最新人教版九年级数学全册教案
2023年人教版九年级数学全册教案
2023年人教版九年级数学全册教案一、教学目标1. 熟练掌握九年级数学全册的基本知识和技能;2. 培养学生的逻辑思维和数学解决问题的能力;3. 提高学生的数学应用能力和创新思维。
二、教学内容本教案包括九年级数学全册的所有章节,包括但不限于:1. 数与式;2. 一元一次方程与不等式;3. 几何图形的认识与性质;4. 平行线与相交线;5. 空间几何体的认识与计算;6. 数据的收集整理与描述。
三、教学方法1. 探究式教学法:通过问题导入,引发学生思考,激发学生研究的主动性和探究欲望;2. 合作研究法:通过小组合作,促进学生合作、交流和共同探索数学问题;3. 案例教学法:通过实际生活中的案例,引导学生将数学知识应用于实际问题的解决;4. 游戏化教学法:通过数学游戏和趣味活动,增加学生对数学的兴趣和参与度。
四、教学安排本教案建议按照以下教学安排进行:1. 每周授课4课时,每课时50分钟;2. 每个章节的教学安排包括导入、知识点讲解、示范演练、实例探究、巩固练等环节;3. 每个章节之间可以适当安排课堂互动、复巩固和知识拓展的活动。
五、评估与反馈1. 每个章节结束后进行小测验,检测学生对该章节知识的理解和掌握程度;2. 定期组织期中考试和期末考试,对学生的整体研究情况进行评估;3. 针对学生的优点和不足,及时给予针对性的反馈和指导。
六、研究资源1. 人教版九年级数学全册教材;2. 题册、练册等辅助研究资料;3. 数学研究网站、APP等在线研究资源。
以上为2023年人教版九年级数学全册教案的概要内容,具体教学细节可根据实际情况进行调整和补充。
希望本教案能够对您的教学工作有所帮助!。
人教版初中九年级数学上册全册完整教案
人教版初中九年级数学上册全册教案第二十一章一元二次方程第1课时一元二次方程教学目标1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,长为_______•尺,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、巩固练习教材P32 练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2- =0 (4) x2-4=(x+2) 2 (5)ax2+bx+c=0四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.•练习: 1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程五、归纳小结本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业教材P34 习题22.1 1(2)(4)(6)、2.第2课时一元二次方程教学目标1.了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.2. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点1.重点:判定一个数是否是方程的根;2.难点:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0列表:x 1 2 3 4 5 6 7 8 9 10 11 …x2-8x+20 …问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44x 1 2 3 4 5 6 …x2+7x …列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:略三、巩固练习教材P33 思考题练习1、2.四、应用拓展例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,•这块铁片应该怎样剪?设长为xcm,则宽为(x-5)cm列方程x(x-5)=150,即x2-5x-150=0请根据列方程回答以下问题:(1)x可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表:x 10 11 12 13 14 15 16 17 …x2-5x-150(3)你知道铁片的长x是多少吗?分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,•但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.(2)x 10 11 12 13 14 15 16 17 ……x2-5x-150 -100 -84 -66 -46 -24 0 26 54 ……(3)铁片长x=15cm五、归纳小结本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.六、布置作业1.P34 复习巩固3、4 综合运用5、6、7 拓广探索8、9.第3课时直接开平方法教学目标1.理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±即x+3= ,x+3=-所以,方程的两根x1=-3+ ,x2=-3-例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.三、巩固练习教材P36 练习.补充题:如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?老师点评:问题2:设x秒后△PBQ的面积等于8cm2则PB=x,BQ=2x依题意,得:x•2x=8x2=8根据平方根的意义,得x=±2即x1=2 ,x2=-2可以验证,2 和-2 都是方程x•2x=8的两根,但是移动时间不能是负值.所以2 秒后△PBQ的面积等于8cm2.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+ )2=2.56,即(x+ )2=2.56x+ =±1.6,即x+ =1.6,x+ =-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p (p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解六、布置作业P45 复习巩固1、2.第4课时配方法教学目标1.理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.2.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p (p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9(4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=•25 •降次→x+3=±5 即x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x- =0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38 讨论改为课堂练习,并说明理由.教材P39 练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)= ××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业1.教材P45 复习巩固2.3(1)(2)第5课时配方法教学目标1.了解配方法的概念,掌握运用配方法解一元二次方程的步骤.2.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点1.重点:讲清配方法的解题步骤.2.难点:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教学过程一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,•不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联?二、探索新知讨论:配方法届一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p ±√q;如果q<0,方程无实根.例1.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略三、巩固练习教材P39 练习2.(3)、(4)、(5)、(6).四、应用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4= (6x+7)+ ,x+1= (6x+7)- ,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4= y+ ,x+1= y-依题意,得:y2(y+ )(y- )=6去分母,得:y2(y+1)(y-1)=72y2(y2-1)=72,y4-y2=72(y2- )2=y2- =±y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x1=- ,x2=- 例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.五、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
人教版九年级数学教案大全7篇
人教版九年级数学教案大全7篇人教版九年级数学教案大全7篇好的数学教学教案很有意义的。
以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面小编给大家带来关于人教版九年级数学教案,希望会对大家的工作与学习有所帮助。
人教版九年级数学教案精选篇1数学教学计划八年级新的学期已经开始,为了搞好本学期的教学工作,根据学校计划和科研室工作计划,特制定本学期教学工作计划如下:一、学情分析本学期我继续担任初二的数学教学工作。
这两个班整体情况是学生基础较差,优秀生少,后进生站每个班的40%左右。
少数学生学习积极性高,各科作业能按时按量完成,能够严格要求自己,但大部分学生学习不够认真,上课听讲、作业完成总是应付,不能够主动学习,所以造成基础掌握不扎实。
要在本学期获得进步,则必须调动学生学习的积极性,查漏补缺,打好基础;同时注重学生逻辑思维的培养。
二、教学措施1、认真研读新课程标准,钻研教材,努力构建和谐课堂教学模式,提高教学的实效性与有效性2、根据教学内容,精心设计数学活动,培养学生探究合作能力,通过变式训练,培养思维的灵活性。
特别是函数一章,利用数形结合,努力培养学生数学建模的思想和能力。
3、仔细批改作业,作好辅导,及时查缺补漏。
4、成立一帮一互助学习小组,辅导后进生,同时促进优生,共同进步。
三、合理落实各项教学常规1、备好课是上好课的基础,是提高课堂教学质量的关键,所以在备课时深入钻研教材,正确地掌握和处理好教材的重点、难点,备好三环六步的各个环节。
2、上课时定向要明确,在充分了解学情的基础上,引导学生弄清疑难。
点难拨疑时要面向全体学生,使各类学生都学有所得。
都有所发展。
3、作业布置要分层,以关注不同层次的学生。
批改要认真、及时,批语要多鼓励学生,根据作业情况查缺补漏,做好个别辅导。
4、进行个别辅导,优生提升能力,扎实打牢基础知识。
四、教研工作积极参加教科室和教研组组织的各项教研活动。
人教版九年级数学教案大全(6篇)
人教版九年级数学教案大全(6篇)人教版九年级数学教案大全(6篇)九年级数学课件如何写。
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,下面小编给大家带来关于人教版九年级数学教案大全,希望会对大家的工作与学习有所帮助。
人教版九年级数学教案大全篇1回顾上学期学过的直线、线段、射线等的表示方法,我提问了三个成绩中等的学生,居然没有人能回答下来,提问三个好一点学生,什么是线段的中点、什么是角的平分线?也没有人回答得清楚。
说明,这些学生在寒假里根本就没有人进行复习,可能多数学生都沉迷于游戏而不能自拔。
于是复习上学期内容就干去了一节课时间。
第二节课才正式教学新课。
我先让学生举例相交线的实例,有几个学生举了教室中的相交线。
由于多媒体坏了,于是只有粉笔和嘴了。
由学生跟着画两条相交线,并标记角1,角2,角3和角4,接下来,让学生找到两角,有几对?生1到板板书在黑板上,也找齐了,共6组。
接下来,我让学生小组合作讨论:怎么样将这6组角进行分类。
学生讨论了十分钟,但是没有哪个组能正确分类。
于是我就将它们进行了分类:角1与角3,角2与4可以归为一类;角1与角2,角1与角4,角2与角3,角3与角4。
再次讨论:这两类角它们分别有哪些共同特征?(生讨论无果)第一类:两个角有公共的顶点,两边互为反向延长线,象这样的两个角叫做对顶角。
谜语:牛打架,打一数学名词)第二类:两个角有公共顶点和一条公共边,另一边互为反向延长线,象这样的两个角叫做邻补角。
邻补角有什么性质呢?从图可知,两个邻补角构成一个平角,因此,邻补角互补。
例:如图,两条直线相交于点0,角1=30度,求角2,角3,角4的度数。
小结:略作业:略。
从本节课的作业完成情况来看,学生对核心的两类角的特征没有掌握。
主要原因可能还是我身的表达不到位,变式练习举的例子少了,次要原因是学生的学习惯不好,不能专心听讲,导致学生不能准确识别对顶角和邻补角。
九年级数学上册(人教版)教案
九年级数学上册(人教版)教案第一章:实数1.1 有理数教学目标:理解有理数的定义及其分类;掌握有理数的运算方法,包括加、减、乘、除、乘方和开方;能够运用有理数解决实际问题。
教学内容:有理数的定义及分类;有理数的运算方法及运算律;有理数在实际问题中的应用。
教学步骤:1. 引入有理数的概念,引导学生理解有理数的定义及分类;2. 通过示例讲解有理数的运算方法,让学生进行练习;3. 引导学生运用有理数解决实际问题,巩固所学知识。
作业布置:完成课后练习题,巩固有理数的运算方法;选取一些实际问题,让学生运用有理数解决。
1.2 实数教学目标:理解实数的定义及其与有理数的关系;掌握实数的运算方法,包括加、减、乘、除、乘方和开方;能够运用实数解决实际问题。
教学内容:实数的定义及其与有理数的关系;实数的运算方法及运算律;实数在实际问题中的应用。
教学步骤:1. 引入实数的概念,引导学生理解实数的定义及其与有理数的关系;2. 通过示例讲解实数的运算方法,让学生进行练习;3. 引导学生运用实数解决实际问题,巩固所学知识。
作业布置:完成课后练习题,巩固实数的运算方法;选取一些实际问题,让学生运用实数解决。
第二章:方程2.1 一元一次方程教学目标:理解一元一次方程的定义及其解法;能够运用一元一次方程解决实际问题。
教学内容:一元一次方程的定义及解法;一元一次方程在实际问题中的应用。
教学步骤:1. 引入一元一次方程的概念,引导学生理解一元一次方程的定义;2. 通过示例讲解一元一次方程的解法,让学生进行练习;3. 引导学生运用一元一次方程解决实际问题,巩固所学知识。
作业布置:完成课后练习题,巩固一元一次方程的解法;选取一些实际问题,让学生运用一元一次方程解决。
2.2 二元一次方程教学目标:理解二元一次方程的定义及其解法;能够运用二元一次方程解决实际问题。
教学内容:二元一次方程的定义及解法;二元一次方程在实际问题中的应用。
教学步骤:1. 引入二元一次方程的概念,引导学生理解二元一次方程的定义;2. 通过示例讲解二元一次方程的解法,让学生进行练习;3. 引导学生运用二元一次方程解决实际问题,巩固所学知识。
2024年新人教版九年级数学上册全册精彩课件.
2024年新人教版九年级数学上册全册精彩课件.一、教学内容1. 第一章:二次函数1.1 二次函数的概念与性质1.2 二次函数的图像与方程1.3 二次函数的应用2. 第二章:勾股定理与平方根2.1 勾股定理2.2 平方根2.3 勾股定理与平方根的应用3. 第三章:概率初步3.1 随机事件与概率3.2 概率的计算3.3 概率的应用二、教学目标1. 掌握二次函数、勾股定理、平方根和概率的基本概念与性质。
2. 学会运用二次函数、勾股定理、平方根和概率解决实际问题。
3. 培养学生的逻辑思维能力和数学应用能力。
三、教学难点与重点1. 教学难点:二次函数的性质、勾股定理的证明、概率的计算。
2. 教学重点:二次函数的应用、平方根的计算、概率的实际应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入:通过生活中的实例,引出二次函数、勾股定理、平方根和概率的概念。
2. 例题讲解:详细讲解教材中的例题,引导学生理解和掌握知识点。
3. 随堂练习:针对每个知识点,设计相应的练习题,让学生及时巩固所学内容。
六、板书设计1. 用大号字体书写课题名称,如“二次函数的应用”。
2. 内容:列出本节课的主要知识点,用不同颜色粉笔标出重点和难点。
七、作业设计1. 作业题目:第一章:求给定二次函数的最大值、最小值,并画出图像。
第二章:证明给定三角形的勾股定理,并计算其面积。
第三章:计算给定概率问题,如掷骰子、抽签等。
答案:见附件。
八、课后反思及拓展延伸2. 拓展延伸:布置一些拓展性的练习题,如研究二次函数的性质、探索勾股定理的推广等,激发学生的兴趣和求知欲。
通过本课件的教学,希望学生能掌握九年级数学上册的核心知识点,提高数学素养和应用能力,为今后的学习打下坚实基础。
重点和难点解析1. 教学内容的详细性与针对性2. 教学目标的具体性与实用性3. 教学难点与重点的识别与处理4. 教学过程中的实践情景引入与随堂练习设计5. 板书设计的清晰性与结构性6. 作业设计的层次性与拓展性7. 课后反思与拓展延伸的实际操作一、教学内容的详细性与针对性教学内容的选择应紧密结合教材章节,确保覆盖所有核心知识点。
新人教版九年级数学全册教案
新人教版九年级数学全册教案第一节:整数教学目标- 了解整数的概念及其特点- 掌握正整数、负整数与零的表示方法- 能够进行整数的加减运算- 能够在实际问题中运用整数进行计算教学内容1. 整数的概念- 正整数、负整数、零的意义和表示方法- 整数的比较和大小关系2. 整数的加法运算- 整数的加法的定义和运算法则- 正整数、负整数和零的加法规律- 加法的交换律和结合律3. 整数的减法运算- 整数的减法的定义和运算法则- 正整数、负整数和零的减法规律- 减法的交换律和结合律4. 整数的应用- 在实际问题中运用整数进行计算- 解决生活中的数学问题教学过程1. 导入:通过生活实例引入整数的概念,让学生理解整数的意义和使用场景。
2. 巩固:通过课堂练巩固学生对正整数、负整数和零的掌握,以及加法和减法的运算规律。
3. 拓展:让学生通过解决实际问题,运用整数进行计算,培养他们的思维能力和应用能力。
4. 练:提供一些练题供学生练,并及时给予反馈和指导。
5. 总结:总结整数的概念、运算法则和应用,并给学生以积极的评价和鼓励。
教学资源- 教科书:新人教版九年级数学全册- 课堂练题- 实际问题解决案例教学评价- 课堂参与度:学生是否积极参与课堂活动和讨论- 研究成绩:学生对整数的理解和掌握程度,以及在实际应用中的能力发展- 课后作业完成情况:学生是否完成课后作业,以及作业的准确性和时效性教学反思整数是数学中的基础概念,对于学生的数学发展至关重要。
本节课通过引入实际问题和生活例子,让学生深入理解整数的概念和运算法则,培养他们的应用能力。
同时,通过课堂练习和实际问题解决,巩固和拓展学生对整数的理解和运用。
在教学过程中,需要关注学生的参与度和动手能力,并及时给予指导和反馈,提高教学效果。
【人教版】九年级数学上册全册教案(精选)
【人教版】九年级数学上册全册教案(精选)第二十一章一元二次方程21.1一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=13.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.A.0B.1C.2D.3活动2探究新知根据题意列方程.1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是 2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p 转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5 解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程:(1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略.三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤.难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略.(2)与(1)有何关联?二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q <0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx +c =0(a ≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x 2=4 (2)(x -2)2=7提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程 2x 2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a(这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(b 2a )2=-c a +(b 2a)2 即(x +b 2a )2=b 2-4ac 4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac 4a 2≥0 ∴(x +b 2a )2=(b 2-4ac 2a)2 直接开平方,得:x +b 2a =±b 2-4ac 2a即x =-b±b 2-4ac 2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac 2a就得到方程的根. (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x(3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x -2)(3x -5)=0三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?) 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1三、巩固练习教材第14页 练习1,2.四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页习题6,8,10,11.21.2.4一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用.2.培养学生分析、观察、归纳的能力和推理论证的能力.3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0)∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=c a(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0(2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x= 3(5)x2-1=0 (6)x2-2x+1=0例2不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.21.3实际问题与一元二次方程(2课时)第1课时解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x +1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.一、创设情境,导入新课问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y。
人教版初中数学九年级全册教案 全套精品
22.1一元二次方程(第1课时)22.1一元二次方程(第2课时)单位:中学主备人肖木平复备人:李妙立审核人:吴海青22.2.1配方法(第1课时)中学主备人肖木平复备人:许艳婷李妙立审核人:吴海青22.2.1配方法(第2课时)中学主备人肖木平复备人:唐海明许广飞审核人:吴海青22.2.2公式法中学主备人肖木平复备人:唐海明审核人:吴海青22.2.3因式分解法中学主备人肖木平复备人:唐海明许广飞审核人:吴海青22.2.4一元二次方程的根与系数关系中学主备人肖木平复备人:罗建明黄容金审核人:吴海青教学过程设计22.3实际问题与一元二次方程(第1课时)中学主备人肖木平复备人:唐海明许广飞审核人:吴海青22.3实际问题与一元二次方程(第2课时)中学主备人肖木平复备人:罗建明黄容金审核人:吴海青24.1.1圆中学主备人:许艳婷复备人:唐海明李妙立审核人:吴海青24.1.2垂直于弦的直径中学主备人:许艳婷复备人:罗建明李妙立审核人:吴海青24.1.3 弧、弦、圆心角中学主备人:许艳婷复备人:罗建明李妙立审核人:吴海青(3)将其中的一个圆旋转一个角度.使得通过上面的做一做,你能发现哪些等量关系流一下,说一说你的理由.教师叙述步骤,同学们一起动手操作.问题:本节课你学到了什么知识?从中得到了什么启发?)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,(1) (2) (3) (4)AD是⊙O的直径,AB、AC是它的两条弦,若AD平分∠BAC.那么①AB=•AC,•=,④AD⊥BC,以上结论中正确的有()BD CDAB AC=,③1个 B.2个 C.3个 D.4个.如图2,DE分别是⊙O的半径OA、OB上的点,24.1.4 圆周角中学主备人:许艳婷复备人:罗建明黄容金审核人:吴海青设球员们只能在°,则∠ABC等于().130°A24.2.2 直线和圆的几种位置关系中学主备人:许艳婷复备人:罗建明许广飞审核人:吴海青一、教学目标1、知识与技能(1).探索并了解直线和圆的位置关系.(2).根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置关系.(3).能够利用公共点个数和数量关系来判断直线和圆的位置关系.2、过程与方法(1).学生经历操作、观察、发现、总结出直线和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力.(2).学生经历探索直线和圆的位置关系中圆心到直线的距离与圆的半径的数量关系的过程,培养学生运用数学语言表述问题的能力。
人教版九年级数学上下册精品教学设计(全册)
人教版九年级数学上下册精品教学设计(全册)一. 教材分析人教版九年级数学上下册教材内容丰富,结构清晰。
全册内容包括:实数与代数、方程与不等式、函数与图形、几何综合、统计与概率、数学应用等。
这些内容为学生提供了全面、系统的数学知识体系,帮助他们更好地理解和掌握数学知识。
教材难度适中,既能满足学生的学习需求,又能挑战他们的思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对数学知识有一定的认识和理解。
但同时,他们也在学习过程中遇到了一些困难,如对一些概念和公式的理解不深,解题技巧欠佳等。
因此,在教学过程中,教师需要针对学生的实际情况,有针对性地进行教学,帮助他们克服困难,提高数学成绩。
三. 教学目标1.知识与技能:使学生掌握九年级数学上下册的知识点,提高学生的数学素养。
2.过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的思维品质。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极、主动的学习态度,使他们认识到数学在生活中的重要性。
四. 教学重难点1.教学重点:全册知识点的基本概念、公式、定理等。
2.教学难点:对一些复杂问题的分析、解答,以及数学思想方法的运用。
五. 教学方法1.情境教学法:通过生活实例、问题情境,激发学生的学习兴趣,帮助他们理解数学知识。
2.启发式教学法:引导学生主动思考、探究,培养他们的自主学习能力。
3.合作学习法:学生进行小组讨论、合作解决问题,提高他们的沟通能力和团队协作精神。
4.反馈评价法:及时给予学生反馈,鼓励他们积极改进,提高学习效果。
六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。
2.教学素材:收集与教学内容相关的例题、习题等素材。
3.教学设备:准备多媒体教学设备,如投影仪、计算机等。
七. 教学过程1.导入(5分钟)通过生活实例或问题情境,引出本节课的主题,激发学生的学习兴趣。
2.呈现(10分钟)讲解本节课的基本概念、公式、定理等知识点,让学生初步了解并掌握。
新人教版九年级数学下册全册教案
义务教育课程标准人教版数学教案九年级下册2017年春第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。
那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)xy 2-= (3)xy =21 (4)25+=x y (5)31+=x y例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? (四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)
21.3实际问题与一元二次方程第1课时一、教学目标【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度与价值观】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.五、课前准备课件六、教学过程(一)导入新课有一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?(出示课件2)你能解决这个问题吗?(出示课件4)(二)探索新知出示课件5:设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:(1)第一轮传染后共有人患了流感;(2)第二轮传染后共人患了流感.根据示意图,列表如下:(出示课件6)第1轮传染后的人数第2轮传染后的人数传染源人数1最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,列方程为1+x+(1+x)·x=121提取公因式,得(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.教师强调:一元二次方程的解有可能不符合题意,所以舍去.想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?(出示课件7)师生共同分析:第一轮传染后的人数第二轮传染后的人数第三轮传染后的人数生1口答:第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).生2口答:第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?(出示课件8)师生共同分析:传染源新增患者人数本轮结束患者总人数第一轮第二轮第三轮第n轮达成共识:经过n轮传染后共有(1+x)n人患流感.出示课件9:例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?师生共同分析后解答如下:解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,应舍去),答:每个支干长出9个小分支.出示课件10:引导学生思考并解答如下问题:1.在分析引例和例1中的数量关系时它们有何区别?答案:每个树枝只分裂一次,每名患者每轮都传染.2.解决这类传播问题有什么经验和方法?答案:(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.教师问:运用一元二次方程模型解决实际问题的步骤有哪些?(出示课件11)学生自主思考后,教师归纳如下:出示课件12:电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染.每轮感染中平均一台电脑会感染几台电脑?学生思考后自主解决.解:设每轮感染中平均一台电脑会感染x台电脑.依题意得6+6x+6x(1+x)=2400.6(1+x)²=2400.解得x1=19或x2=-21(舍去).答:每轮感染中平均一台电脑会感染19台电脑.出示课件13:例2一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?引导学生积极思考,寻求出实际问题中所蕴含的等量关系,最后师生共同完成解答过程.解:设这个小组共x人,根据题意列方程,得x(x-1)=72.化简,得x2-x-72=0.解方程,得x1=9,x2=-8(舍去).答:这个小组共9人.出示课件14:生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学?学生独立思考,自主探究,找出题目中的等量关系后自主解答:解:全组有x名同学,根据题意,得x(x-1)=182.解得x1=14,x2=-13(不合题意,舍去).答:全组有14名同学.(三)课堂练习(出示课件15-22)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4B.5C.6D.73.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A.x2=1980B.x(x+1)=1980C.x(x-1)=1980D.x(x-1)=19804.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为()A.1+x+x(1+x)=73B.1+x+x2=73C.1+x2=73D.(1+x)²=735.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()?A.10B.9C.8D.76.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.7.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?8.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?参考答案:1.C2.C3.D4.B5.D6.107.解:初三有x个班,根据题意列方程,得1(1) 6.x x-=2化简,得x2-x-12=0.解方程,得x1=4,x2=-3(舍去).答:初三有4个班.8.分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌.传染源本轮分裂成有益菌数目本轮结束有益菌总数第一轮6060x60(1+x)第二轮60(1+x)60(1+x)x60(1+x)2第三轮60(1+x)260(1+x)2x60(1+x)3解:设每个有益菌一次分裂出x个有益菌.60+60x+60(1+x)x=24000.x1=19,x2=-21(舍去).因此每个有益菌一次分裂出19个有益菌.三轮后有益菌总数为24000×(1+19)=480000.(四)课堂小结通过这节课的学习,你对传播类的应用问题的处理有哪些体会和收获?谈谈你的看法.(五)课前预习预习下节课(21.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.。
人教版九年级上册数学全册教案(完整版)教学设计
人教版九年级上册数学全册教案(完整版)教学设计21.1 一元二次方程一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.环节1 自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm ,则盒底的长为__(100-2x )_cm__,宽为__(50-2x )_cm__.列方程,得__(100-2x )(50-2x )=3600__, 化简,整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为__4×7=28(场)__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共__12x (x -1)__场.列方程,得__12x (x -1)=28__.化简、整理,得 __x 2-x -56=0__.②归纳总结:方程①②的共同特点是:方程的两边都是__整式__,只含有__一个__未知数,并且未知数的最高次数是__2__.2.一元二次方程的定义:等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是__ax 2+bx +c =0(a ≠0)__.其中__ax 2__是二次项,__a __是二次项系数,__bx __是一次项,__b __是一次项系数,__c __是常数项.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程? (1)x 3-2x 2+5=0; (2)x 2=1;(3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1); (5)x 2-2x =x 2+1; (6)ax 2+bx +c =0.【互动探索】(引发学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝ ⎛⎭⎪⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数. 【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的? 【解答】去括号,得x -2x 2+2=5x -5.移项,合并同类项,得一元二次方程的一般形式:2x 2+4x -7=0. 其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x 2+10x +12=0的解? -4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】 巩固练习(学生独学) 1.下列方程是一元二次方程的是( D ) A .ax 2+bx +c =0 B .3x 2-2x =3(x 2-2) C .x 3-2x -4=0D .(x -1)2+1=02.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( A ) A .2 B .0 C .0或2D .0或-2【教师点拨】将x =2代入x 2-2mx +4=0得,4-4m +4=0.再解关于m 的一元一次方程即可得出m 的值.3.把一元二次方程(x +1)(1-x )=2x 化成二次项系数大于0的一般式是__x 2+2x -1=0__,其中二次项系数是__1__,一次项系数是__2__,常数项是 __-1__.【活动3】 拓展延伸(学生对学)【例4】求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,不论m 取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x 的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m 2-8m +17=m 2-8m +42+1=(m -4)2+1. ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0, ∴不论m 取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m 取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程⎩⎨⎧必须满足的三要素⎩⎪⎨⎪⎧ 是整式方程只有一个未知数未知数的最高次数是2一般形式:ax 2+bx +c =0a ≠02.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.请完成本课时对应练习!21.2 解一元二次方程 21.2.1 配方法(第1课时)一、基本目标 【知识与技能】1.理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题. 2.理解并掌握直接开方法、配方法解一元二次方程的方法. 【过程与方法】1.通过根据平方根的意义解形如x 2=n (n ≥0)的方程,迁移到根据平方根的意义解形如(x +m )2=n (n ≥0)的方程.2.通过把一元二次方程转化为形如(x -a )2=b 的过程解一元二次方程. 【情感态度与价值观】通过对一元二次方程解法的探索,体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标 【教学重点】掌握直接开平方法和配方法解一元二次方程. 【教学难点】把一元二次方程转化为形如(x -a )2=b 的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P5~P9的内容,完成下面练习. 【3 min 反馈】1.一般地,对于方程x 2=p :(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__p ,x 2=__-p __.(2)当p =0时,方程有两个相等的实数根x 1=x 2=__0__; (3)当p <0时,方程__无实数根__. 2.用直接开平方法解下列方程: (1)(3x +1)2=9; x 1=23,x 2=-43.(2)y 2+2y +1=25. y 1=4,y 2=-6. 3.(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x + __1__)2.4.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有: (1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__-n -p __,x 2=__-n +p __;(2)当p =0时,方程有两个相等的实数根x 1=x 2=__-n __; (3)当p <0时,方程__无实数根__. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用配方法解下列关于x 的方程: (1)2x 2-4x -8=0; (2)2x 2+3x -2=0.【互动探索】(引发学生思考)用配方法解一元二次方程的实质和关键点是什么? 【解答】(1)移项,得2x 2-4x =8. 二次项系数化为1,得x 2-2x =4.配方,得x 2-2x +12=4+12,即(x -1)2=5. 由此可得x -1=±5, ∴x 1=1+5,x 2=1- 5. (2)移项,得2x 2+3x =2. 二次项系数化为1,得x 2+32x =1.配方,得⎝ ⎛⎭⎪⎫x +342=2516.由此可得x +34=±54,∴x 1=12,x 2=-2.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的实质就是对一元二次方程进行变形,转化为开平方所需要的形式,配方法的一般步骤可简记为:一移,二化,三配,四开.【活动2】 巩固练习(学生独学)1.若x 2-4x +p =(x +q )2,则p 、q 的值分别是( B ) A .p =4,q =2 B .p =4,q =-2 C .p =-4,q =2D .p =-4,q =-22.用直接开平方法或配方法解下列方程: (1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)x 2+2x +1=4. (1)x 1=1+2,x 2=1- 2. (2)x 1=2+5,x 2=2- 5. (3)x 1=-1,x 2=13.(4)x 1=16,x 2=-16.(5)x 1=92,x 2=-92.(6)x 1=1,x 2=-3.【活动3】 拓展延伸(学生对学)【例2】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z的值.【互动探索】(引发学生思考)一个数的平方是正数还是负数?一个数的算术平方根是正数还是负数?几个非负数相加的和是正数还是负数?【解答】由已知方程,得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=1 36 .【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0.环节3 课堂小结,当堂达标(学生总结,老师点评)用配方法解一元二次方程的一般步骤:一移项→二化简→三配方→四开方请完成本课时对应练习!21.2.2 公式法(第2课时)一、基本目标【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练运用公式法解一元二次方程.【过程与方法】复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.【情感态度与价值观】在一元二次方程求根公式的推导过程中,激发学生兴趣,了解解决问题多样性.二、重难点目标【教学重点】求根公式的推导及用公式法解一元二次方程.【教学难点】一元二次方程求根公式的推导.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P9~P12的内容,完成下面练习. 【3 min 反馈】1.用配方法解下列方程: (1)x 2-5x =0; x 1=0,x 2=5. (2)2x 2-4x -1=0. x 1=1+62,x 2=1-62. 2.如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它的两根? x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.【教师点拨】因为前面解具体数字的一元二次方程已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.3.一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定.(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0.当b 2-4ac ≥0时,将a 、b 、c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的__求根公式__. (3)利用求根公式解一元二次方程的方法叫__公式法__.(4)由求根公式可知,一元二次方程最多有__2__个实数根,也可能__没有__实数根. (5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=__b 2-4ac __.当Δ__>__0时,方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根;当Δ__=__0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ__<__0时,方程ax 2+bx +c =0(a ≠0)没有实数根.4.不解方程,判断方程根的情况. (1)16x 2+8x =-3; (2)9x 2+6x +1=0; (3)2x 2-9x +8=0; (4)x 2-7x -18=0. 解:(1)没有实数根. (2)有两个相等的实数根. (3)有两个不相等的实数根. (4)有两个不相等的实数根.【教师点拨】将方程化为一般形式,再用判别式进行判断. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】用公式法解下列方程: (1)2x 2+1=3x ; (2)2x (x -1)-7x =2.【互动探索】(引发学生思考)用公式法解一元二次方程的步骤是怎样的? 【解答】(1)原方程整理,得2x 2-3x +1=0. 其中a =2,b =-3,c =1,则Δ=b 2-4ac =(-3)2-4×2×1=1>0. ∴x =-b ±b 2-4ac 2a =--3±12×2,即x 1=12,x 2=1.(2)原方程整理,得2x 2-9x -2=0. 其中a =2,b =-9,c =-2,则Δ=b 2-4ac =(-9)2-4×2×(-2)=97>0. ∴x =-b ±b 2-4ac 2a=--9±972×2,即x 1=9+974,x 2=9-974.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)求出Δ=b 2-4ac 的值;(3)当Δ>0时,方程有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ;当Δ=0时,方程有两个相等的实数根,即x 1=x 2=-b2a;当Δ<0时,方程没有实数根. 【活动2】 巩固练习(学生独学)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.如果方程5x 2-4x =m 没有实数根,那么m 的取值范围是__m <-45__.3.用公式法解下列方程:(1)2x 2-6x -1=0; (2)2x 2-2x +1=0; (3)5x +2=3x 2.解:(1)x 1=3+112,x 2=3-112.(2)方程没有实数根. (3)x 1=2,x 2=-13.【活动3】 拓展延伸(学生对学)【例2】已知a 、b 、c 分别是三角形的三边,试判断方程(a +b )x 2+2cx +(a +b )=0的根的情况.【互动探索】(引发学生思考)三角形的三边满足什么关系?是怎样根据一元二次方程的系数判断根的情况?【解答】∵a 、b 、c 分别是三角形的三边,∴a +b >0,c +a +b >0,c -a -b <0,∴Δ=(2c )2-4(a +b )·(a +b )=4(c +a +b )(c -a -b )<0,故原方程没有实数根.【互动总结】(学生总结,老师点评)解答本题的关键是掌握三角形三边的关系,即两边之和大于第三边,以及运用根的判别式Δ=b 2-4ac 判断方程的根的情况.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程根的情况⎩⎪⎨⎪⎧Δ>0⇔方程有两个不相等的实数根Δ=0⇔方程有两个相等的实数根Δ<0⇔方程没有实数根2.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根为x =-b ±b 2-4ac2a.请完成本课时对应练习!21.2.3 因式分解法(第3课时)一、基本目标 【知识与技能】1.掌握用因式分解法解一元二次方程.2.能根据具体一元二次方程的特征,灵活选择方程的解法. 【过程与方法】通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.【情感态度与价值观】了解因式分解法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度,培养学生的应用意识和创新能力.二、重难点目标 【教学重点】运用因式分解法解一元二次方程. 【教学难点】选择适当的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P12~P14的内容,完成下面练习. 【3 min 反馈】1.将下列各题因式分解:am +bm +cm =__m (a +b +c )__; a 2-b 2=__(a +b )(a -b )__; a 2+2ab +b 2=__(a +b )2__; x 2+5x +6=__(x +2)(x +3)__;3x 2-14x +8=__(x -4)(3x -2)__. 2.按要求解下列方程: (1)2x 2+x =0(用配方法); (2)3x 2+6x -24=0(用公式法).解:(1)x 1=0,x 2=-12. (2)x 1=2,x 2=-4.3.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解法__.4.如果ab =0,那么a =0或b =0,这是因式分解法的根据.即:如果(x +1)(x -1)=0,那么x +1=0或 __x -1=0__,即x =-1或__x =1__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生对学) 【例1】用因式分解法解下列方程: (1)x 2-3x -10=0; (2)5x 2-2x -14=x 2-2x +34;(3)3x (2x +1)=4x +2; (4)(x -4)2=(5-2x )2.【互动探索】(引发学生思考)用因式分解法解一元二次方程的一般步骤是什么? 【解答】(1)因式分解,得(x +2)(x -5)=0. ∴x +2=0或x -5=0, ∴x 1=-2,x 2=5.(2)移项、合并同类项,得4x 2-1=0. 因式分解,得(2x +1)(2x -1)=0. ∴2x +1=0或2x -1=0, ∴x 1=-12,x 2=12.(3)原方程可变形为3x (2x +1)-2(2x +1)=0. 因式分解,得(2x +1)(3x -2)=0. ∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.(4)移项,得(x -4)2-(5-2x )2=0. 因式分解,得(1-x )(3x -9)=0, ∴1-x =0或3x -9=0, ∴x 1=1,x 2=3.【互动总结】(学生总结,老师点评)用因式分解法解一元二次方程的步骤:(1)将一元二次方程化成一般形式,即方程右边为0;(2)将方程左边进行因式分解,将一元二次方程转化成两个一元一次方程;(3)对两个一元一次方程分别求解.【活动2】 巩固练习(学生独学) 1.解方程: (1)x 2-3x -10=0; (2)3x (x +2)=5(x +2); (3)(3x +1)2-5=0; (4)x 2-6x +9=(2-3x )2. 解:(1)x 1=5,x 2=-2. (2)x 1=-2,x 2=53.(3)x 1=-1+53,x 2=5-13.(4)x 1=-12,x 2=54.2.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,求该三角形的周长.解:解x 2-12x +35=0,得x 1=5,x 2=7.∵3+4=7,∴x =5,故该三角形的周长=3+4+5=12. 【活动3】 拓展延伸(学生对学)【例2】已知9a 2-4b 2=0,求代数式a b -b a -a 2+b 2ab的值.【互动探索】(引发学生思考)a 、b 的值能求出来吗?a 、b 之间有怎样的关系?怎样将a 、b 的值与已知代数式联系起来.【解答】原式=a 2-b 2-a 2-b 2ab =-2ba.∵9a 2-4b 2=0,∴(3a +2b )(3a -2b )=0, 即3a +2b =0或3a -2b =0, ∴a =-23b 或a =23b .当a =-23b 时,原式=-2b-23b =3;当a =23b 时,原式=-3.【互动总结】(学生总结,老师点评)要求a b -b a -a 2+b 2ab的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入,但也可以直接代入,因计算量比较大,容易发生错误.本题注意不要漏解.环节3 课堂小结,当堂达标 (学生总结,老师点评)用因式分解法解一元二次方程的一般步骤:先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.请完成本课时对应练习!*21.2.4 一元二次方程的根与系数的关系(第4课时)一、基本目标【知识与技能】掌握一元二次方程的根与系数的关系.【过程与方法】利用求根公式得到一元二次方程的根,推导出根与系数的关系,体现了数学推理的严密性与严谨性.【情感态度与价值观】通过公式的引入,培养学生寻求简便方法的探索精神及创新意识,培养学生观察思考、归纳概括的能力.二、重难点目标【教学重点】理解一元二次方程的根与系数的关系.【教学难点】利用一元二次方程根与系数的关系解决问题.环节1 自学提纲,生成问题【5 min阅读】阅读教材P15~P16的内容,完成下面练习.【3 min反馈】1.解下列方程,并填写表格:方程x1x2x1+x2x1·x2x2-2x=00220x2+3x-4=0-41-3-4x2-5x+6=0235 6(1)用语言描述你发现的规律:__一元二次方程的两根之和为一次项系数的相反数;两根之积为常数项__.(2)关于x的方程x2+px+q=0的两根为x1、x2,请用式子表示x1、x2与p、q的关系:__x1+x2=-p,x1x2=q__.2.解下列方程,并填写表格:方程x1x2x1+x2x1·x2(1)用语言描述你发现的规律:__两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比__.(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,请用式子表示x 1、x 2与a 、b 、c 的关系:__x 1+x 2=-b a ,x 1x 2=ca__.3.求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)5x -1=4x 2; (3)x 2=4; (4)2x 2=3x .解:(1)x 1+x 2=6,x 1x 2=-15. (2)x 1+x 2=54,x 1x 2=14.(3)x 1+x 2=0,x 1x 2=-4. (4)x 1+x 2=32,x 1x 2=0.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】x 1、x 2是方程2x 2-3x -5=0的两个根,不解方程,求下列代数式的值: (1)x 1+x 2 ; (2)1x 1+1x 2;(3)x 21+x 22; (4)x 21+3x 22-3x 2.【互动探索】(引发学生思考)根据一元二次方程的根与系数的关系可考虑将所求代数式转化为两根之和与两根之积的关系.【解答】(1)x 1+x 2=32,(2)∵x 1x 2=-52,∴1x 1+1x 2=x 1+x 2x 1x 2=-35.(3)x 21+x 22=(x 1+x 2)2-2x 1x 2=294.(4)x 21+3x 22-3x 2=(x 21 +x 22 ) +(2x 22 -3x 2 )=1214.【互动总结】(学生总结,老师点评)解答这类问题一般先将求值式进行变形,使其含有两根的和与两根的积,再求出方程的两根的和与两根的积,整体代入即可求解.【活动2】 巩固练习(学生独学)1.不解方程,求下列方程的两根和与两根积. (1)x 2-5x -3=0; (2)9x +2=x 2; (3)6x 2-3x +2=0; (4)3x 2+x +1=0. 解:(1)x 1+x 2=5,x 1x 2=-3. (2)x 1+x 2=9,x 1x 2=-2. (3)方程无解. (4)方程无解.2.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值. 解:另一根为2,m =2.【教师点拨】本题有两种解法:一种是根据根的定义,将x =1代入方程先求m ,再求另一个根;另一种是利用根与系数的关系解答.3.若一元二次方程x 2+ax +2=0的两根满足:x 21 +x 22 =12,求a 的值. 解:a =±4.【教师点拨】由x 21 + x 22 =(x 1+x 2)2-2x 1x 2=12,再整体代入方程的两根之和与两根之积得到答案.【活动3】 拓展延伸(学生对学)【例2】已知关于x 的方程x 2-(k +1)x +14k 2+1=0,且方程两实根的积为5,求k 的值.【互动探索】(引发学生思考)一元二次方程有根的条件是什么?一元二次方程两实根的积与什么有关?【解答】∵方程两实根的积为5,∴ ⎩⎪⎨⎪⎧Δ=[-k +1]2-4⎝ ⎛⎭⎪⎫14k 2+1≥0,x 1x 2=14k 2+1=5,∴k ≥32,k =±4.故当k =4时,方程两实根的积为5.【互动总结】(学生总结,老师点评)根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的值应满足Δ≥0.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程ax 2+bx +c =0(a ≠0)的两根x 1、x 2和系数的关系如下:x 1+x 2=-b a ,x 1x 2=ca.请完成本课时对应练习!21.3 实际问题与一元二次方程一、基本目标 【知识与技能】1.会根据具体问题中的数量关系列一元二次方程并求解. 2.能根据问题的实际意义,检验所得结果是否合理. 【过程与方法】经历分析和解决实际问题的过程,体会一元二次方程的数学建模作用. 【情感态度与价值观】体会数学来源于实践,反过来又作用于实践,增强数学的应用意识. 二、重难点目标 【教学重点】列一元二次方程解决实际问题的一般步骤. 【教学难点】利用一元二次方程解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P19~P21的内容,完成下面练习. 【3 min 反馈】1. 有一人患了感毛,经过两轮传染后共有121人患了感冒,每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x个人,则第一轮后共有__1+x__人患了感冒,第二轮后共有__1+x+x(x+1)__人患了感冒.可列方程 __1+x+x(x+1)=121__.解方程,得x1=__-12(不合题意,舍去)__,_x2=__10__.所以平均一个人传染了__10__个人.2.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__23%__.②设乙种药品成本的年平均下降率为y.依题意,得__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(不合题意,舍去)__.所以两种药品成本的年平均下降率 __相同__.提示:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】某林场计划修一条长750 m,断面为等腰梯形的渠道,断面面积为1.6 m2,上口宽比渠深多2 m,渠底比渠深多0.4 m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48 m3,需要多少天才能把这条渠道挖完?【互动探索】(引发学生思考)(1)怎样用渠深表示上口宽和渠底,怎样计算梯形面积?(2)渠道的体积怎样计算?【解答】(1)设渠深为x m,则渠底为(x+0.4)m,上口宽为(x+2)m.依题意,得12(x +2+x +0.4)x =1.6,整理,得5x 2+6x -8=0, 解得x 1=45=0.8,x 2=-2(舍去),∴上口宽为2.8 m ,渠底为1.2 m.(2)如果计划每天挖土48 m 3,需要1.6×75048=25(天)才能挖完渠道.【互动总结】(学生总结,老师点评)解答本题的关键是掌握梯形面积的计算方法,正确用未知数表示出相关数量.【活动2】 巩固练习(学生独学)1.两个正数的差是2,它们的平方和是52,则这两个数是( C ) A .2和4 B .6和8 C .4和6D .8和102.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x 个小分支, 则1+x +x ·x =91.解得x 1=9或x 2=-10(舍去).故每个支干长出9个小分支.3.如图,要设计一幅长30 cm 、宽20 cm 的图案,其中有两横两竖的彩条(图中阴影部分),横、竖彩条的宽度比为3∶2,如果要使彩条所占面积是图案面积的14,应如何设计彩条的宽度?(精确到0.1 cm)解:横彩条宽为1.8 cm ,竖彩条宽为1.2 cm.【教师点拨】设横彩条的宽度为3x cm ,则竖彩条的宽度为2x cm.根据题意,得(30-4x )(20-6x )=⎝ ⎛⎭⎪⎫1-14×20×30.解得x 1≈0.61或x 2≈10.2(舍去). 4.用一根长40 cm 的铁丝围成一个长方形,要求长方形的面积为75 cm 2.(1)此长方形的宽是多少?(2)能围成一个面积为101 cm 2的长方形吗?若能,说明围法;若不能,说明理由; 解:(1)5 cm.(2)不能.设宽为x cm ,则长为(20-x ) cm ,由x (20-x )=101,即x 2-20x +101=0,由Δ=202-4×101=-4<0,∴方程无解,故不能围成一个面积为101 cm 2的长方形.【活动3】拓展延伸(学生对学)【例3】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.【互动探索】(引发学生思考)AB与BC之间的数量关系是怎样的?BC还应满足什么条件?【解答】设AB=x m,则BC=(50-2x)m.根据题意,得x(50-2x)=300.解得x1=10,x2=15,当x=10时,BC=50-10-10=30>25,则x1=10不合题意,舍去.故可以围成AB长为15 m,BC长为20 m的矩形花园.【互动总结】(学生总结,老师点评)利用一元二次方程解决实际问题时,要注意检验方程的根是否符合实际问题.环节3 课堂小结,当堂达标(学生总结,老师点评)列一元二次方程解应用题的一般步骤:(1)“设”,即设未知数,设未知数的方法有直接设和间接设未知数两种;(2)“列”,即根据题中的等量关系列方程;(3)“解”,即求出所列方程的根;(4)“检验”,即验证是否符合题意;(5)“答”,即回答题目中要解决的问题.请完成本课时对应练习!22.1 二次函数的图象和性质22.1.1 二次函数(第1课时)一、基本目标 【知识与技能】1.理解并掌握二次函数的概念,能判断一个给定的函数是否为二次函数. 2.根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想. 【过程与方法】经历与一次函数类比学习的过程,学会与人合作,并获得代数学习的一些常用方法:类比法、合情推理、抽象概括等.【情感态度与价值观】通过对几个特殊的二次函数的讲解,体验数学中的探索精神,初步体会二次函数的数学模型.二、重难点目标 【教学重点】 二次函数的概念. 【教学难点】能根据已知条件写出二次函数的解析式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P29的内容,完成下面练习. 【3 min 反馈】1.正比例的函数的表达式为y =kx (k 为常数,且k ≠0);一次函数的表达式为__y =ax +b __(a 、b 为常数,且a ≠0).2.二次函数的概念:一般地,形如__y =ax 2+bx +c __(a 、b 、c 是常数,且a ≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为__a 、b 、c __.3.下列函数中,是二次函数的有__①②③__.①y =(x -3)2-1;②y =1-2x 2;③y =13(x +2)(x -2);④y =(x -1)2-x 2.4.二次函数y =-x 2+2x 中,二次项系数是__-1__,一次项系数是___2____,常数项是___0____.5.半径为R 的圆,半径增加x ,圆的面积增加y ,则y 与x 之间的函数关系式为__y =πx 2+2πRx (x ≥0)__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】已知关于x 的函数y =(m +1)xm 2-m 是二次函数, 求m 的值.。
2024年新人教版九年级数学上册全册课件.
2024年新人教版九年级数学上册全册课件.一、教学内容二、教学目标1. 理解并掌握一元二次方程的解法,能够解决实际问题。
2. 掌握不等式与不等式组的解法,并能应用于实际问题。
3. 理解图形的相似性质,能够运用相似知识解决几何问题。
4. 掌握圆的性质和方程,能够解决与圆相关的实际问题。
5. 了解概率与统计的基本概念,能够进行简单的数据分析。
三、教学难点与重点重点:一元二次方程的解法、不等式的解法、图形相似的应用、圆的性质和方程、概率与统计的基本概念。
难点:一元二次方程的求解、不等式组的求解、相似变换的应用、圆的方程推导、概率的计算。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:课本、练习册、草稿纸、直尺、圆规。
五、教学过程1. 导入:通过实际问题引入,激发学生的学习兴趣。
2. 讲解:详细讲解各章节的重点知识点,结合例题进行讲解。
3. 课堂互动:针对讲解的内容,进行随堂练习,检验学生掌握程度。
4. 练习:布置课后作业,巩固所学知识。
六、板书设计1. 2024年新人教版九年级数学上册全册2. 知识点:各章节重点知识点、例题、练习题3. 板书布局:左侧为知识点,右侧为例题和练习题,中间为解题步骤和注意事项。
七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)解不等式组:2x 3 > 1,3x + 4 < 2(3)计算圆的面积:已知圆的半径r = 5cm(4)根据概率公式,计算掷骰子得到偶数的概率。
2. 答案:见附录。
八、课后反思及拓展延伸2. 拓展延伸:针对学有余力的学生,布置一些拓展题目,提高学生的思维能力。
重点和难点解析一、教学内容的详细讲解重点和难点解析:在教学内容中,对于每个章节的重点和难点知识点的讲解需要特别关注。
教师应深入剖析这些知识点,通过生动的实例和直观的图形展示,帮助学生更好地理解和掌握。
1. 一元二次方程的求解:详细讲解求根公式及其推导过程,强调判别式Δ的符号对根的性质的影响。
最新人教版九年级数学全册教案
最新人教版九年级数学全册教案一、教案概述本教案为最新人教版九年级数学全册的教学指导文件,旨在帮助教师有效组织和安排课堂教学活动,提高学生对数学知识的理解和运用能力。
二、教学目标1. 熟练掌握九年级数学全册中各个单元的知识点和解题方法。
2. 培养学生的数学思维能力,培养他们分析和解决实际问题的能力。
3. 提高学生自主研究和合作研究的能力,培养其对数学学科的兴趣和探究精神。
三、教学内容和安排本教案按照九年级数学全册的章节顺序,安排了各个单元的教学内容和教学活动,具体如下:1. 第一单元:有理数与运算- 教学内容:有理数的概念与性质,有理数的四则运算等。
- 教学活动:小组讨论和合作解题,课堂练和实践操作。
2. 第二单元:代数中的平方根- 教学内容:平方根的概念与性质,平方根的运算等。
- 教学活动:探究实验与观察活动,个别指导和讨论。
3. 第三单元:比例与相似- 教学内容:比例的概念与性质,比例的运算等。
- 教学活动:情景模拟和分析,实际问题解决和展示。
4. 第四单元:函数与方程- 教学内容:函数的概念与性质,一次函数与一元一次方程等。
- 教学活动:图像观察与分析,函数应用问题解决。
5. 第五单元:数据与统计- 教学内容:数据的收集与整理,统计图表的制作和解读等。
- 教学活动:数据调查与讨论,数据分析和统计实践。
四、教学评价本教案提供了相应的课堂评价方式和评价指标,以帮助教师对学生的研究情况进行及时、准确的评价,以便及时调整教学策略和帮助学生提高研究效果。
五、教学资源和参考书目本教案中列举了一些教学资源和参考书目,供教师参考和选择合适的教材和辅助教具,以提升教学效果和学生的研究动力。
以上是最新人教版九年级数学全册教案的简要概述,具体内容请参考教案文件。
希望本教案能够帮助教师有效组织和进行九年级数学的教学活动,促进学生数学能力的全面提升。
如有任何疑问或需要进一步信息,请及时联系教材出版方或相关教育机构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学时间课题26.1 二次函数(2)课型新授课教学目标知识和能力使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
过程和方法使学生经历、探索二次函数y=ax2图象性质的过程情感态度价值观培养学生观察、思考、归纳的良好思维习惯教学重点使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
教学难点用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=x2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:x …-3 -2 -1 0 1 2 3 …y …9 4 1 0 1 4 9 …(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
两个函数图象的共同点以及它们的区别,可分组讨论。
交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
四、归纳、概括函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:函数y=ax2的图象是一条________,它关于______对称,它的顶点坐标是______。
如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?让学生观察y=x2、y=2x2的图象,填空;当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
图象的这些特点反映了函数的什么性质?先让学生观察下图,回答以下问题;(1)X A、X B大小关系如何?是否都小于0?(2)y A、y B大小关系如何?(3)X C、X D大小关系如何?是否都大于0?(4)y C、y D大小关系如何?(X A<X B,且X A<0,X B<0;y A>y B;X C<X D,且X C>0,X D>0,y C<y D)其次,让学生填空。
当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______ 以上结论就是当a>0时,函数y=ax2的性质。
思考以下问题:观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a<O时,抛物线y=ax2有些什么特点?它反映了当a<O时,函数y=ax2具有哪些性质?让学生讨论、交流,达成共识,当a<O时,抛物线y=ax2开口向上,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点抛物线上位置最高的点。
图象的这些特点,反映了当a<O时,函数y=ax2的性质;当x<0时,函数值y随x的增大而增大;与x>O时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。
作业设计必做教科书P14:3、4 选做教科书P14:8教学反思教学时间课题26.1 二次函数(7)课型新授课教学目标知识和能力1.能根据实际问题列出函数关系式、2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。
过程和方法通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。
情感态度价值观教学重点根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围教学难点根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、复习旧知1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。
(1)y=6x2+12x; (2)y=-4x2+8x-10[y=6(x+1)2-6,抛物线的开口向上,对称轴为x=-1,顶点坐标是(-1,-6);y=-4(x-1)2-6,抛物线开口向下,对称轴为x=1,顶点坐标是(1,-6))2. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少? (函数y=6x2+12x有最小值,最小值y=-6,函数y=-4x2+8x-10有最大值,最大值y=-6)二、范例有了前面所学的知识,现在就可以应用二次函数的知识去解决第2页提出的两个实际问题;例1、要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大?解:设矩形的宽AB为xm,则矩形的长BC为(20-2x)m,由于x>0,且20-2x>O,所以O<x<1O。
围成的花圃面积y与x的函数关系式是y=x(20-2x)即y=-2x2+20x配方得y=-2(x-5)2+50所以当x=5时,函数取得最大值,最大值y=50。
因为x=5时,满足O<x<1O,这时20-2x=10。
所以应围成宽5m,长10m的矩形,才能使围成的花圃的面积最大。
例2.某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。
将这种商品的售价降低多少时,能使销售利润最大?教学要点(1)学生阅读第2页问题2分析, (2)请同学们完成本题的解答; (3)教师巡视、指导; (4)教师给出解答过程:解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元。
商品每天的利润y 与x 的函数关系式是: y =(10-x -8)(100+1OOx)即y =-1OOx 2+1OOx +200 配方得y =-100(x -12)2+225因为x =12时,满足0≤x ≤2。
所以当x =12时,函数取得最大值,最大值y =225。
所以将这种商品的售价降低÷元时,能使销售利润最大。
例3。
用6m 长的铝合金型材做一个形状如图所示的矩形窗框。
应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?先思考解决以下问题:(1)若设做成的窗框的宽为xm ,则长为多少m? (6-3x2m)(2)根据实际情况,x 有没有限制?若有跟制,请指出它的取值范围,并说明理由。
让学生讨论、交流,达成共识:根据实际情况,应有x >0,且6-3x2>0,即解不等式组⎩⎪⎨⎪⎧x >06-2x 2>0 ,解这个不等式组,得到不等式组的解集为O <x <2,所以x 的取值范围应该是0<x <2。
(3)你能说出面积y 与x 的函数关系式吗?(y =x ·6-3x 2,即y =-32x 2+3x)小结:让学生回顾解题过程,讨论、交流,归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式; (2)研究自变量的取值范围; (3)研究所得的函数; (4)检验x 的取值是否在自变量的取值范围内,并求相关的值: (5)解决提出的实际问题。
三、课堂练习:P13 练习。
四、小结: 1.通过本节课的学习,你学到了什么知识?存在哪些困惑?2.谈谈你的收获和体会。
作业 设计 必做 教科书P15:9 选做 教科书P15:10教学 反思教学时间课题26.2用函数的观点看一元二次方程(1)课型新授课教 学 目 标知 识 和能 力 通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。
过 程 和方 法 使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。
情 感 态 度 价值观进一步培养学生综合解题能力,渗透数形结合思想。
教学重点 使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题教学难点 进一步培养学生综合解题能力,渗透数形结合的思想 教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图一、引言 在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。
本节课,请同学们共同研究,尝试解决以下几个问题。
二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水。
连喷头在内,柱高为0.8m 。
水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。
根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y =-x 2+2x +45。
(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?教学要点1.让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数y =-x 2+2x +45最大值,问题(2)就是求如图(2)B 点的横坐标;2.学生解答,教师巡视指导; 3.让一两位同学板演,教师讲评。
问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB =1.6m 时,涵洞顶点与水面的距离为2.4m 。
这时,离开水面1.5m 处,涵洞宽ED 是多少?是否会超过1m?教学要点1.教师分析:根据已知条件,要求ED 的宽,只要求出FD 的长度。