人教版九年级数学下册全册教案.pdf
人教版九年级下册数学教案大全(5篇)
人教版九年级下册数学教案大全(5篇)人教版九年级下册数学教案大全篇1一、教材研读。
1、教材编排。
(1)逻辑分析:方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。
并且已经采取逐步渗透的方法来培养代数思维。
例如:()+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。
(2)语言信息及价值分析:本课教材中的三幅情境图,由浅入深,由具体到抽象,循序渐进。
第一个场景让学生借助天平理解方程;第二个场景完成从数量关系到平等关系的转变;第三个场景引起学生的思考,让他们从不同的角度找到多种等价关系,列出方程。
2、教学目标。
(1)结合具体情境,建立方程的概念。
(2)寻找简单情况下的等价关系,会用方程表示。
(3)体验从生活场景到方程模型的过程,进一步感受数学与生活的密切关系。
3、教学重难点:(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。
抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。
(2)难点:数量关系向等量关系的转化。
二、学情分析:学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。
由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。
列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。
三、流程设计:为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:(一)引“典”激趣,诱发思考。
引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。
人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案
(2)实际问题中的数学建模:学生在解决实际问题时,往往不知道如何构建数学模型,将实际问题转化为数学问题。
突破方法:教师可以引导学生通过分析实际问题,找出其中的关键信息,然后运用正弦、余弦、正切函数构建数学模型。同时,通过举例讲解,让学生了解这一过程。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正弦、余弦、正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案
一、教学内容
本节课选自人教版初中九年级数学下册,章节为《正弦、余弦、正切函数的简单应用》。教学内容主要包括以下两个方面:
1.掌握正弦、余弦、正切函数的定义及其在直角三角形中的应用。
-正弦函数:在直角三角形中,正弦值等于对边与斜边的比值。
-余弦函数:在直角三角形中,余弦值等于邻边与斜边的比值。
五、教学反思
在本次教学中,我尝试了多种方法来帮助学生理解正弦、余弦、正切函数的简单应用。从导入新课到实践活动,再到小组讨论,我发现学生们在这些环节中的表现各有亮点,也有一些需要改进的地方。
首先,在导入新课环节,通过提出与日常生活密切相关的问题,成功引起了学生的兴趣。他们积极参与,提出了很多有关测量物体高度和距离的想法。这说明实际情景的引入有助于激发学生的学习热情,使他们更愿意投入到新知识的学习中。
人教版九年级数学下册全册教案
正弦和余弦(一)一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.(二)能力训练点逐步培养学生会观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(三)重点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,可以把其顶点A 1,A 2,A 3重合在一起,记作A,并使直角边AC 1,AC 2,AC 3……落在同一条直线上,则斜边AB 1,AB 2,AB 3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B 1C 1∥B 2C 2∥B 3C 3……,∴△AB 1C 1∽△AB 2C 2∽△AB 3C 3∽……,∴形中,∠A 的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.练习题为2360sin =︒作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.五、板书设计正弦和余弦(二)一、素质教育目标(一)知识教学点使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA 表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.(二)能力训练点逐步培养学生观察、比较、分析、概括的思维能力.(三)德育渗透点渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.二、教学重点、难点第十四章解直角三角形一、锐角三角函数证明:------------------结论:--------------------练习:---------------------1.教学重点:使学生了解正弦、余弦概念.2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.三、教学步骤(一)明确目标1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.(二)整体感知只要知道三角形任一边长,其他两边就可知.而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.(三)重点、难点的学习与目标完成过程正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.例1求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.学生练习1中1、2、3.让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.例2求下列各式的值:为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:(1)sin45°+cos45;(2)sin30°·cos60°;在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.(四)总结、扩展首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即0<sinA<1,0<cosA<1(∠A为锐角).还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”四、布置作业教材习题14.1中A组3.预习下一课内容.五、板书设计14.1正弦和余弦(二)一、概念:三、例1----------四、特殊角的正余弦值-------------------------------------------------------二、范围:------------------五、例2------------正弦和余弦(三)一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.(三)德育渗透点培养学生独立思考、勇于创新的精神.二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.2.导入新课根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.3.教师板书:任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.sinA=cos(90°-A),cosA=sin(90°-A).4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.已知∠A和∠B都是锐角,(1)把cos(90°-A)写成∠A的正弦.(2)把sin(90°-A)写成∠A的余弦.这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.(2)已知sin35°=0.5736,求cos55°;(3)已知cos47°6′=0.6807,求sin42°54′.(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:(2)已知sin35°=0.5736,则cos______=0.5736.(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.为了配合例3的教学,教材中配备了练习题2.(2)已知sin67°18′=0.9225,求cos22°42′;(3)已知cos4°24′=0.9971,求sin85°36′.学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.(四)小结与扩展1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.四、布置作业教材习题14.1A组4、5.五、板书设计14.1正弦和余弦(三)一、余角余函数关系二、例3------------------------------------------------------------------------------------------------------------------------正弦和余弦(四)一、素质教育目标(一)知识教学点使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点逐步培养学生观察、比较、分析、概括等逻辑思维能力.(三)德育训练点培养学生良好的学习习惯.二、教学重点、难点1.重点:“正弦和余弦表”的查法.2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.三、教学步骤(一)明确目标1.复习提问1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.(二)整体感知我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.(三)重点、难点的学习与目标完成过程1.“正弦和余弦表”简介学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.2)表中角精确到1′,正弦、余弦值有四位有效数字.3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.2.举例说明例4查表求37°24′的正弦值.学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.例5查表求37°26′的正弦值.学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).解:sin37°24′=0.6074.角度增2′值增0.0005sin37°26′=0.6079.例6查表求sin37°23′的值.如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.解:sin37°24′=0.6074角度减1′值减0.0002sin37°23′=0.6072.在查表中,还应引导学生查得:sin0°=0,sin90°=1.根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.可引导学生查得:cos0°=1,cos90°=0.根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.(四)总结与扩展1.请学生总结本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.四、布置作业预习教材中例8、例9、例10,养成良好的学习习惯.五、板书设计14.1正弦和余弦(四)一、正余弦值随角度变二、例题例5例6化规律例4-----------------------------------------------------------------------------------------------------------------------正弦和余弦(五)一、素质教育目标(一)知识教学点使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小.(二)能力训练点逐步培养学生观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:由锐角的正弦值或余弦值,查出这个锐角的大小.2.难点:由锐角的正弦值或余弦值,查出这个锐角的大小.3.疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错.三、教学步骤(一)明确目标1.锐角的正弦值与余弦值随角度变化的规律是什么?这一规律也是本课查表的依据,因此课前还得引导学生回忆.答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大).2.若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,cos21°28′=______.3.不查表,比较大小:(1)sin20°______sin20°15′;(2)cos51°______cos50°10′;(3)sin21°______cos68°.学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案.3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算.(二)整体感知已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值.反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小.因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑.而且通过逆向思维,可能很快会掌握已知函数值求角的方法.(三)重点、难点的学习与目标完成过程.例8已知sinA=0.2974,求锐角A.学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力.解:查表得sin17°18′=0.2974,所以锐角A=17°18′.例9已知cosA=0.7857,求锐角A.分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师最好让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.解:查表得cos38°12′=0.7859,所以:0.7859=cos38°12′.值减0.0002角度增1′0.7857=cos38°13′,即锐角A=38°13′.例10已知cosB=0.4511,求锐角B.例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致.教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成.解:0.4509=cos63°12′值增0.0003角度减1′0.4512=cos63°11′∴锐角B=63°11′为了对例题加以巩固,教师在此应设计练习题,教材P.15中2、3.2.已知下列正弦值或余弦值,求锐角A或B:(1)sinA=0.7083,sinB=0.9371,sinA=0.3526,sinB=0.5688;(2)cosA=0.8290,cosB=0.7611,cosA=0.2996,cosB=0.9931.此题是配合例题而设置的,要求学生能快速准确得到答案.(1)45°6′,69°34′,20°39′,34°40′;(2)34°0′,40°26′,72°34′,6°44′.3.查表求sin57°与cos33°,所得的值有什么关系?此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).(四)、总结、扩展本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”.四、布置作业教材复习题十四A组3、4,要求学生只查正、余弦。
人教版九年级数学下册全册教案
26.1.1反比例函数的意义教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学方法:类比启发教学辅助:多媒体投影片教学过程:一、创设情景探究问题随着速度的变化,全程所用时间发生怎样的变化?情境1:当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:2(3)速度v是时间t的函数吗?为什么?[备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.全册每单元每课时 3[备注]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k≠0.(3)自变量x的取值范围是x≠0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.二、例题教学练习:1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=x15;(2)y=2x-1;(3)y=-3x;通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.练习:2:在函数y=2x-1,y=2x+1,y=x-1,y=12x中,y是x的反比例函数的有个.全册每单元每课时 4[备注]这个练习也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=2x-1通分为y=2-xx,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=2x可说成(y+1)与x成反比例.练习3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为.[说明]这个练习引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.例题:第5页例1三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.全册每单元每课时 52、已知函数y=(m+1)x22 m是反比例函数,则m的值为.[备注]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)板书设计:概念:例1解:练习练习全册每单元每课时 6教学反思:本节课学生对有关概念都很好的落实,亮点在于练习设计有梯度,学生认识清楚。
人教版九年级数学下册教案全册(精华版)
例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B随堂练习1.已知反比例函数xk y -=3,分别根据下列条件求出字母k 的取值范围(1)函数图象位于第一、三象限 (2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xa y -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为年级九年级课题26.2.1实际问题与反比例函数课型新授教学媒体多媒体教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点用反比例函数解决实际问题.构建反比例函数的数学模型.教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课一位司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6•小时到达目的地.(1)当他按原路匀速反回时,汽车的速度v与时间t有怎样的函数关系?(2)若该司机必须在4个小时内回到甲地,则返程的速度不能低于多少?(二)合作交流,解读探究探究(1)原路返回,说明路程不变,则80×6=480千米,因而速度v和时间t满足:vt=480或v=480t的反比例函数关系式.(2)若要在4小时内回到甲地(原路),则速度显然不能低于4804=120(千米/时).归纳常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例;(3)体积一定时,柱(锥)体的底面积与高成反比例;(4)工作总量一定时,工作效率与工作时间成反比例;(5)总价一定时,单价与商品的件数成反比例;(6)溶质一定时,溶液的浓度与质量成反比例.(三)应用迁移,巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100 x.(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之留白:(供教师个性化设计)间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.总结反思,拓展升华1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.2.能用函数的观点分析、解决实际问题,•让实际问题中的量的关系在数学模型中相互联系,并得到解决.附:板书设计教后反思:年级九年级课题26.2.2实际问题与反比例函数课型新授教学媒体多媒体教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力.3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点重点:用反比例函数解决实际问题.难点:构建反比例函数的数学模型教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1. 5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?【分析】(1)由杠杆定律有FL=1200×0.5,即F=600l,当L=1.5时,F=6001.5=400.(2)由(1)及题意,当F=12×400=200时,L=600200=3(m),∴要加长3-1.5=1.5(m).思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2,也可写为P=2uR.(三)应用迁移,巩固提高例1在某一电路中,电源电压U保持不变,电流I (A)与电阻R(Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A 时,电路中电阻R•的取值范围是什么?【分析】由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系.留白:(供教师个性化设计)解:(1)设,根据题目条件知,当I=6时,R=6,所以,所以K=36,所以I与R的关系式为:I=36 R.(2)电流不超过3A,即I=36R≥12,所以R≥3(Ω).注意因为R>0,所以由36R≤12,可得R≥3612.例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(•千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,•气球的体积应不小于多少?【分析】在此题中,求出函数解析式是关键.解:设函数的解析式为P=kV,把点A(1.5,64)的坐标代入,得k=96,•所以所求的解析式为P=96 V;(2)V=0.8m3时,P=960.8=120(千帕);(3)由题意P≤144(千帕),所以96V≤144,所以V≥96144=23(m3)即气体的体积应不小于23m3.备选例题1.(中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I=UR.(1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是______伏.2.(中考·扬州)已知力F对一个物体作的功是15焦,则力F•与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是()【答案】1.(1)当电压U一定时,电流I与电阻R成反比例函数关系,(2)10;2.B(四)总结反思,拓展升华1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.附:板书设计教后反思:年级九年级课题27.1 图形的相似课型新授教学媒体多媒体教学目标知识技能1.使学生理解并掌握两个图形相似的概念,理解相似形的特征,掌握相似形的识别方法;2.掌握相似多边形的特征,会根据相似多边形的特征识别两个多变形是否相似,并能运用相似多边形的性质进行相关计算.过程方法观察生活中的形状形同的图形,学生初步认识理解相似形的概念,在此基础上理解相似形的特征,进一步掌握相似形的识别方法,发展学生的归纳,类比、反思、交流、的能力,提高数学思维水平.情感态度培养学生的观察能力,激发学生的探究的兴趣和欲望,并进行美育渗透.教学重点理解并掌握两个图形相似的概念及特征.教学难点理解相似形的特征,掌握识别相似图形的方法,能运用相似多边形的特征进行相关的计算.教学过程设计教学程序及教学内容师生行为设计意图情境引入欣赏下面4组图片,说说你的想法引出本章,及本节课题二、自主探究(一)相似图形1.类比上面几幅图片,再举一些其它例子.2.这些图片有什么共同特征?3.从平面镜和哈哈镜里看到的不同镜像,它们相似吗?4.已学习过的几何图形中有没有相似的?自己设计一些相似图形,在与同学交流一下.5.完成课本25页练习.(二)相似多边形1.观察正△ABC和正△'''CBA中,它们的对应角有什么关系?对应边呢?2.能否说任意两个正三角形都相似?3.阅读课本26页中的方框旁注,比例线段的特点是什么?教师展示图片并提出问题,学生观察,思考.教师引导点拨:它们的形状相同,大小不等,学生总结归纳,初步感知相似图形的基本特征.学生根据生活经验举例,进一步理解相似,教师组织学生以小组形式进行讨论,探究这些图片的共同特征学生完成练习,之后订正,师生达成共识教师设计问题,学生思考分析,理解相似多边形概念激起学生的好奇心,探索欲望,初步感受相似,引入本节课.让学生亲自进行观察,分析,探究,得到结论,举出生活中的实例,培养学生的观察能力,体验数学与生活的密切关系.学生通过思考回答教师提出的问题,初步感知相似多边形及其的特征,为后续学习做铺垫21年级 九年级 课题 28.1 锐角三角函数(1)课型 新授教学媒体 多媒体教 学 目 标知识 技能 1.初步了解锐角三角函数的意义,理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦,当锐角固定时,它的正弦值是定值;2.能根据已知直角三角形的边长求一个锐角的正弦值.过程 方法 经历探究锐角三角函数的定义的过程,逐步发现一个锐角的对边与斜边的比值不变的规律,从中思考这种规律所揭示的数学内涵.情感 态度使学生体验数学活动中的探索与发现,培养学生由特殊到一般的演绎推理能力,学会用数学的思维方式思考,发现,总结,验证.教学重点 正确理解正弦(sinA )概念,会根据直角三角形的边长求一个锐角的正弦值 教学难点理解在直角三角形中,对于任意一个锐角,它的对边与斜边的比值是固定值.教 学 过 程 设 计教学程序及教学内容师生行为设计意图 一、复习引入 1.回忆直角三角形有哪些特殊性质? 2.在Rt △ABC 中,∠C=90°,∠A=30°,若BC=10m ,•求AB ; 3.在Rt △ABC 中,∠C=90°,∠A=30°,若BC=20m ,•求 AB. 二、自主探究 问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管? 思考:1.如果使出水口的高度为50m ,那么需要准备多长的水管? 2.如果使出水口的高度为a m ,那么需要准备多长的水管? 结论:直角三角形中,30°角的对边与斜边的比值等于12思考:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值是 22.探究:从上面两个问题的结论中可知,•在Rt △ABC 中,∠C=90°,当∠A=30°时,∠A 的对边与斜边的比都等于12,是一个固定值;•当∠A=45°时,∠A 的对边与斜边的比都等于22,也是一个固定值. 这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值? 任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?得到:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,教师引导学生回顾直角三角形性质,学生完成两个铺垫练习. 教师提出问题,引导学生思考,逐步从特殊到一般的理解锐角的正弦概念.在特殊角的基础上提出一般性问题,教师再次引导学生利用相似三角形知识,得到:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A的对边与斜边的比都是一个固定值.复习直角三角形的性质,在此基础上探究新问题.让学生初步体验一个锐角确定以后,它的对边与斜边的比值也随之不变的事实,为锐角的正弦的引出提供背景.培养学生从特殊到一般的演绎推理能力.39斜边c 对边a bC B A•∠A 的对边与斜边的比都是一个固定值. 正弦函数概念:在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A的正弦,记作sinA , 即sinA =A a A c∠=∠的对边的斜边例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°= .例1 如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.三、课堂训练课本第64页练习.补充:1.如图,在直角△ABC 中,∠C =90o,若AB =5,AC =4,则sinA =( )A .35B .45C .34D .432. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43D . 53.如图,已知点P 的坐标是(a ,b ),则sin α等于( )A .a bB .b aC .2222.a b D a b a b ++ 四、课堂小结 1.锐角的正弦概念; 2.会求一个锐角的正弦值。
新人教版九年级数学下册《第二十七章 相似 》全章教案
新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。
第一节课重点讲解了相似图形的概念和运用方法。
通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。
同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。
在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。
同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。
第二节课重点讲解了相似多边形的主要特征和识别方法。
老师让学生们了解到相似多边形的对应角相等,对应边的比相等。
通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。
总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。
通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。
在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。
这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。
如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。
在解决这个问题时,依靠直觉观察是不可靠的。
课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。
2.相似多边形的特征是对应角相等,对应边的比相等。
如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比是相似多边形对应边的比。
4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。
例1(补充)(选择题):下列说法正确的是D。
因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。
例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。
人教版九年级数学下册教案 第1课时 反比例函数的图象和性质
第二十六章 反比例函数 26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质学习目标:1. 经历画反比例函数的图象、归纳得到反比例函数的图象特征和性质的过程; (重点、难点)2. 会画反比例函数图象,了解和掌握反比例函数的图象和性质. (重点)3. 能够初步应用反比例函数的图象和性质解题. (重点、难点)一、知识链接回顾我们上一课的学习内容,你能写出200 m 自由泳比赛中,游泳所用的时间 t (s ) 和游泳速度 v (m /s ) 之间的数量关系吗?试一试,你能在坐标轴中画出这个函数的图象吗?一、要点探究探究点1:反比例函数的图象和性质 画出反比例函数x y 6=与xy 12=的图象. 【提示】画函数的图象步骤一般分为:列表→描点→连线. 需要注意的是在反比例函数中自变量 x 不能为 0. 解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点.连线:用光滑的曲线顺次连接各点,即可得x y 6=与xy 12=的图象.思考 观察这两个函数图象,回答问题: (1)每个函数图象分别位于哪些象限?(2)在每一个象限内, 随着x 的增大,y 如何变化?你能由它们的解析式说明理由吗? (3)对于反比例函数xky =(k >0),考虑问题(1)(2),你能得出同样的结论吗?【要点归纳】反比例函数xky =(k >0) 的图象和性质: 由两条曲线组成,且分别位于第一、三象限,它们与 x 轴、y 轴都不相交; 在每个象限内,y 随 x 的增大而减小. 【针对训练】 反比例函数xy 3=的图象大致是 ( )A .B .C .D .反比例函数xy 8=的图象上有两点 A (x 1,y 1),B (x 2,y 2),且A ,B 均在该函数图象的第一象限部分,若 x 1>x 2,则 y 1与y 2的大小关系为 ( ) A . y 1 > y 2 B . y 1 = y 2 C . y 1 < y 2 D . 无法确定【提示】因为8>0,且 A ,B 两点均在该函数图象的第一象限部分,根据 x 1>x 2,可知y 1,y 2的大小关系观察 当 k =-2,-4,-6时,反比例函数xky =的图象,有哪些共同特征?思考 回顾上面我们利用函数图象,从特殊到一般研究反比例函数xky =(k >0) 的性质的过程,你能用类似的方法研究反比例函数xky =(k <0)的图象和性质吗?【要点归纳】反比例函数xky =(k <0) 的图象和性质: (1) 当 k > 0 时,双曲线的两支分别位于第一、三象限,在每一象限内,y 随 x 的增大而减小;(2) 当 k < 0 时,双曲线的两支分别位于第二、四象限,在每一象限内,y 随 x 的增大而增大.k 的正负决定了反比例函数的图象所在的象限和增减性【针对训练】点(2,y 1)和(3,y 2)在函数xy 2-=的图象上,则y 1 y 2(填“>”“<”或“=”).已知反比例函数()721-+-=a a x a y ,在每一个象限内,y 随 x 的增大而增大,求a 的值.【针对训练】 已知反比例函数()|4||83--=m x m y 在每一个象限内,y 随着 x 的增大而减小,求 m 的值.二、课堂小结1. 反比例函数xy5.1=的图象在 ( )A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限2. 在同一直角坐标系中,函数y = 2x与xy1-=的图象大致是( )3. 已知反比例函数xmy2-=的图象在第一、三象限内,则m的取值范围是________.4. 下列关于反比例函数xy12-=的图象的三个结论:(1)经过点(-1,12) 和点(10,-1.2);(2)在每一个象限内,y随x的增大而减小;(3)双曲线位于第二、四象限.其中正确的是________(填序号).5. 已知反比例函数xky=的图象过点(-2,-3),图象上有两点A (x1,y1),B (x2,y2),且x1 > x2 > 0,则y1-y2________0.6. 已知反比例函数52-=mmxy,它的两个分支分别在第一、第三象限,求m的值.能力提升:7. 已知点(a-1,y1),(a+1,y2)在反比例函数xky=(k>0)的图象上,若y1<y2,求a的取值范围.参考答案合作探究一、要点探究探究点1:反比例函数的图象和性质解:列表:-1 -1.2 -1.5 -2 -3 -6 6 3 2 1.5 1.2 1 -2 -2.4 -3 -4 -6 -12 12 6 4 3 2.4 2 描点、连线如图所示.【针对训练】 CC 【针对训练】<解:由题意得a 2 + a -7=-1,且a -1<0.解得a =-3.【针对训练】 解:由题意得 | m |-4=-1,且 3m -8>0.解得m =3.当堂检测1.B2. D3. m >24. (1)(3)5. <6. 解:因为反比例函数52-=m mxy 的两个分支分别在第一、第三象限,所以有m 2-5=-1,且m >0,解得m =2. 能力提升:7. 解:由 k >0知在每个象限内,y 随 x 的增大而减小.① 当这两点在图象的同一支上时,∵y 1<y 2,∴a -1>a +1, 无解; ②当这两点分别位于图象的两支上时, ∵y 1<y 2,∴ y 1<0<y 2.∴a -1<0,a +1>0, 解得-1<a <1.故 a 的取值范围为-1<a <1.。
人教版九年级数学下册精品教案1 传播问题与一元二次方程
21.3实际问题与一元二次方程第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.第3课时几何图形与一元二次方程1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.2.继续探究实际问题中的数量关系,列出一元二次方程解应用题.3.通过探究体会列方程的实质,提高灵活处理问题的能力.一、情境导入如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,你能求出所截去小正方形的边长吗?二、合作探究探究点:用一元二次方程解决图形面积问题【类型一】利用面积构造一元二次方程模型用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=6解析:设一边长为x米,则另外一边长为(5-x)米,根据它的面积为6平方米,即可列出方程得:x(5-x)=6,故选择B.方法总结:理解题意,恰当的设未知数,把题中相关的量用未知数表示出来,用相等关系列出方程.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,求小正方形的边长.解析:设小正方形的边长为x cm,则长方体盒子底面的长、宽均可用含x的代数式表示,再根据面积,即可建立等量关系,列出方程.解:设小正方形的边长为x cm,则可得这个长方体盒子的底面的长是(80-2x)cm,宽是(60-2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面积,方程可列为(80-2x)(60-2x)=1500,整理得x2-70x+825=0,解得x1=55,x2=15.又60-2x>0,∴x=55(舍).∴小正方形的边长为15cm.方法总结:要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可.【类型二】整体法构造一元二次方程模型如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x米,根据题意可列出的方程为______________.解析:解法一:把两条道路平移到靠近矩形的一边上,用含x的代数式表示草坪的长为(22-x )米,宽为(17-x )米,根据草坪的面积为300平方米可列出方程(22-x )(17-x )=300.解法二:根据面积的和差可列方程:22×17-22x -17x +x 2=300.方法总结:解答与道路有关的面积问题,可以根据图形面积的和差关系,寻找相等关系建立方程求解;也可以用平移的方法,把道路平移构建特殊的图形,并利用面积建立方程求解.【类型三】利用一元二次方程解决动点问题如图所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解析:这是一道动态问题,可设出未知数,表示出PC 与CQ 的长,根据面积公式建立方程求解.解:(1)设x s 后,可使△PCQ 的面积为8cm 2,所以AP =x cm ,PC =(6-x )cm ,CQ =2x cm.则根据题意,得12·(6-x )·2x =8.整理,得x 2-6x +8=0,解这个方程,得x 1=2,x 2=4.所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半.则根据题意,得12(6-x )·2x =12×12×6×8.整理,得x 2-6x +12=0.由于此方程没有实数根,所以不存在使△PCQ 的面积等于△ABC 面积一半的时刻.三、板书设计与图形有关的问题是一元二次方程应用的常见题型,解决这类问题的关键是将不规则图形分割或补全成规则图形,找出各部分面积之间的关系,运用面积等计算公式列出方程;对图形进行分割或补全的原则:转化成为规则图形时越简单越直观越好.。
新人教版九年级数学下册全册教案.pdf
新人教版九年级数学下册全册教案第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。
那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)xy 2−= (3)xy =21 (4)25+=x y (5)31+=x y例2.(补充)当m 取什么值时,函数23)2(m x m y −−=是反比例函数?(四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y −+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。
人教版九年级数学下册精品教案 实际问题与二次函数3个课时
22.3 实际问题与二次函数第1课时 几何图形的最大面积1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决图形中最大面积问题.一、情境导入孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.当x 为何值时,S 有最大值?并求出最大值.二、合作探究探究点:最大面积问题 【类型一】利用二次函数求最大面积小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x 2,从而表示出面积;(2)利用配方法求出顶点坐标.解:(1)根据题意,得S =60-2x 2·x =-x 2+30x .自变量x 的取值范围是0<x <30. (2)S =-x 2+30x =-(x -15)2+225,∵a =-1<0,∴S 有最大值,即当x =15(米)时,S 最大值=225平方米.方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】利用二次函数判断面积取值成立的条件用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y 的最大值,与70比较大小,即可作出判断.解:(1)y =x (16-x )=-x 2+16x (0<x <16);(2)当y =60时,-x 2+16x =60,解得x 1=10,x 2=6.所以当x =10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y =70时,-x 2+16x =70,整理得:x 2-16x +70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:y =-x 2+16x =-(x -8)2+64,当x =8时,y 有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程. 【类型三】最大面积方案设计施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图所示).(1)直接写出点M 及抛物线顶点P 的坐标;(2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.解:(1)M (12,0),P (6,6).(2)设这条抛物线的函数关系式为y =a (x -6)2+6,因为抛物线过O (0,0),所以a (0-6)2+6=0,解得,a =-16,所以这条抛物线的函数关系式为:y =-16(x -6)2+6,即y =-16x 2+2x . (3)设OB =m 米,则点A 的坐标为(m ,-16m 2+2m ),所以AB =DC =-16m 2+2m .根据抛物线的轴对称,可得OB =CM =m ,所以BC =12-2m ,即AD =12-2m ,所以l =AB +AD +DC =-16m 2+2m +12-2m -16m 2+2m =-13m 2+2m +12=-13(m -3)2+15.所以当m =3,即OB =3米时,三根木杆长度之和l 的最大值为15米.三、板书设计教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.第2课时商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x-1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图①所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数关系式y 2=mx 2-8mx +n ,其变化趋势如图②所示.(1)求y 2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克. 三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.第3课时 拱桥问题和运动中的抛物线1.掌握二次函数模型的建立,会把实际问题转化为二次函数问题.2.利用二次函数解决拱桥及运动中的有关问题.3.能运用二次函数的图象与性质进行决策.一、情境导入某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为8米,两侧距地面4米高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为6米,请你确定校门的高度是多少?二、合作探究探究点一:建立二次函数模型【类型一】运动轨迹问题某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面高209米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮圈的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的问题就是判断代表篮圈的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高3.1米的大小.解:(1)由条件可得到球出手点、最高点和篮圈的坐标分别为A (0,209),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数关系式为y =a (x -h )2+k ,将点A 、B 的坐标代入,可得y =-19(x -4)2+4.将点C 的坐标代入解析式,得左边=右边,即点C 在抛物线上,所以此球一定能投中.(2)将x =1代入解析式,得y =3.因为3.1>3,所以盖帽能获得成功.【类型二】拱桥、涵洞问题如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米.水面下降1米时,水面的宽度为________米.解析:如图,建立直角坐标系,设这条抛物线为y =ax 2,把点(2,-2)代入,得-2=a ×22,a =-12,∴y =-12x 2,当y =-3时,-12x 2=-3,x =± 6.故答案为2 6.方法总结:在解决呈抛物线形状的实际问题时,通常的步骤是:(1)建立合适的平面直角坐标系;(2)将实际问题中的数量转化为点的坐标;(3)设出抛物线的解析式,并将点的坐标代入函数解析式,求出函数解析式;(4)利用函数关系式解决实际问题.如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?解析:解决问题的思路是首先建立适当的坐标系,挖掘条件确定图象上点的坐标M(12,0)和抛物线顶点P(6,6);已知顶点坐标,可设二次函数关系式为y=a(x-6)2+6,可利用待定系数法求出二次函数关系式;再利用二次函数上某些点的坐标特征,求出有关“支撑架”总长AD+DC+CB二次函数的关系式,根据二次函数的性质,求出最值,从而解决问题.解:(1)根据题意,分别求出M(12,0),最大高度为6米,点P的纵坐标为6,底部宽度为12米,所以点P的横坐标为6,即P(6,6).(2)设此函数关系式为y=a(x-6)2+6.因为函数y=a(x-6)2+6经过点(0,3),所以3=a(0-6)2+6,即a=-112.所以此函数关系式为y=-112(x-6)2+6=-112x2+x+3.(3)设A(m,0),则B(12-m,0),C(12-m,-112m2+m+3),D(m,-112m2+m+3).即“支撑架”总长AD+DC+CB=(-112m2+m+3)+(12-2m)+(-112m2+m+3)=-16m2+18.因为此二次函数的图象开口向下.所以当m=0时,AD+DC+CB有最大值为18.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,建立二次函数模型,解决生活中的实际问题.。
人教版九年级下册数学教案5篇
人教版九年级下册数学教案5篇人教版九年级下册数学教案1教学目标1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重难点教学重点:探索并掌握比例的基本性质。
教学难点:根据乘法等式写出正确的比例。
教学工具课件教学过程一、复习导入1、我们已经认识了比例,谁能说一下什么叫比例?2、应用比例的意义判断下面的比能否组成比例。
2.4:1.6和60:403、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例) 板书:比例的基本性质二、探究新知1、教学比例各部分的名称.同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。
(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。
学生回答的同时,板书:组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2. 4 : 1.6 = 60 : 40 外项内项学生认一认,说一说比例中的外项和内项。
2、教学比例的基本性质。
出示例1、 (1)教师:比例有什么性质呢?现在我们就来研究。
(板书:比例的基本性质) 学生分别计算出这个比例中两个内项的积和两个外项的积。
教师板书:两个外项的积是2.4_40=96 两个内项的积是1.6_60=96 (2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢? 学生分组计算前面判断过的比例。
(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。
人教版数学九年级下册教案
感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。
一起看看人教版数学九年级下册教案!欢迎查阅!人教版数学九年级下册教案1一、教学目标1. 通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。
2.经历利用三角函数知识解决实际问题的过程,促进观察、分析、归纳、交流等能力的发展。
3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。
二、教材分析在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。
在上节课中已经学习了30°,45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。
本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提出问题、分析问题、探究解决方法直至最终解决问题的过程。
三、学校及学生状况分析九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。
另外,计算器的使用可以极大减轻学生的负担。
因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。
学生自小学起就开始使用计算器,对计算器的操作比较熟悉。
同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。
四、教学设计(一)复习提问1.梯子靠在墙上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?学生活动:根据题意,求出数值。
2.在生活中,梯子与地面的夹角总是60°吗?不是,可以出现各种角度,60°只是一种特殊现象。
九年级数学下册投影与视图全章教案新人教版
九年级数学下册《投影与视图》全章教案新人教版第一章:投影的概念与分类教学目标:1. 了解投影的概念,掌握各种投影的分类。
2. 能够运用投影的知识解决实际问题。
教学内容:1. 投影的概念:平行投影、中心投影。
2. 投影的分类:正投影、斜投影。
3. 投影的基本性质。
教学步骤:1. 引入投影的概念,展示各种投影的图片,引导学生观察并思考。
2. 讲解平行投影和中心投影的定义,通过示例让学生理解两种投影的特点。
3. 介绍正投影和斜投影的分类,让学生通过实际例子区分两种投影。
4. 引导学生总结投影的基本性质,如相似性、形状不变等。
5. 布置练习题,让学生巩固所学内容。
教学评价:1. 学生能够准确描述投影的概念和分类。
2. 学生能够运用投影的知识解决实际问题。
第二章:视图的定义与分类教学目标:1. 理解视图的定义,掌握各种视图的分类。
2. 能够运用视图的知识解决实际问题。
教学内容:1. 视图的定义:主视图、左视图、俯视图。
2. 视图的分类:正视图、侧视图、俯视图。
3. 视图的基本性质。
教学步骤:1. 引入视图的概念,展示各种视图的图片,引导学生观察并思考。
2. 讲解主视图、左视图、俯视图的定义,通过示例让学生理解三种视图的特点。
3. 介绍正视图、侧视图、俯视图的分类,让学生通过实际例子区分三种视图。
4. 引导学生总结视图的基本性质,如相互补充、完整性等。
5. 布置练习题,让学生巩固所学内容。
教学评价:1. 学生能够准确描述视图的定义和分类。
2. 学生能够运用视图的知识解决实际问题。
第三章:简单几何体的三视图教学目标:1. 掌握简单几何体的三视图的画法。
2. 能够运用三视图的知识解决实际问题。
教学内容:1. 简单几何体的三视图:正方体、长方体、圆柱体、圆锥体。
2. 三视图的画法与特点。
教学步骤:1. 讲解正方体、长方体、圆柱体、圆锥体的三视图的画法,通过示例让学生理解各种几何体的三视图特点。
2. 引导学生动手画出各种几何体的三视图,并观察其特点。
九年级数学下册电子版教案(人教版)
九年级数学下册电子版教案(人教版)教案章节:一、二次根式的乘除法【教学目标】1. 理解二次根式的乘除法运算法则。
2. 能够熟练地进行二次根式的乘除法运算。
【教学内容】1. 二次根式的乘法法则:同底数相乘,指数相加;异底数相乘,先转化为同底数,再按照同底数相乘法则计算。
2. 二次根式的除法法则:同底数相除,指数相减;异底数相除,先转化为同底数,再按照同底数相除法则计算。
【教学步骤】1. 导入:回顾一次根式的乘除法,引导学生思考如何将一次根式的方法应用到二次根式中。
2. 讲解:讲解二次根式的乘法法则和除法法则,通过例题进行解释和演示。
3. 练习:学生独立完成一些二次根式的乘除法练习题,教师进行指导和讲解。
4. 总结:对本节课的内容进行总结,强调二次根式的乘除法法则。
【作业布置】请学生完成课后练习,包括一些二次根式的乘除法题目。
教案章节:二、勾股定理【教学目标】1. 理解勾股定理的定义和意义。
2. 能够熟练运用勾股定理计算直角三角形的边长。
【教学内容】1. 勾股定理的定义:直角三角形的两条直角边的平方和等于斜边的平方。
2. 勾股定理的应用:根据勾股定理计算直角三角形的边长。
【教学步骤】1. 导入:通过一个直角三角形的例子,引导学生思考如何计算其边长。
2. 讲解:讲解勾股定理的定义和意义,通过例题进行解释和演示。
3. 练习:学生独立完成一些勾股定理的应用题,教师进行指导和讲解。
4. 总结:对本节课的内容进行总结,强调勾股定理的应用方法。
【作业布置】请学生完成课后练习,包括一些勾股定理的应用题目。
教案章节:三、相似三角形的性质【教学目标】1. 理解相似三角形的定义和性质。
2. 能够熟练运用相似三角形的性质解决实际问题。
【教学内容】1. 相似三角形的定义:具有相同形状但不同大小的三角形。
2. 相似三角形的性质:对应角相等,对应边成比例。
【教学步骤】1. 导入:通过两个形状相同但大小不同的三角形,引导学生思考它们的性质。
人教版九年级数学下册全册教案及教学反思教学计划及进度表
章末复习【知识与技能】1.进一步理解投影、三视图等概念.2.能画出几何体的三视图,能根据三视图想象物体的形状.【过程与方法】通过对具体实例的评析加深对本章知识的理解,感受到三视图、平面展开图与各立体图形之间的相互转化关系.【情感态度】关注有关生活中的投影,生产中的三视图问题,提高数学应用意识,增强学生的空间想象能力. 【教学重点】进一步加深对本章知识的理解,提高解题技能【教学难点】利用三视图想象实物形状,并根据相关数据进行计算.一、知识框图,整体把握【教学说明】构建本章知识结构图可由师生共同完成,教师指示,学生回顾思考,可让学生获得本章完整的知识体系.同时教师在黑板知构.二、释疑解惑,加深理解本章通过问题的形式来释疑解惑,以加深学生对知识的理解.问题1平行投影和中心投影的区别是什么?如何判别物体的投影是平行投影还是中心?问题2正投影和平行投影有什么关系?正投影与三视图的关系如何?画三视图时有哪些需要注意的问题?问题3怎样根据三视图想象立体图形的形状?【教学说明】教师出示问题,让学生独立思考,然后相互交流.教师在巡视中听取学生的观点,看学生有哪些地方存在误区,对此教师要予以纠正,然后作出系统的说明.三、典例精析,复习新知例1如图,晚上小明在路灯下散步,在小明由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短例2主视图、左视图、俯视图分别是下列三个图形的物体是()例3下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )【教学说明】上述三道例题都可让学生自主完成,然后相互交流,探讨出正确结论.出现失误的学生在自查中反思,加深对知识的理解. 其中例3中小正方形内数字所表示的意义是解题关键.例4由一些大小相同的小立方体组成的简单几何体的主视图和俯视图如图所示.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,求n 的值.【分析】从俯视图可看出这个几何体有前后两排,前排并排有三个正方形,后排有两个正方形,从主视图可看出这个几何体分为左、中、右三列,左列最多只有一个立方块,中列最多有两个立方块,右列最多有三个立方块.由于这个几何体的左视图没有画出,故无法确定这个几何体的形状,但可知道这个几何体最少需要8个立方块,最多有11个立方块,而n=8,9,10,11四个值.它的左视图有或或或四种可能.【教学说明】本例的目的是让学生明确确定一个几何体必须从三个角度得到它的视图才行,仅有其中一个或两个都是不可能的.同时,通过本例可进一步加深学生的空间观念和分类讨论问题的能力.教学时仍可让学生先尝试着解决,最后教师予以评讲.例5 如图是某种物体的三视图及相关数据(单位:cm),求该物体的体积(732.13 ,π=3.14,精确到 0.01cm3).【分析】由三视图可想象出这个物体应该是一个正六棱柱中央挖出了一个圆柱,其体积为V≈1.16cm3.例6 如图所示,点P表示广场上的一盏照明灯. (1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P 到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)【分析】在(1)中,只需连接小敏的头的顶部(记为D)与点P连线,交地面(AB所在直线)于点C,则线段AC的长即为小敏在灯P下的影子(即图中粗线AC);在(2)中,过P作PH垂直于过Q点的水平线于H,即PH丄QH,再求PH的长即可.【教学说明】本例是一道投影和解直角三角形的综合问题,难度不大,学生能独立完成.教师在给出问题后,巡视全场,帮助学生完成解答.四、师生互动,课堂小结1.通过这节课的学习你有哪些问题?2.回顾本章知识,你还有哪些问题?【教学说明】学生相互交流,进一步加深对本章知识的理解,针对学生存在的疑问,可当堂解决,也可课后个别辅导,帮助他(她)完善对本章知识的认知.1.布置作业:从教材P109〜111复习题29中选取.2.完成创优作业中本课时的练习.本课时通过知识框图和例题的讲解,力求让学生对本章知识了然于胸,教师在教学时应注意让学生在全面掌握知识点的基础上抓住重点、举一反三.第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y 与x 之间的函数关系式吗?问题2 已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S 与n 的关系式如何?说说你的理由.思考 观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =k x(k ≠0)的函数称为反比例函数,其中x 是自变量, y 是x 的函数,自变量x 的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y 是x 的反比例函数,当x =2 时,y = 6.(1) 写出y 与x 之间的函数解析式;(2) 当x =4时,求y 的值.【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x ,只须把x =2,y=6代入,求出k 值,即可得y =12x ,再把x =4代入可求出 y=3.【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) Qx ≠0, y =12k k x.11220,k 0,0,k k k ≠≠∴≠Q 故y=12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数?y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==Q 时y=4,∴ k= 4×9 = 36,即 y = 236x,y 不是 x 的反比例函数. (2)y=236x,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.26.1.2 反比例函数的图象和性质第1课时反比例函数的图象和性质(1)【知识与技能】1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.【过程与方法】经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.【情感态度】在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.【教学重点】画反比例函数图象,理解反比例函数的简单性质【教学难点】理解反比例函数性质,能用性质解决简单的问题.一、情境导入,初步认识问题我们知道,一次函数y = 6x的图象是一条直线,那么反比例函数y =6x的图象是什么形状呢?你能用“描点”的方法画出函数的图象?【教学说明】教师提出问题,学生思考、交流,尝试着解决问题,教师巡视,关注学生的画图,及时纠正个别同学在画图中的不足和失误之处,帮助学生尽可能得到其合适的图象.二、思考探究,获取新知问题1 在同一坐标系中画出反比例函数y =6x和y =12x的图象;【教学说明】将全班同学分成两大组,分别完成问题y=6x、y =12x的画图,在学生探索画反比例函数的图象过程中,教师应给予恰当点拨:如学生列表时,由于自变量x≠0,故在x <0和x>0时,应各取三个以上的数据,以便使描点画图更精确些;在连线上,x<0和x>0 的两个分支应根据变化趋势用平滑曲线连接,但它们是不能相交的;列表中数据,描点时点的位置等不能出错,以保证图象更能反映出反比例函数的性质.问题2 反比例函数y =-6x和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x和y =-6x的图象呢?同学间相互交流.【教学说明】让两组同学分别交流,找出图象的特征,教师可分别参与讨论,帮助学生获取正确认知.【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减小),曲线越来越接近x轴(或y轴),但这两条曲线永不相交;(2) y = 6x和y =-6x及y =12x和y =-12x的图象分别关于x轴对称,也关于y轴对称.思考观察函数y = 6x和y =-6x以及y =12x和y =-12x的图象.(1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每个象限内y随x的变化如何变化?【归纳结论】反比例函数y =kx的图象及其性质:(1)反比例函数y=kx(k为常数,且k 0)的图象是双曲线;(2)当k>0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y随x值的增大而减小;(3)当k<0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y随x值的增大而增大.三、典例精析,掌握新知例如图,一次函数y = kx十b的图象与反比例函数y=mx的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.【分析】(1)观察图象,可直接写出A、B两点的坐标;(2)利用A、B两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A、B的坐标得出答案.解:(1)观察图象可知A( -6,-2),B(4,3)(2)由点B在反比例函数y =mx的图象上,所以把B(4,3)代入y =mx得3 =4m,故m =12,所以y=12x.由点A、B在一次函数y =kx十b的图象上,所以把A、B两点坐标代入y =kx十b得1 432 6+2,1k b kk bb⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 .所以一次函数解析式为y = 12x+1.(3)由图象可知,当一6<x<0或x>4时,一次函数的函数值大于反比例函数的函数值.【教学说明】本例有一定难度,教师可将题目展开,分步讲解,辅导学生克服对大题的恐惧.本题考查了从图象获取信息,应用待定系数法确定反比例函数与一次函数的关系式,以及利用图象比较函数值的大小等知识点.四、运用新知,深化理解1 .若反比例函数 y =21mx-的图象的一个分支在第三象限,则m的取值范围是.2.如图是某一函数的一部分,则这个函数的表达式可能是()A.y=5xB.y=-x+3C.y=-6 xD.y=4 x【教学说明】学生独立完成,然后相互交流,谈谈自己的看法,教师应参与学生的讨论,加深学生对反比例函数的图象及其性质的认识和理解,从而更好地掌握本节知识.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.m>122. C五、师生互动,课堂小结本节课学习了哪些知识?在知识应用过程中需要注意什么?你有哪些收获?1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.“反比例函数的图象和性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在学习反比例函数图象和性质时k>0时,双曲线的两个分支在一、三象限;k<0时,双曲线的两个分支在二、四象限),学生可由画法观察图象得知.而增减性由解析式y=kx(k≠0)可得到,学生也容易理解.但从图象观察增减性较难,借助计算机的动态演示就容易多了,所以本课教学最好用多媒体,因为运用多媒体比较函数图象,可以使学生更直观、更清楚地看清函数的变化,从而使学生加深对函数性质的理解.通过本课的教学,教师可深刻地体会到运用信息技术可加强数学课堂教学中的灵活性、直观性. 虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高.第2课时反比例函数的图象和性质(2)【知识与技能】理解并掌握反比例函数的图象和性质,能灵活运用性质解决具体问题.【过程与方法】在运用反比例函数的图象及其性质解决具体问题过程中,进一步增强学生分析问题,解决问题的能力.【情感态度】在运用所学新知识解决具体问题过程中,体验成功的快乐,激发学习兴趣.【教学重点】灵活运用反比例函数性质解决问题.【教学难点】反比例函数的增减性的描述及其与kyx=中k的对应关系.一、情境导入,初步认识问题(1)反比例函数kyx=(0k≠)的图象及其性质如何,不妨说说看.(2)反比例函数在各自象限内的增减性与kyx=(0k≠)中k的对应关系如何?与同伴交流,谈谈你的看法.【教学说明】学生相互交流,温习回顾上节知识,为本节的应用作铺垫,教师可予以总结,加深学生认知.二、思考探究,获取新知反比例函数的性质主要研究它的图象的位置和函数值的反比例函数 k y x=(0k ≠) k 的符号 k >0 k <0 图象性质 (1)自变量x 的取值范围为:x ≠0; (2)函数图象的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小 (1)变量x 的取值范围为:x ≠0; (2)函数图象的两个分支分别在第二、第四象限,在每个象限内,y 随x 的增大而增大理一遍反比例函数的图象与性质,列表归纳,鼓励学生自主总结.【归纳结论】(1)反比例函数k y x=(0k ≠),因为x ≠0,y ≠0,故图象不经过原点.双曲线是由两个分支组成的,一般不说两个分支经过第一、第三象限(或第二、第四象限),而说图象的两个分支分别在第一、第三象限(或第二、第四象限).(2)反比例函数的增减性不是连续的,因此在谈到反比例函数的增减性时,一般都是在各自的象限内的增减情况.(3)反比例函数的图象无限接近坐标轴,但永远不能和坐标轴相交,也不能“翘尾巴”(4)反比例函数图象的位置和函数的增减性都是反比例系数k 的符号决定的;反过来,由双曲线所在位置和函数的增减性,也可以推断出k 的符号.如:已知双曲线k y x= 在第二、第四象限,则可知k <0.三、典例精析,掌握新知例1 已知反比例函数k y x=(0k ≠)的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y 随x 值的增大如何变化?(2)点 B(3,4),C(122- ,445- ),D (2,5)是否在这个函数的图象上?【分析】由反比例函数的表达式k y x=(0k ≠)经过点A ,把A点坐标(2,6)代入相应的x,y后,可得k=12,故12yx =;由于k=12>0,知函数的图象位于第一、三象限,在各个象限内y随x值的增大而减小(增减性可先想象出图象,再依据图象特征可作出说明,注意“各个象限”或“各个分支”是描述反比例函数增减性的前提条件,不能漏掉),再把B、C、D三点坐标代入12yx=中可判断B、C、D三点是否在该函数的图象上.【教学说明】本例应先让学生独立思考,锻炼分析问题、解决问题的能力,教师再根据学生的完全情况确定评讲方法.例2 如图是反比例函数5myx-=的图象的一个分支,根据图象回答下列问题:(1)图象的另一个分支位于哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2),如果 x1>x2,那么y1与y2的大小关系如何?说说你的理由.【分析】反比例函数的图象只有两种可能,位于第一、第三象限或者位于第二、第四象限.观察图象知,此反比例函数的图象的一支位于第一象限,那么另一支必位于第三象限,而位于第一、三象限的反比例函数的表达式中k>0,即m-5>0,∴ m>5 .而当m>5时,在图象的各个分支上y随x值的增大而减小,故当x1>x2时 y1<y2.【教学说明】本例仍应先让学生自主探索,形成初步认识后,教师再与全班同学一道分析并给出解答过程,让学生通过反思加深对反比例函数的图象及其性质的理解.四、运用新知,深化理解1.如图是反比例函数7nyx+=的图象的一支,根据图象回答下列问题:(1)图象的另一支位于哪个象限,常数n的取值范围是什么?(2 ) 在这个函数图象的某一支上任取点 A (a,b)和B (a' ,b' )如果a<a',那么b与b'的大小关系如何?为什么?2.如图,正比例函数y = kx与反比函数3 yx =的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC.求△ABC的面积.【教学说明】第1题学生能轻松获得结论,而第2题则需教师给予点拨引导,教师可让学生先分别求出S△AOB 和S△BOC,再求出S. 在完成上述题目后,教师引导学生完成创优作△ABC业中本课时的“名师导学”部分.五、师生互动,课堂小结通过这节课的学习,你有哪些收获?你感觉到本节知识有哪些地方是较难理解的?与同伴交流.1. 布置作业:从教材“习题26.1”中选取.2. 完成创优作业中本课时的“课时作业”部分.反比例函数的图象和性质是以前函数内容的延续,也是以后学习二次函数的基础.本课时的学习是学生对反比例函数图象和性质的一个再认知的过程,由于八年级学生是刚刚接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识.另外在教学时,教师要与学生进行互动交流,并积极让学生自主探究反比例函数中k值的几何意义.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.。
人教版九年级数学下册全册教案(完整版)教学设计
人教版九年级数学下册全册教案(完整版)教学设计26.1 反比例函数26.1.1 反比例函数(第1课时)教学目标一、基本目标【知识与技能】1.理解并掌握反比例函数的定义,能判断一个给定的函数是否为反比例函数.2.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.【过程与方法】1.用类比的思想方法,从实际问题中抽象出反比例函数的概念,发展学生的观察能力、探究能力及交流总结能力.2.经历探索具体问题中数量关系和变化规律的过程,体会建立函数模型的思想.【情感态度与价值观】通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生应用数学的意识.二、重难点目标【教学重点】1.理解并掌握反比例函数的定义.2.能根据已知条件确定反比例函数的解析式.【教学难点】根据已知条件,求反比例函数的解析式.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.如果两个变量x、y满足xy=k(k为常数,k≠0),那么x、y就成为反比例关系.例如,速度v、时间t与路程s之间满足vt=s,如果路程s一定,那么速度v与时间t就成反比例关系.2.一般地,在某一变化过程有两个变量x和y,如果对于变量x的每一个值,变量y都有唯一的值与它对应,我们就称y 是x 的函数.其中,x 是自变量,y 是因变量.3.形如y =kx(k 是常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是因变量.自变量x 的取值范围是不等于0的一切实数.4.y =k x,y =kx -1,xy =k 是反比例函数的三种表现形式.其中k 是常数,k ≠0. 5.下列函数中,反比例函数有哪些?每一个反比例函数相应的k 值是多少? ①y =2x +1;②y =2x 2;③y =15x ;④y =-23x ;⑤xy =3;⑥2y =x ;⑦xy =-1.解:反比例函数有③④⑤⑦.③y =15x 中k =15;④y =-23x 中k =-23;⑤xy =3中k =3;⑦xy =-1中k =-1.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】已知y 是x 的反比例函数,当x =2时,y =6. (1)写出y 与x 的函数关系式; (2)求当x =4时y 的值.【互动探索】(引发学生思考)因为y 是x 的反比例函数,所以设y =k x,再把x =2时,y =6代入上式就可求出常数k 的值.【解答】(1)设y =k x,因为当x =2时y =6, 则有6=k2,解得k =12.∴y =12x.(2)把x =4代入y =12x ,得y =124=3.【互动总结】(学生总结,老师点评)用待定系数法求反比例函数解析式的一般步骤:①设出含有待定系数的反比例函数解析式,形如y =kx(k 为常数,k ≠0);②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数;④写出解析式.【例2】已知函数y =(2m 2+m -1)x 2m 2+3m -3是反比例函数,求m 的值.【互动探索】(引发学生思考)在反比例函数y =kx -1中的隐含条件是x 的次数为-1,k ≠0.【解答】∵y =(2m 2+m -1)x 2m 2+3m -3是反比例函数,∴⎩⎪⎨⎪⎧2m 2+3m -3=-1,2m 2+m -1≠0,解得m =-2.【互动总结】(学生总结,老师点评)反比例函数也可以写成y =kx -1(k ≠0)的形式,注意x 的次数为-1,系数不等于0.活动2 巩固练习(学生独学)1.反比例函数y =(m +1)x -1中m 的取值范围是( B ) A .m ≠1 B .m ≠-1 C .m ≠±1D .全体实数2.当m =6时,y =3xm -7是反比例函数.3.某蓄水池的排水管每小时排水8 m 3,6 h 可将满池水全部排空. (1)蓄水池的容积为48 m 3;(2)若每小时排水用Q (m 3)表示,则排水时间t (h)与Q (m 3)的函数解析式为t =48Q.4.已知y 与3x 成反比例,且当x =1时,y =23.(1)写出y 与x 的函数解析式; (2)当x =13时,求y 的值;(3)当y =12时,求x 的值.解:(1)y =23x . (2)y =2. (3) x =43.活动3 拓展延伸(学生对学)【例3】已知y =y 1+y 2,y 1与(x -1)成正比例,y 2与(x +1)成反比例,当x =0时,y =-3;当x =1时,y =-1.求:(1)y 关于x 的关系式; (2)当x =-12时,y 的值.【互动探索】根据正比例函数和反比例函数的定义设出y 1、y 2的关系式,进而得到y 的关系式,把所给两组数据代入即可求出相应的比例系数,也就求得了所要求的关系式.【解答】 (1)∵y 1与(x -1)成正比例,y 2与(x +1)成反比例, ∴设y 1=k 1(x -1)(k 1≠0),y 2=k 2x +1(k 2≠0).∵y =y 1+y 2,∴y =k 1(x -1)+k 2x +1.∵当x =0时,y =-3;当x =1时,y =-1, ∴⎩⎪⎨⎪⎧-3=-k 1+k 2,-1=12k 2,解得k 1=1,k 2=-2,∴y =x -1-2x +1. (2)把x =-12代入(1)中函数关系式,得y =-112.【互动总结】(学生总结,老师点评)根据题意设出y 1、y 2的函数关系式并用待定系数法求得函数关系式是解答此题的关键.注意不同的函数关系要用不同的待定系数,如本题y 1的待定系数用k 1, y 2的待定系数用k 2.环节3 课堂小结,当堂达标 (学生总结,老师点评)反比例函数⎩⎪⎨⎪⎧定义三种常见形式:y =k x 、xy =k 、y =k-1其中k 为常数,k ≠0求解析式的方法:待定系数法练习设计请完成本课时对应练习!26.1.2 反比例函数的图象和性质 第2课时 反比例函数的图象和性质教学目标 一、基本目标 【知识与技能】1.用描点法画出反比例函数y =kx的图象. 2.根据图象理解和掌握反比例函数y =k x的性质. 【过程与方法】1.经历探索和发现反比例函数的图象的特点和性质的过程,获得研究函数性质的经验. 2.通过函数图象探究函数性质,进一步体会运用数形结合思想研究函数的性质的方法. 3.经历知识的形成过程,了解从特殊到一般的认识过程,培养学生观察、探究、归纳及动手能力.【情感态度与价值观】1.经历画图、观察、猜想、思考、交流等活动,获得研究问题和合作交流的方法与经验,体验数学活动中的探索性和创造性.2.在学习过程中,感受数学美,发现学习数学的乐趣. 二、重难点目标 【教学重点】用描点法画反比例函数的图象,探索反比例函数的图象特点和性质. 【教学难点】运用反比例函数的图象和性质解决问题. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P4~P6的内容,完成下面练习. 【3 min 反馈】1.用“描点法”画函数图象的一般步骤:列表、描点、连线.2.反比例函数y =k x(k 为常数,k ≠0)中,自变量x 的取值范围是不等于0的一切实数. 3.反比例函数图象是双曲线.4.在反比例函数y =k x(k ≠0,k 为常数)中,(1)当k >0时,双曲线位于第一、三象限,在每一个象限内y 随x 的增大而减小;(2)当k <0时,双曲线位于第二、四象限,在每一个象限内y 随x 的增大而增大.5.反比例函数y =-5x的图象大致是( D )6.已知反比例函数y =4-kx.(1)若函数的图象位于第一、三象限,则k <4; (2)若在每一象限内,y 随x 增大而增大,则k >4. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】画出反比例函数y =6x 和y =12x的图象.【互动探索】(引发学生思考)描点法:列表→描点→连线 【解答】列表表示几组x 与y 的对应值:x … -6 -4 -3 -2 -1 1 2 3 4 6 … y =6x … -1 -1.5 -2 -3 -6 6 3 2 1.5 1 … y =12x…-2-3-4-6-12126432…描点连线:以表中各对应值为坐标,描出各点,并用平滑的曲线顺次连结这些点,就得到函数y =6x 和y =12x的图象.【互动总结】(学生总结,老师点评)作反比例函数图象时要注意:(1)列表时:自变量的值可以选取一些互为相反数的值,这样既可简化计算,又便于对称描点;(2)列表描点时:要尽量多取一些数值,多描一些点,这样既可以方便连线,又可以准确地表达函数变化趋势;(3)连线时:一定要养成按自变量从小到大的顺序,依次用平滑的曲线连结,从中体会函数的增减性.【例2】若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =-1x图象上的点,并且x 1<0<x 2<x 3,判断y 1、y 2、y 3的大小关系.【互动探索】(引发学生思考)要根据函数值的大小判断自变量的大小,需考虑函数的增减性.先画出函数图象,再描出已知点位置,最后判断y 1、y 2、y 3的大小关系.【解答】∵反比例函数y =-1x中k =-1<0,∴此函数的图象在第二、四象限,且在每一象限内y 随x 的增大而增大,如图. ∵x 1<0<x 2<x 3,∴点(x 1,y 1)在第四象限,(x 2,y 2)、(x 3,y 3)两点均在第二象限, ∴y 2<y 3<y 1.【互动总结】(学生总结,老师点评)利用反比例函数的性质比较函数值或自变量的大小的方法:(1)看k 的符号,明确函数的增减情况;(2)看两点是否在同一个象限内;若不在同一个象限内,借助图象即可判断函数值或自变量的大小,若在同一个象限内,则比较两个横(纵)坐标的大小,根据函数的增减情况,得出函数值(自变量)的大小.活动2 巩固练习(学生独学)1.下列四个点中,在反比例函数y =-6x的图象上的是( A )A .(3,-2)B .(3,2)C .(2,3)D .(-2,-3)2.设x 为一切实数,在下列函数中,当x 减小时,y 的值总是增大的函数是( C ) A .y =-5x -1B .y =x2C .y =-2x +2D .y =4x3.对于反比例函数y =3x,下列说法正确的是( D )A .图象经过点(1,-3)B .图象在第二、四象限C .x >0时,y 随x 的增大而增大D .x <0时,y 随x 的增大而减小4.若反比例函数y =k x(k <0)的图象过点P (2,m ),Q (1,n ),则m 与n 的大小关系是:m >n .活动3 拓展延伸(学生对学)【例3】若ab <0,则正比例函数y =ax 和反比例函数y =b x在同一坐标系中的大致图象可能是下图中的( )【互动探索】∵ab <0,∴a 、b 异号,分两种情况:(1)当a >0,b <0时,正比例函数y =ax 的图象过原点、第一、三象限,反比例函数图象在第二、四象限内,无此选项;(2)当a <0,b >0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限内,选项C 符合.【答案】C【互动总结】(学生总结,老师点评)这类题既可以用分析法,也可以用排除法.用分析法时,根据题干逐一分析,得出不同条件下的结果,再与选项对比得出答案.用排除法时,每个选项逐一分析,看是否满足题干条件.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.反比例函数的图象:双曲线既是轴对称图形又是中心对称图形. 2.反比例函数的性质:(1)当k >0时,双曲线的两支分别位于第一、三象限,在每个象限内y 值随x 值的增大而减小;(2)当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内y 值随x 值的增大而增大.练习设计请完成本课时对应练习!第3课时 反比例函数图象与性质的综合应用教学目标 一、基本目标 【知识与技能】1.进一步理解和掌握反比例函数的图象与性质,并能用待定系数法求反比例函数解析式.2.理解并掌握反比例函数y =k x(k ≠0)中比例系数k 的几何意义. 3.运用反比例函数的图象和性质解决与其他函数或几何知识综合的问题. 【过程与方法】1.通过探究反比例函数性质的应用,感受反比例函数解析式与图象之间的联系,体会数形结合思想的魅力.2.经历观察、思考、分析、交流等学习过程,提高学生数学学习能力及合作精神,逐步提高学生分析问题、解决问题的能力.【情感态度与价值观】通过解决反比例函数与一次函数、二次函数有关的综合题,增强学生的自信心,培养学生学习的兴趣,提高学生综合运用知识解决问题的能力.二、重难点目标 【教学重点】灵活运用反比例函数图象与性质解决综合问题. 【教学难点】比例系数k 的几何意义. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P7~P8的内容,完成下面练习. 【3 min 反馈】1.填表分析正比例函数和反比例函数的区别.函数 正比例函数反比例函数解析式 y =kx (k ≠0)y =kx(k ≠0) 图象形状直线 双曲线 k >0位置第一、三象限第一、三象限增减性y 随x 的增大而增大每个象限内,y 随x 的增大而减小k <0位置第二、四象限第二、四象限增减性y 随x 的增大而减小 每个象限内,y 随x 的增大而增大2.反比例函数y =x的图象经过点(2,5),若点(1,n )在反比例函数图象上,则n 等于( A )A .10B .5C .2D .-63.下列各点在反比例函数y =-2x的图象上的是( B )A.⎝ ⎛⎭⎪⎫-43,-32B .⎝ ⎛⎭⎪⎫-43,32C.⎝ ⎛⎭⎪⎫34,43 D .⎝ ⎛⎭⎪⎫34,834.反比例函数y =k x的图象经过(2,-1),则k 的值为-2. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】已知反比例函数的图象经过点A (2,6).(1)这个函数的图象分布在哪些象限?y 随x 的增大如何变化? (2)点B (3,4)、C ⎝ ⎛⎭⎪⎫-212,-445和D (2,5)是否在这个函数的图象上?【互动探索】(引发学生思考)(1)求出反比例函数的解析式,再判断该函数的性质;(2)若点满足所求函数的解析式,则点在这个函数的图象上,否则不在这个函数的图象上.【解答】(1)解法1:见教材P7例3. 解法2:设这个反比例函数为y =k x, ∵图象过点A (2,6),∴6=k2,解得k =12. ∴这个反比例函数的表达式为y =12x.∵k >0,∴这个函数的图象在第一、三象限.在每个象限内,y 随x 的增大而减小. (2)把点B 、C 、D 的坐标代入y =12x,可知点B 、C 的坐标满足函数关系式,点D 的坐标不满足函数关系式,故点B 、C 在函数y =12x的图象上,点D 不在这个函数的图象上.【互动总结】(学生总结,老师点评)求反比例函数的解析式一般用待定系数法. 【例2】如图是反比例函数y =m -5x的图象的一支,根据图象回答下列问题: (1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)在这个函数图象的某一支上任取点A (x 1,y 1)和B (x 2,y 2),如果x 1>x 2,那么y 1和y 2有怎样的大小关系?【互动探索】(引发学生思考)(1)反比例函数图象的分布只有两种可能,分布在第一、三象限,或者在第二、四象限.(2)根据反比例函数的性质解答.【解答】(1)∵这个函数的图象的一支在第一象限, ∴另一支必在第三象限.∵函数的图象在第一、三象限, ∴m -5>0,解得m >5.(2)解法1(性质法):详细解答参考教材P7~P8例4. 解法2(图象法或数形结合法): ∵函数的图象在第一、三象限, 如图,在图中描出符合条件的两个点, ∴由图象易知y 1<y 2.【互动总结】(学生总结,老师点评)在解决问题(2)时,用数形结合法能更快速准确地求出结果.活动2 巩固练习(学生独学)1.正比例函数y =6x 的图象与反比例函数y =6x的图象的交点位于( D )A .第一象限B .第二象限C .第三象限D .第一、三象限2.若反比例函数y =k x的图象经过点A (-1,-2),则当x >1时,函数值y 的取值范围是( D )A .y >1B .0<y <1C .y >2D .0<y <23.如图所示,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线y =3x(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( C )A .逐渐增大B .不变C .逐渐减小D .先增大后减小4.如图所示,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =k x(x >0)的图象上,OA =1,OC =6,则正方形ADEF 的边长为2.5.如图所示,已知反比例函数y =mx的图象与一次函数y =ax +b 的图象相交于点A (1,4)和点B (n ,-2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.解:(1)把点A (1,4)代入y =m x,得m =1×4=4,∴反比例函数解析式为y =4x.把点B (n ,-2)代入y =4x,得-2n =4,∴n =-2,∴点B 坐标为(-2,-2).把(1,4),(-2,-2)代入y =ax +b ,得⎩⎪⎨⎪⎧a +b =4,-2a +b =-2,解得⎩⎪⎨⎪⎧a =2,b =2,∴所求一次函数解析式为y =2x +2.(2)x <-2或0<x <1.活动3 拓展延伸(学生对学)【例3】如图所示,点A 在反比例函数y =k x的图象上,AC 垂直x 轴于点C ,且△AOC 的面积为2,求该反比例函数的表达式.【互动探索】反比例函数的比例系数与三角形的面积有什么关系? 【解答】∵点A 在反比例函数y =k x的图象上, ∴x A ·y A =k ,∴S △AOC =12·k =2,∴k =4,∴反比例函数的表达式为y =4x.【互动总结】(学生总结,老师点评)过双曲线上任意一点与原点所连的线段与坐标轴和向坐标轴作垂线所围成的直角三角形的面积等于|k |2.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.反比例函数中系数k 的几何意义; 2.反比例函数图象上点的坐标特征; 3.反比例函数与一次函数的交点问题. 练习设计请完成本课时对应练习!26.2 实际问题与反比例函数教学目标 一、基本目标 【知识与技能】1.能运用反比例函数的意义和性质解决相关的实际问题. 2.建立反比例函数模型,解决实际问题.3.综合运用反比例函数知识与几何、方程、不等式、物理等跨学科知识解决相关的实际问题.【过程与方法】1.经历利用反比例函数解决实际问题的过程,学会用数学的思想方法去观察、研究和解决日常生活中所遇到的问题,体验数学建模的思想.2.经历“实际问题——建立模型——求解模型——拓展应用”的过程,增强学生发现和提出问题、分析和解决问题的能力.【情感态度与价值观】1.通过将反比例函数的有关知识灵活应用于实际,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感.2.体会数学与实际生活紧密联系,经历将实际问题抽象为数学问题的过程,体会数学中转化和数形结合的思想.二、重难点目标 【教学重点】运用反比例函数的意义和性质解决生活实际问题和跨学科问题. 【教学难点】根据实际问题建立反比例函数的数学模型.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P12~P15的内容,完成下面练习. 【3 min 反馈】1.(1)反比例函数y =kx(k 为常数,k ≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(3)当k <0,双曲线的两支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;2.地下室的体积V 一定,那么底面积S 和深度h 的关系是反比例函数;表达式是S =V h . 3.运货物的路程s 一定,那么运货物的速度v 和时间t 是反比例函数;表达式是v =s t. 4.电学知识告诉我们,用电器的输出功率P 、两端的电压U 和电器的电阻R 有如下关系:PR =U 2.这个关系式还可以写成P =U 2R ,或R =U 2P.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) (一)反比例函数模型在生活中的应用【例1】市煤气公司要在地下修建一个容积为104 m 3的圆柱形煤气储存室. (1)储存室的底面积S (单位:m 2)与其深度d (单位:m)有怎样的函数关系? (2)公司决定把储存室的底面积S 定为500 m 2,施工队施工时应该向下掘进多深? (3)当施工队按(2)中的计划掘进到地下15 m 时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深改为15 m ,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)?【温馨提示】详细解答过程见教材P12例1.【例2】码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间. (1)轮船到达目的地后开始卸货,平均速度v (单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天要卸载多少吨?【温馨提示】详细解答过程见教材P13例2.(二)反比例函数在物理中的应用【例3】小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别为1200 N和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?【温馨提示】详细解答过程见教材P14例3.【例4】一个电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?【温馨提示】详细解答过程见教材P15例4.活动2 巩固练习(学生独学)1.下列各问题中,两个变量之间的关系不是反比例函数的是( C )A.小明完成100 m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系B.菱形的面积为48 cm2,它的两条对角线的长为y(cm)与x(cm)的关系C.一个玻璃容器的体积为30 L时,所盛液体的质量m与所盛液体的体积V之间的关系D.压力为600 N时,压强p与受力面积S之间的关系2.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长、宽分别为x、y,剪去部分的面积为20,若2≤x≤10,记y=f(x),则y=f(x)的图象是( A )3.有一面积为60的梯形,其上底长是下底长的13,若下底长为x ,高为y ,则y 与x的函数关系是y =90x.4.实验表明,当导线的长度一定时,导线的电阻与它的横截面面积成反比例.一条长为100 km 的铝导线的电阻R (Ω)与它的横截面面积S (cm 2)的函数关系如图所示,那么当S =5 cm 2时,R =295Ω.5.在某一电路中保持电压不变,电流I (A)与电阻R (Ω)将如何变化?若已知当电阻R =5 Ω时,电流I =2 A.(1)求I 与R 之间的关系式; (2)电阻是8 Ω时,电流是多少?(3)如果要求电流的最大值为10 A ,那么电阻R 的最小值是多少? 解:(1)由物理知识知U =IR . ∵R =5,I =2,∴U =5×2=10, ∴I 与R 之间的关系式为I =10R(R >0).(2)当R =8时,I =108=1.25,∴电流是1.25 A.(3)当I =10时,R =1010=1,∴电阻的最小值为1 Ω. 活动3 拓展延伸(学生对学)【例5】如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x 分钟.据了解,该材料在加热过程中温度y 与时间x 成一次函数关系,已知该材料在加热前的温度为4 ℃,加热一段时间使材料温度达到28 ℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y 与时间x 成反比例函数关系.已知第12分钟时,材料温度是14 ℃.(1)分别求出该材料加热和停止加热过程中y 与x 的函数关系式(写出x 的取值范围); (2)根据该食品制作要求,在材料温度不低于12 ℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?【互动探索】 (1)材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例函数关系,将题中数据代入即可求得两个函数的关系式;(2)把y =12分别代入两个函数关系式中,求出对应自变量的值,从而可得对该材料进行特殊处理所用的时间.【解答】 (1)设加热停止后反比例函数表达式为y =k 1x(k 1≠0). ∵y =k 1x过(12,14), ∴k 1=12×14=168,则y =168x.当y =28时,28=168x,解得x =6.设加热过程中一次函数表达式为y =k 2x +b (k 2≠0). 由图象知y =k 2x +b 过点(0,4)与(6,28),∴⎩⎪⎨⎪⎧b =4,6k 2+b =28,解得⎩⎪⎨⎪⎧k 2=4,b =4,即一次函数的关系式为y =4x +4. ∴y =⎩⎪⎨⎪⎧4x +40≤x ≤6,168xx >6.(2)令12=4x +4,解得x =2. 令12=168x,解得x =14.∴对该材料进行特殊处理所用的时间为14-2=12(分钟).【互动总结】(学生总结,老师点评)现实生活中存在大量成反比例函数关系的两个变量,解答此类问题的关键是首先确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.环节3 课堂小结,当堂达标(学生总结,老师点评)建立反比例函数模型,解决实际问题的一般步骤:(1)审题:弄清题意,分析问题中等量关系;(2)建模:根据等量关系,将实际问题转化为数学问题,利用反比例函数知识建立数学模型;(3)解模:根据反比例函数的性质解决问题.练习设计请完成本课时对应练习!27.1 图形的相似第1课时相似图形教学目标一、基本目标【知识与技能】1.在具体生活实例中认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的特征,掌握相似图形的识别方法.【过程与方法】通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活的密切联系,激发学生学习的兴趣.【情感态度与价值观】通过识别生活中的相似图形,激发学生探究、发现数学问题的兴趣.二、重难点目标【教学重点】理解并掌握相似图形、相似多边形的概念及特征.【教学难点】理解相似图形的特征,掌握识别相似图形的方法.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P24~P25的内容,完成下面练习.【3 min反馈】1.把形状相同的图形图形叫做相似图形.两个图形相似,其中一个图形可以看作是由另一个图形放大和缩小得到的.2. 下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角是80°的两个等腰三角形;⑤两个正六边形;⑥有一个内角是100°的两个等腰三角形.其中一定是相似图形的是②⑤⑥.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】观察下列图形,哪些是相似图形?第一组:第二组:【互动探索】(引发学生思考)要找出图中的相似图形,只要仔细观察每个图形特征,通过图形变化后是否具备“形状相同”这一特征.【解答】第一组图,图1,2,5是相似图形.第二组相似图形分别是:(1)和(8);(2)和(6);(3)和(7).【互动总结】(学生总结,老师点评)所谓“形状相同”,与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是“形状相同”.活动2 巩固练习(学生独学)1.下列四个命题:①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的正方形都相似;④所有的菱形都相似.其中正确的有( D )A.2个B.3个C.4个D.1个2.下列图形不是相似图形的是( C )A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有图案和放大图案C.某人的侧身照片和正面照片。
人教版九年级数学下册精品教案2套 二次函数y=ax2的图象和性质
22.1.2 二次函数y =ax 2的图象和性质教案11.会用描点法画出y =ax 2的图象,理解抛物线的概念.2.掌握形如y =ax 2的二次函数图象和性质,并会应用.一、情境导入自由落体公式h =12gt 2(g 为常量),h 与t 之间是什么关系呢?它是什么函数?它的图象是什么形状呢?二、合作探究探究点一:二次函数y =ax 2的图象 【类型一】图象的识别已知a ≠0,在同一直角坐标系中,函数y =ax 与y =ax 2的图象有可能是( )解析:本题进行分类讨论:(1)当a >0时,函数y =ax 2的图象开口向上,函数y =ax图象经过一、三象限,故排除选项B ;(2)当a <0时,函数y =ax 2的图象开口向下,函数y=ax 图象经过二、四象限,故排除选项D ;又因为在同一直角坐标系中,函数y =ax 与y =ax 2的图象必有除原点(0,0)以外的交点,故选择C.方法总结:分a >0与a <0两种情况加以讨论,并且结合一些特殊点,采取“排除法”. 【类型二】实际问题中图象的识别已知h 关于t 的函数关系式为h =12gt 2(g 为正常数,t 为时间),则函数图象为( )解析:根据h 关于t 的函数关系式为h =12gt 2,其中g 为正常数,t 为时间,因此函数h =12gt 2图象是受一定实际范围限制的,图象应该在第一象限,是抛物线的一部分,故选A. 方法总结:在识别二次函数图象时,应该注意考虑函数的实际意义.探究点二:二次函数y =ax 2的性质 【类型一】利用图象判断二次函数的增减性作出函数y =-x 的图象,观察图象,并利用图象回答下列问题:(1)在y 轴左侧图象上任取两点A (x 1,y 1),B (x 2,y 2),使x 2<x 1<0,试比较y 1与y 2的大小;(2)在y 轴右侧图象上任取两点C (x 3,y 3),D (x 4,y 4),使x 3>x 4>0,试比较y 3与y 4的大小;(3)由(1)、(2)你能得出什么结论?解析:根据画出的函数图象来确定有关数值的大小,是一种比较常用的方法.解:(1)图象如图所示,由图象可知y 1>y 2,(2)由图象可知y 3<y 4;(3)在y 轴左侧,y 随x 的增大而增大,在y 轴右侧,y 随x 的增大而减小.方法总结:解有关二次函数的性质问题,最好利用数形结合思想,在草稿纸上画出抛物线的草图进行观察和分析以免解题时产生错误.【类型二】二次函数的图象与性质的综合题已知函数y =(m +3)xm +3m -2是关于x 的二次函数.(1)求m 的值;(2)当m 为何值时,该函数图象的开口向下?(3)当m 为何值时,该函数有最小值?(4)试说明函数的增减性.解析:(1)由二次函数的定义可得⎩⎪⎨⎪⎧m 2+3m -2=2,m +3≠0,故可求m 的值. (2)图象的开口向下,则m +3<0;(3)函数有最小值,则m +3>0;(4)函数的增减性由函数的开口方向及对称轴来确定.解:(1)根据题意,得⎩⎪⎨⎪⎧m 2+3m -2=2,m +3≠0,解得⎩⎪⎨⎪⎧m 1=-4,m 2=1,m ≠-3.∴当m =-4或m =1时,原函数为二次函数.(2)∵图象开口向下,∴m +3<0,∴m <-3,∴m =-4.∴当m =-4时,该函数图象的开口向下.(3)∵函数有最小值,∴m +3>0,m >-3,∴m =1,∴当m =1时,原函数有最小值.(4)当m =-4时,此函数为y =-x 2,开口向下,对称轴为y 轴,当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.当m =1时,此函数为y =4x 2,开口向上,对称轴为y 轴,当x <0时,y 随x 的增大而减小;当x >0时,y 随x 的增大而增大.方法总结:二次函数的最值是顶点的纵坐标,当a >0时,开口向上,顶点最低,此时纵坐标为最小值;当a <0时,开口向下,顶点最高,此时纵坐标为最大值.考虑二次函数的增减性要考虑开口方向和对称轴两方面的因素,因此最好画图观察.探究点三:确定二次函数y =ax 2的表达式【类型一】利用图象确定y =ax 2的解析式一个二次函数y =ax (a ≠0)的图象经过点A (2,-2)关于坐标轴的对称点B ,求其关系式.解析:坐标轴包含x 轴和y 轴,故点A (2,-2)关于坐标轴的对称点不是一个点,而是两个点.点A (2,-2)关于x 轴的对称点B 1(2,2),点A (2,-2)关于y 轴的对称点B 2(-2,-2).解:∵点B 与点A (2,-2)关于坐标轴对称,∴B 1(2,2),B 2(-2,-2).当y =ax 2的图象经过点B 1(2,2)时,2=a ×22,∴a =12,∴y =12x 2;当y =ax 2的图象经过点B 1(-2,-2)时,-2=a ×(-2)2,∴a =-12,∴y =-12x 2.∴二次函数的关系式为y =12x 2或y =-12x 2. 方法总结:当题目给出的条件不止一个答案时,应运用分类讨论的方法逐一进行讨论,从而求得多个答案.【类型二】二次函数y =ax 2的图象与几何图形的综合应用已知二次函数y =ax (a ≠0)与直线y =2x -3相交于点A (1,b ),求:(1)a ,b 的值;(2)函数y =ax 2的图象的顶点M 的坐标及直线与抛物线的另一个交点B 的坐标.解析:直线与函数y =ax 2的图象交点坐标可利用方程求解.解:(1)∵点A (1,b )是直线与函数y =ax 2图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎪⎨⎪⎧b =a ×12,b =2×1-3,∴⎩⎪⎨⎪⎧a =-1,b =-1. (2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0),由-x 2=2x -3,解得x 1=1,x 2=-3,∴y 1=-1,y 2=-9,∴直线与抛物线的另一个交点B 的坐标为(-3,-9).【类型三】二次函数y =ax 2的实际应用如图所示,有一抛物线形状的桥洞.桥洞离水面最大距离OM 为3m ,跨度AB =6m.(1)请你建立适当的直角坐标系,并求出在此坐标系下的抛物线的关系式;(2)一艘小船上平放着一些长3m ,宽2m 且厚度均匀的矩形木板,要使小船能通过此桥洞,则这些木板最高可堆放多少米?解析:可令O 为坐标原点,平行于AB 的直线为x 轴,建立平面直角坐标系,则可设此抛物线函数关系式为y =ax 2.由题意可得B 点的坐标为(3,-3),由此可求出抛物线的函数关系式,然后利用此抛物线的函数关系式去探究其他问题.解:(1)以O 点为坐标原点,平行于线段AB 的直线为x 轴,建立如图所示的平面直角坐标系,设抛物线的函数关系式为y =ax 2.由题意可得B 点坐标为(3,-3),∴-3=a ×32,解得a =-13,∴抛物线的函数关系式为y =-13x 2. (2)当x =1时,y =-13×12=-13.∵OM =3,∴木板最高可堆放3-13=83(米). 方法总结:解决实际问题时,要善于把实际问题转化为数学问题,即建立数学模型解决实际问题的思想.三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =ax 2的图象与性质,体会数学建模的数形结合的思想方法.22.1.2 二次函数y=ax 2的图象和性质教案2教学目标:1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
九年级数学下册电子版教案(人教版)
(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)九年级数学(下)(配人教地区使用)(这是边文,请据需要手工删加)第二十六章反比例函数本章内容属于“数与代数”领域,是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界中存在各种函数,掌握如何应用函数知识解决实际问题.反比例函数是最基本的函数之一,是学习后续各类函数的基础.本章的主要内容是反比例函数,教材中从几个学生熟悉的实际问题出发,引入反比例函数的概念,使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识.第一节的内容是反比例函数的概念以及反比例函数的图象和性质.反比例函数y=kx(k为常数,k≠0)的图象分布在两个象限,当k>0时,图象分布在第一、三象限,y随x的增大(减小)而减小(增大);当k<0时,图象分布在第二、四象限,y随x的增大(减小)而增大(减小).第二节的内容是如何利用反比例函数解决现实世界中的实际问题以及如何用反比例函数解释现实世界中的一些现象.教学中要注重数学思想的渗透,注意做好与已学内容的衔接,还要加强反比例函数与正比例函数的对比.本章的重点是反比例函数的概念、图象和性质,图象是直观地描述和研究函数的重要工具.教材中给出了大量的具体的反比例函数的例子,用以加深学生对所学知识的理解和融会贯通.本章的难点是对反比例函数及其图象和性质的理解和掌握,教学时在这方面要投入更多的精力.1.理解并掌握反比例函数的概念.2.掌握反比例函数的图象和性质.3.能灵活运用反比例函数知识解决实际问题.本章教学约需4课时,具体分配如下:26.1反比例函数3课时26.2实际问题与反比例函数1课时26.1反比例函数26.1.1反比例函数知识与技能1.使学生理解并掌握反比例函数的概念.2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式. 过程与方法能根据实际问题中的条件确定反比例函数的解析式,体会函数的建模思想.情感、态度与价值观经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念,体会数学学习的重要性,培养学生学习数学的兴趣.重点理解反比例函数的概念,能根据已知条件写出函数解析式. 难点理解反比例函数的概念.一、创设情境,讲授新课活动1.问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1 463 km ,乘坐某次列车所用时间t(单位:h )随该列车平均速度v(单位:km /h )的变化而变化;(2)某住宅小区要种植一个面积为1 000 m 2的矩形草坪,草坪的长y 随宽x 的变化而变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.解:(1)t =1463v ;(2)y =1000x; (3)S =1.68×104n.其中,v 是自变量,t 是v 的函数; x 是自变量,y 是x 的函数; n 是自变量,S 是n 的函数.上面的函数关系式,都具有y =kx的形式,其中k 是非零常数.活动2.下列问题中,变量间的对应关系可用怎样的函数关系式表示? (1)一个游泳池的容积为2 000 m 3,注满游泳池所用的时间t 随注水速度v 的变化而变化; (2)某立方体的体积为1 000 cm 3,立方体的高h 随底面积S 的变化而变化. 解:(1)t =2 000v ; (2)h =1 000S.概念:如果两个变量x ,y 之间的关系可以表示成y =kx 的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零.活动3.问题1:下列哪个等式中的y 是x 的反比例函数?y =4x ,yx=3,y =6x +1,xy =123.问题2:已知y 是x 的反比例函数,当x =2时,y =6.写出y 关于x 的函数关系式.求当x =4时,y 的值.师生行为:学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.1.解:只有xy =123是反比例函数.2.分析:因为y 是x 的反比例函数,所以可设y =kx ,再把x =2和y =6代入上式就可求出常数k 的值.解:设y =kx ,因为x =2时,y =6,所以有6=k2,解得k =12, 因此y =12x ,把x =4代入y =12x ,得y =124=3. 二、例题讲解例1 下列等式中,哪些是反比例函数?(1)y =x 3;(2)y =-2x ;(3)xy =21;(4)y =5x +2;(5)y =-32x ;(6)y =1x +3;(7)y =x -4.解:(2)(3)(5)是反比例函数.例2 函数y =-1x +2中,自变量x 的取值范围是________.解:x ≠-2.例3 当m 取什么值时,函数y =(m -2)x3-m 2是反比例函数?分析:反比例函数y =k x (k ≠0)的另一种表达式是y =kx -1(k ≠0),这种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误.解:由题意可知⎩⎨⎧m -2≠0,3-m 2=-1, 解得m =-2. 三、巩固练习1.已知y 是x 的反比例函数,并且当x =3时,y =-8. (1)写出y 与x 之间的函数关系式; (2)当y =2时,求x 的值. 答案 (1)y =-24x(2)x =-12 四、课堂小结反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量之间的关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识提升到理性认识,建立概念,摆脱其原型成为数学对象.反比例函数具有丰富的数学含义.通过举例、说理、讨论等活动用数学眼光审视某些实际现象.例题非常简单,在例题的处理上注重培养学生形成写出规范的解题步骤的能力,同时拓宽学生的思路.在题目的设计和教学设计上注重了由浅入深的梯度,同时充分调动学生的积极性,发挥学生的主体作用.26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质(1)知识与技能1.会用描点法画反比例函数的图象.2.结合图象分析并掌握反比例函数的性质.过程与方法体会分类讨论思想、数形结合思想的运用. 情感、态度与价值观1.体会函数的表示方法,领会数形结合的思想方法.2.在动手作图的过程中体会其中的乐趣,养成勤于动手、乐于探索的习惯.重点理解并掌握反比例函数的图象和性质. 难点正确画出图象,通过观察、分析归纳出反比例函数的性质.一、复习回顾,引入新课1.画出函数y =3x +1的图象.2.求函数y =3x +1的图象与x 轴、y 轴的交点的坐标.这个过程由学生独立思考、操作、交流、回答,教师可与学生讨论交流,提问学生. 问:什么叫做反比例函数?学生:如果两个变量x ,y 之间的关系可以表示成y =kx (k 为常数,且k ≠0)的形式,那么y 是x 的反比例函数.反比例函数的自变量x 不能为零.让学生猜想反比例函数的图象是什么样的,让学生自己尝试作反比例函数y =6x ,y =4x ,y =-6x ,y =-4x的图象.二、例题讲解例1 画出反比例函数y =6x 与y =-6x的图象.反比例函数是我们第一次遇到的非直线函数图象,而且反比例函数的图象是由断开的两支曲线组成的,我们从描出的点的变化趋势可以看出,切记不能用直线连接.师生共析:用平滑的曲线按自变量从小到大的顺序把描出的点连接起来,就可得到下图.问:观察画出的图象,思考y =6x 与y =-6x 的图象有什么共同的特征?它们之间有什么关系?(教师在学生思考、回答后指出反比例函数的图象是双曲线,是轴对称图形,各有两条对称轴,它们都不会经过原点)反比例函数y =kx 的图象是由两支曲线组成的,当k >0时,两支曲线分别位于第一、三象限内;当k <0时,两支曲线分别位于第二、四象限.例2 已知反比例函数y =(m -1)xm 2-3的图象在第二、四象限,求m 的值,并指出在每个象限内y 随x 的变化情况.分析:此题要考虑两个方面,一是反比例函数的定义,即y =kx -1(k ≠0)中自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件.解:∵y =(m -1)xm 2-3是反比例函数,∴m 2-3=-1,且m -1≠0. 又∵图象在第二、四象限,∴m -1<0.解得m =±2,且m <1,则m =- 2. 在每个象限内,y 随x 的增大而增大.反比例函数y =kx 的图象,当k >0时,在每一个象限内,y 的值随x 值的增大而减小;当k <0时,在每一个象限内,y 的值随x 值的增大而增大.例3 如图,过反比例函数y =1x (x >0)的图象上任意两点A ,B 分别作x 轴的垂线,垂足分别为C ,D ,连接OA ,OB ,设△AOC 和△BOD 的面积分别是S 1,S 2,比较它们的大小,可得( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .大小关系不能确定分析:从反比例函数y =kx (k ≠0)的图象上任一点P(x ,y)分别向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积S =|xy|=|k|,由此可得S 1=S 2=12|k|,故选B .三、巩固练习1.若函数y =(2m -1)x 与y =3-mx的图象交于第一、三象限,则m 的取值范围是________.答案12<m<32.反比例函数y=-2x,当x=-2时,y=________;当x<-2时,y的取值范围是________;当-2<x<0时,y的取值范围是________.答案1y<1y>1四、课堂小结师:你对本节知识有哪些认识?教师可让学生随意说出一个反比例函数,然后由一个学生说出它的性质.在活动中,教师应重点关注:1.不同层次的学生对本节课知识的认识程度.2.学生独立面对困难和克服困难的能力.“反比例函数的图象与性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在本节课的教学中,有意识地加强反比例函数与正比例函数之间的对比.借助计算机的动态演示比较两函数的图象,使学生更直观、更清楚地看清两函数的区别,从而使学生加深对两函数性质的理解.观察反比例函数的图象,获取函数相关性质的信息有较大空间,考查学生能否对信息做出灵敏反应,应用时,能否善于分析和决策,灵活运用知识有效地解决问题,关注并追踪这些活动所引起的学生的持久变化.第2课时反比例函数的图象和性质(2)知识与技能1.使学生进一步理解并掌握反比例函数的图象与性质.2.能灵活运用函数图象和性质解决一些较综合的问题.过程与方法体会函数不同表示方法的相互转换,对函数进行认识上的整合,逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的性质.情感、态度与价值观体会分类讨论思想、数形结合思想的运用,在动手作图的过程中体会其中的乐趣,养成勤于动手、乐于探索的习惯.重点理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题.难点学会从图象上分析、解决问题.一、复习导入首先复习上节课所学的内容:1.什么是反比例函数?2.反比例函数的图象是什么?有什么性质?3.作函数图象的步骤:列表、描点、连线.4.反比例函数的图象和性质:(1)反比例函数的图象是由两支曲线组成的(通常称为双曲线);(2)当k >0时,两支曲线分别位于第一、三象限内;当k <0时,两支曲线分别位于第二、四象限内;(3)反比例函数的图象与坐标轴不相交,它们都不过原点;(4)反比例函数的图象关于原点对称,是中心对称图形,也是轴对称图形.(5)反比例函数y =kx 的图象,当k >0时,在每一个象限内,y 的值随x 的增大而减小;当k <0时,在每一个象限内,y 的值随x 的增大而增大.二、例题讲解例1 已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?随自变量的增大如何变化? (2)点B(3,4),C(-212,-445)和D(2,5)是否在这个函数的图象上?解:(1)设这个反比例函数的解析式为y =kx ,因为它经过点A ,把点A 的坐标(2,6)代入函数解析式,得6=k2,解得k =12,即这个反比例函数的表达式为y =12x.因为k>0,所以这个函数的图象在第一、三象限内,y 随x 的增大而减小.(2)把点B ,C 和D 的坐标代入y =12x,可知点B 、点C 的坐标满足函数关系式,点D 的坐标不满足函数关系式,所以点B 、点C 在函数y =12x的图象上,点D 不在该函数的图象上. 例2 如图是反比例函数y =m -5x的图象的一支.根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)在上图的图象上任取点A(a ,b)和点B(a ′,b ′),如果a>a ′,那么b 和b ′有怎样的大小关系?师生活动:让学生先观察图象,然后结合反比例函数的图象完成此题.教师应给学生提供充分的交流时间和空间.解:(1)反比例函数的图象的分布只有两种可能,分布在第一、三象限或者分布在第二、四象限,这个函数的图象的一支在第一象限,则另一支必在第三象限.因此这个函数的图象分布在第一、三象限,所以m -5>0,解得m>5.(2)由函数的图象可知,在双曲线的一支上,y 随x 的增大而减小,因为a>a ′,所以b <b ′.三、巩固练习1.若直线y=kx+b经过第一、二、四象限,则函数y=kbx的图象在()A.第一、三象限B.第二、四象限C.第三、四象限D.第一、二象限答案B2.已知点(-1,y1),(2,y2),(π,y3)在双曲线y=-k2+1x上,则下列关系式正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2答案B四、课堂小结1.进一步掌握了反比例函数的作图方法.2.学会了利用反比例函数的性质画出反比例函数的图象.本节课通过学习情境的创设改变了学生的学习方法,学生的学习能力、思维品质、探究意识及其态度、情感价值观等有了不同的发展.在这节课的教学中,我比较成功地实施了诱思探究教学,学生的积极性得到充分的调动.在教学过程中,注意引导学生仔细观察反比例函数图象的特征,根据其对称性列表、描点、连线,作图就会画得又快又美观,注意控制时间,充分理解教学意图,敢于放手.26.2实际问题与反比例函数知识与技能1.能灵活运用反比例函数解决一些实际问题.2.分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.过程与方法会用反比例函数知识分析、解决实际问题.情感、态度与价值观渗透数形结合思想,提高学生用函数观点解决问题的能力.重点会用反比例函数知识分析、解决实际问题.难点分析实际问题中的数量关系,正确写出函数解析式.一、复习导入,教授新课问题:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15 m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15 m,相应的,储存室的底面积应改为多少才能满足需要?(保留两位小数)我们知道圆柱的容积是底面积×高,而现在容积一定为104 m 3,所以S ·d =104.变形就可得到底面积S 与其深度d 的函数关系式,即S =104d ,所以储存室的底面积S 是其深度d 的反比例函数.根据函数S =104d ,我们知道给出一个d 的值就有唯一的S 的值和它相对应,反过来,知道S 的一个值,也可求出d 的值.根据S =104d ,得500=104d ,解得d =20,即施工队施工时应该向下挖进20米.根据S =104d ,把d =15代入此式,得S =10415≈666.67(m 2).当储存室的深为15 m 时,储存室的底面积应改为666. 67 m 2才能满足需要.二、例题讲解例1 码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:(1)设轮船上的货物总量为k 吨,根据已知条件得k =30×8=240,所以v 关于t 的函数解析式为v =240t. (2)把t =5代入v =240t,得v =2405=48(吨). 从结果可以看出,如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.对于函数v =240t ,当t>0时,t 越小,v 越大.这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.例2 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1 200 N 和0.5 m .(1)动力F 与动力臂l 有怎样的函数关系?当动力臂为1.5 m 时,撬动石头至少需要多大的力?(2)若想使动力F 不超过题(1)中所用力的一半,则动力臂l 至少要加长多少? 解:(1)根据“杠杆原理”,得Fl =1 200×0.5,所以F 关于l 的函数解析式为F =600l. 当l =1.5 m 时,F =6001.5=400(N ). 对于函数F =600l ,当l =1.5 m 时,F =400 N ,此时杠杆平衡,因此,撬动石头至少需要400 N 的力.(2)对于函数F =600l,F 随l 的增大而减小.因此,只要求出F =200 N 时对应的l 的值,就能确定动力臂l 至少应加长的量.当F =400×12=200时,由200=600l得l =600200=3(m ), 3-1.5=1.5(m ).对于函数F =600l ,当l>0时,l 越大,F 越小.因此,若想用力不超过400 N 的一半,则动力臂至少要加长1.5 m .例3 一个用电器的电阻是可调节的,其范围为110 Ω~220 Ω.已知电压为220 V ,这个用电器的电路图如图所示.(1)功率P 与电阻R 有怎样的函数关系? (2)这个用电器功率的范围是多少?解:(1)根据电学知识,当U =220时,得P =2202R. ①(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻的最小值R =110代入①式,得到功率的最大值P =2202110=440(W );把电阻的最大值R =220代入①式,得到功率的最小值P =2202220=220(W ).因此用电器功率的范围为220W ~440W . 三、巩固练习1.京沈高速公路全长658 km ,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需的时间t(h )与行驶的平均速度v(km /h )之间的函数关系式为________.答案 t =658v2.一定质量的氧气,它的密度ρ(kg /m 3)是它的体积V(m 3)的反比例函数.当V =10 m 3时,ρ=1.43 kg /m 3.(1)求ρ与V 的函数关系式;(2)求当V =2 m 3时氧气的密度ρ.答案 (1)ρ=mV,当V =10 m 3时,ρ=1.43 kg /m 3,所以m =ρV =10×1.4=14.3,所以ρ=14.3v ;(2)当V =2 m 3时,ρ=14.32=7.15(kg /m 3).四、课堂小结本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,抽象出数学模型,逐步形成解决实际问题的能力,在解决问题时,应充分利用函数的图象帮助分析问题,渗透数形结合的思想.本节体现了反比例函数是解决实际问题的有效的数学模型的思想.创设问题情境,激发学生探究实际问题的兴趣,引发学生思考,体验数学知识的实用性,让学生经历“问题情境→建立模型→拓展应用”的过程,培养学生善于发现问题、积极参与学习的能力,培养学生的数学应用意识,充分激发学生的潜能.第二十七章相似本章主要学习图形的相似.首先,教材中从生活实例入手,得到相似图形的概念,进一步得到相似多边形,研究了相似多边形的定义和有关性质,为研究相似三角形做了铺垫.其次,从相似多边形引入相似三角形,反映了知识间的一种联系,同时也揭示了相似三角形所要研究的本质就是两个三角形边、角之间的关系.本部分内容的学习,应突出一种对应关系,即找两个相似三角形的对应边和对应角,关键是先找到其对应顶点.相似三角形的性质及其判定定理是否能正确地运用也是本节课的一个重点.教材中首先让学生选择合适的方法进行探索和归纳,然后运用相似三角形的性质,通过计算给出证明,并推导得到相似三角形的周长的比、面积的比与相似比的关系.最后,教材中介绍了图形的位似.位似的两个图形具有一种特殊的位置关系,这种关系是通过位似中心来联系的,位似中心的位置决定了两个位似图形的位置,其关键是抓住对应点的连线都经过位似中心;而相似图形只研究它们的形状和大小,与这两个图形的位置无关.本节的位似只要求学生理解位似图形,利用位似将一个图形放大或缩小.1.能够判断线段是否成比例,理解并掌握比例的几个性质以及平行线分线段成比例定理.2.通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等、对应边成比例.3.了解两个相似三角形的概念,探索两个三角形相似的条件、相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比、面积的比与相似比的关系.4.了解图形的位似,能够利用位似将一个图形放大或缩小.5.通过典型实例观察并认识现实生活中物体的相似,利用图形的相似解决一些实际问题.本章教学约需11课时,具体分配如下:27.1图形的相似2课时27.2相似三角形7课时27.3位似2课时27.1图形的相似第1课时图形的相似(1)知识与技能从生活中形状相同的图形的实例中认识成比例的线段,理解成比例线段的概念.过程与方法在成比例线段的探究过程中,让学生运用“观察—比较—猜想”的方法分析问题.情感、态度与价值观在探究成比例线段的过程中,培养学生与他人交流、合作的意识.重点认识成比例的线段.难点理解成比例线段的概念.一、问题引入活动1.观察图片,体会形状相同的图形.(多媒体出示)师:同学们,请观察下列几幅图片,你能发现什么?你能对观察到的图片特点进行归纳吗?生:这些图形的形状相同,而大小不同.二、新课教授活动2.思考:如图是人们从平面镜及哈哈镜里看到的不同镜像,它们的形状相同吗?生:形状不同.师:我们把形状相同,大小不同的图形叫做相似图形.形状相同而大小不同的两个平面图形,较大的图形可以看成是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的.在这个过程中,两个图形上的相应线段也被“放大”或“缩小”,因此,对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比就是它们长度的比,即AB ∶CD =m ∶n 或写成AB CD =mn .其中,线段AB 、CD 分别叫做这个线段比的前项和后项.如果把m n 表示成比值k ,那么ABCD =k 或AB =k ·CD ,两条线段的比实际上就是两个数的比.活动3.如果把老师手中的教鞭与铅笔分别看成是两条线段AB 和CD ,那么这两条线段的长度比是多少?师生活动.1.两条线段的比,就是两条线段长度的比.2.成比例线段:对于四条线段a ,b ,c ,d ,如果其中两条线段的比与另外两条线段的比相等,如a b =cd(即ad =bc),我们就说这四条线段是成比例线段,简称比例线段.注意:(1)两条线段的比与所采用的长度单位没有关系,但在计算时要注意统一单位; (2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作:ab=cd或a∶b=c∶d;(4)若四条线段满足ab=cd,则有ad=bc;(5)如果ad=bc(a,b,c,d都不等于0),那么ab=cd.三、例题讲解例1如图,下面右边的四个图形中,与左边的图形形状相同的是()解:C例2一张桌面长a=1.25 m,宽b=0.75 m,那么长与宽的比是多少?(1)如果a=125 cm,b=75 cm,那么长与宽的比是多少?(2)如果a=1 250 mm,b=750 mm,那么长与宽的比是多少?解:ab=5 3小结:上面分别采用m,cm,mm三种不同的长度单位,求得的ab的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.四、课堂小结1.图形相似的定义:形状相同的图形叫做相似图形.2.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另外两条线段的比相等,如ab=cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.本节课在学习过程中应该注意从生活中形状相同的图形的实例中认识相似图形以及成比例的线段,理解成比例线段的概念.在相似图形的探究过程中,让学生运用“观察——比较——猜想”的方法分析问题,让学生经历探究过程.以学生的自主探究为主线,让学生经历实验操作、探究发现、证明论证获得知识.教师只在关键处进行点拨,不足处进行补充.鼓励学生大胆猜测、大胆验证,让学生在研究过程中渗透数学思想,有意识地培养学生的解题能力.第2课时图形的相似(2)知识与技能知道相似图形的两个特征:对应边成比例,对应角相等.掌握判断两个多边形是否相似的方法——“如果两个多边形满足对应角相等、对应边的比相等,那么这两个多边形相似”.过程与方法经历从生活中的事物中抽象出几何图形的过程,体会由特殊到一般的思想方法,感受图形世界的丰富多彩.情感、态度与价值观在探索中培养学生与他人交流、合作的意识和品质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦和余弦(一)
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A 1,A 2,A 3重合在一起,记作A ,并使直角边AC 1,AC 2,AC 3……落在同一条直线上,则斜边AB 1,AB 2,AB 3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B 1C 1∥B 2C 2∥B 3C 3……,∴△AB 1C 1∽△AB 2C 2∽△AB 3C 3∽……,∴
形中,∠A 的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用. 练习题为
2360sin =︒作了孕伏同时使学生知道任意锐角的对边与斜边的比
值都能求出来. (四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着
重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
五、板书设计
正弦和余弦(二)
一、素质教育目标
(一)知识教学
点
使学生初步了解正弦、余弦概念;能够较正确地用sinA 、cosA 表示直角三角形中两边的比;熟记特殊角
30°、45°、60°
角的正、余弦值,
并能根据这些值说
出对应的锐角度数.
(二)能力训练点
逐步培养学生观察、比较、分析、概括的思维能力.
(三)德育渗透点
渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.
二、教学重点、难点
1.教学重点:使学生了解正弦、余弦概念.
第十四章 解直角三角形
一、锐角三角函数 证明:------------------ 结论:-------------------- 练习:---------------------
2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.
三、教学步骤
(一)明确目标
1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”
2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.
(二)整体感知
只要知道三角形任一边长,其他两边就可知.
而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.
(三)重点、难点的学习与目标完成过程
正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.。