第七章平行线的证明1
北师大版数学八年级上《平行线的证明 》习题含答案
八年级上册第7章《平行线的证明》专题演练1.(1)如图1,AC平分∠DAB,AB∥CD,求证:∠1=∠2;(2)如图2,在(1)的条件下,AB的下方两点E、F满足:BF平分∠ABE,DF平分∠CDE,若∠DFB=25°,∠CDE=80°,求∠ABE的度数;(3)在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,如图3,则∠MGN=.2.如图1,点A、B分别在直线GH、MN上,∠GAC=∠NBD,∠C=∠D.(1)求证:GH∥MN;(2)如图2,AE平分∠GAC,DE平分∠BDC,若∠AED=∠GAC,求∠GAC与∠ACD之间的数量关系;(3)如图3,BF平分∠DBM,点K在射线BF上,∠KAG=∠GAC,若∠AKB=∠ACD,直接写出∠GAC的度数.3.已知,如图,在四边形ABCD中,AB∥CD,延长BC至点E,连接AE交CD于点F,使∠BAC=∠DAE,∠ACB=∠CFE(1)求证:∠BAF=∠CAD;(2)求证:AD∥BE;(3)若BF平分∠ABC,请写出∠AFB与∠CAF的数量关系.(不需证明)4.如图,E、F分别在AB和CD上,∠1=∠D,∠2与∠C互余,AF⊥CE于G,求证:AB∥CD.证明:∵AF⊥CE,∴∠CGF=90°,∵∠1=∠D,∴AF∥,∴∠4==90°(),又∵∠2与∠C互余(已知),∠2+∠3+∠4=180°,∴∠2+∠C=∠2+∠3=90°,∴∠C=,∴AB∥CD.5.(1)①如图1,已知AB∥CD,点E在直线AB、CD之间,探究∠ABE、∠BED、∠CDE之间的数量关系,并说明理由.②将图1中射线BA绕B逆时针方向旋转一定角度后,射线BA交射线DC于F,得到图2,形成四边形BFDE,探究四边形中∠B、∠E、∠D、∠BFD之间有何数量关系,并说明理由.(2)在图3中,AB∥CD,∠ABE与∠CDE的角平分线交于点N,∠ABM=∠ABN,∠CDM =∠CDN,写出∠M与∠E之间数量关系,并说明理由.6.已知:∠BDG+∠EFG=180°,∠B=∠DEF.(1)如图1,求证:DE∥BC.(2)如图2,当∠A=∠EFG=90°时,请直接写出与∠C互余的角.7.如图,直线EF交直线AB、CD与点M、N,NP平分∠ENC交直线AB于点P.已知∠EMB=112°,∠PNC=34°.(1)求证:AB∥CD;(2)若PQ将分∠APN成两部分,且∠APQ:∠QPN=1:3,求∠PQD的度数.8.已知:如图,∠1=∠2,∠B=∠C.(1)求证AB∥CD;(2)若∠A=30°,求∠D的度数.9.完成下面的证明:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,连接DE,DF,DE∥AB,∠BFD=∠CED,连接BE交DF于点G,求证:∠EGF+∠AEG=180°.证明:∵DE∥AB(已知),∴∠A=∠CED()又∵∠BFD=∠CED(已知),∴∠A=∠BFD()∴DF∥AE()∴∠EGF+∠AEG=180°()10.如图,若∠ADE=∠ABC,BE⊥AC于E,MN⊥AC于N,试判断∠1与∠2的关系,并说明理由.参考答案1.解:(1)∵AC平分∠DAB,∴∠1=∠3,∵AB∥CD,∴∠2=∠3,∴∠1=∠2;(2)过F作作FQ∥AB,∵AB∥CD,∴CD∥FQ,∵DF平分∠CDE,∴∠CDF=∠EDF=CDE==40°,∵CD∥FQ,∴∠DFQ=∠CDF=40°,∵∠DFB=25°,∴∠BFQ=15°,∵AB∥FQ,∴∠ABF=∠QFB=15°,∵BF平分∠ABE,∴∠ABE=2∠ABF=30°;(3)过P作PK∥AB,则PK∥DG,∴∠BPK=∠ABP=30°,∵PQ平分∠BPG,∴∠GPQ=∠BPQ,设∠GPQ=∠BPQ=x,∴∠GPK=2x+30°,∵DG∥PK,∴∠DGP=∠GPK=30°+2x,∵GM平分∠DGP,∴∠DGM=∠PGM=DGP=15°+x,∵PQ∥GN,∴∠PGN=∠GPQ=x,∴∠MGN=∠PGM﹣∠PGN=15°,故答案为:15°.2.解:(1)如图1,延长AC交MN于点P,∵∠ACD=∠D,∴AP∥BD,∴∠NBD=∠NPA,∵∠GAC=∠NBD,∴∠GAC=∠NPA,∴GH∥MN;(2)延长AC交MN于点P,交DE于点Q,∵∠E+∠EAQ+∠AQE=180°,∠EQA+∠AQD=180°,∴∠AQD=∠E+∠EAQ,∵AC∥BD,∴∠AQD=∠BDQ,∴∠BDQ=∠E+∠EAQ,∵AE平分∠GAC,DE平分∠BDC,∴∠GAC=2∠EAQ,∠CDB=2∠BDQ,∴∠CDB=2∠E+∠GAC,∵∠AED=∠GAC,∠ACD=∠CDB,∴∠ACD=2∠GAC+∠GAC=3∠GAC;(3)设射线BF交GH于I,∵GH∥MN,∴∠AIB=∠FBM,∵BF平分∠MBD,∴∠DBF=∠FBM=,∴∠AIB=∠DBF,∵∠AIB+∠KAG=∠AKB,∠AKB=∠ACD,∴∠ACD=∠DBF+∠KAG,∵∠KAG=∠GAC,∠GAC=∠NBD,∴∠GAC+=∠ACD=3∠GAC,即∠GAC+∠GAC=3∠GAC,解得∠GAC=.故答案为.3.解:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAF=∠DAE+∠CAF,∴∠BAF=∠CAD;(2)∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,∴∠B=∠D,∵AB∥CD,∴∠B+∠BCD=180°,∴∠D+∠BCD=180°,∴AD∥BE;(3)如图2,∵AD∥BE,∴∠E=∠1=∠2,∵BF平分∠ABC,∴∠3=∠4,∵∠AFB是△BEF的外角,∴∠AFB=∠4+∠E=∠4+∠1,∴∠AFB=3+∠2,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠3+∠4+∠1+∠CAF+∠2=180°,即2∠AFB+∠CAF=180°.故答案为:2∠AFB+∠CAF=180°.4.证明:如图所示:∵AF⊥CE(已知),∴∠CGF=90°,∵∠1=∠D(已知),∴AF∥ED,∴∠4=∠CGF=90°(两直线平行,同位角相等),又∵∠2与∠C互余(已知),∠2+∠3+∠4=180°,∴∠2+∠C=∠2+∠3=90°,∴∠C=∠3,∴AB∥CD(内错角相等,两直线平行),故答案为:已知,已知,ED,两直线平行,同位角相等;∠3,内错角相等,两直线平行.5.解:(1)①如图1,过E作EF∥AB,∴∠FEB+∠EBA=180°,∵CD∥AB,EF∥AB,∴CD∥EF,∴∠CDE+∠DEF=180°,∴∠CDE+∠DEB+∠ABE=360°,②如图2,过点B作GB∥CD,∴∠BFD=∠GBF,由(1)知∠GBE+∠E+∠D=360°,∴∠B+∠E+∠D+∠BFD=360°;(2)如图3,过M作MF∥AB,∵AB∥CD,∴MF∥CD,∵∠ABM=∠ABN,∠CDM=∠CDN,∴设∠MBN=x,∠MDN=y,则∠MDC=2y,∠ABM=2x,∠EBN=3x,∠EDN=3y,∴∠BMF=2x,∠DMF=2y,∠ABE=6x,∠CDE=6y,∴∠BMD=2(x+y),过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠BEG=180°﹣∠ABE=180°﹣6x,∠DEG=180°﹣∠CDE=180°﹣6y,∴∠BED=∠BEG+∠DEG=360°﹣(6x+6y)=360°﹣3∠BMD,∴3∠BMD+∠BED=360°.6.(1)证明:∵∠EFD+∠EFG=180°,∠BDG+∠EFG=180°,∴∠BDG=∠EFD,∴BD∥EF,∴∠BDE+∠DEF=180°,又∵∠DEF=∠B,∴∠BDE+∠B=180°,∴DE∥BC;(2)解:∵∠A=∠EFG=90°,∴∠ADE+∠AED=90°,∠B+∠C=90°,∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEF,∴与∠C互余的角有∠B,∠ADE,∠DEF.7.(1)证明:∵∠EMB=112°,∴∠PMN=112°,∵NP平分∠EN,∴∠CNE=2∠CNP,∵∠CNP=34°,∴∠CNE=68°,∴∠PMN+∠CNE=180°,∴AB∥CD;(2)解:∵∠APN=∠PMN+∠PNM=112°+34°=146°,∵∠APQ:∠QPN=1:3,∴∠APQ=36.5°,∵AB∥CD,∴∠PQD=∠APQ,∴∠PQD=36.5°.8.解:(1)∵∠1=∠2,∠1=∠FMN,∴∠2=∠FMN,∴CF∥BE,∴∠C=∠BED.又∵∠B=∠C,∴∠B=∠BED,∴AB∥CD.(2)∵AB∥CD,∴∠A=∠D.又∵∠A=30°,∴∠D=30°.9.证明:∵DE∥AB(已知),∴∠A=∠CED(两直线平行,同位角相等)又∵∠BFD=∠CED(已知),∴∠A=∠BFD(等量代换)∴DF∥AE(同位角相等,两直线平行)∴∠EGF+∠AEG=180°(两直线平行,同旁内角互补)故答案为:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补.10.解:∠1与∠2相等.理由如下:∵∠ADE=∠ABC,∴DE∥BC,∴∠1=∠EBC,∵BE⊥AC于E,MN⊥AC于N,∴BE∥MN,∴∠EBC=∠2,∴∠1=∠2.。
《平行线的性质》平行线的证明PPT课件
C
∵AB∥CD(已知)
∴∠1=∠D(两直线平行,内错角相等)
∵∠B=∠D(已知)
∴∠1=∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
例2:已知,如图,AB∥CD,∠B=∠D,求证:
AD∥BC.
证法三:
A
D
3
如图,连接BD(构造一组内错角)
4
∵AB∥CD(已知)
B 12
C
∴∠1=∠4(两直线平行,内错角相等)
所以∠BDF=∠EDF.
课堂小结
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
1ppt.
如果∠1 ≠ ∠2c,n AB与CD的位置P课P件T 关系会怎样呢/?kejia
存在两条直线AB和GH都与直线 CD平行.这与基本事实“过直线外 一点有且只有一条直线与这条直
n/ 语文
线平行”相矛盾.
课件
这说明∠1 ≠ ∠2的假设不成立,
/kejia n/yu
所以∠1 =∠2.
wen/
总结归纳
5.如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠C= 180 °-∠B=180°-115°=65°
所以梯形的另外两个角分别是80° 、 65°.
第七章 平行线的证明
平行线的性质
学习目标
1.理解并掌握平行线的性质公理和定理.(重点) 2.能熟练运用平行线的性质进行简单的推理证 明.(难点)
北师大版八年级数学(上)第七章 平行线的证明 第1节 为什么要证明
例 4:观察下列关于自然数的等式: (1)32-4×12=5 ① (2)52-4×22=9 ② (3)72-4×32=13 ③ … 根据上述规律解决下列问题: (1)完成第四个等式:92-4×( )2=( );
(2)写出你猜想的第 n 个等式(用含 n 的式子表示),并验证其正确性.
解:(1)4,17 (2)第 n 个等式为(2n+1)2-4n2=4n+1.∵左边=4n2+4n+1-4n2=4n+1= 右边,∴第 n 个等式成立.
练习:下列问题你不能肯定的是( D )
A.一支铅笔和一瓶矿泉水的体积的大小关系 B.三角形的内角和 C.八边形的外角和 D.三角形与矩形的面积关系
课程导入2:
代数式n2+ n+41的值是质数吗?取n=0,1,2,3,4, 5试一试,你能否 由此得到结论:对于所有自然数n2+ n+41的值都是质数?与同伴进行交流.
2.在学习中,小明发现:当 n=1,2,3 时,n2-6n 的值都是负数,于是小明猜想:当 n 为 任意正整数时,n2-6n 的值都是负数,小明的猜想正确吗?请简要说明你的理由.
解:小明的猜想不正确.理由为:当 n=6 时,n2-6n=62-6×6=0;当 n> 6 时,n2-6n=n(n-6)>0.
练习:观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …
请猜测,第 n 个算式(n 为正整数)应表示为 100n(n-1)+25 .
证明的必要性
1.要判断一个数学结论是否正确,仅仅依靠实验,观察、归纳是不够的,
解:小明的猜想正确,理由:因为 n 为奇数,所以可设 n=2k+1(k 为自然数), 所以 n2﹣1=(2k+1)2﹣1=(2k+1+1)(2k+1﹣1)=(2k+2)×2k=4k(k+1), 因为 k 为自然数,所以 k,k+1 是相邻的自然数, 所以 k,k+1 中必有一个是偶数,一个是奇数,所以 k(k+1)必定是 2 的倍数, 所以 4k(k+1)必定是 8 的倍数,故当 n 为任意正奇数时, n2﹣1 的值一定是 8 的倍数.
第七章 平行线的证明讲解
180°;(2)若两条直线不平行,则同位角就不相等;(3)a2 =b2,a与b可能相等,也可能互为相反数.
解: (1)假命题.如图1所示,l1∥l2,则∠1+∠2=180°,但
∠1与∠2不是邻补角. (2)假命题.如图2所示,l1与l2不平行,∠1和∠2是同位角
行”或“同旁内角互补,两直线平行”证明.
证法1: ∵∠1=∠3(对顶角相等),∠1+∠2=180°(已知), ∴∠3+∠2=180°(等量代换). ∴a∥b(同旁内角互补,两直线平行).
证法2: ∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知)
, ∴∠2=∠4(同角的补角相等). ∴a∥b(同位角相等,两直线平行).
6、公理、证明、定理的概念 (1)公认的真命题称为公理,即在长期的实践中,
人们总结出来的一些基本事实.如“两点确定一条直线 ”;“两点之间,线段最短”等等.
(2)除公理外,其他命题的真假都需要通过演绎推 理的方法进行判断﹒演绎推理的过程称为证明,
(3)经过证明的真命题称为定理.定理只能用公理 、定义和已经证明为真命题的命题来证明﹒
依据的方式,写出证明过程.
注意:通常文字证明题要有以上三个步骤,而在我们所接触到的证 明题中,有相当一部分不是文字证明题﹒题目已经明确用字母、符 号把命题表示出来,甚至也画出了示意图,对于不是文字证明的题, 我们只需从第三步开始写即可.
随堂演练
例1、如图所示,若∠B=35°,∠CDF=145°, 问AB是否与CE平行?
方法归纳: 解答文字叙述类证明题的关键是正确理解文字信息
,把文字表示的命题“翻译”成用图形和符号表示( 即画图形,写出已知、求证),最后再写出证明过程 .
《定义与命题》平行线的证明PPT课件(第1课时)
知1-讲
(7)两角及其夹边分别相等的两个三角形全等. (8)三边分别相等的两个三角形全等.
另外一条基本事实我们将在后面的学习中认识它. 此外,数与式的运算律和运算法则、等式的有关性质, 以及反映大小关系的有关性质都可以作为证明的依据. 例如,如果a=b,b=c, 那么a=c,这一性质也可以作为 证明的依据,称为“等量代换”.又如,如果a>b,b>c,
第七章 平行线的证明
7.2 定义与命题
第2课时
1 课堂讲解
2 课时流程
逐点 导讲练
定理与公理 证明
课堂 小结
作业 提升
想一想 举一个反例就可以说明一个命题是假命题,那
么如何证实一个命题是真命题呢?
知识点 1 定理与公理
用我们以 前学过的观察、 实验、验证特
例等方法.
能不能根据 已经知道的真命
所以不是命题;(3)对一件事情作出了肯定的判断,
所以是命题;(4)对事情作出了否定的(判来断自,《点所拨以》是)
命题.
总结
知2-讲
命题是表示判断的语句,它包含有因果关系,一 般都是以陈述句的形式展现;其他如疑问句、感叹句、 祈使句以及表示画图的语句都不是命题.
(来自《点拨》)
知2-讲
例3 把下列命题改写成“如果……那么……”的形式: (1)对顶角相等; (2)垂直于同一条直线的两条直线平行; (3)同角或等角的余角相等.
知3-讲
1.正确的命题称为真命题,不正确的命题称为假命题. 2.要说明一个命题是假命题,常常可以举出一个例子, 使它具备命题的条件,而不具有命题的结论,这种 例子称为反例.
知3-讲
例4 指出下列命题的条件和结论,并判断是真命题还是 假命题. (1)互为补角的两个角相等; (2)若a=b,则a+c=b+c; (3)如果两个长方形的周长相等,那么这两个长方形 的面积相等.
北师大版八年级数学上册第7章 平行线的证明 为什么要证明
(1) 若∠BOC=30°,求∠AOB 和∠COD 的度数; (2) 若∠BOC=54°,求∠AOB 和∠COD 的度数; 解:(1) ∵ OA⊥OC,OB⊥OD, ∴∠AOC=∠BOD=90°. ∵∠BOC=30°, ∴∠AOB=∠AOC-∠BOC=90°-30°=60°,
(1) 图①中的实线是直的还是弯曲的? (2) 图②中两条线段 a 与 b 哪一条更长? (3) 图③中的直线 AB 与直线 CD 平行吗?
解:通过观察可能得出的结论是: (1) 实线是弯曲的. (2) a 更长一些. (3) AB 与 DC 不平行. 而我们用科学的方法验证后发现: (1) 实线是直的. (2) a 与 b 一样长. (3) AB 平行于 CD.
【方法总结】验证特例是判定一个结论错误的最好方法.
【类型三】举出反例 例3 如图,从点 O 出发作出四条射线 OA、OB、OC、
OD,已知 OA⊥OC,OB⊥OD.
(1) 若∠BOC=30°,求∠AOB 和∠COD 的度数; (2) 若∠BOC=54°,求∠AOB 和∠COD 的度数; (3) 由 (1)、(2) 你发现了什么?
第七章 平行线的证明
7.1 为什么要证明
观察与思考
两图的中间圆大小一样吗?
是 静 还 是 动 ?
平行线:不敢相信图中的横线是平行的, 不过它们就是平行线!
你觉得观察得到的结论一定正确吗?
数学的结论必须经过严格的论证 判断一个数学结论是否正确,仅靠观察、猜想、 实验还不够,必须经过一步一步、有根有据的推理.
北师大版数学八年级上册第七章-平行线的证明讲义
实用文档第七章 平行线的证明一、思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧的内角。
于任何一个和它不相邻:三角形的一个外角大推论角的和。
于和它不相邻的两个内:三角形的一个外角等推论。
等于定理:三角形的内角和三角形内角和定理条直线平行。
平行于同一条直线的两互补。
两直线平行,同旁内角等。
两直线平行,内错角相等。
两直线平行,同位角相平行线的性质平行。
同旁内角互补,两直线行。
内错角相等,两直线平行。
同位角相等,两直线平平行线的判定的例子。
,而不具有命题的结论反例:具备命题的条件分类:真命题、假命题部分组成。
结构:由条件和结论两句子。
定义:判断一件事情的命题平行线的证明21180二、考点聚焦考点1 定义与命题例1 下列四个命题中,真命题有 ( )①任意三角形的内角和为180°。
②经过直线外一点,有且只有一条直线与这条直线平行。
③两条直线被第三条直线所截,同旁内角互补;④在同一平面内,若直线a ⊥b ,b ⊥c ,则直线a 与c 不相交。
A.1个B.2个C.3个D.4个变式1-1:对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角。
考点2 平行线的性质和判定例2 如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由。
变式2-1:如图,直线l∥2l,∠A=125°,∠B=85°,1则∠1+∠2= ()A.30°B.35°C.36°D.40°变式2-2:如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数。
北师大版八年级数学上册第七章平行线的证明单元教学设计
(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在探索、发现、总结平行线性质的过程中,培养观察、分析、归纳的能力。
2.引导学生运用演绎推理方法,从特殊到一般,逐步掌握平行线的判定方法,提高学生的逻辑思维能力。
二、学情分析
八年级学生在经过之前的学习,已经具备了一定的几何基础,对几何图形有一定的认识和理解。在此基础上,学生对平行线的概念及性质已有初步的了解,但在判定方法、性质应用等方面仍需加强。此外,学生在演绎推理、问题解决等方面的能力有待提高。因此,在教学过程中,应关注以下学情:
1.学生对平行线性质的理解程度,注重引导学生从直观到抽象,逐步提高对平行线性质的认识。
c.解决实际问题,运用平行线性质求解。
2.学生独立完成练习题,教师巡回指导,对学生的解答进行点评,及时纠正错误,巩固所学知识。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,让学生用自己的话总结平行线的性质、判定方法及其在实际问题中的应用。
2.教师强调本节课的重点知识,提醒学生注意平行线性质及判定方法的灵活运用。
2.教师提出问题:我们已经学过直线、线段、射线等基本概念,那么如何判断两条直线是否平行?这节课我们就来探讨这个问题。
(二)讲授新知
1.教师引导学生回顾同位角、内错角、同旁内角等概念,为后续学习平行线的判定方法打下基础。
2.教师通过几何画板演示,引导学生观察并总结出平行线的性质,如同位角相等、内错角相等、同旁内角互补等。
(二)教学设想
1.创设情境,激发兴趣:
通过生活中的实例,如铁轨、教室墙壁等,引出平行线的概念,激发学生对平行线性质探究的兴趣。
北师大版初中数学八年级(上)备课资料7-1 为什么要证明
第七章平行线的证明1为什么要证明典型例题题型一实验验证结论例1观察,再验证.(1)图1①中黑色的边是直的还是弯曲的?(2)图1②中两条线段a与b,哪一条更长?①②图1分析:先观察得出结论,再实验验证.解:对于(1)题,直接观察图1①可能得出结论:黑色的边是弯曲的.但实际上,黑色的边是直的.对于(2)题,直接观察图1②可能得出结论:线段b比线段a短.但实际上,这两条线段同样长.点拨:要判断一个数学结论是否正确,仅仅依靠经验、观察是不够的,必须给出严格的证明或实验验证.例2在学习中,小明发现:当n=1,2,3时,n2-6n的值都是负数.于是小明猜想:当n 为任意正整数时,n2-6n的值都是负数.小明的猜想正确吗?请简要说明你的理由.分析:因为n2-6n=n(n-6),所以只要n≥6,该式子的值都表示非负数,所以猜想不正确.解:(方法1:利用反例证明)不正确.理由:例如当n=7时,n2-6n=7>0.(方法2)不正确.理由:n2-6n=n(n-6),当n≥6时,n2-6n≥0.特别提示:通过此题可说明一点:学生在解答问题时不能太片面,而要全面考虑问题.题型二推理的应用1.图形中的推理例3如图2所示,一根细长的绳子,沿中间对折,再沿对折后的中间对折,这样连续沿中间对折5次,用剪刀沿5次对折后的中间将绳子全部剪断,此时细绳被剪成段.图2点拨:从简单、特殊的情况入手,运用比较、归纳的方法,探究内在的规律.2.数学式子中的推理例4观察下列关于自然数的等式:①1×7+2×9=52;②2×8+2×10=62;③3×9+2×11=72;…根据上述规律解决下列问题:(1)完成第4个等式;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.解题关键:观察等式左右两边的数字变化情况,找出每个式子与序号之间的关系.解:(1)根据题意得,第4个等式为4×10+2×12=82.(2)猜想的第n个等式为n(n+6)+2(n+8)=(n+4)2.验证:左边=n(n+6)+2(n+8)=n2+6n+2n+16=n2+8n+42=(n+4)2=右边,所以n(n+6)+2(n+8)=(n+4)2.3.假设论证例5甲、乙、丙、丁四人的车分别为白色、银色、蓝色和红色.在问到他们各自车的颜色时,甲说:“乙的车不是白色的.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,那么以下说法正确的是()A.甲的车是白色的,乙的车是银色的B.乙的车是蓝色的,丙的车是红色的C.丙的车是白色的,丁的车是蓝色的D.丁的车是银色的,甲的车是红色的解析:∵丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,假设乙的车是红色的,∴乙说的是实话,∴丙的车也是红色的,和只有一个人的车是红色的矛盾.假设丙的车是红色的,∴丙说的是实话,而乙说“丙的车是红色的”,∴乙说的是实话,∴有两人说的是实话,与只有一个人说的是实话矛盾,∴只有甲的车是红色的.∴甲说的是实话,丙说的不是实话.∵丙说:“丁的车不是蓝色的”,∴丁的车是蓝色的,∴乙和丙的车一个是白色的,一个是银色的.∵甲说:“乙的车不是白色”,且甲说的是实话,∴丙的车是白色的,乙的车是银色的.综上,甲的车是红色的,乙的车是银色的,丙的车是白色的,丁的车是蓝色的.答案:C4.推理论证例6某球赛小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁解析:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分为5分,1胜2平,丙得分为3分,1胜0平,丁得分为1分,0胜1平.∵甲、乙都没有输球,∴甲一定与乙平.∵丙得3分,1胜0平,乙得5分,1胜2平,∴与乙打平的球队是甲与丁.答案:B拓展资源哥德巴赫猜想两百多年前,彼得堡科学院院士哥德巴赫曾研究过“将一个数表示成几个素数的和”的问题,他取了很多数做试验,想把它们分解成几个素数的和,结果得到一个断语:“总可将任何一个数分解成不超过三个素数之和.”但是哥德巴赫不能证明这个问题,甚至连如何证明的方法也没有,于是他写信给另一名彼得堡科学院院士、著名数学家欧拉,他在1742年6月7日的信中写道:“我想冒险发表下列假定‘大于5的任何数都是三个素数的和’.”这就是后来举世闻名的哥德巴赫猜想.同年6月30日,欧拉在给哥德巴赫的回信中说:“我认为‘每一个偶数都是两个素数之和’,虽然我还不能证明它,但我确信这个论断是完全正确的.”这两个数学家的通信内容传播出来之后,人们就称这个猜想为哥德巴赫猜想或者哥德巴赫-欧拉猜想.完整地说,哥德巴赫猜想是:大于1的任何数都是三个素数的和.后来,人们把它归纳为:命题A:每一个大于或者等于6的偶数,都可以表示为两个奇素数的和;命题B:每一个大于或者等于9的奇数,都可以表示为三个奇素数的和.人们在研究命题A的过程中,开始引进了“殆素数”的概念.所谓“殆素数”就是素数因子(包括相同的和不同的)的个数不超过某一固定常数的自然数.我们知道,除1以外,任何一个正整数,一定能表示成若干素数的乘积,其中每一个素数,都叫做这个正整数的素因子.相同的素因子要重复计算,它有多少素因子是一个确定的数.例如,从25~30这六个数中,25=5×5有2个素因子,26=2×13有2个素因子,27=3×3×3有3个素因子,28=2×2×7有3个素因子,29是素数有1个素因子,30=2×3×5有3个素因子.于是可说25,26,29是素因子不超过2的殆素数,27,28,30是素因子不超过3的殆素数.用殆素数的新概念,可以提出命题D来接近命题A.命题D:每一个充分大的偶数,都是素因子的个数不超过m与n的两个殆素数之和.这个命题简化为“m+n”.这样,哥德巴赫猜想的最后证明的方向就更明朗化了:如果能证明,凡是比某一个正整数大的任何偶数,都能表示成一个素数加上两个素数相乘,或者表示成一个素数加上一个素数,就算证明了“1+2”.当然如果能证明“1+1”就基本上证明了命题A,也就基本解决了哥德巴赫猜想了.1920年,挪威数学家布朗证明了“9+9”.1924年,德国数学家拉代马哈证明了“7+7”.1932年,英国数学家埃斯特曼证明了“6+6”.1938年,苏联数学家布赫雪托布证明了“5+5”.1938年,中国数学家华罗庚证明了几乎全体偶数都能表示成两个素数之和,即几乎所有偶数“1+1”成立.1940年,苏联数学家布赫雪托布证明了“4+4”.1948年,匈牙利的瑞尼证明了“1+c”,其中c是一个很大的自然数.1956年,中国数学家王元证明了“3+4”,稍后证明了“3+3”和“2+3”.1956年,苏联数学家维诺格拉多夫证明了“3+3”.1957年,中国数学家王元又证明了“2+3”.1962年,中国年轻数学家潘承桐证明了“1+5”,这是证明了相加的两个数中,有一个肯定是素数的成果,而另一个殆素数的因子小到不超过5.1962年,苏联数学家巴尔巴恩也证明了”1+5”.1963年,中国数学家王元、潘承桐及苏联数学家巴尔巴恩分别证明了“1+4”.1965年,维诺格拉多夫、布赫雪托布证明了“1+3”.1965年,意大利数学家朋比尼也证明了“1+3”.1966年,中国数学家陈景润宣布证明了“1+2”.。
北师大版八年级数学上册《平行线的性质》平行线的证明
,
∴AD∥BE(
).
,即∠
栏目索引
=∠
,
答案 BAE;两直线平行,同位角相等;BAE;等量代换;∠1;∠2;BAE; DAC;DAC;内错角相等,两直线平行
4 平行线的性质
栏目索引
6.如图7-4-6,已知∠1+∠2=180° ,∠A=∠C,DA平分∠FDB,试证明∠3= ∠4.
图7-4-6
4 平行线的性质
栏目索引
解析 (1)∵四边形ABCD为长方形,∴AD∥BC, ∴∠1+∠2=180° , ∵∠1=110° ,∴∠2=70° . (2)由折叠的性质得∠D'=90° , 若D'C'∥BC,则有∠EGF=∠D'=90° , ∵AD∥BC, ∴∠2=∠EGF=90° , 则当∠2等于90度时,D'C'∥BC.
图7-4-8
4 平行线的性质
证明 ∵AD⊥BC,EF⊥BC(已知), ∴∠ADC=∠EFD=90° (垂直的定义), ∴AD∥EF(同位角相等,两直线平行), ∴∠3=∠BAD(两直线平行,内错角相等), ∠DAC=∠E(两直线平行,同位角相等), ∵AD平分∠BAC(已知), ∴∠BAD=∠DAC(角平分线的定义), ∴∠E=∠3(等量代换).
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135° ,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180° (两直线平行,同旁内角互 补),又因为∠DOB=135° ,所以∠B=180° -135° =45° ,又∠A=∠B,所以 ∠A=45° .
2021-2022学年北师大版八年级数学上册《第7章平行线的证明》期末综合复习训练1(附答案)
2021-2022学年北师大版八年级数学上册《第7章平行线的证明》期末综合复习训练1(附答案)1.若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行2.两条直线相交所成的四个角都相等时,这两条直线的位置关系是()A.平行B.相交C.垂直D.不能确定3.下列说法:(1)两点之间的距离是两点间的线段;(2)如果两条线段没有交点,那么这两条线段所在直线也没有交点;(3)邻补角的两条角平分线构成一个直角;(4)同一平面内,过一点有且只有一条直线与已知直线垂直;(5)同一平面内,过一点有且只有一条直线与已知直线平行.其中正确的是()A.1个B.2个C.3个D.4个4.如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2B.∠BAD=∠BCDC.∠ABC=∠ADC,∠3=∠4D.∠BAD+∠ABC=180°5.如图,“因为∠1=∠2,所以a∥b”,其中理由依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行6.如图,在△ABC中,AD是BC边上的高,且∠ACB=∠BAD,AE平分∠CAD,交BC 于点E,过点E作EF∥AC,分别交AB、AD于点F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4个B.3个C.2个D.1个7.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=60°,∠B=48°,则∠CDE的大小为()A.72°B.36°C.30°D.188.若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形9.如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()A.25°B.50°C.65°D.70°10.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.011.在同一平面内,若a⊥b,b⊥c,则a与c的位置关系是.12.在同一平面内,与已知直线a平行的直线有条;而经过直线外一点P,与已知直线a平行的直线有且只有条.13.“有两角及其中一角的平分线对应相等的两个三角形全等”是命题(填“真”或“假”).14.如图,要得到AB∥CD,只需要添加一个条件,这个条件可以是.(填一个你认为正确的条件即可)15.如果△ABC的两条高线BE和CF所在的直线相交于点O,且∠A=50°,那么∠BOC =.16.如图所示,∠ABC的内角平分线与∠ACB的外角平分线交于点P,已知∠A=50°,∠P=.17.学校开展象棋大赛,A、B、C、D四队进入决赛,赛前,甲猜测比赛成绩的名次顺序是:从第一名开始,依次是B、C、D、A;乙猜测的名次依次是D、B、C、A,比赛结果,两人都只猜对了一个队的名次,已知第四名是B队,则第一名是队.18.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人“项目比赛,该项目只设置一个一等奖,在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学只有两位预测结果是对的,则获得一等奖的团队是.19.(原创题)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?20.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.21.如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.22.如图,∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC外,若∠AEC'=22°,求∠BDC'的度数.23.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.参考答案1.解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.2.解:两条直线相交所成的四个角都相等时,则每一个角都为90°,所以这两条直线垂直.故选:C.3.解:(1)两点之间的距离是两点间的线段长度,故(1)错误;(2)如果两条线段没有交点,那么这两条线段所在直线不一定没有交点,故(2)错误;(3)邻补角的两条角平分线一定构成一个直角,故(3)正确;(4)同一平面内,过一点有且只有一条直线与已知直线垂直,故(4)正确;(5)同一平面内,过直线外一点有且只有一条直线与已知直线平行,故(5)错误.其中正确的是2个.故选:B.4.解:A、∵∠1=∠2,∴AD∥CB,故本选项错误;B、∵∠BAD=∠BCD,不能得出AB∥CD,故本选项错误;C、∵∠ABC=∠ADC,∠3=∠4,∴∠ABD=∠BDC,∴AB∥CD,故本选项正确;D、∵∠BAD+∠ABC=180°,∴AD∥BC,故本选项错误;故选:C.5.解:因为∠1=∠2,所以a∥b(内错角相等,两直线平行),故选:B.6.解:∵AD⊥BC,∴∠ADC=90°,∴∠C+∠CAD=90°,∵∠BAD=∠C,∴∠BAD+∠CAD=90°,∴∠CAB=90°,故①正确,∵∠BAE=∠BAD+∠DAE,∠DAE=∠CAE,∠BAD=∠C,∴∠BAE=∠C+∠CAE=∠BEA,故③正确,∵EF∥AC,∴∠AEF=∠CAE,∵∠CAD=2∠CAE,∴∠CAD=2∠AEF,∵∠CAD+∠BAD=90°,∠BAD+∠B=90°,∴∠B=∠CAD=2∠AEF,故④正确,无法判定EA=EC,故②错误.故选:B.7.解:∵∠A=60°,∠B=48°,∴∠ACB=180°﹣∠A﹣∠B=72°,∵CD平分∠ACB,∴∠BCD=∠ACB=36°,∵DE∥BC,∴∠CDE=∠BCD=36°;故选:B.8.解:设三角形的三角的度数是x°,2x°,3x°,则x+2x+3x=180,解得x=30,∴3x=90,即三角形是直角三角形,故选:A.9.解:由三角形的内角和定理可知:∠CAB=50°,∵AD是∠BAC的平分线,∴∠DAC=25°,∴∠ADC=90°﹣∠DAC=65°故选:C.10.解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.11.解:∵a⊥b,b⊥c,∴a∥c.故答案为a∥c.12.解:在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.13.已知:△ABC和△A′B′C′中,∠A=∠A',∠B=∠B′,∠B、∠B′的角平分线,BD=B′D′,求证:△ABC≌△A′B′C′.证明:∵∠B=∠B'且∠B、∠B′的角平分线分别为BD和B′D′,∴∠ABD=∠A′B′D′=∠B,∵BD=B'D',∠A=∠A′,∴△ABD≌△A′B′D′,∴AB=A′B′,∵∠A=∠A′,∠B=∠B′,∴△ABC≌△A′B′C′.∴“有两角及其中一角的平分线对应相等的两个三角形全等”是真命题,故答案为:真.14.解:可以添加条件∠B=∠DCN(答案不唯一).理由如下:∵∠B=∠DCN,∴AB∥CD.故答案为:∠B=∠DCN(答案不唯一).15.解:本题要分两种情况讨论如图:①当交点在三角形内部时(如图1),在四边形AFOE中,∠AFC=∠AEB=90°,∠A=50°,根据四边形内角和等于360°得,∠EOF=180°﹣∠A=180°﹣50°=130°,故∠BOC=130°;②当交点在三角形外部时(如图2),在△AFC中,∠A=50°,∠AFC=90°,故∠1=180°﹣90°﹣50°=40°,∵∠1=∠2,∴在△CEO中,∠2=40°,∠CEO=90°,∴∠EOF=180°﹣90°﹣40°=70°,即∠BOC=50°,综上所述:∠BOC的度数是130°或50°.故答案为:130°或50°.16.解:∵∠PCD=∠P+∠PBC,∠ACD=∠ABC+∠A,BP平分∠ABC,PC平分∠ACD,∴∠ACD=2∠PCD,∠ABC=2∠PBC,∴2∠P+2∠PBC=∠ABC+∠A,∴2∠P=∠A,即∠P=∠A.∵∠A=50°,∴∠P=25°.故答案为:25°.17.解:由于甲、乙两队都猜对了一个队的名次,且第四名是B队.可得甲只有可能猜对了C,D的名次,当D的名次正确,则乙将全部猜错,故甲一定猜对了C的名次,故乙猜对了D的名次,那么甲、乙的猜测情况可表示为:甲:错、对、错、错;乙:对、错、错、错.因此结合两个人的猜测情况,可得出正确的名次顺序为:D,C,A,B.故答案为:D.18.解:①若获得一等奖的团队是甲团队,则小张、小李、小赵预测结果是对的,与题设矛盾,即假设错误,②若获得一等奖的团队是乙团队,则小张预测结果是对的,与题设矛盾,即假设错误,③若获得一等奖的团队是丙团队,则四人预测结果都是错的,与题设矛盾,即假设错误,④若获得一等奖的团队是丁团队,则小李、小王预测结果是对的,与题设相符,即假设正确,即获得一等奖的团队是:丁.故答案为:丁.19.解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.20.解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.21.解:∵∠1=∠2,∴CE∥BF,∴∠4=∠AEC,又∵∠3=∠4,∴∠3=∠AEC,∴AB∥CD.22.解:如图设AE交DC′于F.在△ABC中,∠C=180°﹣∠A﹣∠B=180°﹣64°﹣76°=40°,由折叠可知∠C'=40°,∴∠DFE=∠AEC'+∠C=22°+40°=62°,∴∠BDC'=∠DFE+∠C=62°+40°=102°.23.已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D。
北师大版八年级数学上册第七章平行线的证明平行线的判定课件
C.三个都不正确 D.只有一个不正确
分析:这是一个文字证明题,需要先把 命题的文字语言转化成几何图形和符号语言.
已知:∠1和∠2是直线a、b被直线c
截出的内错角,且∠1=∠2.
求证:a∥b.
a
证明:∵∠1=∠2(已知),
b
∴∠1=∠3(对顶角相等),
c 3 1
2
∴∠3=∠2(等量代换).
∴a∥b(同位角相等,两直线平行).
定理 两条直线被第三条直线所截,如果 同旁内角互补,那么这两条直线平行.
(2)同位角相等,两直线平行.
(3)同旁内角互补,两直线平行.
(4)内错角相等,两直线平行.
(5)同一平面内,垂直于同一条直线的两
条直线相互平行.
(6)如果两条直线都和第三条直线平行,
那么这两条直线平行.
(1)根据题意画出图形(若已给出图形, 则可省略);
(2)根据题设和结论,结合图形,写出 已知和求证;
c
∵∠1=∠2, ∴a∥b。
a
1
b
2.上节课我们学到了要证明一个命题是真
命题,除公理、定义外,其他真命题都需 要通过推理的方法证实。下面我们就用 “同位角相等,两直线平行”这个基本事 实,来证明两直线平行的两个判定定理.
学习新知
定理 两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简述为:内错角相等,两直线平行.
a
1
2 b
3
∵∠3+∠2=180°(平角定代换),
∴a∥b(同位角相等,两直线平行).
知识拓展
应用该定理判定两直线平行时;其关键是辨 认哪两个角是同旁内角,因此一定要抓住同 旁内角“在两条直线的内部且在截线的同 旁”的特点.
北师大八年级数学下册第七章7.3平行线的判定和性质综合应用
B
C
∴AB∥CD(同旁内角互 补,两直线平行) 你能说明AD∥BC吗?
如图甲所示
∵ ∠ADE= ∠DEF(已知)
∴ AD ∥ EF (内错角相等,两直线平行 ) 又∵ ∠EFC+ ∠C= 180 ° ∴ EF ∥ BC ( 同旁内角互补,两直线平行 ) ∴ AD ∥
BC
。
(平行于同一条直线的两条直线互相平行 )
练习
1、观察右图并填空: (1)∠1 与 ∠4 是同位角; (2) ∠5 与 ∠3 是同旁内角; (3) ∠1 与 ∠2 是内错角;
m
2
n
3 5
a b
1
4
2、当图中各角满足下列 条件时,你能指出哪两条直线 平行? n (1) ∠1 = ∠4; a∥b. (2) ∠2 = ∠4; l∥m. (3) ∠1 + ∠3 = 180; l∥n .
m
l
4
a
2
1 3
b
看图填空:
C D
1
A 2
(1)如右图,∵∠1=∠2
∴ AC∥ DE ,
3
E
( 内错角相等,两直线平行 )
∵∠2= ∠4 或 ∵∠3+∠4=180° ∴DE∥ FG ,( 同旁内角互补,两直线平行) ∴AC∥FG.
4 F
∴DE∥ FG(同位角相等,两直线平行)
B
G
看图填空:
(2)如右图,∵ ∠2=( ∠4 ) A
C
A
B
(变式训练二)如果 AB∥CD ,且 ∠ B=∠D , 你能推理得出AD∥BC吗?
题组训练(5) 1 B E G 3 4D C2 F H
A
如图,∠1= ∠2=45 °,∠3=70 °, 则∠4等于 ( B ) (A)70 ° (B)110 ° (C)45 ° (D)35°
第七章平行线的证明(教案)
-难点三:在作图过程中,教师应详细讲解如何使用三角板和直尺,以及如何避免作图误差。通过实际操作演示,让学生掌握作图技巧,提高作图的准确性。
四、教学流程
第七章平行线的证明(教案)
一、教学内容
本节选自七年级数学教材第七章《平行线的证明》。教学内容主要包括以下两部分:
1.掌握平行线的判定方法:同位角相等,内错角相等,同旁内角互补。
2.学会使用三角板、直尺等工具进行平行线的作图。
二、核心素养目标
本章节的核心素养目标旨在培养学生以下能力:
1.培养学生逻辑推理与证明能力,使其能够理解和运用平行线的判定方法,形成严谨的数学思维。
实践活动环节,学生们在分组讨论和实验操作中表现得相当积极,但我也注意到有些小组在操作过程中存在一些作图不准确的问题。这提醒我在今后的教学中,要加强对学生实际操作能力的培养,让他们在动手实践中不断提高。
此外,学生在小组讨论中分享的成果让我感到欣慰。他们能够将所学知识应用到实际问题中,并提出自己的观点。但在讨论过程中,我也发现部分学生表达不够清晰,逻辑思维能力有待提高。因此,在接下来的教学中,我会着重培养学生的表达能力和逻辑思维。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线看起来永远不会相交的情况?”(比如公路上的车道线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
平行线的证明+思维图解+++知识考点梳理+课件件+2024-2025学年北师大版数学八年级上册
课标领航·核心素养学段目标1. 探索并ຫໍສະໝຸດ 明平行线的判定定理:两条直线被第三条直
线所截,如果内错角相等(或同旁内角互补),那么这两条
直线平行.
2. 掌握平行线的性质定理Ⅰ:两条平行直线被第三条直
线所截,同位角相等.* 了解定理的证明.
3. 探索并证明平行线的性质定理Ⅱ:两条平行直线被第
行
线
的
证
明
三角形内角和定理
三
角
形
的
外
角
三角形的内角和等
于 180°
三角形的一个外角等于和它不相邻
的两个内角的和
三角形的一个外角大于任何一个和
它不相邻的内角
第七章 平行线的证明
单
元
思
维
图
解
同位角相等,两直线平行
平
行
线
的
证
明
平
行
线
平行线
的判定
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行,同位角相等
∵DA⊥FA,∴∠DAF=90°,
∴∠FAB=∠DAF-∠2=52.5°.
综合与实践
[点拨] 本题考查了平行线的判定与性质,锻炼和提升
学生的推理能力,熟练掌握平行线的判定与性质是解答本题
的关键.
平行线
的性质
两直线平行,内错角相等
两直线平行,同旁内角互补
平行于同一条直线的两条直线
平行
综合与实践
运用平行线的判定与性质解决问题
初中阶段综合与实践领域,可采用项目式学习的方式,
通过平行线判定与性质的学习,使学生能够从给定条件出
发,依据规则推出结论,初步掌握推理的基本形式和规则
新北师大版八年级数学上册第七章平行线的证明知识点复习
AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。
3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/14
课堂十分钟
1. (4分)用0,1,2,3,4,5,6,7,8这9个数字组成
若干个一位数或两位数(每个数字都只使用一次),然后
把所得的数相加,它们的和不可能是(
)C
A. 36 C. 175
B. 117 D. 153
2. (4分)甲、乙、丙三人进行乒乓球比赛,规则是:两
人比赛,另一人当裁判,输者将在下一局中担任裁判,每
一局比赛没有平局. 已知甲、乙各比赛了4局,丙当了3次
裁判,则第二局的输者是(
)C
A. 甲
B. 乙
C. 丙
D. 丁
3.(4分)下列问题用到推理的是( A )
A.根据a=10,b=10,得到a=b B.观察得到了三角形有三个角 C.老师告诉了我们关于金字塔的许多奥秘 D.由公理知道过两点有且只有一条直线
4. (4分)某轮船往返于A,B两地之间ห้องสมุดไป่ตู้设船在静水中的
速度不变,那么,当水的流速增大时,轮船往返一次所用
的时间(
)B
A.不变 C.减少
B.增加 D.增加,减少都有可能
5. (4分)用1个6,1个8,2个9可组成多种不同的四位数
,则这些四位数共有
12 个.