2016级离散数学(I)A卷参考答案-推荐下载
最新国家开放大学电大《离散数学》形考任务1试题及答案
最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
离散数学习题答案如下
离散数学习题答案如下离散数学是一门研究离散结构和离散现象的数学学科。
它与连续数学相对应,强调的是离散的、不连续的数学对象和现象。
离散数学的研究对象包括集合、关系、函数、图论等。
在离散数学的学习过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。
下面是一些离散数学习题的答案,希望对大家的学习有所帮助。
1. 集合论习题题目:给定集合A={1,2,3,4,5}和集合B={3,4,5,6,7},求A与B的并集、交集和差集。
答案:A与B的并集为{1,2,3,4,5,6,7},交集为{3,4,5},A与B的差集为{1,2}。
2. 关系与函数习题题目:给定关系R={(1,2),(2,3),(3,4),(4,5)},判断该关系是否为自反、对称、传递关系。
答案:该关系不是自反关系,因为元素1没有与自身相关联;该关系不是对称关系,因为(1,2)属于R,但(2,1)不属于R;该关系是传递关系,因为对于任意的(a,b)和(b,c),若(a,b)和(b,c)均属于R,则(a,c)也属于R。
3. 图论习题题目:给定无向图G,其邻接矩阵为:0 1 1 01 0 1 11 1 0 10 1 1 0求图G的度数序列和邻接矩阵的平方。
答案:图G的度数序列为(2,3,3,2),即顶点1的度数为2,顶点2的度数为3,顶点3的度数为3,顶点4的度数为2;邻接矩阵的平方为:2 23 22 3 3 33 34 32 3 3 24. 组合数学习题题目:有5个红球和3个蓝球,从中选取3个球,求选取的球中至少有一个红球的概率。
答案:选取的球中至少有一个红球等价于选取的球中没有红球的概率的补集。
选取的球中没有红球的情况只有选取3个蓝球,所以概率为C(3,3)/C(8,3)=1/56。
因此,选取的球中至少有一个红球的概率为1-1/56=55/56。
以上是一些离散数学习题的答案,通过解答这些习题可以加深对离散数学的理解和掌握。
离散数学作为一门重要的数学学科,不仅在理论研究中有广泛应用,也在计算机科学、信息科学等领域中发挥着重要作用。
《离散数学》(上)试卷(A卷)及参考答案
安徽大学20 09 — 20 10 学年第 1 学期 《 离散数学 》考试试卷(A 卷)(时间120分钟)院/系 专业 姓名 学号一、单项选择题(每小题2分,共20分)1. 设:P 天没下雪,:Q 我去镇上,则命题“天正在下雪,我没去镇上”可符号化为( D )A.Q P ⌝→⌝;B. P Q ⌝→⌝;C.Q P ⌝∧;D. Q P ⌝∧⌝。
2.下列命题是重言式的是( C )A.)()(P Q Q P →∧→;B. )()(Q P P Q P ↔↔↔∧;C. )(Q P Q P →→∧;D. Q P R Q P ∧⌝∧⌝∨→))((。
3. 设解释R 如下:论域D 为实数集,a=0, f(x,y)=x-y, A(x,y):x<y.下列公式在R 下为真的是( )A.(∀x)(∀y)(∀z)(A(x,y)→A(f(x,z),f(y,z)))B.(∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))4. 对任意集合,,A B C ,下列结论正确的是( B )A. C A C B B A ∉⇒∉∧∉][;B. C A C B B A ∈⇒⊆∧∈][;C. C A C B B A ∉⇒∉∧∈][;D. C A C B B A ∈⇒∈∧⊆][。
5. 9.关于{,,}X a b c =到{1,2,3}Y =的函数{,1,,1,,3}f a b c =<><><>,下列结论不正确的是( )A 、1({3}){}f c -=; B 、1(3)f c -=; C 、({}){3}f c =; D 、()3f c =。
6. 设I 为整数集合,则I 上的二元关系}4|||,{=-><=y x y x R 具有( B )A.自反性和对称性;B.反自反性和对称性;C.反自反性和传递性;D.反对称性和传递性。
离散数学试题(A卷答案)
离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。
乙说:王教授不是上海人,是苏州人。
丙说:王教授既不是上海人,也不是杭州人。
王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。
试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。
则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。
所以,丙至少说对了一半。
因此,可得甲或乙必有一人全错了。
又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。
同理,乙全错则甲全对。
所以丙必是一对一错。
故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。
三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。
证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。
离散数学自考题真题2016年04月_真题(含答案与解析)-交互
离散数学自考题真题2016年04月(总分100, 做题时间90分钟)第Ⅰ部分选择题一、单项选择题(在每小题列出的四个备选项中只有一个是符合题目要求的)1.下列命题公式为永假式的是______SSS_SINGLE_SELA ﹁(P→Q)B ﹁(P→Q)∧QC (P→Q)∨QD ﹁P∧(P→Q)该问题分值: 1答案:B[解析] 当且仅当P的真值为T,Q的真值为F时,P→Q为F,其余情况P→Q为T。
则选项A的真值可为T也可为F。
同理选项C、选项D可为F亦可为T,只有选项B在任何情况下均为F。
2.偏序关系一定不是______SSS_SINGLE_SELA 自反的B 传递的C 反自反的D 反对称的该问题分值: 1答案:C3.下列语句为复合命题的是______SSS_SINGLE_SELA 今天天气凉爽B 今天天气炎热,有雷阵雨C x+y>16D 今天天气多好呀,外面景色多美呀该问题分值: 1答案:B[解析] 判断命题有两个条件:(1)语句本身是陈述句;(2)它有唯一的真值。
因此C、D不是命题更不是复合命题;A是简单命题;只有B是复合命题。
4.设R(x):x是实数,L (x,y):x<y,语句“没有最大的实数”可符号化为______A.B.C.D.SSS_SIMPLE_SINA B C D该问题分值: 1答案:A5.下列集合关于数的加法和乘法运算不能构成环的是______SSS_SINGLE_SELA 自然数集合B 整数集合C 有理数集合D 实数集合该问题分值: 1答案:A6.5个结点的非同构的无向树的数目是______SSS_SINGLE_SELA 5B 4C 3D 2该问题分值: 1答案:C[解析] 5个结点的非同构无向树有3个,具体如下:7.设A={1,2,3,4,5,6},为A上的整除关系,则A的最小元为______ SSS_SINGLE_SELA 1B 3C 4D 6该问题分值: 1答案:A[解析] A={1,2,3,4,5,6},则其哈斯图为,则其最小元是1。
《离散数学》试题及答案解析
《离散数学》试题及答案解析⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是_______________________________________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取式是_________________________________________________________________________________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B =_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B =__________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束式是__________________________ _____.16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。
离散数学习题答案解析
离散数学习题答案解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语∧解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是p q(9)只有天下大雨,他才乘班车上班→解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是q p (11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是()∧→p q r 15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(4)()(())∧∧⌝↔⌝∨⌝→p q r p q r解:p=1,q=1,r=0,∧∧⌝⇔∧∧⌝⇔,p q r()(110)1p q r⌝∨⌝→⇔⌝∨⌝→⇔→⇔(())((11)0)(00)1∴∧∧⌝↔⌝∨⌝→⇔↔⇔()(())111p q r p q r19、用真值表判断下列公式的类型:(2)()→⌝→⌝p p q解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。
习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。
离散数学试卷及答案
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:A BC* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
10.下图所示的偏序集中,是格的为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有( )个。
A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。
《离散数学》题库大全及答案
《离散数学》题库大全及答案为离散数学领域的经典教材,全世界几乎所有知名的院校都曾经使用本书作为教材.以我个人观点看来,这本书可以称之为离散数学百科.书中不但介绍了离散数学的理论和方法,还有丰富的历史资料和相关学习网站资源.更为令人激动的便是这本书少有的将离散数学理论与应用结合得如此的好.你可以看到离散数学理论在逻辑电路,程序设计,商业和互联网等诸多领域的应用实例.本书的英文版(第六版)当中更增添了相当多的数学和计算机科学家的传记,是计算机科学历史不可多得的参考资料.作为教材这本书配有相当数量的练习.每一章后面还有一组课题,把学生已经学到的计算和离散数学的内容结合在一起进行训练.这本书也是我个人在学习离散数学时读的唯一的英文教材,实为一本值得推荐的好书。
《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
离散数学试题(A卷答案)
离散数学试题(A卷答案)一、证明题(10分)1)((P∨Q)∧⌝(⌝P∧(⌝Q∨⌝R)))∨(⌝P∧⌝Q)∨(⌝P∧⌝R)⇔T证明: 左端⇔((P∨Q)∧(P∨(Q∧R)))∨⌝((P∨Q)∧(P∨R))(摩根律)⇔ ((P∨Q)∧(P∨Q)∧(P∨R))∨⌝((P∨Q)∧(P∨R))(分配律)⇔ ((P∨Q)∧(P∨R))∨⌝((P∨Q)∧(P∨R)) (等幂律)⇔T(代入)2)∀x(P(x)→Q(x))∧∀xP(x)⇔∀x(P(x)∧Q(x))证明:∀x(P(x)→Q(x))∧∀xP(x)⇔∀x((P(x)→Q(x)∧P(x))⇔∀x((⌝P(x)∨Q(x)∧P(x))⇔∀x(P(x)∧Q(x))⇔∀xP(x)∧∀xQ(x)⇔∀x(P(x)∧Q(x))二、求命题公式(⌝P→Q)→(P∨⌝Q) 的主析取范式和主合取范式(10分)。
解:(⌝P→Q)→(P∨⌝Q)⇔⌝(⌝P→Q)∨(P∨⌝Q)⇔⌝(P∨Q)∨(P∨⌝Q)⇔(⌝P∧⌝Q)∨(P∨⌝Q)⇔(⌝P∨P∨⌝Q)∧(⌝Q∨P∨⌝Q)⇔(P∨⌝Q)⇔M1⇔m0∨m2∨m3三、推理证明题(10分)1)(P→(Q→S))∧(⌝R∨P)∧Q⇒R→S证明:(1)R 附加前提(2)⌝R∨P P(3)P T(1)(2),I(4)P→(Q→S) P(5)Q→S T(3)(4),I(6)Q P(7)S T(5)(6),I(8)R→S CP2) ∀x(P(x)∨Q(x)),∀x⌝P(x)⇒∃x Q(x)证明:(1)∀x⌝P(x) P(2)⌝P(c) T(1),US(3)∀x(P(x)∨Q(x)) P(4)P(c)∨Q(c) T(3),US(5)Q(c) T(2)(4),I(6)∃x Q(x) T(5),EG四、在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(5分)。
证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。
离散数学试题及答案
离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。
解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。
则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。
因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。
二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。
解:论域:所有人的集合。
S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。
离散数学试题(2016)_B(答案)-推荐下载
第1页 共6页第2页 共 6页一、填空题(每小题3分,共15分)1.设F (x ):x 是苹果,H (x ,y ):x 与y 完全相同,L (x ,y ):x =y ,则命题“没有完全相同的苹果”的符号化(利用全称量词)为∀x ∀y (F (x )∧F (y )∧⌝L (x ,y )→⌝H (x ,y )).2.命题“设L 是有补格,在L 中求补元运算‘′’是L 中的一元运算”的真值是 0 .3.设G ={e ,a ,b ,c }是Klein 四元群,H =〈a 〉是G 的子群,则商群G /H ={〈a 〉,{b ,c }}={{e ,a },{b ,c }}.4.设群G =〈P ({a ,b ,c }),⊕〉,其中⊕为集合的对称差运算,则由集合{a ,b }生成的子群〈{a ,b }〉 ={∅,{a ,b }}.5.已知n 阶无向简单图G 有m 条边,则G 的补图有n (n -1)/2-m 条边.二、选择题(每小题3分,共15分)1.命题“只要别人有困难(p ),小王就会帮助他(q ),除非困难已经解决了(r )”的符号化为 【B 】A .⌝(p ∧r )→q .B .(⌝r ∧p )→q .C .⌝r →(p ∧q ).D .⌝r →(q → p ).2.设N 为自然数集合,“≤”为通常意义上的小于等于关系,则偏序集〈N ,≤〉是 【C 】A .有界格.B .有补格.C .分配格.D .布尔代数.3.设n (n ≥3) 阶无向图G =〈V ,E 〉是哈密尔顿图,则下列结论中不成立的是 【D 】A .∀V 1⊂V ,p (G -V 1)≤|V 1|.B .|E |≥n .C .无1度顶点.D .δ(G )≥n /2.4.设A ={a ,b ,c },在A 上可以定义 个二元运算,其中有 个是可交换的,有 个是幂等的. 【A 】A .39,36,36.B .39,36,33.C .36,36,33.D .39,36,39.5.下列图中是欧拉图的有【C 】A .K 4,3.B .K 6.C .K 5.D .K 3,3.三、计算与简答题(每小题10分,共50分)1.利用等值演算方法求命题公式(p ∨q ) → (q →p )的主合取范式;利用该主合取范式求公式的主析取范式,并指出该公式的成真赋值和成假赋值.(p ∨q ) → (q →p ) ⇔⌝(p ∨q )∨(⌝q ∨p ) ⇔(⌝p ∧⌝q )∨(⌝q ∨p )⇔(⌝p ∨⌝q ∨p )∧(⌝q ∨⌝q ∨p ) ⇔⌝q ∨p ⇔p ∨⌝q哈尔滨工程大学试卷考试科目:离散数学(061121,061131)考试时间: 2008.07.09 9:00-11:00题号一二三四五总分分数评卷人第5页 共6页第6页 共 6页=(a ∧b )∨((a ∨c )∧(b’ ∨c’ ∨c ))=(a ∧b )∨(a ∨c )=(a ∨(a ∨c ))∧(b ∨a ∨c )=(a ∨c )∧(a ∨c ∨b )=a ∨c四、证明题(共20分)1.在自然推理系统中,构造推理证明:前提:∀x (F (x )∨G (x ))结论:⌝∀xF (x )→ ∃xG (x )证明:(1) ⌝∀xF (x ) 附加前提引入(2) ∃x ⌝F (x ) (1)置换(3) ⌝F (c )(2)EI 规则(4) ∀x (F (x )∨G (x )) 前提引入(5) F (c )∨G (c ) (4)UI 规则(6) G (c )) (3)(5)析取三段论(7) ∃xG (x )(6)EG 规则2.设代数系统〈A ,*〉是独异点,e 是其单位元.若∀a ∈A ,有a *a =e ,证明:〈A ,*〉是Abel 群.证明:由于对∀a ∈A ,有a *a =e ,因此,A 中任意元素a 都有逆元,且a=a -1.又〈A ,*〉是有单位元的独异点,从而〈A ,*〉是群.∀a ,b ∈A ,有a *b ∈A ,且a=a -1,b=b -1,(a *b )-1=a *b .又(a *b )-1=b -1*a -1=b *a ,因此 a *b =b *a ,即〈A ,*〉是Abel 群.3.证明:若无向图G 为欧拉图,则G 无桥.证明:(1)假设G 中有桥,不妨设e =(u ,v ) 为其一座桥.这样,从中删去边e =(u ,v )后,所得图G ’一定不连通(G ’至少含有两个连通分支).由于G 为欧拉图,因此它是连通图,且有经过每条边一次且仅一次的回路,这条回路必经过G 的所有顶点.从而存在顶点v 1,v 2,…,v s ,使得uv 1v 2…v s vu 是G 的一条回路.从G 中删去边e =(u ,v )后,所得图G ’仍有从u 到v 的通路uv 1v 2…v s v ,这样G ’仍是连通图.矛盾.因此,G 中一定无桥.(2)由于G 为欧拉图,其每个顶点的度数均为偶数.假设G 中有桥,不妨设e =(u ,v ) 为其一座桥.这样,从中删去边e =(u ,v )后,所得图G ’至少有两个连通分支.而且,顶点u ,v 的度数都是奇数,这与每个连通分支为图矛盾(与握手定理矛盾),因此,G 中一定无桥.。
离散数学考试试题(A卷及答案)
离散数学考试试题(A 卷及答案)一、 (10 分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P Q)∧Q)一 ((Q∨R)∧Q) 2)((Q P)∨P)∧ (P∨R)3)((P∨Q)R)((P∧Q)∨R)解: 1)永真式; 2) 永假式; 3)可满足式。
二、 (8 分) 个体域为{1, 2},求x3y (x+y=4)的真值。
解:x3y (x+y=4) 一 x ((x+1=4)∨(x+2=4))一((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))一(0∨0)∧(0∨1)一1∧1一0三、 (8 分) 已知集合 A 和 B 且|A|=n, |B|=m,求 A 到 B 的二元关系数是多少? A 到 B 的函数数是多少?解:因为|P(A×B) |=2|A×B|=2|A| |B|=2mn,所以 A 到 B 的二元关系有 2mn 个。
因为|BA|= |B| |A|=mn,所以 A 到 B 的函数 mn 个。
四、 (10 分) 已知 A={1,2,3,4,5}和 R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求 r(R) 、s(R)和 t(R)。
解: r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、 (10 分) 75 个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20 人这三种东西都乘过,其中 55 人至少乘坐过其中的两种。
《离散数学》试题及标准答案解析
《离散数学》试题及标准答案解析⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)= __________________________ .2. 设有限集合A, |A| = n, 则 |ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B= _____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1= {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)}, 则R1?R2 = ________________________,R2? R1 =____________________________, R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A =__________________________ , A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。
级离散数学IA卷详细答案
北京化工大学试卷2004.6离散数学(参考答案)一、填空题(共10分,每小题2分)1.∃xF(x)→∀yG(y,z)的前束范式是∀x∀y(F(x)→∀yG(y,z) ) 。
2.(p→q)∨p是(永真/永假/可满足)永真式。
3.设全集E={1,2,3,4,5,6},其子集A={1,4},B={1,2,5},则A∩~B= {4} 。
4.设集合M={a,b,c,d,e},则M上一共有52个不同的等价关系。
5.设f:N×N→N,f (<x,y>) = x+y+1,令A={<x,y> | x,y∈N且f (<x,y>)=3},则A的列举法表示为A= {<1,1>,<2,0>,<0,2>} 。
二、判断题(共10分,每小题2分,正确的在题号前打√,错误的在题号前打×)( √) 1.设X={a,b,c,d},Y={1,2,3},f={<a,1>,<b,2>,<c,3>},则f 是从X 到Y 的二元关系,但不是从X 到Y 的函数。
( ×) 2.已知A和B为两个集合,且A⊆B,则A∉ B一定为假。
( √) 3.设p,q,r,s为命题公式,如果p ⇔q且r ⇒s,则p∧r ⇒ q∧s。
( ×) 4.一个谓词公式,如果量词均出现在全式的开头,则称该谓词公式为前束范式。
( √) 5.设R是A上的自反关系,且当<a,b>∈R和<a,c>∈R时,必有<b,c>∈R,则R是A上的等价关系。
三、选择题(共10分,每小题2分)1.设个体域为整数集,P(x,y):x+y = 1,Q(x,y):x×y > 0,下列命题为真的是( A )。
A、∀x∃ y P(x,y)B、∃ x∀yP(x,y)C、∀x∃ y Q(x,y)D、∃ x∀yQ(x,y)2.设R是集合A上的自反关系,则下列叙述中不成立的是( C )。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。
答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。
答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。
答案:满射4. 在图论中,一个没有环的连通图被称为_________。
答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。
答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。
离散数学试题及答案解析
离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 有些天鹅不是白色的。
C. 所有天鹅都不是白色的。
D. 没有天鹅是白色的。
答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。
答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。
答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。
答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。
答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。
答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。
证明:假设p成立,由于p是q的充分条件,所以q成立。
又因为q是r的充分条件,所以r成立。
因此,p成立可以推出r成立,即p是r的充分条件。
2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。
离散数学试题A卷及答案
离散数学试题A卷及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}中,子集的个数是多少?A. 3B. 7C. 8D. 9答案:C2. 以下哪个命题是真命题?A. ∃x∈R, x^2 = -1B. ∀x∈R, x^2 ≥ 0C. ∀x∈R, x^2 = 1D. ∃x∈R, x^2 = 2答案:B3. 函数f: N → N定义为f(x) = 2x,该函数是:A. 单射B. 满射C. 双射D. 非函数答案:A4. 以下哪个逻辑表达式等价于p∧(q∨¬p)?A. p∧qB. p∨qC. ¬p∨qD. p∧¬p答案:A5. 以下哪个图是二分图?A. 完全图K5B. 完全二分图K3,3C. 环图C5D. 星形图K1,4答案:B二、填空题(每题3分,共15分)1. 若A={1,2,3},B={2,3,4},则A∩B=______。
答案:{2,3}2. 命题“若x>0,则x^2>0”的逆否命题是:若x^2≤0,则______。
答案:x≤03. 在一个有向图中,若存在从顶点u到顶点v的有向路径,则称v可到达u,若图中每个顶点都可到达其他所有顶点,则称该有向图是______。
答案:强连通的4. 一个集合的幂集包含该集合的所有______。
答案:子集5. 在逻辑中,合取(AND)操作符用符号______表示。
答案:∧三、解答题(每题10分,共20分)1. 证明:若A⊆B且B⊆C,则A⊆C。
证明:设x∈A,则由A⊆B,可得x∈B。
又由B⊆C,可得x∈C。
因此,A⊆C。
2. 给定一个图G,包含顶点集V={v1, v2, v3, v4}和边集E={(v1,v2), (v2, v3), (v3, v4), (v4, v1), (v1, v3), (v2, v4)},请判断该图是否是欧拉图,并说明理由。
答案:该图是欧拉图。
因为该图是连通的,且每个顶点的度都是偶数。
结束语:本试题涵盖了离散数学中的基本概念和原理,通过这些题目的练习,可以加深对离散数学知识的理解。
离散数学考试试题及答案
离散数学考试试题及答案离散数学是一门涉及离散结构和逻辑推理的数学学科。
它在计算机科学、信息技术和其他领域中具有重要的应用价值。
离散数学考试试题涵盖了离散数学的各个方面,包括集合论、图论、逻辑、代数结构等。
本文将为大家提供一些离散数学考试试题及答案,希望能帮助大家更好地理解和掌握这门学科。
一、集合论1. 设A={1,2,3,4,5},B={3,4,5,6,7},求A与B的交集、并集和差集。
答案:A与B的交集为{3,4,5},并集为{1,2,3,4,5,6,7},A与B的差集为{1,2}。
2. 设集合A={x|x是正整数,1≤x≤10},B={x|x是偶数,2≤x≤8},求A与B的笛卡尔积。
答案:A与B的笛卡尔积为{(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),...,(10,2),(10,4),(10,6),(10,8)}。
二、图论1. 给定图G,其邻接矩阵如下:| 0 1 1 0 || 1 0 0 1 || 1 0 0 1 || 0 1 1 0 |判断图G是否是连通图,并给出其连通分量。
答案:图G是连通图,其连通分量为{1,2,3,4}。
2. 给定图G,其邻接表如下:| 1 | 2 || 3 | 2 4 || 4 | 3 |判断图G是否是树,并给出其生成树。
答案:图G是树,其生成树为{1-2, 2-3, 3-4}。
三、逻辑1. 判断命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值。
答案:命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值为真。
2. 判断命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值。
答案:命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值为假。
四、代数结构1. 设集合S={0,1,2,3,4},定义运算*如下:a*b = (a+b)%5其中%表示取余运算。
离散数学考试题及答案
离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。
A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。
A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。
A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。
A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。
答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。
答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。
答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。
答案:可达10. 命题逻辑中,合取(AND)的符号是______。
答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。
证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。
因此,若p∧q为真,则p和q都为真。
12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。
请找出f的值域。
答案:根据函数的定义,f的值域是其所有输出值的集合。
因此,f的值域为{4,5,6}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京化工大学试卷2004.6
离散数学(参考答案)
一、填空题(共10分,每小题2分)
1.∃xF(x)→∀yG(y,z)的前束范式是∀x∀y(F(x)→∀yG(y,z) ) 。
2.(p→q)∨p是(永真/永假/可满足)永真式。
3.设全集E={1,2,3,4,5,6},其子集A={1,4},B={1,2,5},则A∩~B= {4} 。
4.设集合M={a,b,c,d,e},则M上一共有52个不同的等价关系。
5.设f:N×N→N,f(<x,y>) = x+y+1,令A={<x,y> | x,y∈N且f(<x,y>)=3},则A的列举法表示为A= {<1,1>,<2,0>,<0,2>} 。
二、判断题(共10分,每小题2分,正确的在题号前打√,错误的在题号前打×)
( √) 1.设X={a,b,c,d},Y={1,2,3},f={<a,1>,<b,2>,<c,3>},则f 是从X 到Y 的二元关系,但不是从X 到Y 的函数。
⊆
( × ) 2.已知A和B为两个集合,且A B,则A∉ B一定为假。
( √ ) 3.设p,q,r,s为命题公式,如果p ⇔q且r ⇒s,则p∧r ⇒ q∧s。
( × ) 4.一个谓词公式,如果量词均出现在全式的开头,则称该谓词公式为前束范式。
( √) 5.设R是A上的自反关系,且当<a,b>∈R和<a,c>∈R时,必有<b,c>∈R,则R是A上的等价关系。
三、选择题(共10分,每小题2分)
1.设个体域为整数集,P(x,y):x+y = 1,Q(x,y):x×y > 0,下列命题为真的是( A )。
A、∀x∃ y P(x,y)
B、∃ x∀yP(x,y)
C、∀x∃ y Q(x,y)
D、∃ x∀yQ(x,y)
2.设R是集合A上的自反关系,则下列叙述中不成立的是( C )。
A、R︒R-1一定是A上的自反关系
B、R︒R-1一定是A上的对称关系
C、R︒R-1一定是A上的传递关系
D、仅有A和B是正确的
3.下列命题真值为真的是( A )。
A、2>3当且仅当5>7
B、2>3当且仅当5<7
C、2+2≠4与4+4=8互为充分必要条件
D、如果π无理数,则3也是无理数,反之亦然
4.下列每组两个集合中相等的一组集合是( A )。
A、A={3,1,1,5,5},B={1,3,5}
B、A=∅,B={∅}
C、A=∅,B={x | x∈N且x是偶素数}
D、A={1,2,∅},B={1,2,{∅}}
5.在谓词演算中,若谓词公式中含有自由变元,则不能被使用的规则是( C )。
A、US规则
B、UG规则
C、ES规则
D、EG规则
四、简答及计算题(共30分,每题10分)
1.采用真值表求命题公式(p∧q)∨(~p∧r)的主析取范式和主合取范式。
解:求解过程(4分)
p q r p∧q~p∧r(p∧q)∨(~p∧r)
000000
001011
010000
011011
100000
101000
110101
111101
主析取范式(3分):(p∧q)∨(~p∧r)⇔m1∨m3∨m6∨m7⇔(~p∧~q∧r)
∨(~p ∧q ∧r )∨(p ∧q ∧~r )∨(p ∧q ∧r )
主合取范式(3分):(p ∧q )∨(~p ∧r )⇔M 0∨M 2∨M 4∨M 5=(p ∨q ∨r )
∧(p ∨~q ∨r )∧(~p ∨q ∨r )∧(~p ∨q ∨~r )
2.设A ={a ,b ,c ,d ,e ,f },R 是A 上的二元关系,其关系定义如下:
R ={< a ,b >,< b ,c >,< c ,a >,< e ,f >,< f ,e >}
求最小自然数s 和t ,使得s < t 且 R s =R t 。
解:求解过程(6分)
R ={< a ,b >,< b ,c >,< c ,a >,< e ,f >,< f ,e >}R 2={< a ,c >,< b ,a >,< c ,b >,< e ,e >,<f ,f >}R 3={< a ,a >,< b ,b >,< c ,c >,< e ,f >,< f ,e >}R 4={< a ,b >,< b ,c >,< c ,a >,< e ,e >,< f ,f >}R 5={< a ,c >,< b ,a >,< c ,b >,< e ,f >,< f ,e >}
R 6={< a ,a >,< b ,b >,< c ,c >,< e ,e >,< f ,f >}(4分)因此有:R 6=I A = R 0
即:s =0,t=6
3.如图为偏序集<X ,≤>的哈斯图。
(1)给出X 和≤的集合表示(6分);
(2)求该偏序集的极大元、极小元、最大元和最小元(4
解:X ={a ,b ,c ,d ,e ,f }
X ={<a ,b >,<a ,c >,<a ,d >,<a ,e >,<a ,f >,<b ,e >,<c ,e >,<c ,f >,<d ,f >}∪I X
极大元e ,f ,极小元a ,最大元不存在,最小元a
五、证明题(共40分,每题10分)
1.采用形式证明推理证明下式:已知:∀x (~P (x )→Q (x )),∀x (Q (x )→ ~R (x )),∃xR (x )
f d
a
e
b
结论:∃xP(x)
解:
(1)∃xR(x)P
(2)R(c)ES(1)
(3)∀x(Q(x)→ ~R(x))P
(4)Q(c)→ ~R(c)US(3)
(5)~Q(c)T(2)(4)
(6)∀x(~P(x)→Q(x))P
(7)~P(c)→Q(c)US(6)
(8)P(c)T(5)(7)
(9)∃xP(x)EG(8)
⊆⊆⊆2.设A,B,C为集合,已知(A∩C)(B∩C), (A∩~C)(B∩~C),证明:A B。
解:
A= A∩(C∪~C)
=(A∩C)∪(A∩~C)
(B∩C)∪(B∩~C)
⊆
= B∩(C∪~C)
=B
故:A B
⊆
3.采用形式证明法证明下面的推理:
如果周强是上海人,则他是复旦大学或中山大学的学生;如果他不想离开
上海,他就不是中山大学的学生;周强是上海人并且不想离开上海,所以他是
复旦大学的学生。
解:
令:p:周强是上海人,q:周强是复旦大学的学生,r:周强是中山大学的学生,s:周强想离开上海。
(3分)
前提:p→(q∨r),~s→~r,p∧~s
结论:q(3分)
(4分)
(1)p ∧~s
P
(2)~s
T (1)(3)~s →~r
P (4)~r
T (2)(3)
(5)p →(q ∨r )
P (6)p
T (1)(7)q ∨r
T (5)(6)(8)q
T (4)(7)4.设集合A ={a ,b ,c },R 是A 上的二元关系,且:
R ={< a ,a >,< b ,b >,< b ,c >,< c ,c >,< c ,b >}
(1) 判断R 是否是等价关系?请给出证明。
若是,请继续完成下面3个问题。
(2) 求A 中每一个元素的等价类;
(3) 求A 对R 的商集A /R ;
(4) 求由R 诱导的A 的划分A R 。
解:
(1)(4分)=(a ij )3×3
⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡=110110001M 332)(110110001110110001110110001⨯=⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ij b M 因为a ii =1(i =1,2,3,4),故R 是自反的;
因为a ij =a ji (i ,j =1,2,3,4),故R 是对称的;
因为b ij =1,则有a ij =1(i ,j =1,2,3,4),故R 是传递的。
故R 是等价关系。
(2)(2分)[1]R ={1}
[2]R =[3]R ={2,3}
(3)(2分)商集A /R ={{1},{2,3}}
(4)(2分)划分A ={{1},{2,3}}。