铸造工艺

合集下载

铸造的基本工艺

铸造的基本工艺

铸造的基本工艺一、铸造的定义与分类铸造是一种将液态金属或合金倒入铸型中,经过冷却凝固后得到所需形状的工艺。

根据铸造材料的不同,可以将铸造分为铸铁、铸钢、有色金属铸造等几类。

铸造的基本工艺包括模具制备、熔炼、浇注、凝固和清理等步骤。

2.1 模具制备模具是铸造过程中用于制造铸件形状的工具。

根据铸件的形状和尺寸,模具可以分为砂型、金属型、陶瓷型等多种类型。

制备模具的过程包括模具设计、模具材料选择、模具制造和模具调试等环节。

2.2 熔炼熔炼是将金属或合金加热至液态状态的过程。

通常采用电炉、火炉等设备将金属原料加热至一定温度,使其融化成液态金属。

在熔炼过程中,还需要根据需要添加合金元素,以调整金属的性能。

2.3 浇注浇注是将熔融金属倒入模具中的过程。

在浇注前,需要对模具进行预热,以避免温度差引起的热应力。

倒入模具的熔融金属称为铸液,通过浇口、浇注系统进入模腔,填充整个模腔。

2.4 凝固凝固是指铸液在模腔中冷却凝固成固态金属的过程。

铸液在凝固过程中会释放热量,导致温度逐渐下降,直至达到凝固温度。

凝固的过程中,还会发生多种凝固方式,如均匀凝固、壳层凝固等。

2.5 清理清理是指在凝固后将铸件从模具中取出,并对其进行修整,以获得最终的铸件。

清理过程中可能需要进行切割、研磨、抛光等工艺,以去除铸件表面的砂质、气孔等缺陷,使其达到要求的尺寸和表面质量。

三、铸造的应用领域铸造作为一种传统的制造工艺,广泛应用于航空航天、汽车、机械、建筑等行业。

在航空航天领域,铸造被用于制造发动机叶片、航空航天设备等关键部件。

在汽车领域,铸造用于生产汽车发动机缸体、曲轴、悬挂部件等。

在机械领域,铸造被用于制造各种机床、机械零部件等。

在建筑领域,铸造用于制造建筑构件、雕塑等。

总结起来,铸造是一种重要的制造工艺,通过模具制备、熔炼、浇注、凝固和清理等基本工艺步骤,可以将熔融的金属或合金倒入模具中,最终得到所需形状的铸件。

铸造广泛应用于航空航天、汽车、机械、建筑等领域,为各行各业的发展提供了重要的支持。

铸造工艺基础知识及理论

铸造工艺基础知识及理论

铸造工艺基础知识及理论目录一、基础概念 (2)1.1 铸造的定义与意义 (3)1.2 铸造工艺的种类与应用 (4)二、铸造材料 (6)三、铸造设备 (7)3.1 熔炼设备 (9)3.2 锻造设备 (10)3.3 后处理设备 (11)四、铸造工艺过程 (12)五、铸造工艺设计 (13)5.1 工艺方案的确定 (15)5.2 工艺参数的选择 (16)5.3 工艺文件的编制 (18)六、铸造质量与控制 (20)6.1 铸造缺陷的产生原因及防止措施 (22)6.2 铸造质量检测方法与标准 (23)七、铸造生产与环境 (24)7.1 铸造生产的环保要求 (26)7.2 环保设备的应用与管理 (27)八、现代铸造技术的发展趋势 (28)8.1 快速凝固与近净形铸造技术 (30)8.2 数字化与智能化铸造技术 (31)8.3 生物铸造与绿色铸造技术 (33)一、基础概念铸造工艺是指将熔炼好的液态金属浇入铸型,待其凝固后获得所需形状和性能的金属制品的过程。

它是制造业中非常重要的工艺之一,广泛应用于汽车、航空、建筑、电子等领域。

铸造工艺的基础知识主要包括液态金属的性质、铸型(即模具)的设计与制造、浇注系统、凝固过程以及后处理等。

这些知识是理解和掌握铸造工艺的基本前提。

液态金属的性质:液态金属在铸造过程中的流动性、填充能力、冷却速度等对其最终的产品质量有着决定性的影响。

了解液态金属的成分、温度、粘度等基本性质对于铸造工艺的设计和实践都是非常重要的。

铸型的设计与制造:铸型是形成金属制品形状和内部结构的重要工具。

铸型的设计需要考虑到金属液的流动性和凝固特性,以及制品的精度和表面质量要求。

铸型的制造也需要选用合适的材料,并经过精密加工才能达到设计要求。

浇注系统:浇注系统是连接铸型和液态金属的通道,包括浇口杯、直浇道、横浇道和内浇道等部分。

合理的浇注系统设计可以确保金属液均匀地注入铸型,并有利于热量和气体的排出,从而提高制品的质量和生产效率。

铸造工艺的名词解释

铸造工艺的名词解释

铸造工艺的名词解释铸造工艺是一种利用熔融金属或其他可熔融材料,在特定的模具中进行凝固形成固体制品的制造技术。

在工业生产中,铸造工艺被广泛应用于制造各种铸件,从大型机器零部件到小型日常用品。

以下将对铸造工艺的一些关键名词进行解释,以加深对这一领域的了解。

1. 熔炼熔炼是将金属或合金材料加热至其熔点并保持在液态状态的过程。

这一阶段的关键是控制温度和合金成分,以确保熔融金属的质量符合规定要求。

2. 模具设计模具设计是铸造工艺中至关重要的一环。

模具是用于装入熔融金属并形成所需形状的工具。

模具设计必须考虑到铸件的复杂度、结构、冷却系统和产量等方面的要求。

3. 塑性变形在铸造工艺中,金属经过塑性变形来适应模具的形状,并且形成铸件的外形。

塑性变形可以采用手工或机械手段进行,其中包括挤压、压制和切割等技术。

4. 凝固凝固阶段是将熔融金属由液态转变为固态的过程。

当熔融金属冷却至其熔点以下时,原子和分子开始重新排列,形成晶体结构。

这个过程中凝固速率对于铸件质量和性能至关重要。

5. 清除毛刺和缺陷修复铸造完成后,常常会出现一些缺陷和毛刺。

这些缺陷和毛刺需要通过机械手段或其他特定过程进行修复和去除,以确保铸件的最终质量和外观。

6. 热处理热处理是一种通过加热和冷却熔融金属来改变其组织和性能的工艺。

通过控制热处理的温度、保温时间和冷却速率,可以使铸件具有所需的物理和机械性能。

7. 机械加工铸造工艺产生的铸件通常需要进行机械加工,以达到最终的尺寸和形状要求。

机械加工包括铣削、车削、钻孔和切削等工艺。

8. 铸造质量控制铸造质量控制是铸造工艺中非常重要的一环。

通过采取合适的措施,如严格控制熔炼、模具设计和工艺参数等,可以减少铸造缺陷,并提高铸件的质量和可靠性。

9. 环境保护铸造工艺涉及到一些环境问题,如废水、废气和固体废弃物的处理。

为了保护环境,铸造企业需要合理处理废弃物,采取适当的环境保护措施。

以上是铸造工艺中一些重要名词的简要解释。

常见铸造工艺

常见铸造工艺

常见铸造工艺一、铸造工艺概述铸造是通过将熔化的金属或合金倒入模具中,经过冷却凝固后得到所需形状的工艺。

铸造工艺广泛应用于各个领域,如汽车、航空、船舶、机械、建筑等。

二、常见铸造工艺分类1. 砂型铸造:以石英砂为主要原料制作模具,常用于生产大型和中小型零件。

2. 金属型铸造:采用金属模具进行浇注,可生产高精度和高质量的零件。

3. 压力铸造:利用高压力将液态金属注入模具中,适用于生产复杂形状的零件。

4. 熔蜡模铸造:先制作出蜡模具,然后在蜡模上涂覆陶瓷浆料,并进行干燥和硬化。

最后将蜡模加热蒸发掉,留下空心的陶瓷壳体,再进行浇注。

5. 精密铸造:采用特殊工艺和设备进行生产,可生产高精度和高质量的零件。

三、详细介绍常见铸造工艺1. 砂型铸造(1)模具制作:先根据零件的形状和尺寸制作出模板,然后将模板放入砂箱中,用湿砂将其覆盖。

待湿砂干燥后,将模板取出,留下模具。

(2)浇注:将铝合金或其他金属加热至液态状态,然后倒入模具中。

待金属冷却凝固后,取出零件。

(3)处理:对零件进行去毛刺、打磨等处理。

2. 金属型铸造(1)模具制作:根据零件的形状和尺寸制作出金属模具。

(2)浇注:将液态金属倒入金属模具中。

待金属冷却凝固后,取出零件。

(3)处理:对零件进行去毛刺、打磨等处理。

3. 压力铸造(1)模具制作:根据零件的形状和尺寸制作出压力铸造机所需的模具。

(2)浇注:将液态金属通过高压力喷射到模具中。

待金属冷却凝固后,取出零件。

(3)处理:对零件进行去毛刺、打磨等处理。

4. 熔蜡模铸造(1)蜡模制作:根据零件的形状和尺寸制作出蜡模具。

(2)陶瓷壳体制作:将蜡模浸入陶瓷浆料中,待干燥后再重复涂覆几层。

最后将其加热硬化。

(3)浇注:将液态金属倒入陶瓷壳体中。

待金属冷却凝固后,取出零件。

(4)处理:对零件进行去毛刺、打磨等处理,并将陶瓷壳体清理干净。

5. 精密铸造(1)模具制作:根据零件的形状和尺寸制作出精密模具。

(2)浇注:采用真空或低压浇注技术,将液态金属倒入模具中。

铸造工艺的一般步骤

铸造工艺的一般步骤

铸造工艺的一般步骤铸造是一种常见的制造工艺,用于生产各种大小和形状的金属零件。

铸造工艺的一般步骤是一个复杂但关键的过程,涉及到多个环节和技术。

下面将详细介绍铸造工艺的一般步骤。

第一步:模具设计与制造铸造的第一步是进行模具设计与制造。

模具是决定最终产品形状的关键因素。

模具设计师根据产品要求和原型设计制定模具结构,并确定最佳材料。

然后利用铸造模型制造模具,确保模具的精度和质量。

第二步:熔炼金属熔炼金属是铸造工艺中的核心环节。

金属原料按照比例投入熔炼炉中,加热至液态状态。

在熔融过程中,需要控制温度、搅拌金属以确保均匀性,并进行化学成分的调整。

第三步:浇注一旦金属达到理想状态,就需要进行浇注。

这是将熔融金属倒入模具中的过程。

浇注需要注意速度和稳定性,以避免产生气泡和瑕疵。

同时,还要注意避免金属溅出和模具形变。

第四步:冷却与固化浇注完成后,金属开始冷却与固化。

在这个阶段,模具内的金属会逐渐凝固并固化成所需形状。

冷却时间和速度取决于金属种类和产品尺寸,需要谨慎控制,以确保产品质量。

第五步:脱模与后处理当金属完全固化后,需要进行脱模和后处理。

脱模是指将成品从模具中取出,需要谨慎操作以避免损坏产品。

随后可以进行表面处理、修磨、清洗等步骤,最终使产品表面光滑并符合要求。

总结铸造工艺的一般步骤包括模具设计与制造、熔炼金属、浇注、冷却与固化、脱模与后处理等关键环节。

每个步骤都至关重要,需要经验丰富的技术人员精心操作,以保证最终产品质量和准确性。

通过不断优化工艺和技术,铸造工艺能够生产出各种形状复杂、精密度高的零部件,满足不同行业的需求。

铸造工艺(附图)

铸造工艺(附图)

铸造工艺流程图铸造(founding)铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。

铸造毛胚因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代机械制造工业的基础工艺之一。

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。

②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。

铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。

铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。

铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。

金属熔炼不仅仅是单纯的熔化,还包括冶炼过程,使浇进铸型的金属,在温度、化学成分和纯净度方面都符合预期要求。

为此,在熔炼过程中要进行以控制质量为目的的各种检查测试,液态金属在达到各项规定指标后方能允许浇注。

有时,为了达到更高要求,金属液在出炉后还要经炉外处理,如脱硫、真空脱气、炉外精炼、孕育或变质处理等。

熔炼金属常用的设备有冲天炉、电弧炉、感应炉、电阻炉、反射炉等。

不同的铸造方法有不同的铸型准备内容。

热加工工艺基础-铸造

热加工工艺基础-铸造

热加工工艺基础第一章铸造工艺基础1.名词解释充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力。

缩孔:在铸件上部或最后凝固部位出现的容积较大的孔洞。

缩松:铸件断面上出现的分散、细小的孔洞。

逐层凝固:纯金属或共晶成分合金在凝固过程中不存在固、液相并存的凝固区,故断面上外层的固体和内层的液体由一条界限清楚地分开,随着温度的下降,固体层不断加厚,液体层不断减少直到中心层全部凝固。

糊状凝固:合金的凝固温度范围很宽或铸件断面温度分布曲线较为平坦,其凝固区在某段时间内,液固并存的凝固区贯穿整个铸件断面。

中间凝固:介于逐层凝固和糊状凝固之间的凝固方式。

定向凝固:使铸件按规定方向从一部分到另一部分逐渐凝固的过程。

同时凝固:尽量减少铸件各部位间的温度差使铸件各部位同时冷却凝固。

热裂:凝固后期合金收缩且受到铸型等阻碍产生应力,当应力超过某一温度下合金的强度所产生的裂纹。

冷裂:铸件固态下产生的裂纹。

热应力:由于铸件壁厚不均匀,各部分冷却速度不同,以致在同一时期铸件各部分收缩不一致而产生的应力。

侵入气孔:砂型或砂芯受热产生气体侵入金属液内部在凝固前未析出而产生的气孔反应气孔:合金液与型砂中的水分、冷铁、芯撑之间或合金内部某些元素、化合物之间发生化学反应产生气体而形成的气孔。

·析出气孔:合金在熔炼和浇注过程中接触气体使气体溶解其中,当合金液冷却凝固时,气体来不及析出而形成的气孔。

2.合金的流动性不足易产生哪些缺陷?浇不足,冷隔,气孔,夹渣,缩孔,缩松。

影响合金流动性的主要因素有哪几个方面?合金的种类,合金的成分,温度。

在实际生产中常用什么措施防止浇不足和冷隔缺陷?a.选用黏度小,比热容大,密度大,导热系数小的合金,使合金较长时间保持液态。

b.选用共晶成分或结晶温度范围窄的合金作为铸造合金。

c.选择合理的浇注温度。

3.充型能力与合金的流动性有什么关系?合金的流动性越好,则其充型能力越好。

不同化学成分的合金为何流动性不同?合金的化学成分不同,它们的熔点及结晶温度范围不同,其流动性不同。

铸造工艺的概念

铸造工艺的概念

铸造工艺的概念一、引言铸造工艺是一种将金属或非金属熔化后浇铸成型的制造工艺。

它是制造业中最古老、最基础、最普遍的一种工艺,也是现代工业生产中不可或缺的重要工艺之一。

本文将从铸造工艺的概念、分类、特点、应用等方面进行详细介绍。

二、概念铸造工艺是指将金属或非金属材料经过熔化后,通过浇注到模具中制成所需形状和尺寸的零件的加工过程。

在铸造过程中,通过模具对液态金属或非金属进行成型,经过冷却后获得所需形状和尺寸的零件。

铸造工艺可以生产各种不同形状和尺寸的零件,包括复杂结构零件和大型零件。

三、分类根据材料分类:1. 金属铸造:包括钢铁、合金等。

2. 非金属铸造:包括陶瓷、塑料等。

根据模具分类:1. 砂型铸造:采用砂型作为模具。

2. 金属型铸造:采用金属型作为模具。

3. 石膏型铸造:采用石膏型作为模具。

4. 混凝土型铸造:采用混凝土型作为模具。

5. 精密铸造:采用特殊的精密模具进行铸造。

根据生产方式分类:1. 手工铸造:手工操作制作零件。

2. 自动化铸造:利用机器设备进行生产。

四、特点1. 生产成本低。

相对于其他制造工艺,铸造工艺的生产成本较低,因为它可以使用废旧金属或非金属材料进行生产,同时也可以利用回收再利用的原材料。

2. 生产效率高。

相对于其他制造工艺,铸造工艺的生产效率较高,因为它可以一次性生产多个零件,并且可以同时进行多个生产线。

3. 产品质量好。

相对于其他制造工艺,铸造工艺的产品质量较好,因为它可以通过调整材料比例和温度等参数来控制产品质量。

4. 应用范围广。

由于其可适应性强,所以被广泛应用于各种领域,包括汽车制造、机械制造、建筑业等。

五、应用1. 汽车制造。

铸造工艺被广泛应用于汽车制造领域,生产汽车发动机缸体、缸盖、曲轴箱等零部件。

2. 机械制造。

铸造工艺被广泛应用于机械制造领域,生产各种机械零部件。

3. 建筑业。

铸造工艺被广泛应用于建筑业领域,生产各种建筑材料和装饰品。

4. 航空航天。

铸造工艺被广泛应用于航空航天领域,生产各种飞行器零件和发动机零部件。

几种铸造工艺工艺的比较

几种铸造工艺工艺的比较

几种铸造工艺工艺的比较
铸造工艺是将熔化金属或其他材料注入模具中,制造出各种形状的零件或产品的过程。

常见的铸造工艺包括砂型铸造、金属型铸造、压力铸造、连铸和浇注等。

以下是这些铸造工艺的比较:
1. 砂型铸造:
- 优点:成本较低、适用于大型零件、可用于各种金属、有较高的设计自由度。

- 缺点:生产周期较长、精度较低、可能有铁皮、砂眼等缺陷。

2. 金属型铸造:
- 优点:生产周期较短、精度较高、可用于大量生产、产品表面质量好。

- 缺点:成本较高、需要制作金属模具、不适用于所有金属。

3. 压力铸造:
- 优点:生产周期短、高生产效率、精度高、产品质量好、适用于高温合金和铝合金等材料。

- 缺点:设备和模具成本高、初期成本较高。

4. 连铸:
- 优点:适合大规模连续生产、产品质量高、生产效率高、能够制造长材料。

- 缺点:设备成本高、能耗较大、操作要求较高。

5. 浇注:
- 优点:使用广泛、成本较低、制造灵活、适用于各种形状和材料。

- 缺点:产品质量相对较低、精度较低、需要后续加工。

需要根据具体的产品需求、材料、生产要求和成本等因素选择适合的铸造工艺。

铸造的生产工艺

铸造的生产工艺

铸造的生产工艺
铸造是一种通过加热金属至液态状态,然后将其倒入模具中并冷却以得到所需形状的金属加工工艺。

铸造的生产工艺主要包括模具制备、熔炼、浇注和后处理等步骤。

首先,铸造的生产过程需要准备模具。

模具通常由金属或其他材料制成,以满足铸造所需的形状和尺寸。

模具可以分为两类:永久模具和临时模具。

永久模具通常由耐火材料(如石膏或陶瓷)制成,用于生产大批量的铸件。

临时模具通常由砂土制成,用于生产小批量或单个铸件。

其次,铸造的过程中需要将金属材料熔化。

常见的熔化方式是使用电炉或火炉加热金属至其熔点。

一些高熔点的金属(如钢)需要更高的温度才能熔化。

一旦金属熔化,就可以进行下一步操作。

然后,熔化的金属需要被倒入模具中。

这个过程被称为浇注。

浇注时需要小心控制金属流动的速度和方向,以确保铸件的质量。

浇注过程也需要考虑到金属在冷却过程中的收缩和变形,以避免铸件出现裂缝或其他缺陷。

最后,浇注完成后需要进行后处理。

后处理包括金属清理、修整、抛光等步骤,以提高铸件的表面质量和外观。

在一些特殊情况下,还需要进行热处理,以改变铸件的硬度和强度等力学性能。

总的来说,铸造是一种传统的金属加工技术,具有广泛的应用
领域。

它可以用于制造各种形状和尺寸的金属零件,从小型齿轮到大型机身都可以通过铸造加工得到。

铸造的生产工艺包括模具制备、熔炼、浇注和后处理等步骤,每一步都需要严格控制以确保铸件的质量。

随着科技的进步,铸造技术也在不断发展,新的材料和工艺正在被引入,使得铸造加工更加高效和精确。

铸造工艺有哪些?

铸造工艺有哪些?

铸造工艺有哪些?铸造是指通过将液态金属或合金浇注至铸型中,冷却凝固后得到所需形状、尺寸及性能的零件制造工艺。

根据铸造过程中金属液体与铸型接触方式的不同,可以将铸造工艺分为以下几种。

砂型铸造砂型铸造是最古老、应用最广泛的铸造工艺之一,其特点是成本低,加工工艺简单,同时可铸铁件、铜件、铝件、镁件等多种材料。

其原理为将铸造所需形状制作成沙模,将熔化的金属灌注至模型中,并进行冷却凝固,取出后即可得到所需的零部件。

石膏型铸造石膏型铸造是通过石膏制作铸型,适用于制作高精度零部件,特别是艺术品、珠宝与玩具等小件产品。

其特点是成本低,模具制作快速,同时不易变形。

但其适用范围较窄,只适合铸造铜、铝、锌、铅等非铁合金。

精密铸造精密铸造通过高精度的模具制作和精密的铸造工艺实现制造高质量、高精度的零部件。

其适用于制造高要求的汽车零部件、航空零件、工具零部件、机械零部件、医疗器械等。

相比传统的砂型铸造和石膏型铸造,精密铸造精度更高,其特点为成本较高,但可以生产出形状复杂、漂亮美观的产品。

压铸压铸指的是将熔融的金属或合金加热至一定温度后,压入模具中进行铸造的工艺。

压铸适用于生产大量数量的复杂铸造件,特别是汽车、摩托车、电器等大宗产品。

其特点是生产速度快,制作成本低,制品表面精度高,强度大。

快速凝固铸造快速凝固铸造又称为凝固化学,是运用金属的短时间凝固固化方式,制造纤维状或片状铸件的一种特殊的铸造工艺。

它通过在凝固过程中加强对金属结晶状态的控制,使得基体的构型和性能均达到理想的状态。

适用于生产高端的电子、光学、航空、军事等领域的零部件。

以上是常见的铸造工艺,每种铸造工艺都有其适用的范围和特点,选择时需要根据实际需要进行合理选择。

铸造工艺,特点及其应用

铸造工艺,特点及其应用

铸造工艺,特点及其应用铸造工艺是熔融金属的液体,在有形的模具内填充或浇注而成的技术,也是金属和非金属构件制造工艺中应用最广泛的一种。

它是由古老的时候开始的,经历了多种进程,包括新的铸造技术和材料的开发,以及制造工艺的完善,它们可以根据客户的要求设计出一定的性能参数,具有高强度、高耐磨性、耐腐蚀性、低敏感性等优点,可以满足不同类型的应用,如船舶制造、机械制造、汽车制造等。

铸造工艺可以分为两个主要类型:低温铸造和高温铸造。

低温铸造是金属和金属汞金属的熔融温度很低(一般控制在380 ~ 550°C)的技术,目前常见的低温铸造技术主要有粉末冶金法、贮藏压力铸造、低压铸造和汞金属铸造等。

粉末冶金法是把金属及其合金粉末装入模具中,再经加热、压力或磁力等方法使颗粒团结,快速形成要求形状和尺寸的零件,适用于制造不同形状的中小型零件。

贮藏压力铸造采用潮汐式贮藏压力铸造技术,通过外加的压力作用将金属和金属汞金属液体充满模具,达到保持很薄的液体状态保持在模具,使物体取得高精度的形状。

低压铸造是指将金属和金属汞金属液体灌入模具,在低压状态下固化成型的技术,使得各种形状复杂的铸件取得高精度、高表面质量和低缩率。

汞金属铸造技术是将汞熔融金属浇入金属有夹板密封的模具内,使金属固化而形成各种复杂形体零件,它具有制造出来的件精度高、重量轻、表面光滑等特点。

铸造工艺应用非常广泛,可以制造出承受载荷时不易变形或损坏的各种复杂的形状的部件。

如汽车零部件,机器配件,大型机械设备,船舶零件和钢铁结构材料,航空航天器材等都需要使用铸造工艺。

它也可以应用于建筑、农业和通用用途等多种诸如电气化环境保护等方面,为技术进步、节约能源、改善人们的生活提供了设备。

铸造是一种具有极大价值的金属加工技术,在生产制造中起到极其重要的作用,属于现代金属加工工艺中的重要组成部分,也是传统加工技术的重要补充。

铸造生产工艺

铸造生产工艺

THANKS
感谢观看
熔模铸造工艺流程
总结词
熔模铸造是一种精密铸造工艺,其流程包括制作熔模、组装、脱蜡、焙烧、浇注金属和脱模等步骤。
详细描述
熔模铸造工艺流程通常包括以下步骤:1.制作熔模:使用易熔材料制作出与零件形状相同的熔模;2.组装:将多 个熔模组装成完整的熔模组件;3.脱蜡:去除熔模中的易熔材料;4.焙烧:将脱蜡后的熔模进行焙烧处理;5.浇 注金属:将熔融的金属浇注入焙烧后的熔模中;6.脱模:待金属冷却凝固后,进行脱模。
02
铸造生产工艺流程
砂型铸造工艺流程
总结词
砂型铸造是一种常见的铸造工艺,其流程包括模具制作、填充砂型、浇注金属、 冷却和脱模等步骤。
详细描述
砂型铸造工艺流程通常包括以下步骤:1.模具制作:根据产品需求,制作模具; 2.填充砂型:将干燥的砂子填入模具中,形成砂型;3.浇注金属:将熔融的金属 浇注入砂型中;4.冷却:待金属冷却凝固后,进行脱模。
历史
铸造工艺有着悠久的历史,最早可追溯到古代中国的青铜器 时代。随着技术的不断发展,铸造工艺经历了手工作坊、机 械化、自动化等阶段,不断提高生产效率和产品质量。
发展
现代铸造工艺正朝着智能化、绿色化、精密化等方向发展, 如3D打印技术在铸造行业的应用,使得铸造生产更加高效、 精准和环保。同时,随着工业4.0和智能制造的推进,铸造生 产将实现数字化、网络化和智能化。
金属型铸造工艺流程
总结词
金属型铸造是一种高精度、高效率的 铸造工艺,其流程包括制作金属型、 浇注金属、冷却和脱模等步骤。
详细描述
金属型铸造工艺流程通常包括以下步骤 :1.制作金属型:使用耐热材料制作出 与零件形状相同的金属型;2.浇注金属 :将熔融的金属浇注入金属型中;3.冷 却:待金属冷却后,进行脱模。

铸造工艺简介

铸造工艺简介

铸造工艺简介一、关键信息1、铸造工艺的定义2、铸造工艺的分类3、铸造工艺的流程4、铸造工艺的优缺点5、铸造工艺的应用领域6、铸造工艺的发展趋势二、铸造工艺的定义铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。

铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了制作时间。

三、铸造工艺的分类1、砂型铸造砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。

砂型一般采用重力铸造,有特殊要求时也可采用低压铸造、离心铸造等工艺。

2、熔模铸造熔模铸造又称失蜡铸造,包括压蜡、修蜡、组树、沾浆、熔蜡、浇铸金属液及后处理等工序。

失蜡铸造是用蜡制作所要铸成零件的蜡模,然后蜡模上涂以泥浆,这就是泥模。

泥模晾干后,放入热水中将内部蜡模熔化。

将熔化完蜡模的泥模取出再焙烧成陶模。

一经焙烧。

一般制泥模时就留下了浇注口,再从浇注口灌入金属熔液,冷却后,所需的零件就制成了。

3、压力铸造压力铸造是指金属液在其他外力(不含重力)作用下注入铸型的工艺。

广义的压力铸造包括压铸机的压力铸造和真空铸造、低压铸造、离心铸造等;窄义的压力铸造专指压铸机的金属型压力铸造,简称压铸。

4、金属型铸造金属型铸造又称硬模铸造,它是将液体金属浇入金属铸型,以获得铸件的一种铸造方法。

铸型是用金属制成,可以反复使用多次(几百次到几千次)。

5、离心铸造离心铸造是将液体金属注入高速旋转的铸型内,使金属液在离心力的作用下充填铸型和凝固形成铸件的一种铸造方法。

6、消失模铸造消失模铸造是把与铸件尺寸形状相似的石蜡或泡沫模型粘结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。

四、铸造工艺的流程1、模具准备根据铸件的形状和尺寸要求,制作相应的模具。

模具的质量和精度直接影响到铸件的质量和尺寸精度。

铸造生产的工艺流程

铸造生产的工艺流程

铸造生产的工艺流程铸造是一种重要的制造工艺,通过将熔化的金属或其他材料注入到模具中,使其冷却凝固成型。

铸造工艺广泛应用于汽车、航空航天、机械制造等领域。

下面将介绍铸造生产的工艺流程。

1. 设计模具铸造的第一步是设计模具。

模具的设计需要考虑产品的形状、尺寸和表面光洁度要求。

通常情况下,模具会根据产品的设计图纸进行制作。

模具的材料通常是金属,如铝合金、钢铁等,以保证模具的耐用性和稳定性。

2. 准备原材料在进行铸造之前,需要准备好原材料。

原材料通常是金属或合金,如铝、铜、铁等。

这些原材料需要经过严格的质量检验,以确保其符合生产要求。

同时,还需要根据产品的要求进行合金配比,以获得所需的材料性能。

3. 熔炼金属一旦原材料准备就绪,就需要将金属熔化。

这通常是通过高温熔炉来完成的。

熔炼过程需要严格控制温度和熔炼时间,以确保金属的纯度和均匀性。

在熔炼过程中,还需要添加合金元素,以调整金属的化学成分。

4. 浇铸一旦金属熔化完成,就可以进行浇铸。

在浇铸过程中,熔化的金属被注入到预先设计好的模具中。

浇铸需要注意浇注速度和压力,以确保金属充分填充模具,并避免气孔和缺陷的产生。

同时,还需要控制浇注温度,以避免金属在模具中过早凝固。

5. 冷却凝固一旦金属注入模具中,就需要进行冷却凝固。

在这个过程中,金属会逐渐从液态转变为固态,并最终成型。

冷却时间通常取决于金属的种类和厚度,需要根据实际情况进行调整。

6. 脱模当金属完全凝固后,就可以进行脱模。

脱模是将成型的金属制品从模具中取出的过程。

这个过程需要小心操作,以避免损坏产品表面。

通常情况下,还需要进行后续的去毛刺、打磨等表面处理工艺。

7. 检验和修整最后一步是对铸造产品进行检验和修整。

检验需要对产品的尺寸、形状、表面质量等进行严格检查,以确保产品符合设计要求。

如果发现缺陷或不合格的地方,还需要进行修整或重新铸造。

总结铸造生产的工艺流程包括模具设计、原材料准备、熔炼金属、浇铸、冷却凝固、脱模、检验和修整等多个环节。

铸造五大工艺

铸造五大工艺

铸造五大工艺铸造是一种制造工艺,最初出现在古代文明时期。

随着时间的推移和技术的发展,铸造工艺也不断发展和改进。

现在,它已经成为制造业中最重要、最广泛应用的工艺之一。

在现代工业生产中,铸造工艺被广泛应用于制造各种零部件、机械设备和工具等。

铸造工艺有许多种,但是有五大工艺是最常用的。

1. 砂型铸造工艺砂型铸造工艺是铸造工艺中最常用的一种。

它是将金属液体倒入铸型中,待金属冷却凝固后,再从铸型中取出所需的零部件。

这种工艺适用于大批量生产,同时也适用于各种形状和尺寸的零部件。

2. 压铸工艺压铸工艺是一种高效率、高精度的铸造工艺。

它采用压力将金属液体注入铸型中,并在高压下使金属液体冷却凝固。

这种工艺适用于小批量生产,同时也适用于生产高精度的零部件。

3. 熔模铸造工艺熔模铸造工艺是一种高精度、高品质的铸造工艺。

它采用熔融的模具,在高温下将金属液体注入模具中,并在高温下使金属液体冷却凝固。

这种工艺适用于生产高精度、高品质的零部件。

4. 熔铸工艺熔铸工艺是一种将金属加热到液体状态后,通过浇注、鑄造等方式制造成型件的工艺。

这种工艺适用于生产大型、复杂形状的零部件,也适用于生产高精度、高品质的零部件。

5. 水玻璃铸造工艺水玻璃铸造工艺是一种较为特殊的铸造工艺。

它是通过将水玻璃与细砂混合后,在模具中制成模型,待模型干燥后,再将金属液体注入模型中。

待金属冷却凝固后,再从模型中取出所需的零部件。

这种工艺适用于生产复杂形状、高精度的零部件。

总之,铸造工艺是一种非常重要的制造工艺,它已经成为各种工业生产中不可或缺的一部分。

以上介绍的五种铸造工艺是目前最常用的工艺,但随着科技的不断发展,铸造工艺也将不断更新和改进。

铸造工艺手册

铸造工艺手册

铸造工艺手册摘要:一、铸造工艺手册概述二、铸造工艺的基本原理三、铸造工艺的种类及特点四、铸造工艺的流程与操作五、铸造工艺的常见问题及解决方法六、铸造工艺的未来发展趋势正文:一、铸造工艺手册概述铸造工艺手册是一本详细介绍铸造工艺的工具书,涵盖了铸造工艺的基本原理、种类、操作流程以及常见问题解决方法等方面的内容。

本书旨在为广大铸造工作者提供一本实用、全面的技术参考书,以提高铸造工艺水平,促进我国铸造产业的发展。

二、铸造工艺的基本原理铸造工艺是一种将金属熔化后倒入预先准备好的模具中,使其凝固成所需形状的零件的加工方法。

其基本原理是利用金属在高温下的流动性,将熔融的金属倒入模具中,然后冷却至室温,使金属凝固成零件。

三、铸造工艺的种类及特点1.砂型铸造:将金属熔化后倒入砂型模具中,使其凝固成所需形状的零件。

特点是生产成本低,适用于各种形状的零件生产。

2.精密铸造:采用精密模具,将金属熔化后倒入模具中,使其凝固成高精度的零件。

特点是精度高,表面质量好,适用于高品质零件生产。

3.压力铸造:在高压下将金属熔化后倒入模具中,使其凝固成所需形状的零件。

特点是生产效率高,适用于大批量生产。

4.消失模铸造:采用特殊的模具材料,将金属熔化后倒入模具中,使模具在凝固过程中逐渐消失,从而形成所需形状的零件。

特点是铸件壁厚均匀,内部质量好。

四、铸造工艺的流程与操作1.模具制作:根据零件图纸制作出相应的铸造模具。

2.熔炼金属:将需要铸造的金属加热至一定温度,使其熔化。

3.浇注:将熔融的金属倒入模具中,使其充满模具腔。

4.凝固:将模具放入冷却室中,使金属逐渐凝固成零件。

5.脱模:将凝固后的零件从模具中取出。

6.清理:对零件进行打磨、去毛刺等表面处理。

五、铸造工艺的常见问题及解决方法1.气孔:铸件表面或内部出现的孔洞。

解决方法:提高金属熔炼质量,减少气体夹杂;加强模具排气。

2.砂眼:铸件表面出现的砂粒状缺陷。

解决方法:提高砂型模具质量,减少砂粒脱落;加强模具保养。

铸造工艺知识及对产品设计的要求

铸造工艺知识及对产品设计的要求
优质铸件的生产需要有合理的铸造工艺和
1、铸造工艺流程
2、铸造工艺方案
铸造合金的种类、零件的结构与技术要求、生 产批量的大小和生产条件是确定铸造工艺方案的 依据。
确定铸造工艺方案主要是选择合理的浇注位置 和分型面。
分型面的选择应尽量与浇注位置一致,以避免 合型后翻转砂型。但平做立浇的铸件除外,如压 力机导套。
❖ 使用上表时的几点规定: ❖ ①当铸件尺寸公差等级和铸件机械加工余量等级确定后,其
加工余量数值应按有加工要求的表面上最大基本尺寸和该表 面距它的加工基准间尺寸两者中较大的尺寸所在范围,从表 2中选取加工余量数值。 ❖ ②确定旋转体加工余量时,铸件基本尺寸取其直径或高度 (长度)中较大的尺寸。 ❖ ③当砂型铸件底、侧面所采用的加工余量等级选定后,其顶 面的加工余量等级原则上采用降一级所对应的数值。 ❖ ④砂型铸造孔的加工余量等级由铸造工艺的保证性确定,可 适当加大。原则上降一级。 ❖ ⑤一般情况下一种铸件只能选取一个尺寸公差等级,当有特 殊要求时,可由供需双方商定采用非标准的加工余量。 ❖ 检验与评定时,当铸件实际测量尺寸位于铸件基本尺寸的公
用途是:制造模样、模板、芯盒等,并作为生 产准备和模样验收依据;是用于生产的指导性技 术文件及铸件尺寸验收依据。
铸造工艺卡片
三、铸铁件的热时效处理
对于不进行特殊热处理的重要铸铁件,特别是 机床铸件都要进行低温退火以降低或去除残余应 力,从而保持零件的尺寸精度,这种热处理又称 为热时效。
热时效是将铸件加热至弹塑性温度范围,为使 铸件各部分温度均匀和残余应力在此区间得到松 弛和稳定化而予以保温,然后缓慢冷却至弹性变 形的温度范围内,出炉空冷。
②有色金属铸件:主要生产铜合金铸件和 铝合金铸件。铜合金铸件以压力机铜套为主, 采用电炉熔炼、离心铸造工艺。铝合金铸件 采用砂型(红砂)、电炉熔炼工艺。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。

②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。

铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。

铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。

铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。

铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。

流动性、收缩性、气密性、铸造应力、吸气性(任何铝铸件均存在这些问题)。

铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

(1)流动性流动性是指合金液体充填铸型的能力。

流动性的大小决定合金能否铸造复杂的铸件。

在铝合金中共晶合金《共晶铝硅合金 (ZL102 、 YL102 、 ZL108 、 YL108 和 ZL109)》的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。

实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。

(这个度要靠经验来掌控,也是一个铸造技师,一辈子要研究的事)(2)收缩性收缩性是铸造铝合金的主要特征之一。

一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。

合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。

通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

①体收缩体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。

集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。

分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。

显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。

缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。

生产中发现,(我喜欢这句话,一看就是实际生产中中总结的)铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是(使)缩孔和疏松集中在铸件外部冒口中。

对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。

②线收缩线收缩大小将直接影响铸件的质量。

线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。

对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。

应根据具体情况而定。

(3)热裂性铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。

裂纹沿晶界延伸,形状呈锯齿形,(最自然的美景,我有幸见过)表面较宽,内部较窄,有的则穿透整个铸件的端面。

不同铝合金铸件产生裂纹的倾向也不同,这是因为铸铝合金凝固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同。

生产中常采用退让性铸型,或改进铸铝合金的浇注系统等措施,使铝铸件避免产生裂纹。

通常采用热裂环法检测铝铸件热裂纹。

(4)气密性铸铝合金气密性是指腔体型铝铸件在高压气体或液体的作用下不渗漏程度,气密性实际上表征了铸件内部组织致密与纯净的程度。

铸铝合金的气密性与合金的性质有关,合金凝固范围越小,产生疏松倾向也越小,同时产生析出性气孔越小,则合金的气密性就越高。

同一种铸铝合金的气密性好坏,还与铸造工艺有关,如降低铸铝合金浇注温度、放置冷铁以加快冷却速度以及在压力下凝固结晶等,均可使铝铸件的气密性提高。

也可用浸渗法堵塞泄露空隙来提高铸件的气密性。

(5)铸造应力铸造应力包括热应力、相变应力及收缩应力三种。

各种应力产生的原因不尽相同。

①热应力热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的。

在薄壁处形成压应力,导致在铸件中残留应力。

②相变应力相变应力是由于某些铸铝合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化。

主要是铝铸件壁厚不均,不同部位在不同时间内发生相变所致。

③收缩应力铝铸件收缩时受到铸型、型芯的阻碍而产生拉应力所致。

这种应力是暂时的,铝铸件开箱是会自动消失。

但开箱时间不当,则常常会造成热裂纹,特别是金属型浇注(钢模浇铸)的铝合金往往在这种应力作用下容易产生热裂纹。

铸铝合金件中的残留应力降低了合金的力学性能,影响铸件的加工精度。

铝铸件中的残留应力可通过退火处理消除。

合金因导热性好,冷却过程中无相变,只要铸件结构设计合理,铝铸件的残留应力一般较小。

(6)吸气性铝合金易吸收气体,是铸造铝合金的主要特性。

液态铝及铝合金的组分与炉料、有机物燃烧产物及铸型等所含水分发生反应而产生的氢气被铝液体吸收所致。

铝合金熔液温度越高,吸收的氢也越多;在700℃时,每100g铝中氢的溶解度为0.5~0.9,温度升高到850℃时,氢的溶解度增加2~3倍。

当含碱金属杂质时,氢在铝液中的溶解度显著增加。

铸铝合金除熔炼时吸气外,在浇入铸型时也会产生吸气,进入铸型内的液态金属随温度下降,气体的溶解度下降,析出多余的气体,有一部分逸不出的气体留在铸件内形成气孔,这就是通常称的“针孔”。

气体有时会与缩孔结合在一起,铝液中析出的气体留在缩孔内。

若气泡受热产生的压力很大,则气孔表面光滑,孔的周围有一圈光亮层;若气泡产生的压力小,则孔内表面多皱纹,看上去如“苍蝇脚”,仔细观察又具有缩孔的特征。

铸铝合金液中含氢量越高,铸件中产生的针孔也越多。

铝铸件中针孔不仅降低了铸件的气密性、耐蚀性,还降低了合金的力学性能。

要获得无气孔或少气孔的铝铸件,关键在于熔炼条件。

若熔炼时添加覆盖剂保护,合金的吸气量大为减少。

对铝熔液作精炼处理,可有效控制铝液中的含氢量。

失蜡法铸造现称熔模精密铸造,是一种少切削或无切削的铸造工艺,是铸造行业中的一项优异的工艺技术,其应用非常广泛。

它不仅适用于各种类型、各种合金的铸造,而且生产出的铸件尺寸精度、表面质量比其它铸造方法要高,甚至其它铸造方法难于铸得的复杂、耐高温、不易于加工的铸件,均可采用熔模精密铸造铸得。

熔模精密铸造是在古代蜡模铸造的基础上发展起来的。

作为文明古国,中国是使用这一技术较早的国家之一,远在公元前数百年,我国古代劳动人民就创造了这种失蜡铸造技术,用来铸造带有各种精细花纹和文字的钟鼎及器皿等制品,如春秋时的曾侯乙墓尊盘等。

曾侯乙墓尊盘底座为多条相互缠绕的龙,它们首尾相连,上下交错,形成中间镂空的多层云纹状图案,这些图案用普通铸造工艺很难制造出来,而用失蜡法铸造工艺,可以利用石蜡没有强度、易于雕刻的特点,用普通工具就可以雕刻出与所要得到的曾侯乙墓尊盘一样的石蜡材质的工艺品,然后再附加浇注系统,涂料、脱蜡、浇注,就可以得到精美的曾侯乙墓尊盘。

现代熔模铸造方法在工业生产中得到实际应用是在二十世纪四十年代。

当时航空喷气发动机的发展,要求制造象叶片、叶轮、喷嘴等形状复杂,尺寸精确以及表面光洁的耐热合金零件。

由于耐热合金材料难于机械加工,零件形状复杂,以致不能或难于用其它方法制造,因此,需要寻找一种新的精密的成型工艺,于是借鉴古代流传下来的失蜡铸造,经过对材料和工艺的改进,现代熔模铸造方法在古代工艺的基础上获得重要的发展。

所以,航空工业的发展推动了熔模铸造的应用,而熔模铸造的不断改进和完善,也为航空工业进一步提高性能创造了有利的条件。

我国是于上世纪五、六十年代开始将熔模铸造应用于工业生产。

其后这种先进的铸造工艺得到巨大的发展,相继在航空、汽车、机床、船舶、内燃机、气轮机、电讯仪器、武器、医疗器械以及刀具等制造工业中被广泛采用,同时也用于工艺美术品的制造。

所谓熔模铸造工艺,简单说就是用易熔材料(例如蜡料或塑料)制成可熔性模型(简称熔模或模型),在其上涂覆若干层特制的耐火涂料,经过干燥和硬化形成一个整体型壳后,再用蒸汽或热水从型壳中熔掉模型,然后把型壳置于砂箱中,在其四周填充干砂造型,最后将铸型放入焙烧炉中经过高温焙烧(如采用高强度型壳时,可不必造型而将脱模后的型壳直接焙烧),铸型或型壳经焙烧后,于其中浇注熔融金属而得到铸件。

熔模铸件尺寸精度较高,一般可达CT4-6(砂型铸造为CT10~13,压铸为CT5~7),当然由于熔模铸造的工艺过程复杂,影响铸件尺寸精度的因素较多,例如模料的收缩、熔模的变形、型壳在加热和冷却过程中的线量变化、合金的收缩率以及在凝固过程中铸件的变形等,所以普通熔模铸件的尺寸精度虽然较高,但其一致性仍需提高(采用中、高温蜡料的铸件尺寸一致性要提高很多)。

压制熔模时,采用型腔表面光洁度高的压型,因此,熔模的表面光洁度也比较高。

此外,型壳由耐高温的特殊粘结剂和耐火材料配制成的耐火涂料涂挂在熔模上而制成,与熔融金属直接接触的型腔内表面光洁度高。

所以,熔模铸件的表面光洁度比一般铸造件的高,一般可达Ra.1.6~3.2μm。

熔模铸造最大的优点就是由于熔模铸件有着很高的尺寸精度和表面光洁度,所以可减少机械加工工作,只是在零件上要求较高的部位留少许加工余量即可,甚至某些铸件只留打磨、抛光余量,不必机械加工即可使用。

由此可见,采用熔模铸造方法可大量节省机床设备和加工工时,大幅度节约金属原材料。

相关文档
最新文档