隧道设计说明.doc
(整理)1-03雪峰山隧道设计说明.
雪峰山隧道设计说明1.隧道概况雪峰山隧道地处福建西北部,穿越雪峰山主峰。
主要穿越将乐县莫源乡、南口乡、大坪、沙溪仔村、张源村、白沙公区、雪峰山主峰和后门山山峰、大排山山峰以及沙县夏茂镇后垄村。
进口位于将乐县城郊上苦竹村,出口位于沙县夏茂镇后垄村。
隧道采用单线双洞方案,左线隧道进口里程DK300+850,进口轨面设计标高198.881m;右线隧道进口里程YDK300+840,进口轨面设计标高198.851m;左线隧道出口里程DK318+692,出口轨面设计标高230.525m;右线隧道出口里程YDK318+676,出口轨面设计标高230.573m。
左线隧道全长17842m,右线隧道全长17836m。
隧道最大埋深948m。
其中,DK300+850至DK309+385为XPFJ-1标,湖管斜井,三洋斜井、平导为XPFJ-1标;DK309+385至DK318+692为XPFJ-2标,白沙斜井与溪源斜井为XPFJ-2标。
全隧道设置4座斜井,平导一座。
辅助坑道设置一览表2.隧道建筑限界及衬砌内轮廓本隧道采用双洞单线隧道,左右线线路中线线间距11.89 m~45~23.83m,由进口~出口变化。
设计行车速度为200km/h,并预留进一步提速条件。
本隧道根据《新建时速200~250公里客运专线铁路设计暂行规定》(铁建设〔2005〕140号)中建筑接近限界及《200Km/h客货共线铁路双层集装箱运输建筑限界(暂行)》(铁科技函〔2004〕157号)确定隧道建筑限界。
隧道内单侧设置贯通的救援通道,救援通道宽1.5m,高2.2m,外侧距线路中线的距离为2.3m,救援通道底面高于内轨顶面30cm。
曲线上的隧道,内轮廓不设曲线加宽,隧道轨面以上净空面积为58.2m2。
3.洞内轨道及照明设置1、按重型轨道、无缝线路标准设计;2、道床:隧道内采用无砟轨道整体道床,轨道结构高度0.515m;3、隧道内设置固定式电力照明和应急照明设备,洞内专用洞室设置固定和应急照明设备。
隧道设计说明
6.4隧道工程结构设计隧道是本工程的主要组成部分,根据道路设计推荐方案,XXX1#隧道为分离式隧道和小净距隧道,XXX2#隧道为小净距隧道。
1#隧道位于里程K0+460~K1+380区段(左右线同),全长920m。
隧道设计纵坡为 2.0%,进口高程285.388m,出口高程294.288m,进出口高差8.9m,2#隧道位于里程K2+410~K3+125区段,全长715m。
隧道设计纵坡为2.2%,进口高程301.185m,出口高程316.478m,进出口高差22.23m,左右线隧道轴线线间距为18.5m~26.2m。
6.4.1隧道工程总体设计6.4.1.1设计原则(1)在借鉴国内外类似工程的实践及成功经验的基础上,结合本工程特点,通过认真分析和深入研究,并充分吸取国内外隧道设计和建设的新理念、新材料、新工艺和先进经验及技术。
(2)隧道线型和结构的布臵形式应充分考虑工程的可行性、课实施性和社会经济效益等因素,因地制宜,结合本工程范围内的地形地物和规划,根据总体设计方案,在使用功能条件下,确保结构安全。
(3)总体方案兼顾城市规划、道路功能、用地、地下空间利用、邻近建(构)物保护、降低施工风险,节省投资等问题。
(4)集成防灾救援立体系统,以提高本项目的服务功能,为后期运营提供可靠保障。
(5)充分重视景观设计,力求造型美观,总体上与周围环境协调。
(6)隧道结构使用年限级别为一级。
具有规定的强度、稳定性和耐久性,且符合美观和环保要求。
(7)隧道设计必须符合国家有关的土地管理、环境保护、水土保持等法规的要求,并应注意节约用地,尽量保护原有植被,妥善处理隧道弃渣。
6.4.1.2隧道功能定位通过对片区规划新增联系通道布臵的理解,本次设计的XXX隧道与滨江路南端隧道(片区新增通道一)共同担任重钢片区与南部区域的联系任务。
同时,XXX 隧道还连接内环高速,加强重钢片区与重庆各区域的联系。
从区域地形来看,重钢片区地势较低,与其他区域的联系必须通过隧道来完成,同时,根据区域远期规划,该片区未来属于高端居住区,滨江路南端隧道并不能完全满足片区内居民出行需求,XXX隧道的新建能够有效的分流交通,不仅能减缓高峰时段的交通拥堵,而且该隧道连接内环高速,使得片区南部前往巴南区等区域的距离大为减少。
隧道设计说明
隧道设计说明隧道⼯程设计说明⼀、设计依据1、《南安(⾦淘)⾄厦门⾼速公路⼯程可⾏性研究报告》(福建省交通规划设计院)。
2、《厦门市城市总体规划修编(2003~2020)》(厦门市规划设计研究院)。
3、《厦门市同安区道路⽹发展规划》(2005—2020年) 厦门市同安区交通局。
4、《厦门市对外⼲线通道规划》(厦门市交通委员会 2002-2020年)。
5、福建省交通厅与福建省发改委共同⽂件:闽交建【2008】136号《关于南安(⾦淘)⾄厦门⾼速公路⼯程初步设计的批复》。
6、厦门⾄安溪城际快速路勘察设计总体组制定的勘察设计指导⼤纲。
7、部颁有关规范、规程及《⼯程建设标准强制性条⽂》(公路⼯程部分)。
⼆、主要技术标准与采⽤的规范、规程1、主要技术标准道路等级:⾼速公路计算⾏车速度:100Km/h隧道建筑限界净宽:2×(0.75+0.5+2×3.75+1.0+1.0)=2×10.75m隧道建筑限界净⾼:5.0m2、采⽤的设计规范《公路⼯程技术标准》(JTG B01-2003)《公路⼯程基本建设项⽬设计⽂件编制办法》(2007年版)《公路⼯程抗震设计规范》(JTJ 004-89)《公路隧道设计规范》(JTG D70-2004)《公路隧道施⼯技术规范》(JTJ F60-2009)《公路隧道通风照明设计规范》(JTJ 026.1-1999)《公路⽔泥混凝⼟路⾯设计规范》(JTG D40-2002)《公路沥青路⾯设计规范》(JTJ D50-2006)《锚杆喷射混凝⼟⽀护技术规范》(GB50086-2001)《地下⼯程防⽔技术规范》(GBJ 108-87)《公路隧道交通⼯程设计规范》(JTG/T D71-2004)三、⼯程概况本项⽬TB4合同段设置1座分离式隧道—⼩溪⼭隧道,隧道⼤致呈南北向穿越⼩溪⼭,设计⾥程桩号:左线ZK11+250~ZK11+743,长493m,右线YK11+245.5~YK11+735.5长490m。
隧道工程课程设计
隧道工程课程设计说明书The structural design of the Tunnel作者姓名:专业、班级:道桥班学号:指导教师:设计时间:目录一.课程设计题目 0二.隧道的建筑限界 0三.隧道的衬砌断面 0四.荷载确定 04.1围岩压力计算 04.2围岩水平压力 (1)4.3深埋隧道荷载计算 (1)五.结构设计计算 (2)5.1计算基本假定 (2)5.2内力计算结果 (3)5.3 V级围岩配筋计算 (3)5.4偏心受压对称配筋 (3)5.5受弯构件配筋 (4)5.6箍筋配筋计算 (4)5.7强度验算 (5)5.8最小配筋率验算: (6)六.辅助施工措施设计 (6)6.1双侧壁导坑施工方法 (6)6.2开挖方法 (6)6.3施工工序 (6)隧道工程课程设计一.课程设计题目某高速铁路隧道V 级围岩段衬砌结构设计设计时速350Km/h;隧道埋深127m;单洞双线二.隧道的建筑限界2.1 隧道的建筑限界根据铁路隧道设计规范TB10003-2005有关条文规定;隧道的建筑限界高度H 取6.55m;行车道宽度取4.252⨯m;如图所示三.隧道的衬砌断面拟定隧道的衬砌;衬砌材料为C25混凝土;弹性模量Ec=2.95×107kPa;重度γh=23kN/m3;衬砌厚度取50cm;如图所示..四.荷载确定4.1围岩压力计算计算围岩竖向均布压力:10.452s q γω-=⨯式中:s ——围岩类别;此处s=5;γ——围岩容重;此处γ=22KN/m3;ω——跨度影响系数毛洞跨度8.5B m =B =8.5m5,0.1B m i >=;此处1(5)10.1(8.55) 1.35i B ω=+-=+⨯-=所以有:40.452 1.359.72h m =⨯⨯= 因是松软围岩;故m H 127m 3.24h 5.2p <== 所以此隧道为深埋隧道..围岩竖向均布压力10.452s q γω-=⨯=0.45×1-52×22×1.35=213.84KN4.2围岩水平压力围岩水平均布压力:()m 106.92)KN/~(64.1550.0~30.0e ==q 取其平均值 m KN q e /54.85=⋅=λ 4.3深埋隧道荷载计算 1作用在支护结构上的垂直压力由于q ph H H <<;为便于计算;假定岩土体中形成的破裂面是一条与水平成β角的斜直线;如图所示..EFGH 岩土体下沉;带动两侧三棱体图中FDB 和ECA 下沉;整个岩土体ABDC 下沉时;又要受到未扰动岩土体的阻力;斜直线AC 或BD 是假定的破裂面;分析时考虑内聚力c;并采用了计算摩擦角c ϕ;另一滑面FH 或EG 则并非破裂面;因此;滑面阻力要小于破裂面的阻力..该滑面的摩擦系数θ为36.5度..查询铁路隧道设计相关规范;取计算摩擦角040c ϕ=..深埋隧道荷载计算简图如上图所示;隧道上覆岩体EFGH 的重力为W ;两侧三棱岩体FDB 或ECA 的重力为1W ;未扰动岩体整个滑动土体的阻力为F;当EFHG 下沉;两侧受到阻力T 或'T ;作用于HG 面上的垂直压力总值Q 浅为:'22sin Q W T W T =-=-浅2-4其中;三棱体自重为:112tan h W hγβ=2-5式中:h 为坑道底部到地面的距离m ;β为破裂面与水平的交角°..由图据正弦定理可得1sin()sin[90()]T W βϕβϕθ-=︒--+2-6由于GC 、HD 与EG 、EF 相比往往较小;而且衬砌与岩土体之间的摩擦角也不同;当中间土块下滑时;由FH 及EG 面传递;考虑压力稍大些对设计的结构也偏于安全;因此;摩阻力不计隧道部分而只计洞顶部分;在计算中用H 代替h ;有:tan tan c βϕ=+2-7tan tan 0.397tan [1tan (tan tan )tan tan ]cc c βϕββϕθϕθλ-=+-+=2-82(1tan )218.80/ttQ H q H KN mB B γλθ==-=浅浅 2-9埋深为127m 时;土压力值为1384.3KN/m2.. 式中: λ——侧压力系数;tB ——坑道宽度m ;c ϕ——围岩的计算摩擦角°;q 浅——作用在支护结构上的均布荷载kN/m2..(2)作用在支护结构两侧的水平侧压力Ⅴ级围岩荷载分布如下图所示..作用在支护结构上的均布荷载五.结构设计计算5.1计算基本假定因隧道是一个狭长的建筑物;纵向很长;横向相对尺寸较小..隧道计算取每延米作为计算模型;此类问题可以看作平面应变问题来近似处理..考虑围岩与结构的共同作用;采用荷载结构模型..隧道计算采用荷载结构模式按有限杆单元;采用MIDAS/GTS 进行计算分析..基本假定:假定所有衬砌均为小变形弹性梁;把衬砌为离散足够多个等厚度梁单元..用布置于各节点上的弹簧单元来模拟围岩与初期支护、衬砌的相互约束;假定弹簧不承受拉力;即不计围岩与衬砌间的粘结力;弹簧受压时的反力即为围岩对衬砌的弹性抗力..假定初期支护与主体结构之间只传递径向压力..考虑到在非均匀分布的径向荷载作用下;衬砌结构一部分将发生向着围岩方向的变形;而地层具有一定的刚度;会对衬砌结构产生被动的弹性抗力;设计计算时采用弹性地基梁单元模拟..5.2内力计算结果计算荷载基本组合:结构自重+围岩压力;为了计算保证计算的可靠性;采用MIDAS/GTS 进行计算..Midas/GTS 计算结果如下:MIDAS/GTS 计算弯矩图 MIDAS/GTS 计算轴力图 MIDAS 计算内力表5.1由内力图可知;结构所受弯矩为293.843KN m;对应轴力为-1437.516KN.. 5.3 V 级围岩配筋计算整个断面存在正负相反方向的弯矩;又弯矩较大;按偏心受压对称配筋和受弯构件配筋分别进行计算..5.4偏心受压对称配筋根据Midas 计算结果进行结构配筋计算;取弯矩293.843KN m;对应轴力-1437.516KN 为最不利截面控制内力..衬砌混凝土采用C25;钢筋采用HRB335;由混凝土和钢筋等级查表知系数1 1.0α=;0.8β=;界限受压区高度0.55b ξ=..按双面对称配筋进行计算..有效高度:050050450h mm =-= 偏心距:0293.843*10001437.5204.416M e mm N ===附加偏心距:20a e mm=初始偏心距:0224.4i a e e e mm =+= 修正系数:10.50.510100010.51.739 1.01437.516c f A N ζ⨯⨯⨯⨯===≥;取1 1.0ζ=.. 02.015l h=<; 所以取2 1.0ζ= 偏心距增大系数:01.0057224.4225.6790.3135i e h mm η=⨯=≥=;所以可先按大偏心受压情况计算..0143.70.3190.55450b x h ξξ===<=;故假定按照大偏心受压是正确的.. 钢筋截面面积:()10202550.35c s s y s x Ne f bx h A A mm f h a α⎛⎫-- ⎪⎝⎭'===''- 最小配筋截面面积:2min min 00.0021000450900s A bh mm ρ==⨯⨯=;故按最小配筋率配筋;选取320的Ⅱ级钢筋;实际配筋面积为2942s A mm=实际..5.5受弯构件配筋计算配筋过程10.1570.55ξ==<;满足要求故:选用622的Ⅱ级钢筋;实际配筋面积为22281s A mm =实..5.6箍筋配筋计算对于箍筋;0max max0.07186.971,4.2112a R bh Q KN Q ==>;因此只需按照构造配箍;选用12@200纵方向和10@250横断面..5.7强度验算为了保证衬砌结构强度的安全性;需要在算出结构内力之后进行强度验算..目前我国国内公路隧道设计规范规定;隧道衬砌和明洞按破坏阶段验算构件截面强度..即根据混凝土和石砌材料的极限强度;计算出偏心受压构件的极限承载力;与构件实际内力相比较;计算出截面的抗压或抗拉强度安全系数K..检查是否满足规范所要求的数值;即:式中:jxN ——截面的极限承载能力;N ——截面的实际内力轴向力;gfK ——规范所规定的强度安全系数..当h N M e 2.0≤=时;由抗压强度控制;当h N M e 2.0≥=时;截面由抗拉强度控制;即: 其中:ϕ——构件纵向系数;隧道衬砌取1;a R ——混凝土极限抗压强度;l R ——混凝土极限抗拉强度;α——轴力的偏心影响系数;按以下经验公式确定:b ——截面宽度;取1m ; h ——截面厚度;钢筋混凝土结构的强度安全系数在计算永久荷载加基本可变荷载时取2.0受压或2.4受拉..在计算安全系数时;弯矩和轴力只取大小;即全是正值..表5.2 V 级围岩大变形地段安全系数计算表5.8最小配筋率验算: 取50s a mm=;有()()9420.02092%100050050s s A b h a ρ===>⨯-⨯-满足规范要求.六.辅助施工措施设计双侧壁导坑法采用双侧壁导坑法进行开挖;双侧壁导坑法是将隧道断面分成左右两个侧壁导坑和上下台阶四大部分开挖..6.1双侧壁导坑施工方法双侧壁导坑法又称眼睛工法;在软弱围岩中;当隧道跨度更大或因环境要求;对地表沉陷需严格控制时;可考虑采用双侧壁导坑法..现场实测表明;双侧壁导坑法所引起的地表沉陷仅为断台阶法的1|2..导坑尺寸拟定的原则同前;但原则不宜超过断面最大宽度的三分之一..左右侧壁导坑应错开开挖;以避免在同一断面上同时开挖而不利于围岩稳定;错开的距离根据后行导坑引起的围岩应力重分布不影响已成导坑的原则确定;亦可工程类比之;一般去7-10m..6.2开挖方法双侧壁导坑法虽然开挖断面分块多一点;对围岩的扰动次数增加;且初期支护全断面闭合的时间延长;但每个分块都是在开挖之后立即闭合对的;所以在施工期间变形几乎不发展..该施工方法安全;但进度慢;成本高..双侧壁导坑预留核心土法施工工序图 6.3施工工序①开挖一侧导坑;及时将初期围护闭合..②相隔一段距离后开挖另一侧导坑;将初期围护闭合..③开挖上部核心土;施做拱部初期支护;拱脚支承在两侧壁导坑的初期支护上.. ④开挖下台阶;施做底部的初期支护;是初期支护全断面闭合.. ⑤拆除导坑临空部分的初期支护..⑥待隧道周边变形基本稳定后;施做二次模注混凝土衬砌..6.4裂缝宽度验算经验算所有的裂缝宽度均满足公路隧道设计规范JTG D70-2004要求..主要参考文献:[1]JTG D70-2004. 公路隧道设计规范.北京: 人民交通出版社; 2004[2]钱东升.公路隧道施工技术. 北京:人民交通出版社;2003[3]黄成光.公路隧道施工. 北京:人民交通出版社;2001[4]朱汉华;尚岳全.公路隧道设计与施工新法. 北京:人民交通出版社;2002[5]朱永权;宋玉香.隧道工程.北京:中国铁道出版社;2007[6]黄成光.隧道工程.北京:人民交通出版社;2008[7]章元爱.TBM隧道围岩稳定和支护结构受力特性研究.北京:铁道科学研究院;2006[8]戴旭光.新奥法在软弱围岩隧道施工中的应用. 浙江水利科技;2008[9]朱汉华 ;杨建辉 ;尚岳全.隧道新奥法原理与发展.隧道建设;2008[10]张洋.隧道工程软弱围岩大变形控制体系研究.成都:西南交通大学;2006。
青藏铁路昆仑山隧道设计说明
青藏铁路昆仑山隧道设计说明青藏铁路昆仑山隧道海拔4600~ 4700m,处于高原腹地,具有独特的冰缘干寒气候特征,且随海拔增高而有明显的气候垂直分布带性。
根据西大滩临时观测资料(1978年初测资料),昆仑山隧道所在地区年平均气温-3。
6℃,极端最高气温23.7℃,极端最低气温-27.7℃,年平均降水量220.9mm,年平均蒸发量1469.8mm,相对湿度平均为4 4.8%。
1 地貌地质概况及多年冻土分布特征本区属昆仑山北麓中、高山区,山岭高耸,山坡陡峻,坡面破碎,多有坡积碎石分布。
区内发育一峡谷一乱石沟(又名惊仙谷),昆仑河顺沟流淌。
青藏公路沿昆仑河修建。
昆仑山隧道位于乱石沟西侧高山中,隧道顶部山体分布2条冲沟,隧道进口处为一山梁,地表植被较发育,覆盖率40%。
隧道出口处山坡陡峻,分布坡积碎石土,局部基岩出露,坡面无植被,隧道出口下方紧靠青藏公路。
山体为三叠系板岩夹片岩,山坡为坡积角砾土、碎石土,洪积碎石土。
坡积角砾土厚2~3m,分布于隧道进口,灰黄色,角砾成分以板岩为主,片岩次之。
坡积碎石土厚2—20m,分布于山体表层及隧道出口,灰黑色,碎石成分以板岩为主.洪积碎石土厚4—8 m,分布于山坡冲沟中,灰色,碎石成分以板岩为主,片岩次之。
昆仑山隧道洞身通过板岩夹片岩,以板岩为主,局部夹片岩,浅灰色,灰黑色,变晶结构.板岩为板状构造,岩体致密,坚硬。
片岩为片状构造,岩体多柔软,破碎.岩体板理、片理发育,节理、裂隙发育.强风化层厚1.7~4m,板岩呈碎块状,片岩为碎片状,局部为粉土状,含较多裂隙冰。
洞身主要围岩级别为Ⅳ~V级.昆仑山隧道属于多年冻土区,隧道进口山坡为阴坡,冻土上限较浅,一般为2.7m,除隧道进口处分布1.8m左右厚的饱冰冻土外,其余为少冰、多冰冻土.出口山坡为阳坡,冻土上限较深,一般为2。
1~3m,为少冰、多冰冻土.根据隧道物探断面反映,地层含冰量随深度逐渐降低。
在36m以上岩层中局部分布薄层裂隙冰。
隧道设计说明
说明1 设计依据以及总体原则1.1 设计依据和技术标准设计依据:1)勘察设计合同及相关批复文件《高整公路公路工程勘察设计合同文件》(第三合同);A省交通厅桂交基建函[2010]564号文《关于高整公路公路初步设计的批复》的要求;A省环境爱惜文件《关于高整公路公路工程环境影响报告书的批复》桂环管字(2009)268号。
1.1.2 执行的交通部颁布的有关技术标准、规范、规程等:⑴《公路工程技术指标》(JTG B01—2003);⑵《公路路途设计规范》(JTG D20—2006);⑶《公路隧道设计规范》(JTG D70—2004);⑷《公路隧道交通工程设计规范》 (JTG/T D71-2004);⑸《公路隧道通风照明设计规范》(JTJ 026.1—1999);⑹《锚杆喷射混凝土支护技术规范》(GB 50086—2001);⑺《地下工程防水技术规范》(GB 50108—2008);⑻《公路隧道施工技术规范》(JTG F60—2009);⑼《公路隧道施工技术细则》(JTG/T F60—2009);⑽《工程岩体分级标准》(GB 50218—94);⑾《公路勘测规范》(JTG C10—2007);⑿《公路工程地质勘察规范》(JTJ 064—98);⒀《爆破平安规程》(GB 6722-2003);⒁《公路工程抗震设计规范》(JTJ 004—89);⒂《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004);⒃《公路桥涵地基和基础设计规范》(JTJ D63—2007);⒄《公路沥青路面设计规范》TJG D50-2006;⒅《中国地振动参数区划图》(GB 18306—2001);⒆《公路项目平安性评价指南》 (JTG/T B05-2004);⒇《公路建设项目环境影响评价规范》 (JTG B03-2006)。
1.1.3 技术标准⑴隧道设计行车速度100公里/小时;路基宽度26m;⑵隧道设计为高速公路双洞单向交通行车两车道分别式隧道;⑶隧道长度超过100米,设置照明;若L·N≥2×106设置机械通风,否则自然通风;⑷隧道设计交通量:2033年交通量32562辆/日(小车);⑸隧道建筑限界净宽:10.75m 净高 5m⑹ CO设计浓度正常行驶时δco=250ppm交通堵塞时δco=300ppm(20min)⑺烟雾设计浓度正常行驶时K=0.0065m-1事故时 K=0.009m-1⑻火灾时,隧道内换气风速为 2.5m/s1.2 总体原则遵守现行的有关规范、规程,借鉴、参考国内外类似工程的成功阅历,依据隧道所处的总体线形、地形、地质条件,结合施工、运营、管理等状况,遵循“平安、经济、合理、环保”的原则进行设计。
米脂隧道设计说明
1、概况米脂一号隧道为双洞分离式,分左线和右线两座隧道。
左线隧道起点桩号ZK91+603,终点桩号ZK93+225,设计长1622m,按长度划分为长隧道;右线隧道起点桩号YK91+613,终点桩号YK93+270,设计长1657m,按长度划分为长隧道。
隧道最大埋深约122m。
地貌属黄土梁峁沟壑区,地势总体南低北高,垂直隧道轴向两侧低,中部高且起伏较大。
隧址区高程889~1016m,相对高差约127m,隧道进口处左线边坡坡度约19 o,右线边坡坡度约77 o,出口处左线边坡坡度约17 o,右线边坡坡度约40 o。
2、工程地质条件1)地层岩性4-13粉土(Q42al+pl):浅黄色,土质均匀,手捻稍有砂感,岩芯呈散体状,中密,稍湿。
层厚约1.5m。
4-13粉土(Q42pl):褐黄色,土质均匀,手捻稍有砂感,岩芯呈散体状,中密,稍湿。
层厚约1.2m。
5-13粉土(Q41al+pl):褐黄色,土质不匀,手捻稍有砂感,岩芯呈散体状,中密,稍湿。
层厚约1.4m。
6-13黄土(Q3eol):褐黄色,土质均匀,结构松散,手捻稍有砂感,具大孔隙,针孔、虫孔发育。
岩芯呈散体状,硬塑,稍湿。
层厚约2.0~7.0m。
8-13黄土(Q2eol):黄褐色,土质均匀,结构致密,手捻稍有砂感,见少量钙质结核。
岩芯呈散体状~柱状,硬塑,稍湿。
层厚约36.5~92.6m。
为隧道洞室进口段主要围岩。
14-22强风化砂岩(T3h):浅黄色,细粒结构,层状构造,矿物成分主要以长石、石英为主,节理、裂隙很发育,岩芯呈碎片及碎块状,锤击声闷,易碎,层厚5.5~8.0m,为隧道洞室主要围岩。
14-23弱风化砂岩(T3h):灰绿色,细粒结构,层状构造,局部夹薄层泥岩,矿物成分主要以长石、石英为主,节理、裂隙发育,岩芯呈短柱状~柱状,锤击声脆,未揭穿。
为隧道洞室主要围岩。
2)地质构造隧址区整体上位于鄂尔多斯断块伊陕斜坡区,中、新生代以来,地壳一直处于相对稳定和振荡性升降的状态,区内褶皱、断层不发育,地震活动轻微,地壳属于相对稳定的构造区。
毕业设计——青龙山隧道设计计算说明书
毕业设计——青龙山隧道设计计算说明书目录摘要 (I)Abstract (II)第1章绪论 (3)1.1选题的背景目的及意义 (3)1.2国内外研究状况 (4)1.3设计依据 (5)1.3.1 设计标准 (5)1.3.2 技术标准 (5)1.4建筑材料选用 (5)1.5拟解决的主要问题 (6)1.6本章小结 (6)第2章青龙山隧道总体设计 (7)2.1青龙山隧道工程地质资料 (7)2.1.1 地形地貌 (7)2.1.2 区域稳定性 (7)2.1.3 地层岩性 (7)2.1.4 地质构造 (7)2.1.5 水文地质 (7)2.2围岩等级的确定 (8)2.4青龙山隧道选址 (8)2.4.1 隧道选址原则 (8)2.4.2 青龙山隧道选址 (6)2.5隧道洞口选择及线型设计 (9)2.5.1 洞口选择和线型设计的原则 (9)2.5.2 洞口位置的选择 (9)2.6隧道纵断面设计 (7)2.7隧道横断面设计 (10)2.7.1 建筑限界 (10)2.8本章小结 (15)第3章洞门设计 (16)3.1洞口段地质评价 (16)3.1.1 上行出口端 (16)3.1.2 下行入口段 (16)3.2洞门设计 (16)3.2.1 洞门类型选择 (16)3.2.2 洞门设计 (17)3.2.3 洞门建筑材料 (17)3.3洞门强度及稳定性验算 (18)3.3.1 洞门结构计算 (18)3.3.2 抗滑动稳定性验算 (20)3.3.3 抗倾覆稳定性验算 (20)3.3.4 基底合力偏心距验算 (21)3.3.5 基底压应力验算 (21)3.3.6 墙身截面强度验算 (21)3.4本章小结 (22)第4章明洞设计 (23)4.1明洞长度确定 (23)4.2明洞设置 (23)4.2.1 明洞基本参数设置及配筋 (23)4.2.2 衬砌内力计算 (20)4.2.3 衬砌截面强度检算 (35)4.2.4 明洞衬砌内力图 (41)4.3本章小结 (41)第5章衬砌设计 (42)5.1概述 (42)5.2荷载计算 (43)5.2.1 计算断面参数选择 (43)5.2.2 浅、深埋的判断 (44)5.2.3围压的确定 (59)5.3.1 计算方法 (61)5.3.2 计算图示 (62)5.3.3衬砌几何要素 (63)5.3.4主、被动荷载作用下的衬砌压力的计算 (93)5.3.5最大抗力值的计算 (96)5.3.6衬砌总内力计算(不同围压级别) (104)5.4衬砌验算 (70)5.4.1 超浅埋断面衬砌验算 (70)5.4.2 浅埋断面衬砌验算 (116)5.4.3 深埋断面衬砌验算 (80)5.6隧道衬砌内力图 (126)5.6.1 浅埋、超浅埋界限截面内力图(超浅埋) (126)5.6.2 深埋、浅埋界限截面内力图(浅埋) (127)5.6.3 浅埋、超浅埋界限截面内力图(深埋) (127)5.5本章小结 (128)第6章通风照明设计 (129)6.1通风设计 (129)6.2照明设计 (130)6.2.1 洞外接近段照明 (130)6.2.2 洞内照明 (131)6.2.6 照明计算 (90)6.3本章小结 (139)第7章隧道防排水设计 (139)7.1防水设计 (139)7.1.1 防排水标准 (139)7.1.2 防水措施 (140)7.1.3 复合式衬砌防水系统 (140)7.1.4 二次衬砌防水系统 (140)7.2隧道洞内排水 (141)7.2.1 围岩疏导排水 (141)7.2.2 路侧边沟排水 (141)7.3洞口与明洞防排水 (143)7.3.1 洞口防排水 (143)7.3.2 明洞防排水 (144)7.4本章小结 (144)第8章施工工艺 (100)8.1施工方法 (100)8.2辅助施工 (100)8.3施工注意事项 (100)本章小结 (101)结论 (102)参考文献 (103)致谢 (150)摘要本设计为五海公路青龙山隧道隧道设计。
青藏铁路昆仑山隧道设计说明
青藏铁路昆仑山隧道设计说明青藏铁路昆仑山隧道海拔4600~ 4700m,处于高原腹地,具有独特的冰缘干寒气候特征,且随海拔增高而有明显的气候垂直分布带性。
根据西大滩临时观测资料(1978年初测资料),昆仑山隧道所在地区年平均气温-3.6℃,极端最高气温23.7℃,极端最低气温-27.7℃,年平均降水量220.9mm,年平均蒸发量1469.8mm,相对湿度平均为44.8%。
1 地貌地质概况及多年冻土分布特征本区属昆仑山北麓中、高山区,山岭高耸,山坡陡峻,坡面破碎,多有坡积碎石分布。
区内发育一峡谷一乱石沟(又名惊仙谷),昆仑河顺沟流淌。
青藏公路沿昆仑河修建。
昆仑山隧道位于乱石沟西侧高山中,隧道顶部山体分布2条冲沟,隧道进口处为一山梁,地表植被较发育,覆盖率40%。
隧道出口处山坡陡峻,分布坡积碎石土,局部基岩出露,坡面无植被,隧道出口下方紧靠青藏公路。
山体为三叠系板岩夹片岩,山坡为坡积角砾土、碎石土,洪积碎石土。
坡积角砾土厚2~3m,分布于隧道进口,灰黄色,角砾成分以板岩为主,片岩次之。
坡积碎石土厚2—20m,分布于山体表层及隧道出口,灰黑色,碎石成分以板岩为主。
洪积碎石土厚4—8 m,分布于山坡冲沟中,灰色,碎石成分以板岩为主,片岩次之。
昆仑山隧道洞身通过板岩夹片岩,以板岩为主,局部夹片岩,浅灰色,灰黑色,变晶结构。
板岩为板状构造,岩体致密,坚硬。
片岩为片状构造,岩体多柔软,破碎。
岩体板理、片理发育,节理、裂隙发育。
强风化层厚1.7~4m,板岩呈碎块状,片岩为碎片状,局部为粉土状,含较多裂隙冰。
洞身主要围岩级别为Ⅳ~V级。
昆仑山隧道属于多年冻土区,隧道进口山坡为阴坡,冻土上限较浅,一般为2.7m,除隧道进口处分布1.8m左右厚的饱冰冻土外,其余为少冰、多冰冻土。
出口山坡为阳坡,冻土上限较深,一般为2.1~3m,为少冰、多冰冻土。
根据隧道物探断面反映,地层含冰量随深度逐渐降低。
在36m以上岩层中局部分布薄层裂隙冰。
紫金山隧道设计说明
中缅油气管道工程国内段隧道工程第二EPC合同项S5-1紫金山隧道设计说明1.工程概况第二EPC合同项紫金山隧道位于云南段大理市巍山县紫金村,隧道进口,隧道全长约1.75km。
隧道进口位于徐村水库左岸紫金山一冲内,出口位于徐村水库大坝前约1Km,漾濞江左岸一冲沟内,进口桩号为ZJS001,出口ZJS002。
隧道水平长度1794m,实长1796.7 m,纵向坡度采用“人”字坡,进、出口端坡比分别为1.0%、7.925%,坡长分别为950m,844m。
洞身断面采用直墙,净断面尺寸为 3.8m×3.8m(宽×高)。
隧道内安装2条管道,天然气管道管径为D1016mm,设计压力为10MPa;原油管道管径为D813mm,设计压力为15MPa。
2.设计依据1)中缅油气管道工程国内段隧道工程第二EPC合同项合同;2) 最终版隧道初步设计文件及审批文件;3)招标阶段发布及相关的澄清文件;4)有关的勘察、测量资料;3.隧道主要设计规范标准1)《输气管道工程设计规范》GB50251-20032)《油气输送管道线路工程抗震技术规范》GB50470-20083)《油气输送管道穿越工程设计规范》GB50423-20074)《油气输送管道穿越工程施工规范》GB50424-20075)《油气长输管道工程施工及验收规范》GB50369-20066)《混凝土结构设计规范》GB50010-20027)《砌体结构设计规范》GB50003-20018)《钢结构设计规范》GB50017-20039)《建筑地基基础设计规范》GB50007-200210)《建筑抗震设计规范》(2008年版)GB50011-200111)《建筑工程抗震设防分类标准》GB50223-200812)《岩土工程勘察规范(2009年版)》GB50021-200113)《工程岩体分级标准》GB50218-199414)《地下工程防水技术规范》GB50108-200815)《锚杆喷射混凝土支护技术规范》GB50086-200116)《钢结构工程施工质量验收规范》GB50205-200117)《建筑边坡工程技术规范》GB50330-200218)《铁路工程抗震设计规范》GB50111-200619)《石油天然气建设工程施工质量验收规范管道穿跨越工程》SY4207-200720)《铁路隧道设计规范》TB 10003-2005/J449-200521)《铁路隧道施工规范》TB10204-2002/J163-200222)《天然气输送管道用钢管通用技术条件》Q/SY GJX 101-200923)《油气管道山岭隧道设计规定》CDP-G-PC-CR-005-2009/B4.隧道工程地质条件及评价4.1隧道自然地理条件4.1.1地形、地貌场地属低中山地貌,线路轴线经过处山顶高程一般在1600~1700m,谷底高程一般在1325~1400m,地形切割较为强烈,相对高差约200~400m,山顶为尖顶状,脊线呈锯齿状,地形起伏大,山坡较陡,植被茂密,山间沟谷多呈现“V”形。
大瑶山隧道设计说明
一、隧道概况大瑶山一号隧道位于广东省乐昌市的庆云镇至两江镇的九峰河,穿越狮子山,进口位于庆云镇的头巾冲,出口位于两江镇的九峰河北岸,进口处有乡道通头巾冲,出口处有两江至红马桥电站的简易公路通过。
隧道进口里程DK1908+024,出口里程DK1918+355,隧道全长10331m,为全线最长的隧道,隧道最大埋深约650米,隧道内设置人字坡,坡度分别为3‰、-12‰、其坡长分别为2376m、7953m.隧道设有斜井和横洞各1座。
二、隧道建筑限界及衬砌内轮廓客运专线隧道建筑限界满足"京沪高速铁路设计暂行规定"的限界要求,详见"武广隧(初)参01-03"图。
双线隧道净空有效面积100m ,内设双侧救援通道,救援通道宽1.5m,工程技术作业空间0.3m。
双线隧道线间距与洞外相同,曲线地段隧道不考虑加宽。
三、轨道结构隧道内轨顶面标高=路肩设计标高+0.972米,隧道内设长枕埋入式无碴轨道,进口外为板式无碴轨道,出口外为长枕埋入式无碴轨道.四、隧道平纵断面隧道全长10328m,全隧道平面均位于直线上;隧道内设置人字坡,坡度分别为3‰、-12‰,其坡长分别为2376m、7955m。
本隧道DK1910+175~DK1910+625段设置圆曲线型竖曲线,竖曲线半径为30000m,隧道纵断面中括号外标高为考虑竖曲线影响后的标高,括号内数字为未计竖曲线影响的标高。
五、洞口工程为确保施工顺利进行,在进行暗洞施工前应对洞口衬砌外1~3m范围内的边仰坡进行锚喷加固,然后开挖进洞。
隧道进口采用斜切式洞门,进口里程为DK1908+024;出口采用单侧挡墙式洞门,出口里程:DK1918+355,隧线分界里程:DK1918+361。
六、衬砌结构及辅助施工措施全隧道暗洞地段均采用复合式衬砌,局部地段根据需要予以加强;浅埋地段如暗挖施工困难,适宜采用明挖法施工采用明洞衬砌;为确保施工安全,设计中根据需要采用相应辅助施工措施。
02-东平一号隧道设计说明
新 建 铁 路 广 佛 环 线 佛 山 西 站 至 广 州 南 站 段 施工图
东平一号隧道设计说明
图 号:广佛环施隧 ZB-02 中铁第一勘察设计院集团有限公司 2013 年 07 月 西安
新 建 铁 路 广 佛 环 线 佛 山 西 站 至 广 州 南 站 段 施工图
东平一号隧道设计说明
设 复 审 审 计: 核: 核: 定:
中铁第一勘察设计院集团有限公司 201 ........................................................................................................................................ 9 10.1 联络通道 ................................................................................................................................... 9 10.2 废水泵站 ................................................................................................................................... 9 10.3 雨水泵房 ...............................................................................................
营盘路湘江隧道结构设计说明
营盘路湘江隧道结构设计第一章设计原始资料1.1 技术标准及设计标准规范1.1.1 主要技术标准(1)隧道按规定的远期交通量设计,采用三车道隧道。
(2)隧道设计车速,隧道几何线形与净空按50km/h设计。
1.1.2 主要设计标准规范(1)《公路隧道设计规范》JTJ026-90;(2)《公路工程技术标准》JTJ001-97;(3)《公路工程抗震设计规范》JTJ004-89;(4)《锚杆喷射混凝土支护技术规范》GB50086-2001;1.2 工程概况长沙营盘路湘江隧道位于银盆岭大桥与橘子洲大桥间,东起营盘路,西接咸嘉湖路,下穿潇湘大道、傅家洲、橘子洲和湘江大道。
隧道左洞桩号:K16+115~K18+732,长2617m(其中明洞25m,暗洞2592m);右洞桩号:K16+085~K18+725,长2640m(其中明洞25m,暗洞2615m)。
暗洞按新奥法施工,明洞按明挖法施工。
1.3 隧道工程地质概况营盘路隧道地貌以丘陵为主,各隧道段地表均为斜坡地形,坡度大致为10°~50°,坡面植被茂盛,局部陡坡地段基岩裸露。
隧道拟经过处山岭起伏变化较大,地形条件较为复杂。
主要地质以含碎石亚粘土地层、含粘性土地层、角砾凝灰岩、角砾岩地层为主,巨层厚状、块状构造较多,局部碎块石状。
地层整体上风化较为严重,节理发育,地层表面为全风化地带,在海拔较低的垭口位置有一定厚度的坡积层。
断裂带主要为F8和F9断层,F8断层与隧道走向基本垂直,倾角84°,宽度3~5m; F9断层与隧道走向交角很小,受断层影响,该处地质裂隙发育,岩体破碎,局部地段水量可能很大。
地下水类型主要为基岩裂隙水,水量贫乏。
经综合评定,隧道围岩大致为III级、IV级、V级。
第二章总体设计2.1 一般规定2.1.1隧道设计应满足公路交通规划的要求,其建筑限界、断面净空、隧道主体结构以及营运通风、照明等设施,应按《公路工程技术标准》(JTG B01)规定的预测交通量设计。
隧道说明
风情大道改造及南伸(湘湖路-亚太路)工程初步设计修改说明风情大道改造及南伸(湘湖路~亚太路)工程于2010年10月19日进行了初步设计审查,并于2010年11月17日进行了由萧山区政府召集的专题会议。
根据萧发改纪要(2010)100号《风情大道南伸(湘湖路~亚太路)项目初步设计审查会议纪要》,《杭州市萧山区人民政府关于风情大道改造及南伸工程专题会议纪要》,对初步设计进行了修改,主要内容包括:一、道路平面设计1、湘湖路至休博园西大门出地段与本工程同步设计,同步实施,设计取消工程北起点与湘湖路沟通的东接线与西接线,起点段道路线形进行了优化。
2、公交停靠站改设在辅道上,分别设置于南环路、崇化路、南三路、南四路、南五路、南六路、亚太路路口,共7对。
3、南三路节点由风情大道主线上跨南三路调整为风情大道主线下穿南三路、辅路与南三路平交的交叉方式,以改善周边地块的景观效果、提升周边地块的开发价值。
同时经规划部门同意,将规划南三路往北移动80米,以利于金西河的布设,本方案按初步设计的方案五改河,同时将本路线上的第二横河桥河道填掉,道路西侧填河路段将变为可开发土地,约5.6亩。
4、为了与远期快速路的衔接,本次设计共设置了7处出入口。
根据最新规划,南四路、南五路由十字交叉改为丁字交叉;南五路由灯控平交口改为右进右出;南六路由右进右出改为灯控平交口。
二、道路纵断面设计本次设计结合远期南环路、亚太路下穿以及近期南三路的下穿,对本工程全线的纵断面设计标高进行了优化调整。
1、起点段为保证湘湖路北侧隧道埋置于水面下,将起点的标高降低2米,坡度变缓。
2、根据港航处的要求,除石岩沿山河通航净空按3m控制外,其余均按不通航控制。
故本次设计石岩沿山河在初步设计的基础上抬高了1米左右。
3、南环路、亚太路近期拉坡按平交方案实施,远期预留风情大道主线下穿方案。
4、南三路段由跨线桥改为下穿隧道,故对该段纵断设计标高进行了适当地调整。
三、桥梁工程设计1、桥面纵坡根据道路纵断面调整,跨河桥梁标高作相应调整,石岩沿山河梁底抬高1米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高整公路工程两阶段施工图设计(№A合同段)第五篇隧道
SⅤ-1
A省交通规划勘察设计研究院
1
说明1 设计依据以及总体原则
1.1 设计依据和技术标准
1.1.1 设计依据:
1)勘察设计合同及相关批复文件
《高整公路公路工程勘察设计合同文件》(第三合同);
A省交通厅桂交基建函[2010]564号文《关于高整公路公路初步设计的批复》的要求;
A省环境保护文件《关于高整公路公路工程环境影响报告书的批复》桂环管字(2009)268号。
1.1.2 执行的交通部颁布的有关技术标准、规范、规程等:
⑴《公路工程技术指标》(JTG B01—2003);
⑵《公路路线设计规范》(JTG D20—2006);
⑶《公路隧道设计规范》(JTG D70—2004);
⑷《公路隧道交通工程设计规范》 (JTG/T D71-2004);
⑸《公路隧道通风照明设计规范》(JTJ 026.1—1999);
⑹《锚杆喷射混凝土支护技术规范》(GB 50086—2001);
⑺《地下工程防水技术规范》(GB 50108—2008);
⑻《公路隧道施工技术规范》(JTG F60—2009);
⑼《公路隧道施工技术细则》(JTG/T F60—2009);
⑽《工程岩体分级标准》(GB 50218—94);
⑾《公路勘测规范》(JTG C10—2007);
⑿《公路工程地质勘察规范》(JTJ 064—98);
⒀《爆破安全规程》(GB 6722-2003);
⒁《公路工程抗震设计规范》(JTJ 004—89);
⒂《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004);
⒃《公路桥涵地基与基础设计规范》(JTJ D63—2007);
⒄《公路沥青路面设计规范》TJG D50-2006;
⒅《中国地震动参数区划图》(GB 18306—2001);
⒆《公路项目安全性评价指南》 (JTG/T B05-2004);
⒇《公路建设项目环境影响评价规范》 (JTG B03-2006)。
1.1.3 技术标准
⑴ 隧道设计行车速度100公里/小时;路基宽度26m;
⑵ 隧道设计为高速公路双洞单向交通行车两车道分离式隧道;
⑶ 隧道长度超过100米,设置照明;若L·N≥2×106设置机械通风,否则自然通风;
⑷ 隧道设计交通量:2033年交通量32562辆/日(小车);
⑸ 隧道建筑限界净宽:10.75m 净高5m ⑹ CO设计浓度
正常行驶时δco=250ppm 交通堵塞时
δco=300ppm(20min) ⑺ 烟雾设计浓度正常行驶时K=0.0065m-1
事故时 K=0.009m-1
⑻ 火灾时,隧道内换气风速为 2.5m/s 1.2 总体原则
遵守现行的有关规范、规程,借鉴、参考国内外类似工程的成功经验,根据隧道所处的总体线形、地形、地质条件,结合施工、运营、管理等情况,遵循“安全、经济、合理、环保”的原则进行设计。
2 初步设计(或技术设计)批复意见以及相关咨询意见的执行情况:本合同段施工图技术标准按初设批复意见执行,结合新民交投集团有限公司、中交第二公路勘察设计研究院有限公司及新民公路学会对本项目初步设计的审查意见,根据地形、地质条件优化隧道平纵面线形,合理确定轴线、洞口位置和类型,对洞口段支护参数进行了进一步优化调整:
2.1隧道地质勘探工作
根据初步设计批复意见以及相关咨询意见,加强了隧道地质勘探工作,增设了部分钻孔,加大了勘探力度,重点加强对断裂破碎带等不良地质的勘察,通过相关工程试验,取得了可靠的围岩物理力学特性,并对围岩的稳定性作了综合分析评价。
2.2隧道线形优化
根据初步设计批复及相关咨询意见,对本合同段隧道平纵面线形进行了优化。
2.3隧道洞口
根据初步设计批复意见以及相关咨询意见,对隧道的洞口方案进行了合理的方案比较,隧道洞口采用削竹式及端墙式洞门。
高整公路工程两阶段施工图设计(№A合同段)第五篇隧道
SⅤ-1
A省交通规划勘察设计研究院2
2.4隧道支护参数
结合初步设计批复意见以及相关咨询意见,局部优化了洞身初期支护的结构设计。
2.5隧道纵断面图
根据初步设计相关咨询意见及《公路工程基本建设项目设计文件编制办法》要求,对隧道(地质)纵断面图进行了钻孔柱状图式,坑探、槽探等内容的补充完善。
2.6隧道应急处理方案
根据初步设计相关咨询意见及《公路工程技术标准》JTG B01-2003,补充了交通或火灾事故的应急处理方案,详见隧道机电设计。
2.7隧道路面
根据区交通厅桂交基建函[2010]564号文《关于高整公路公路初步设计的批复》,本项目采用水泥混凝土路面。
3 隧道设计
3.1 隧道概况
本合同段段设一座分离式隧道,为千家洞隧道。
1)高整公路公路地处A省新民北部和中部地区,拟建千家洞隧道位于柳城县沙浦镇长隆村和凤山镇邓家新村交界处,隧道进口位于长隆村千家洞屯西南约800m,出口位于凤山镇邓家新村东北侧约400m,隧道走向约
为190~170?,距离右侧融江最近距离约为1Km。
设计隧道为分离式隧道,隧道起于OK147+520、PK147+520,终于OK148+075、PK147+990,设计长度为512.5m(公里桩号长),隧道设计高程约为146m~134m(黄海高程),最大埋深约72m。
隧道区属低缓丘陵地貌。
3.2 工程及水文地质勘察资料
3.2.1地形地貌
隧道区属低缓丘陵地貌,测区内山岭连绵,整体走向约为东西向,地势东侧略高,西侧略低,谷地和山顶高程约110~240m,最大相对高差约130 m。
拟建隧道穿越同一座山体,少量山顶及山梁上见基岩出露,山体南北两侧为甘蔗地和农田,地势较平坦、开阔。
进洞口端位于山体坡脚处,山体斜坡自然坡角约10~20?,斜坡较缓;出洞口端位于半山腰一冲沟旁,斜坡自然坡角约25~45?,下部陡上部稍缓。
地表分水岭位于桩号PK147+740(OK147+760)附近。
隧道区整个山体植被茂盛,主要种植有桉树、松树、竹子等。
隧道勘察区未发现大规模滑坡、崩塌、泥石流等不良地质现象,自然状态下,整个山体较稳定。
3.2.2地层岩性根据工程地质测绘及钻探资料,隧道区地层主要由第四系残坡积层粘土(Qel+dl)和石炭系下统大塘阶寺门段(C1d2):砂岩、页岩、页岩夹泥灰岩、灰岩等。
现从新到老分述如下:
1. 第四系残坡积层(Qel+dl):粘土,褐黄色,黄色,硬~可塑状,土质较均匀,局部含少量碎石、角砾,干强度较高,韧性中等。
主要分布于隧道区山体表层,各个钻孔均有揭露,揭露厚度0.5~11.0m,平均厚
度约4.5m。
2. 石炭系下统大塘阶寺门段(C1d2)
砂岩,灰色,粗粒~细粒结构,中厚层状构造。
主要分布于进洞口及大部分洞身段,按其风化可划分为全风化、强风化、中风化、微风化四层:
(1)全风化砂岩,黄色,风化完全,仅部分地段尚能辨别原岩结构,岩质极软,岩心呈土状、土夹石状。
SK2、ZK4揭露,揭露厚度3.90~
4.0m。
(2)强风化砂岩,浅黄色,灰褐色,岩体破碎,裂隙发育,岩芯多呈碎石、角砾状,岩质软。
局部地段岩体风化不均匀,夹中风化砂岩岩块。
CK1、SK2、SK4、ZK1有揭露,揭露厚度1.60~16.4m,层厚变化大。
(3)中风化砂岩,灰色,岩体较完整,局部较破碎,裂隙较发育,岩芯多呈短柱状,部分中柱状、碎块状,岩质较软。
CK1、SK2、SK4有揭露,揭露厚度1.50~19.0m,层厚变化大。
(4)微风化砂岩,岩体较完整~完整,岩质较硬,裂隙不发育,厚度大于50m。
页岩,灰黑色,页理结构,薄层状构造。
主要分布于P(0)K148+000至出洞口段,部分地段与砂岩形成互层状,按其风化可划分为全风化、强风化、中风化三层:
(1)全风化页岩,灰绿色,风化完全,仅部分地段尚能辨别原岩结构,岩质极软,岩心呈土状。
SK3、SK4、ZK2有揭露,揭露厚度4.8~8.0m。
(2)强风化页岩,灰色,灰褐色,岩体破碎,裂隙发育,岩芯多呈片
状、碎块状,部分为土柱状,岩质软。
该层分布不均匀,局部夹泥灰岩。
SK3、SK4、ZK2有揭露,揭露厚度3.7~37.1m,层厚变化大。
(3)中风化页岩,灰黑色,岩体较破碎~较完整,裂隙较发育,岩芯多呈,少量短柱状,岩质较软,局部夹泥灰岩。
SK3、SK4、ZK2有揭露,揭露厚度1.2~10.2m,层厚变化大。
中风化灰岩位于隧址初步方案段,本隧道勘察区未揭露。
3.2.3地质构造及地震动参数
1.地质构造
根据地质调查及区域地质资料,隧道位于甲伴岭区域性大断层的主干断层-千家洞逆断层的南侧约500m处,处于甲伴岭区域性大断层的影响带内。
甲伴岭区域性断层带由数条近东西向的主干逆断层及性质不明的分支断层组成,延伸百余千米,断线向南、北方向弯曲呈弧形,。