x <15C .x >15 D .x >53.下列不等式成立的是( ). A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 324.函数y =__________.5.画出下列函数的图像,并根据图像写出函数的定义域、值域以及单调区间: (1)y =log 3(x -2); (2)y =|12log x |.答案:课前预习导学 【预习导引】1.y =log a x 底数 10 e预习交流1 提示:根据对数函数的定义,只有严格符合y =log a x (a >0,a ≠1,x >0)形式的函数才是对数函数.例如y =log 3x (x >0),12log y x =(x >0)是对数函数,而y =2log 2x ,212log y x =等都不是对数函数.2.反函数 互换 y =x3.(1)描点法 先画函数x =log 2y 的图像,再变换为y =log 2x 的图像. (2)(1,0) y 轴右边 x 轴上方 x 轴下方 (0,+∞)4.(0,+∞) (-∞,+∞) (-∞,0) (0,+∞)预习交流2 提示:不论a (a >0,且a ≠1)取何值,总有log a 1=0,因此对数函数图像过定点(1,0),对于函数y =log a f (x ),若令f (x )=1解得x =x 0,那么其图像经过定点(x 0,0).预习交流3 提示:当a >1时,a 值越大,图像越靠近x 轴; 当0<a <1时,a 值越大,图像越远离x 轴.课堂合作探究 【问题导学】活动与探究1 思路分析:(1)根据对数函数的定义进行判断;(2)根据指数函数y =a x与对数函数y =log a x 的关系直接写出函数的反函数.(1)C 解析:由对数函数的定义知,只有函数14log y x =是对数函数,其余选项中的函数均不是对数函数,故选C.(2)解:①指数函数y =⎝ ⎛⎭⎪⎫12x,它的底数是12,它的反函数是对数函数12log y x =.②对数函数y =ln x ,它的底数是e ,它的反函数是指数函数y =e x.迁移与应用 1.()14log f x x = 解析:设f (x )=log a x (a >0,且a ≠1),由已知得log a 16=-2,因此a -2=16,解得a =14,故()14log f x x =.2.B 解析:由题意,知f (x )=log a x . ∵其图像过(a ,a ),∴a =log a a .∴a =12.∴()12log f x x =.活动与探究2 思路分析:(1)x 取值需使分母不等于零且真数为正实数; (2)x 取值需使被开方数为非负数且真数为正实数.解:(1)要使函数有意义,需有⎩⎪⎨⎪⎧4-x >0,x -3≠0,解得x <4,且x ≠3,所以函数的定义域为(-∞,3)∪(3,4).(2)要使函数有意义,需有⎩⎪⎨⎪⎧4x -3>0,log 0.1(4x -3)≥0,即⎩⎪⎨⎪⎧4x -3>0,4x -3≤1,解得34<x ≤1.所以函数的定义域为⎝ ⎛⎦⎥⎤34,1. 迁移与应用 解:(1)∵由⎩⎪⎨⎪⎧lg(x +1)-3≠0,x +1>0,得⎩⎪⎨⎪⎧x +1≠103,x >-1,∴x >-1,且x ≠999,∴函数的定义域为{x |x >-1,且x ≠999}. (2)要使函数有意义,应有log 3x -1≥0, 即log 3x ≥1,所以x ≥3, 即函数的定义域为{x |x ≥3}. 活动与探究3 思路分析:将函数f (x )化为分段函数,结合对数函数及图像变换可作出函数图像,然后通过图像求出值域和单调区间.解:f (x )=|log 3x |=⎩⎪⎨⎪⎧log 3x ,x ≥1,-log 3x ,0<x <1,所以f (x )的图像在[1,+∞)上与y =log 3x 的图像相同,在(0,1)上的图像与y =log 3x的图像关于x 轴对称,据此可画出其图像如下:从图像可知:函数f (x )的值域为[0,+∞),递增区间是[1,+∞),递减区间是(0,1).迁移与应用 D 解析:由于f (x )=log 41x=-log 4x ,其图像与y =log 4x 的图像关于x轴对称,故选D.活动与探究 4 思路分析:(1)①中两数同底不同真,可利用对数函数的单调性;②中同真不同底,可结合图像判断;③中底数中含有字母,需分类讨论.(2)对底数a 进行讨论,结合对数函数的单调性求解. 解:(1)①12log y x =在(0,+∞)上递减,又因为45<67,所以112246log >log 57.②因为在x ∈(1,+∞)上,15log y x =的图像在12log y x =图像的上方,所以1125log 3<log 3.③当a >1时,y =log a x 为增函数,所以log a 2<log a 3.当0<a <1时,y =log a x 为减函数, 所以log a 2>log a 3.(2)当a >1时,依题意有⎩⎪⎨⎪⎧ 1-2x >0,1+2x >0,1-2x >1+2x ,解得-12<x <0;当0<a <1时,依题意有⎩⎪⎨⎪⎧1-2x >0,1+2x >0,1-2x <1+2x ,解得0<x <12.因此当a >1时,x 的取值范围是⎝ ⎛⎭⎪⎫-12,0,当0<a <1时,x 的取值范围是⎝ ⎛⎭⎪⎫0,12. 迁移与应用 1.A 解析:∵函数y =log 2x 在(0,+∞)上是增函数,∴log 2π>log 23,即a >b .又∵b =12log 23>12,c =12log 32<12,∴b >c .∴a >b >c .2.解:当a >1时,原不等式可化为log a 3<log a a , ∴a >3.当0<a <1时,原不等式可化为log a 3<log a a , ∴a <3.又∵0<a <1,∴0<a <1.综上知,所求a 的取值范围是(0,1)∪(3,+∞). 【当堂检测】1.C 解析:依题意g (x )=13log x ,所以g (3)=13log 3=-1.2.B 解析:由log 5x <-1可得log 5x <log 515,所以0<x <15.3.A 解析:∵y =log 2x 在(0,+∞)上是增函数,∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1. ∴log 32<log 23<log 25.4.[0,1) 解析:∵由12log (1)x -≥0,得0<1-x ≤1,∴0≤x <1.5.解:(1)函数y =log 3(x -2)的图像可看作把函数y =log 3x 的图像向右平移2个单位长度得到的,如图①.其定义域为(2,+∞),值域为R ,在区间(2,+∞)上是增函数.(2)y =|12log x |=122log ,01,log ,1,x x x x <≤⎧⎪⎨⎪>⎩其图像如图②.其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减少的,在(1,+∞)上是增加的.。

北师大版高二数学必修3电子课本课件【全册】

北师大版高二数学必修3电子课本课件【全册】

第一章 统计
北师大版高二数学必修3电子课本 课件【全册】
1.从普查到抽样
北师大版高二数学必修3电子课本 课件【全册】
习题1—1
北师大版高二数学必修3电子课本 课件【全册】
北师大版高二数学必修3电子课 本课件【全册】目录
0002页 0083页 0131页 0133页 0175页 0223页 0251页 0311页 0391页 0431页 0448页 0494页 0525页 0565页 0589页 0618页 0672页
第一章 统计 习题1—1 2.抽样方法 2.2分层抽样与系统抽样 3.统计图表 4.数据的数字特征 4.2标准差 5.用样本估计总体 5.2估计总体的数字特征 阅读材料 标准差的用途 习题1—6 习题1—7 习题1—8 课题学习 调查通俗歌曲的流行趋势 复习题一 1.算法的基本思想 1.2排序问题与算法的多样性
阅读材料 选举的预测
北师大版高二数学必修3电子课本 课件【全册】
2.抽样方法
北师大版高二数学必修ห้องสมุดไป่ตู้电子课本 课件【全册】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章统计§1 从普查到抽样§2.1 简单随机抽样§1.2.2分层抽样§1.2.2系统抽样§1.3统计图表4.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力从4.6到5.0之间的学生数为b,则a,b 的值分别为()A.0.27,78 B.0.27,83C.2.7,78 D.2.7,835.一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是()A.81.2,4.4 B.78.8,4.4C.81.2,84.4 D.78.8,75.66.(2008年上海卷)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是________.7.(15分)下图是某个人口为90万人的县城人口年龄分布:(1)年龄大于60岁的有多少人?(2)年龄小于20岁和在40~60岁间的共有多少人?(3)年龄在20~40岁的人口比大于60岁的人口多多少?8.(15分)为了了解九年级学生中女生的身高(单位:cm)情况,某中学对九年级女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:组别频数频率145.5~149.5 1 0.02149.5~153.5 4 0.08153.5~157.5 20 0.40157.5~161.5 15 0.30161.5~165.5 8 0.16165.5~169.5 m n合计M N(1)求出表中m,n,M,N所表示的数分别是多少?(2)画出频率分布直方图;(3)全体女生中身高在哪组范围内的人数最多?估计九年级学生中女生的身高在161.5以上的概率.9.(16分)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:甲27 38 30 37 35 31§1.4.1 数据的数字特征4.什么叫极差?有什么意义?5.什么叫方差?有什么意义?练习2:在上一节中,从甲、乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示,如图(1)甲乙两组数据的中位数、众数、极差分别是多少?(2)你能从图中分别比较甲乙两组数据平均数和方差的大小吗?精讲互动例1甲、乙两台机床同时生产直径是40mm的零件。

为了检验产品质量,从两台机床生产的产品中件进行测量,结果如下表所示甲40.0 39.8 40.1 40.2 39.9 40.0 40.2 39.8 40.2 39.8乙40.0 40.0 39.9 40.0 39.9 40.1 40.1 40.1 40.0 39.9(1)你能选择适当的数分别表示这两组数据的离散程度吗?提出问题:什么叫标准差?有什么意义?(2)分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差§5.1估计总体的分布2)频率分布直方图的绘制的步骤3)频率分布折线图的绘制精讲互动1.讲解几种频率分布的联系和区别2.例题讲解例1 :为检测某产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,二级品8件,三级品13件,次品4件。

⑴列出样本的频率分布表;⑵此种产品为二级品或三级品的概率?⑶能否画出样本分布的条形图?分析:当总体中的个体取不同数值很少时,可用频率分布表或频率分布条形图估计总体分布。

0.3 0.14.3 4.4 4.5 4.6 4.7 4.8 4.95.0 5.1 5.2视力频率组距 达标训练1.在用样本频率估计总体分布的过程中,下列说法中正确的是( )A.总体容量越大,估计越精确 B.总体容量越小,估计越精确C.样本容量越大,估计越精确 D.样本容量越小,估计越精确 2. 一个容量为n的样本,分成若干组,已知某数的频数和频率分别为50和0.25,则n= .3. 一个容量为32的样本,已知某组的样本的频率为0.25,则该组样本的频数为( ) A.2 B.4 C.6 D.8 4.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )()A 0.6小时 ()B 0.9小时()C 1.0小时 ()D 1.5小时5.(江西卷)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别为( ) A .0,27,78 B .0,27,83 C .2.7,78 D .2.7,83h作业 布置 习题 1-5 1学习小结/教学 反思§5.2 估计总体的数字特征授课 时间第 周 星期 第 节课型新授课主备课人学习目标1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差;2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差)并作合理的解释。

0.5 人数(人) 时间(小时)20 1050 1.0 1.5 2.0 15重点难点能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差)并作合理的解释。

学习过程与方法自主学习知识梳理1.平均数描述了数据的,定量地放映了数据的集中趋势所处的水平;2.一般的,称为平均数或均值;3.数据的离散程度可以用来描述;4.一般地,称为样本标准差。

阅读课本36-37页练习1:一个水库养了某种鱼10万条,从中捕捞了20条,称得它们的质量如下:(单位:KG)1.15 1.04 1.11 1.07 1.10 1.32 1.25 1.19 1.15 1.21 1.18 1.14 1.09 1.25 1.21 1.29 1.16 1.24 1.12 1.16计算样本平均数,并根据计算结果估计水库里所有这种鱼的总质量约是多少?练习2:要从甲乙两名跳远运动员中选拔一名去参加运动会,选拔的标准是:先看他们的平均成绩,如果两人的平均成绩相差无几,就要再看他们成绩的稳定程度。

为此对两人进行了15次比赛,得到如下数据:(单位:cm):甲755 752 757 744 743 729721 731 778 768 761 773 764 736 741 乙729 767 744 750 745 753 745 752 769 743 760 755 748 752 747如何通过对上述数据的处理,来作出选人的决定呢?精讲互动1. 用样本平均数估计总体平均数2. 用样本标准差估计总体标准差3. 常用的变形公式达标训练1.若821k ,,k ,k 的方差为3,则)3k (2,),3k (2),3k (2821--- 的方差为________. 2.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:7.9,4.9,6.9,9.9,4.9,4.8,4.9,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( ) A .484.0,4.9 B .016.0,4.9 C .04.0,5.9 D .016.0,5.9 3. 从甲乙两个总体中各抽取了一个样本:甲 6 5 8 4 9 6 乙876582根据以上数据,说明哪个波动小?4.甲乙两人在相同条件下个射击20次,命中的环数如下:甲 7 8 6 8 6 5 9 10 7 4 5 6 6 7 8 7 9 10 9 6乙 9 5 7 8 7 6 8 6 7 7 9 6 5 8 6 9 6 8 7 7问谁射击的情况比较稳定?作业 布置 习题1-5 2,3学习小结/教学 反思§1.7 相关性授课时间第周星期第节课型新授课主备课人学习目标1.了解非确定性关系中两个变量的统计方法;掌握散点图的画法及在统计中的作用;能根据散点图判断变量间是否为线性相关.2.若两个变量为线性相关,告诉一个变量的值,能估计出与其对应另一变量的值.重点难点重点:变量之间相关关系的理解,利用散点图直观认识两个变量之间的线性关系;难点:作散点图及理解两个变量的正相关和负相关.学习过程与方法自主学习1.变量之间的散点图指:2.两个变量之间的相关关系是什么? 有几种?新知探究:1.正相关与负相关的概念是?2.两个变量之间的相关关系的判断方法是什么?精讲互动课本例1小结:1.下列关系中,带有相关关系的是 ( )①正方形的边长与面积之间的关系;②水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系. 小结:达标训练1.在现实生活中,请你举出几个两个量之间存在明确函数关系的例子.2.请在现实生活中举出两个变量不满足函数关系,但二者确实有关系的例子.3.课本练习作业布置习题1-7 1、2题学习小结/教学反思§1.8 最小二乘估计授课时间第周星期第节课型新授课主备课人学习目标1.掌握最小二乘法的思想2.能根据给出的线性回归方程系数公式建立线性回归方程重点难点重点:最小二乘法的思想难点:线性回归方程系数公式的应用学习过程与方法自主学习复习回顾:1.画散点图的步骤是:2.正、负相关的的概念是什么?3.什么是线性相关?新知探究:上节课我们讨论了人的身高与右手一拃长之间的线性关系,用了很多种方法来刻画这种线性关系,但是这些方法都缺少数学思想依据。

问题1、用什么样的线性关系刻画会更好一些?问题2、用什么样的方法刻画点与直线的距离会方便有效?1.什么叫回归直线?2.如何求回归直线的方程?什么是最小二乘法?精讲互动1.例1求线性回归方程的方法:2.利用实验数据进行拟合时的影响因素及有效的处理方法:达标训练1. 已知x,y之间的一组数据如下表,则y与x的线性回归方程y=a+bx必经过点x 0 1 2 3y 1 3 5 7(A)(2,2)(B)(1.5,0)(C)(1,2)(D)(1.5,4)2. 某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:商店名称 A B C D E销售额(x)/千万元 3 5 67 9利润额(y)/百万元 2 3 3 4 5(1)画出销售额和利润额的散点图;(2)若销售额和利润额具有相关关系,计算利润额y对销售额x的回归直线方程。

§1.9 第一章小结3.13.如图,是某单位职工年龄(取正整数)的频数分布图,根据图形提供的信息,回答下列问题(直接写出答案)注:每组可含最低值,不含最高值(1)该单位职工共有多少人?(2)不小于38岁但小于44岁的职工人数占职工总人数的百分比是多少?(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?作业布置课本69页复习题一学习小结/教学反思§2.1.1 算法的基本思想授课时间第周星期第节课型新授课主备课人学习目标1.了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求。

相关文档
最新文档