管道机器人外文翻译

合集下载

双轮链平面管道检测机器人外文文献翻译、中英文翻译、外文翻译

双轮链平面管道检测机器人外文文献翻译、中英文翻译、外文翻译

双轮链平面管道检测机器人摘要介绍了一种新型的多传感器管道检测机器人,用于80-100mm管道的检测。

该机器人的特点是只需使用两个轮链即可实现驱动和转向功能。

与普遍采用的三轮链条管道机器人相比,新设计允许简单的机器人控制和方便的用户界面,特别是在T形分支。

作为另一个优点,这种机器人的平面形状允许在机器人的两侧安装额外的传感器。

介绍了系统的运动学和三种控制方式。

最后,通过实验验证了该机器人系统的性能。

关键词:管道机器人;系统;运动学I.绪论管道检测机器人的功能可以描述为驱动、转向、检测和检索。

而用于直径小于100mm管道检测的机器人,在设计紧凑的转向机构和安装磁探头、超声波探头等传感器检测裂纹、破裂、泄漏等方面存在特殊困难。

管道机器人机构在机器人技术领域有着悠久的发展历史,按其运动模式可分为几种基本形式。

它们有轮式、尺蠖式、腿式、螺旋式、履带式和被动式。

其中轮式管道检测机器人最为流行,[1]-[8]。

然而,它们不适合在垂直路径或在t分支操作。

近10年来,人们对差动驱动型机构[9]-[11]进行了较为深入的研究。

差动驱动类型通常有三个动力轮链。

通过独立控制每个链条的速度,机器人可以通过肘部和t型分支。

然而,当只使用一个机器人模块时,有时会在T支[9]处发生奇异运动。

为了解决这一问题,已经开发了几种方法,如主动转向关节机构[12-13]或两个机器人模块[9]协作。

然而,整个机器人系统的体积变得庞大。

使用三个动力轮链的另一个缺点是没有足够的空间在机器人体内安装更多的传感器,因为三个轮链占据了管道的大部分横截面积,特别是直径小于100mm的管道。

目前,机器人身体前只安装了一个摄像头。

T. Okad等[14-16]开发了平板式管道检测机器人。

然而,他们的设计是复杂的,并用于大型管道。

针对这些因素,我们提出了一种双动力轮链的管道检测机构。

两个轮链以180度的角度分开布置,所以可以在机器人身体的两侧附加传感器。

各轮采用两台电机控制;一种用于驾驶,另一种用于驾驶。

管道机器人

管道机器人

近几十年,随着自动化技术的极大进步和国民物质生活水平显著提高,各行各业的发展更多地依赖于物料输送。

特别地,管道输送凭借着输送量大、方便快捷、低成本等优势,在国民经济中占有越来越大的比重。

已广泛应用于石油、化工、能源、食品加工、城市供排水、农业灌溉、核工业等领域。

由于受到输送介质的化学性腐蚀、不可抗力的自然灾害以及自身缺陷的影响,极有可能发生输送物泄露导致的,如环境污染、易燃物爆炸、能源浪费等严重事故。

所以需要定期对管道内部进行检查、维护和清洁保养。

传统管道检测都是由相关人员实施,工作量大,效率低下。

而且有些管道位置人员无法到达实施监测,比如输送有毒化学品或内部结构复杂狭小的管道。

由此,管道机器人应运而生。

管道机器人是一种可沿细小管道内部或外部自动行走、携带一种或多种传感器及操作机械,在工作人员的遥控操作或计算机自动控制下,进行一系列管道作业的机、电、仪一体化系统。

依靠快速运动、灵活操纵、准确判断和低成本等优点,管道检测机器人已成为当下国内外研究的热点。

自上世纪50年代以来,随着计算机技术、通信技术、图像处理技术、微电子技术、传感器技术和机械设计制造技术的进步,管道机器人得到了空前的发展。

但除了部分功能简单的管道机器人实现市场化生产以外,大部分还处在实验室开发阶段。

传统管道机器人面对垂直管道、弯管、支管、变径和微小管道等难题,仍存在很大的改善空间。

管道机器人的构成总体上讲,管道机器人是由运动机构、控制模块、信号采集模块、供能模块和辅助模块等组成。

而行走方式是管道机器人的核心,它决定了管道机器人的整体性能。

管道机器人的分类所谓主动运动方式,是指管道机器人凭借自身携带的驱动源,具备了自主行走能力,运动速度和方向都可控。

并且可以装配仪器和工具,进行检测、维修作业,是目前管道机器人研究的主要方向。

但其结构复杂,成本较高,且能源供给有限,不适合长距离作业。

所谓被动运动方式,是指管道机器人依靠管内流体的压力差产生驱动力,随着管内流体的流动方向移动,并可携带多种传感器。

机器人外文翻译文献翻译 中英文翻译

机器人外文翻译文献翻译 中英文翻译

外文翻译外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need. Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, forinstance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide. Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wristposture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, peoplewould not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文资料:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。

管道机器人基础知识点总结

管道机器人基础知识点总结

管道机器人基础知识点总结一、概述管道机器人是指可以在管道内进行运动、操作和维修任务的特种机器人。

由于管道环境复杂且存在高风险,传统的手工操作难以胜任,因此管道机器人的出现填补了该领域的空白。

管道机器人通常具有自主导航、携带工具、进行维修等功能。

本文将从管道机器人的类型、结构、工作原理、应用领域和发展趋势等方面进行详细介绍。

二、类型1. 自由管道机器人自由管道机器人是一种能够在管道内侧自由移动的机器人,通常采用轮式或链条式设计。

自由管道机器人可以根据管道的弯曲情况和道路的状况自主调整路径和速度。

这种类型的机器人通常用于巡检和维修任务。

2. 拖曳管道机器人拖曳管道机器人是一种由外部设备通过绳索或电缆把机器人拖曳到目的地的机器人。

它通常比自由管道机器人更容易控制,但在自由度方面受限。

拖曳管道机器人通常适用于液体管道的巡检任务。

3. 平板式管道机器人平板式管道机器人通常由底盘、传感器和操控设备组成,外形类似于平板车。

它可以在管道内侧自由移动,携带传感器进行巡检任务。

4. 泳航式管道机器人泳航式管道机器人是一种能够在液体管道内游泳的机器人,通常采用螺旋推进或鱼类仿生设计,具有良好的自主导航能力。

5. 循环式管道机器人循环式管道机器人是一种通过管道内侧行驶,并在管道的两端以及途中的特定位置进行工作的机器人。

三、结构管道机器人的结构多种多样,其中最常见的结构包括底盘、传感器、操控设备、电源系统等,通过不同的组合可以实现不同的功能。

1. 底盘底盘是管道机器人的主要移动部件,通常采用轮式或链条式设计。

为了适应不同的管道环境,底盘通常具有一定的可调节性和适应性。

2. 传感器传感器是管道机器人的重要感知装置,通常包括视觉传感器、声纳传感器、触觉传感器等。

它们可以帮助机器人感知管道内部的情况,并为机器人的自主导航和工作提供依据。

3. 操控设备操控设备是管道机器人的重要操作装置,通常包括机械臂、夹爪、钻头等。

它们可以根据具体工作任务进行更换和组合,实现多种功能。

管道机器人(英文)

管道机器人(英文)

A SIMPLE ARCHITECTURE FOR IN-PIPE INSPECTION ROBOTS Mihaita HORODINCA, Ioan DOROFTEI, Emmanuel MIGNON, André PREUMONTActive Structures LaboratoryUNIVERSITE LIBRE DE BRUXELLESAv. F. D. Roosevelt 50, cp 165/42, Brussels, BelgiumPhone: (32)2-6504663 Fax: (32)2-6504660e-mail: andre.preumont@ulb.ac.beAbstract: The paper presents an original robot architecture for in-pipe inspection. Therobot consists of two parts articulated with a universal joint. One part is guided along thepipe by a set of wheels moving parallel to the axis of the pipe, while the other part isforced to follow an helical motion thanks to tilted wheels rotating about the axis of thepipe. A single motor is placed between the two bodies to produce the motion. All thewheels are mounted on a suspension to accommodate for changing tube diameter andcurves in the pipe. The robot is autonomous and carries its own batteries and radio link.Four different prototypes have been constructed for pipe diameters of 170, 70 and 40mm, respectively. For smaller diameters, the batteries and the radio receiver may beplaced on an additional body attached to the others. The autonomy of the prototypes isabout 2 hours. This architecture is very simple and the rotary motion can be exploited tocarry out scrubbing or inspection tasks.Keywords: Autonomous mobile robot, In-pipe inspection, Helical motionIntroductionPipe inspection robots have been studied for a long time, and many original locomotion concepts have been proposed to solve the numerous technical difficulties associated with the change in pipe diameter, curves and energy supply. Although an exhaustive review of the literature is impossible due to the limited space available, a few broad categories can be identified:(i) For small size, many projects follow the earthworm principle consisting of a central partmoving axially while the two end parts are provided with blocking devices connectedtemporarily to the pipe. Pneumatic versions of this concept have been proposed (e.g. [1]),but they require an umbilical for power. For smaller diameter (10 mm or less), apiezoelectric actuation has been considered, according to the inchworm principle, oraccording to an inertial locomotion driven by a saw-tooth wave voltage [2], or usingvibrating fins with differential friction coefficients [3].(ii) For medium size piping, classical electromechanical systems have been proposed with various architectures involving wheels and tracks, with more or less complicatedkinematical structures, depending on the diameter adaptability and turning capability (e.g.[4,5]).(iii) For large pipes, walking tube crawlers have also been proposed [6].The four mobile robots presented in this paper belong to the second category, they span a tube diameter from 40 to 170 mm. The design results from an attempt to reduce the electromechanical complexity through the use of a single actuator to achieve mobility along the tube. Although our study can be regarded as an independent effort, it appears that the “spiral wheel” strategy was explored before [7].ArchitectureThe robot consists of two main parts, a stator and rotor, connected by an active joint including a D.C. motor with reducer and, in some cases, a universal joint. The stator is equipped with a set of wheels which allow the motion parallel to the tube axis; the rotor is equipped with wheels tilted with a small angle with respect to the plane perpendicular to the tube axis (Fig. 1. a). In this way, the stator is constrained to move along the tube axis while the wheels of the rotor can only move along helical trajectories, and the rotation of the rotor with respect to the stator generates the axial motion. The relation between the axial velocity v of the robot and the rotation velocity ωof the rotor is:αωtg R v ⋅⋅=where R is the radius of the pipe and α is the tilting angle of the wheels of the rotor, taken as 10° throughout this project. The wheels on the stator and on the rotor must be located in order to guarantee the overturning stability, to assure a sufficient contact force between the robot and the pipe, to adapt to small changes in the pipe diameter and obstacles, and to allow travelling in curved pipes. For the larger robot (D-170), the robot is rigidly connected to the axis of the motor and three pairs of wheels on both the rotor and the stator are sufficient for stability. For smaller diameters, curved pipes require more degrees of freedom, because the connection between the rotor and the stator does not stay on the tube axis during turning. This is achieved with a universal joint provided with some axial backlash along the two axes of the joint; overturning stability requires the doubling of the number of wheels on the stator.Two-body architecture for larger diameter (D-170) (b) Three-body architecture for small diameter (D-40).(a) (b)For diameter above 70 mm, the robot is provided with 9 batteries (AA NiCd 600 mAh) which are distributed around the motor on the stator. Tests have shown that they give a reasonable autonomy of the order of 2 hours. For smaller diameters, this configuration is no longer possible and the robot is made of three bodies separated by two universal joints (Fig. 1. b): the first one consists of the rotor with the tilted wheels; the second one includes the motor and reducer, and the third one is the stator with the axial wheels, the energy supply and the telecom.(a)(a) The motor and the batteries are mounted on the stator.(b) The motor and batteries are mounted on the rotor.(a) (b) (c) (d)Figure 3: HELI-PIPE family portrait. (a) D-170, (b) D-70/1, (c) D-70/2, (d) D-40Two design alternatives have been investigated for a diameter of 70 mm (Fig. 2). In the first one, the motor and the batteries are mounted on the stator while in the second one they are mounted on the rotor; this second alternative is not acceptable if the robot is used with a tether for power supply. Table1 gives the main characteristics of the various robots; by “payload”, it is meant the maximum allowed axial force in addition to the weight when the robot is moving upwards in a vertical position.References[1] C. Anthierens, C. Prelle, A., Jutard, M. Bétemps, “Pneumatic Actuated Microrobot for In-Pipe Locomotion”, 4th Japan-France / 2nd Asia-Europe Congress on Mechatronics, Kitakyushu, Japan, 6-8 october, 1998.[2] H. Nishikawa, T. Sasaya, T. Shibata, T. Kaneko, N. Mitumoto, S. Kawakita and N. Kawahara, DENSO CORPORATION, Japan, “In-Pipe Wireless Micro Locomotive System”, in Proc. International Symposium on Mechatronics and Human Science (MHS ’99), Nagoya, Japan, Nov. 24-26,1999.[3] S. Aoshima , T. Tsujimura, T.,Yabuta , “A Miniature Mobile Robot Using Piezo Vibration for Mobility in a Thin Tube” Transactions of ASME, Journal of Dynamic Systems, Measurements and Control, Vol. 115, pp. 270-278, June 1993.[4] K. Suzumori, T. Miyagawa, M. Kimura, Y. Hasegawa, “Micro Inspection Robot for 1-in Pipes” in IEEE/ASME Transactions on Mechatronics, vol. 4, No. 3, pp. 286-292. September 1999.[5] S. Hirose, H. Ohno, T. Mitsui, K. Suyama, “Design of In-Pipe Inspection Vehicles for ø25, ø 50, ø 150 Pipes”, Journal of Robotics and Mechatronics 12, 3, pp. 310-317, 2000.[6] F. Pfeiffer, T. Rossmann, “Control of a Tube Crawler”, Proceedings of the Fourth International Conference on Motion and Vibration Control, Movic’ 98,Zurich, 1998, pp. 889-894, Vol. 3, Switzerland, August 25-28.[7] JGC Corporation, “Inspection Robots in Nuclear Power Plants” Robotics in Nuclear Facilities, Special issue for the exhibition of the 11th International Conference on Structural Mechanics in Reactor Technology (SMIRT II), Tokyo, August 1991.。

国外管道机器人3

国外管道机器人3

Manufacturertele rob Gesellschaft fuer Fernhantierungstechnik mbH Vogelsangstrasse 8Base unit with different equipmentwith manipulatorwith barrel gripperwith hydraulic chiselwith shovel and bucketwith log gripperwith hydraulic shears concrete mill and crusherControl equipmentmanipulator operator, control centremobile control centretele rob ’s Rem ote I ntervention S ystem (REMIS) bases on the idea of having a wide range of equipment to approach all imaginable types of situations from a safe distance as it is necessary for jobs to be carried out in hazardous environments. The handling equipment is brought in position by an excavator-like track based vehicle which makes the system as independent as possible to the terrain to work in.An onboard video and audio system allows the operator to be virtually present when working from the control centre.Manufacturertele rob Gesellschaft fuer Fernhantierungstechnik mbH Vogelsangstrasse 8Carrying system:Remote controlled track chassis with articulated arm, similar to an excavator (see pictures above). It is hydraulically driven and powered by a diesel engine. The carrying system is controlled via a wireless link carrying the RC-signals and also feedback information about the vehicle status.Technical data: Height appx 1850 mm (6’ 1”) Length (outriggers up) appx 4000 mm (13’ 2”) Length (outriggers down) appx 5000 mm (16’ 5”)Width (track gage adjustable) appx 1500 … 1950 mm (4’ 11” … 6’ 5”) Width of tracks appx 400 mm (15”) Weight appx 6.5 tons(metric) Payload at tool flange appx 1400 kg (3100 lb)The operating distance by a handheld control unit (direct view) is appx 300m (1000’).Driven from the control centre an operating distance of up to 1 km (2/3 miles) is possible. If an additional antenna mast is applied the distance can be increased to several miles.Video equipment:Fix cameras on each corner of the chassis for driving, 2 zoom cameras sideways of the arm on tiltable, extentable booms with tilt-swivel head. The viewing area of the cameras is illuminated as well as the working area of the adapted tools. There is also a stereoscopic camera system available as well as a video multiplexing unit to transmit more than one picture per video link.Transportation devices:• Carrying system, manipulators, toolsThe carrying system with the tools and manipulators can be transported on a trailer or lorry. • Control centreThe whole control centre can be located in a 4-wheel drive-lorry with box body where the control cubicles for the manipulator arms and their master arms as well as control desks and video monitors are fix installed. An on board generator provides sufficient power to supply the manipulators independently from mains supply. The control room can be air conditioned.The whole control centre can also be installed into a container.Manufacturertele rob Gesellschaft fuer Fernhantierungstechnik mbH Vogelsangstrasse 8Adaptable equipment:• Force reflecting-manipulators (tele rob EMSMs):Cable controlled, up to 300m(1000’). The cables are managed by a cable management system located inside the control vehicle. EMSM2b, single or double armPayload 24kg/45kg (53lb/100lb) continuous/short term per arm Purpose: sensitive handling of with “extended hands”EMSM3, single armPayload 60kg/100kg (130lb/220lb) continuous/short term per arm Purpose: powerful handling of with “remote hands”The base of the manipulators can be equipped with a tool rack which is accessible with the gripper.A combination of each an EMSM2b and an EMSM3 manipulator arm may cover a wide range of tasks, this arrangement can be improved by an additional cantilevered chain hoist to handle material, slinging happens with themanipulators. The payload of the hoist depends on the remaining payload of the carrying system.• Hydraulically driven equipment Controlled via carrying system• parallel finger gripper, 250 kg (550 lb) payload, for material handling• Hydraulically driven barrel gripper, 3-finger gripper to handle waste drums safely (formclose)• Further hydraulically driven grippers like concrete crushers, scrab gripper or log gripper or other robust tongs and grippers • Excavator shovel and bucketAll equipment is coupled to the arm by means of a universal tool flange, whereby hydraulic connections are coupled inside the tool flange. Force Reflecting-Manipulators stay plugged to their umbilical cables on the tool support unitOptionally the above tools can be set on a (mobile) tool support unit.Detailed data sheets for the various types of equipment are available.Manufacturertele rob Gesellschaft fuer Fernhantierungstechnik mbH Vogelsangstrasse 8Operational envelope:。

机器人外文文献翻译、中英文翻译

机器人外文文献翻译、中英文翻译

外文资料robotThe industrial robot is a tool that is used in the manufacturing environment to increase productivity. It can be used to do routine and tedious assembly line jobs,or it can perform jobs that might be hazardous to the human worker . For example ,one of the first industrial robot was used to replace the nuclear fuel rods in nuclear power plants. A human doing this job might be exposed to harmful amounts of radiation. The industrial robot can also operate on the assembly line,putting together small components,such as placing electronic components on a printed circuit board. Thus,the human worker can be relieved of the routine operation of this tedious task. Robots can also be programmed to defuse bombs,to serve the handicapped,and to perform functions in numerous applications in our society.The robot can be thought of as a machine that will move an end-of-tool ,sensor ,and/or gripper to a preprogrammed location. When the robot arrives at this location,it will perform some sort of task .This task could be welding,sealing,machine loading ,machine unloading,or a host of assembly jobs. Generally,this work can be accomplished without the involvement of a human being,except for programming and for turning the system on and off.The basic terminology of robotic systems is introduced in the following:1. A robot is a reprogrammable ,multifunctional manipulator designed to move parts,material,tool,or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions,presented in the following paragraphs,that give acomplete picture of a robotic system.2. Preprogrammed locations are paths that the robot must follow to accomplish work,At some of these locations,the robot will stop and perform some operation ,such as assembly of parts,spray painting ,or welding .These preprogrammed locations are stored in the robot’s memory and are recalled later for continuousoperation.Furthermore,these preprogrammed locations,as well as other program data,can be changed later as the work requirements change.Thus,with regard to this programming feature,an industrial robot is very much like a computer ,where data can be stoned and later recalled and edited.3. The manipulator is the arm of the robot .It allows the robot to bend,reach,and twist.This movement is provided by the manipulator’s axes,also called the degrees of freedom of the robot .A robot can have from 3 to 16 axes.The term degrees of freedom will always relate to the number of axes found on a robot.4. The tooling and frippers are not part the robotic system itself;rather,they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts,spot-weld ,paint,arc-weld,drill,deburr,and do a variety of tasks,depending on what is required of the robot.5. The robotic system can control the work cell of the operating robot.The work cell of the robot is the total environment in which the robot must perform itstask.Included within this cell may be the controller ,the robot manipulator ,a work table ,safety features,or a conveyor.All the equipment that is required in order for the robot to do its job is included in the work cell .In addition,signals from outside devices can communicate with the robot to tell the robot when it should parts,pick up parts,or unload parts to a conveyor.The robotic system has three basic components: the manipulator,the controller,and the power source.A.ManipulatorThe manipulator ,which does the physical work of the robotic system,consists of two sections:the mechanical section and the attached appendage.The manipulator also has a base to which the appendages are attached.Fig.1 illustrates the connectionof the base and the appendage of a robot.图1.Basic components of a robot’s manipulatorThe base of the manipulator is usually fixed to the floor of the work area. Sometimes,though,the base may be movable. In this case,the base is attached to either a rail or a track,allowing the manipulator to be moved from one location to anther.As mentioned previously ,the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight ,movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base ,which,in turn,is secured to a mounting. This mounting ensures that the manipulator will in one location.At the end of the arm ,a wrist(see Fig 2)is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.图2.Elements of a work cell from the topThe manipulator’s axes allow it to perform work within a certain area. The area is called the work cell of the robot ,and its size corresponds to the size of the manipulator.(Fid2)illustrates the work cell of a typical assembly ro bot.As the robot’s physical size increases,the size of the work cell must also increase.The movement of the manipulator is controlled by actuator,or drive systems.The actuator,or drive systems,allows the various axes to move within the work cell. The drive system can use electric,hydraulic,or pneumatic power.The energy developed by the drive system is converted to mechanical power by various mechanical power systems.The drive systems are coupled through mechanical linkages.These linkages,in turn,drive the different axes of the robot.The mechanical linkages may be composed of chain,gear,and ball screws.B.ControllerThe controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall,controls peripheral devices,and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hard-held teach pendant.This information is stored in the memory of the controller for later recall.The controller stores all program data for the robotic system.It can store several differentprograms,and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example,the controller has an input line that identifies when a machining operation is completed.When the machine cycle is completed,the input line turn on telling the controller to position the manipulator so that it can pick up the finished part.Then ,a new part is picked up by the manipulator and placed into the machine.Next,the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events.This type of controller operates with a very simple robotic system.The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art eletronoics.That is,they are microprocessor-operated.these microprocessors are either 8-bit,16-bit,or 32-bit processors.this power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the end the operation of the system.The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part a computer-assisted manufacturing (CAM)system.As the basic definition stated,the robot is a reprogrammable,multifunctional manipulator.Therefore,the controller must contain some of memory stage. The microprocessor-based systems operates in conjunction with solid-state devices.These memory devices may be magnetic bubbles,random-access memory,floppy disks,or magnetic tape.Each memory storage device stores program information fir or for editing.C.power supplyThe power supply is the unit that supplies power to the controller and the manipulator. The type of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power isused for driving the various axes of the manipulator. For example,if the robot manipulator is controlled by hydraulic or pneumatic drives,control signals are sent to these devices causing motion of the robot.For each robotic system,power is required to operate the manipulator .This power can be developed from either a hydraulic power source,a pneumatic power source,or an electric power source.There power sources are part of the total components of the robotic work cell.中文翻译机器人工业机器人是在生产环境中用以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害放射线的辐射。

管道机器人的概况

管道机器人的概况

管道机器人的概况引言管道机器人是指能够在管道内进行巡检、维修和清理等作业的机器人。

随着工业化进程的加快和管道设施的不断增加,传统的人工操作方式已经无法满足管道作业的需求。

因此,管道机器人应运而生,成为管道工程领域中一种重要的技术手段。

管道机器人的分类管道机器人根据其功能和特点,可以分为以下几类:1.巡检机器人:巡检机器人主要用于检测管道内部的故障和异常情况。

它配备有多种传感器,可以实时监测管道的温度、压力、流速等参数,并将这些数据传输给操作人员进行分析和处理。

2.维修机器人:维修机器人主要用于修复管道故障。

它拥有强大的机械臂和工具,可以进行管道的焊接、切割、补漏等维修作业。

同时,维修机器人还具备精确定位和遥控操作功能,可以在狭小的管道内完成复杂的维修任务。

3.清洁机器人:清洁机器人主要用于清理管道内的杂物和积垢。

它配备有高压喷水装置和刷盘装置,可以将管道内的污物冲刷清洁,提高管道的流量和通畅度。

4.安检机器人:安检机器人主要用于检测管道内是否存在危险品或其他安全隐患。

它配备有气体传感器和摄像头等设备,可以实时监测管道内的气体浓度和图像情况,确保管道的安全运行。

管道机器人的工作原理管道机器人通常由机械结构、传感器、控制系统和电源等组成。

其工作原理可以分为以下几个步骤:1.导航定位:管道机器人会通过激光传感器或者摄像头等设备,获取管道内部的地形和障碍物信息,并根据此信息进行导航和定位。

同时,它还可以利用惯性导航、全球定位系统等技术手段进行精确定位。

2.数据采集:管道机器人会通过传感器获取管道内部的各种数据信息,包括温度、压力、流速、气体浓度等参数。

这些数据会被实时传输到控制系统中进行处理和分析,以便操作人员进行决策。

3.作业执行:根据任务需求,管道机器人会配备不同的工具和装置,进行巡检、维修或清洁等作业。

它可以利用机械臂、刷盘装置、喷水装置等工具,完成各种复杂的作业任务。

4.远程监控:管道机器人通常可以与远程监控中心进行联网,将作业情况实时传输给操作人员。

翻译:管道检测机器人

翻译:管道检测机器人

译文600:管道检测机器人合力-PIPE家族包括四种不同类型的内检测机器人。

该机器人具有与铰接万向节两部分。

一个部分(定子)是由一组轮子移动平行于管子轴线的沿管子引导,而另一部分(转子)是被迫遵循一个螺旋运动由于倾斜的轮子绕的轴管。

单电机(带齿轮减速机内置)被放置在两个机构之间,以产生运动(没有直动式轮毂)。

所有的车轮都安装在一个悬挂以适应不断变化的管直径和曲线在管。

该机器人是自主的,并进行他们自己的电池和无线链路(带齿轮减速机内置)被放置在两个机构之间,以产生运动(没有直动式轮毂)。

所有的车轮都安装在一个悬挂以适应不断变化的管直径和曲线在管。

该机器人是自主的,并进行他们自己的电池和无线链路。

D-170是一个机器人170毫米管径与刚性地连接到设计用于小的曲率(半径大于600 mm)的管道马达(放置在定子)的轴线在转子上。

图1:D-170直升机管道机器人电影1:D-170侧视图电影2:D-170顶视图D-70/1是机器人的第一个原型70毫米管径设计为弯曲的管道(半径超过170毫米的)。

与背隙万向节放置在定子和转子之间。

图2:D-70/1 HELI-管道机器人电影:D-70在弯管Ð-70/2的第二架原型机具有同样用途为D-70/1的替代设计。

在这个体系结构中,马达,电池和无线链路被安装在转子上。

图3:D-2分之70合力管道机器人D-40是一个机器人40毫米管径与由两个万向节分离的三个机构的弯曲部分(曲率大于110毫米的半径)。

第一个由具有倾斜的轮子转子,第二个包括电动机和减速器,第三个是与轴向车轮,能源供应和电信定子。

图4:D-40直升机管道机器人电影1:D-40侧视图电影2:D-40近观原型的自治是约两个小时。

这种架构非常简单,将旋转运动可以被利用来进行或检验任务。

机器人外文翻译(中英文翻译)

机器人外文翻译(中英文翻译)

机器人外文翻译(中英文翻译)机器人外文翻译(中英文翻译)With the rapid development of technology, the use of robots has become increasingly prevalent in various industries. Robots are now commonly employed to perform tasks that are dangerous, repetitive, or require a high level of precision. However, in order for robots to effectively communicate with humans and fulfill their intended functions, accurate translation between different languages is crucial. In this article, we will explore the importance of machine translation in enabling robots to perform translation tasks, as well as discuss current advancements and challenges in this field.1. IntroductionMachine translation refers to the use of computer algorithms to automatically translate text or speech from one language to another. The ultimate goal of machine translation is to produce translations that are as accurate and natural as those generated by human translators. In the context of robots, machine translation plays a vital role in allowing them to understand and respond to human commands, as well as facilitating communication between robots of different origins.2. Advancements in Machine TranslationThe field of machine translation has experienced significant advancements in recent years, thanks to breakthroughs in artificial intelligence and deep learning. These advancements have led to the development of neural machine translation (NMT) systems, which have greatly improved translation quality. NMT models operate by analyzinglarge amounts of bilingual data, allowing them to learn the syntactic and semantic structures of different languages. As a result, NMT systems are capable of providing more accurate translations compared to traditional rule-based or statistical machine translation approaches.3. Challenges in Machine Translation for RobotsAlthough the advancements in machine translation have greatly improved translation quality, there are still challenges that need to be addressed when applying machine translation to robots. One prominent challenge is the variability of language use, including slang, idioms, and cultural references. These nuances can pose difficulties for machine translation systems, as they often require a deep understanding of the context and cultural background. Researchers are currently working on developing techniques to enhance the ability of machine translation systems to handle such linguistic variations.Another challenge is the real-time requirement of translation in a robotic setting. Robots often need to process and translate information on the fly, and any delay in translation can affect the overall performance and efficiency of the robot. Optimizing translation speed without sacrificing translation quality is an ongoing challenge for researchers in the field.4. Applications of Robot TranslationThe ability for robots to translate languages opens up a wide range of applications in various industries. One application is in the field of customer service, where robots can assist customers in multiple languages, providing support and information. Another application is in healthcare settings, where robots can act as interpreters between healthcare professionals and patientswho may speak different languages. Moreover, in international business and diplomacy, robots equipped with translation capabilities can bridge language barriers and facilitate effective communication between parties.5. ConclusionIn conclusion, machine translation plays a crucial role in enabling robots to effectively communicate with humans and fulfill their intended functions. The advancements in neural machine translation have greatly improved translation quality, but challenges such as language variability and real-time translation requirements still exist. With continuous research and innovation, the future of machine translation for robots holds great potential in various industries, revolutionizing the way we communicate and interact with technology.。

机器人专业词汇中英文对照

机器人专业词汇中英文对照

机器⼈专业词汇中英⽂对照ACAS Applicator Cleaner Air Supply 雾化器清洗器供⽓pACS Applicator Cleaner Solvent Pilot 雾化器清洗器溶剂控制阀ACS Applicator Cleaner Solvent 雾化器清洗器溶剂ACVA Applicator Cleaner Vacuum Air 雾化器清洗器真空空⽓ACDA Applicator Cleaner Drying Air 雾化器清洗器⼲燥空⽓BEAR Bearing Air 轴承空⽓BAO Bearing Air OK 轴承空⽓正常BRAKE Brake Air Turbine 涡轮刹车空⽓pBW Bell Wash Pilot 旋杯清洗控制阀BWS Bell Wash Supply 旋杯清洗供应AIR Color Change Air Supply 换⾊空⽓供应SOL Color Change Solvent Supply 换⾊溶剂供应CP# Color Pilot (#) = Color 颜⾊控制阀(#)= 颜⾊DUMP Dump 排放DAT Drive Air Turbine 涡轮驱动空⽓E-STAT Electrostatics 静电pIW Injector Wash Pilot 注射器清洗控制阀IWS Injector Wash Supply 注射器清洗供应PAINT Paint 油漆PAP Purge Air Pilot 冲洗空⽓控制阀pCC Pilot Color Change 换⾊控制阀PCE Process Control Enclosure ⼯艺控制柜pDUMP Pilot Dump 排放控制阀PDP Power Distribution Panel 配电柜PIE Process Interface Enclosure ⼯艺接⼝柜PREG Pilot Regulator 调节器控制阀PR# Paint Return (#) = Color 油漆回路(#)= 颜⾊PS# Paint Supply (#) = Color 油漆进路(#)= 颜⾊pPS Purge Solvent Pilot 冲洗溶剂控制阀pTRIG Pilot Trigger 触发器控制阀PTS Pilot Trigger Supply 触发器供应控制阀RP Robot Purge 机器⼈净化SA1 Shaping Air (Bell Applicator) 成形空⽓(旋杯雾化器)SA2 Shaping Air (Bell Applicator) 成形空⽓(旋杯雾化器)SAP Shaping Air Pilot 成形空⽓控制阀SAS Shaping Air Supply 成形空⽓供⽓SCC System Control Console 系统控制柜TDP Turbine Drive Pilot (Bell Applicator) 涡轮驱动控制阀(旋杯雾化器)TURB Turbine Drive Supply 涡轮驱动供⽓Purge System Maintenance净化系统维护- Purge System Diagnostics净化系统诊断- Purge System Testing andCalibration净化系统测试和校准- Purge Cycle Troubleshooting净化循环排错Color Changer Assembly换⾊器组件- Color Changer Valve Maintenance换⾊阀门维护SolvAir Module Setup and Maintenance 溶剂空⽓模块设置和维护3 Valve IK Gear Pump3阀门1K齿轮泵- Pump Block Pressure Sensor泵的压⼒传感器Process Control Maintenance⼯艺控制维护- Fluid Presets Maintenance流体预设值维护- E-stat Presets Maintenance静电预设值维护- Preset Override Maintenance强制预设值维护- Color Change Maintenance换⾊维护Pepperl & Fuchs ISB SettingsPepperl & Fuchs ISB设置Robot Software Maintenance机器⼈软件维护- I/O Re-configurationI/O 重新配置- Robot File Copy机器⼈⽂件复制- Robot System Variables Editing Transducer Operations ⽐例阀的操作- Shaping Air Control成形空⽓的控制- D/Q Shaping Air Control ModuleD/Q 成形空⽓控制模块- Turbine Speed Control涡轮速度控制- Keyence Digital Fiber SensorKeyence 数字光线传感器Fluid Calibration - Beaker Method流体校准–量杯的⽅法System Configuration Maintenance系统配置维护- System Colors Maintenance系统颜⾊维护- Styles Maintenance车型维护- Option Maintenance选项维护- PW3 SetupPW3 设置机器⼈系统变量编辑- Software Archive软件存档- Backup a Robot Image备份⼀个机器⼈镜像- Restore a Robot Image恢复⼀个机器⼈镜像Paintworks III Software MaintenancePaintworks III软件维护- Creating a Norton Ghost 2003Boot Disk Set创建⼀个Norton Ghost2003 启动盘- Backing Up Your PAINTworks IIIGUI备份你的PAINTworksIII GUI。

URT管道检测机器人

URT管道检测机器人

管道检测机器人在城市污水、天然气输送、工业物料运输、给排水和建筑物通风系统等领域里,管道作为一种有效的物料输送手段而广泛应用。

为提高管道的寿命、防止泄漏等事故的发生,就必须对管道进行有效的检测维护等,而目前管道检测和维护多采用管道机器人来进行[1]。

所谓管道机器人就是一种可沿管道内部或外部自动行走、携带一种或多种传感器件如位置和姿态传感器、超声传感器、涡流传感器等以及操作机械如管道裂纹与管道接口焊接装置、防腐喷涂装置、操作手、喷枪、刷子等,在工作人员的遥控操纵或计算机控制下可在极其恶劣的环境中,能够完成一系列管道检测维修作业的机电一体化系统。

管道机器人可完成的管道作业有:生产、施工过程中的管道内外质量检测;管道内部清扫、抛光、焊接、喷涂等维护;对接焊缝的探伤、补口作业;旧管道腐蚀程度、破损情况检测和泄漏预报等等[2 3]。

1 管道机器人的发展状况1.1 管道机器人的理论研究发展状况管道机器人的研究所涉及的面很广,随着70年代电子技术、计算机技术、自动化技术的发展和进步,国外的管道机器人技术自90年代初以来得到了迅猛发展并接近于应用水平。

1987年日本学者T.Morimitsu 等人成功研制了一种振动式管内移动机器人。

1999年西班牙Jorge Moraleda与Anibal Ollero等人在西班牙军工基金资助下,利用水流喷射产生的冲力作为驱动力研制成检测地下输水管道内部状况的管道机器人系统。

2000年日本横滨国立大学电子与计算机工程系Chi Zhu等人研制成功用于检测污水排放管道的管道检测机器人,它适用于直径为200mm的管道。

2001年美国纽约煤气集团公司的Daphne D Zurko和卡内基梅隆大学机器人技术学院Hagen Schempf博士在美国国家航空和宇宙航行局的资助下开发了长距离、无缆方式的管道机器人系统。

我国管道机器人研制工作起步较晚,已见报道的管道机器人多为国外进口,然而近些年来,管道机器人的经济、技术和社会意义逐渐为更多的人们所认识,也有一些单位开始进行研制,并在机构模型、动力学分析以及实验样机等方面均有所建树。

4_sec_031_Ragulskis_et_al_Behavoir-液压蠕动式管道机器人

4_sec_031_Ragulskis_et_al_Behavoir-液压蠕动式管道机器人

209
constrained space of complicated configuration inside the pipelines, which makes difficult to move inside while overcoming intrinsic obstacles;
3. Most of urban gas pipelines are composed of small inner diameter pipes, which make it hardly possible to move the inspection equipment through them. Moreover, the urban gas pipelines have abnormal pipes with gouges and dents obstructing normal maintenance due frequent damages.
need for autonomous inspection equipment that can run through inside the pipelines. However, the inpipe inspection of gas pipelines in field conditions has several aspects difficulty, which are as follows:
Marijonas Bogdevičius
Vilnius Gediminas Technical University, Plytines str. 27, LT-10105 Vilnius, Lithuania, E-mail: marnas
KEYWORDS

机器人专业词汇中英文对照

机器人专业词汇中英文对照

ACAS Applicator Cleaner Air Supply 雾化器清洗器供气pACS Applicator Cleaner Solvent Pilot 雾化器清洗器溶剂控制阀ACS Applicator Cleaner Solvent 雾化器清洗器溶剂ACVA Applicator Cleaner Vacuum Air 雾化器清洗器真空空气ACDA Applicator Cleaner Drying Air 雾化器清洗器干燥空气BEAR Bearing Air 轴承空气BAO Bearing Air OK 轴承空气正常BRAKE Brake Air Turbine 涡轮刹车空气pBW Bell Wash Pilot 旋杯清洗控制阀BWS Bell Wash Supply 旋杯清洗供应AIR Color Change Air Supply 换色空气供应SOL Color Change Solvent Supply 换色溶剂供应CP# Color Pilot (#) = Color 颜色控制阀(#)= 颜色DUMP Dump 排放DAT Drive Air Turbine 涡轮驱动空气E-STAT Electrostatics 静电pIW Injector Wash Pilot 注射器清洗控制阀IWS Injector Wash Supply 注射器清洗供应PAINT Paint 油漆PAP Purge Air Pilot 冲洗空气控制阀pCC Pilot Color Change 换色控制阀PCE Process Control Enclosure 工艺控制柜pDUMP Pilot Dump 排放控制阀PDP Power Distribution Panel 配电柜PIE Process Interface Enclosure 工艺接口柜PREG Pilot Regulator 调节器控制阀PR# Paint Return (#) = Color 油漆回路(#)= 颜色PS# Paint Supply (#) = Color 油漆进路(#)= 颜色pPS Purge Solvent Pilot 冲洗溶剂控制阀pTRIG Pilot Trigger 触发器控制阀PTS Pilot Trigger Supply 触发器供应控制阀RP Robot Purge 机器人净化SA1 Shaping Air (Bell Applicator) 成形空气(旋杯雾化器)SA2 Shaping Air (Bell Applicator) 成形空气(旋杯雾化器)SAP Shaping Air Pilot 成形空气控制阀SAS Shaping Air Supply 成形空气供气SCC System Control Console 系统控制柜TDP Turbine Drive Pilot (Bell Applicator) 涡轮驱动控制阀(旋杯雾化器)TURB Turbine Drive Supply 涡轮驱动供气Purge System Maintenance净化系统维护- Purge System Diagnostics净化系统诊断- Purge System Testing andCalibration净化系统测试和校准- Purge Cycle Troubleshooting净化循环排错•Color Changer Assembly换色器组件- Color Changer Valve Maintenance换色阀门维护•SolvAir Module Setup and Maintenance 溶剂空气模块设置和维护•3 Valve IK Gear Pump3阀门1K齿轮泵- Pump Block Pressure Sensor泵的压力传感器•Process Control Maintenance工艺控制维护- Fluid Presets Maintenance流体预设值维护- E-stat Presets Maintenance静电预设值维护- Preset Override Maintenance强制预设值维护- Color Change Maintenance换色维护•Pepperl & Fuchs ISB SettingsPepperl & Fuchs ISB设置•Robot Software Maintenance机器人软件维护- I/O Re-configurationI/O 重新配置- Robot File Copy机器人文件复制- Robot System Variables Editing Transducer Operations比例阀的操作- Shaping Air Control成形空气的控制- D/Q Shaping Air Control ModuleD/Q 成形空气控制模块- Turbine Speed Control涡轮速度控制- Keyence Digital Fiber SensorKeyence 数字光线传感器•Fluid Calibration - Beaker Method流体校准–量杯的方法•System Configuration Maintenance系统配置维护- System Colors Maintenance系统颜色维护- Styles Maintenance车型维护- Option Maintenance选项维护- PW3 SetupPW3 设置机器人系统变量编辑- Software Archive软件存档- Backup a Robot Image备份一个机器人镜像- Restore a Robot Image恢复一个机器人镜像•Paintworks III Software MaintenancePaintworks III软件维护- Creating a Norton Ghost 2003Boot Disk Set创建一个Norton Ghost2003 启动盘- Backing Up Your PAINTworks IIIGUI备份你的PAINTworksIII GUI。

工业管道机器人系统介绍(精)

工业管道机器人系统介绍(精)

工业管道机器人系统介绍1.管道机器人介绍管道机器人依据不一样的驱动方式大概上风为八类:1.流动式机器人 ,这种机器人没有驱动装置,不过跟着管内流体流动 ,属于不需要耗费能源的被动型机器人,可是其运动模式相当有限。

2.轮式机器人 ,这一类机器人宽泛运用于管道检查工作,当前很多的商业机器人就是这一种类。

3.履带式机器人 ,即用履带取代轮子。

4.腹壁式机器人 ,这种机器人经过能够伸展的机械臂紧贴管道内壁,推动机器人行进。

5.行走式机器人 ,这种机器人经过机械足运动,可是这种机器人需要大批驱动器, 而且难以控制。

6.蠕动式机器人 ,这种机器人像蚯蚓同样经过身体的伸缩行进。

7.螺旋驱动式 ,即驱动机构做旋转运动 ,螺旋行进。

8.蛇型机器人 ,这种机器人有很多关节 ,像蛇同样前行。

当前市场上运用最多的就是轮式管道机器人 ,广强机器人研发了蛇形机器人可适应复杂曲折多的管道。

广强管道机器人功能齐备 ,样式多样 ,合用于 100mm-2000mm 内径的各种管道 , 合用于于管道检测、矿井检测勘探、地道查收、地震搜救、消防营救、灾祸救助、电力巡检、反恐排爆、军事侦察、高温、高辐射、有毒环境等,经过剖析 ,出具报告 ,可作为工程项目的检测、勘探、查收、保养、建设及投资等依照。

2.管道机器人系统构成工业管道机器人由摄像机、灯光、电线及录影设施、拍照监督器、电源控制设施、承载摄像机的支架、牵引器、长度计算器构成1.爬行器 :运用爬行系统将摄像设施推动至管道内部,有摄像系统拍摄管道内部摄像 ,并合时将影像传递至控制台。

爬行器能够行进、退后、转向、停止、速度调理 ;2.镜头 :镜头坐能够抬升、降落、调理灯光;镜头也能够水平或垂直旋转、调焦、变倍、前后视切换等。

3.控制器 :CCTV 的核心操作系统 ,负责发出控制指令 (爬行系统前行、倒退、摄像系统灯光等 ;在检测过程中主控制器能够及时显示、录制镜头传回的画面和信息 (机器行走的距离、姿态等状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一款使用离合器连接类型的内窥管道机器人
摘要-这篇论文展示了一款使用离合器的新型内窥管道机器人,用于直径小于或等于100mmde 管道内窥。

这款机器人拥有三条驱动轴,且每条驱动轴各有一个离合器,离合器的设计依据平行联动原理。

内窥管道机器人牢固的模型机构已经过驱动,原型机也被制作出来。

机器人系统已经过一系列的仿真软件模拟和实验验证。

1.简介
管内机器人经过漫长的发展,根据运动模型可分为几种基本类型,比如轮驱动、蠕动、自动足、螺旋驱动、爬行、PIG和惰性运行等类型。

在这些类型之中,轮式驱动应用最为广泛。

在过去的十年时间间,机器人各式各样的驱动类型研究呈现井喷式增长。

不同的驱动类型的机器人一般会有三个驱动轴,依靠单独控制各轴的速度,可以让机器人实现通过关节或者T型管道。

而且这种类型机器人与轮式驱动、螺旋驱动和PIG等类型比较起来会有较大的可折叠区域,比较节省空间。

近来,随着小型化管道机器人市场的扩大,对直径小于100mm的管道机器人的关注同时愈来愈热。

因为室内管道的清洁程度会直接影响到人的健康,因此,对室内管道的清洁与监测变得愈加重要,同时直径小于100mm的机器人也将主要用于室内管道清洁。

机械装置使用的是平行连杆机构,有助于实现装置
减速功能。

减速器与其他使用两个底板的典型减速器不同,第二部分将会详细介绍机器人系统的特征。

第三部分将会讲解机构的运动学分析。

机构的有效性将会通过软件仿真与实验验证,这些会在第四部分展示出来。

最后,同时也是至关重要的是总结。

2.机器人特征
A机器人硬件设备及系统
如例1所示,机器人系统包括控制盒与机器人装备。

根据模块化设置,控制盒与机器人硬件设备室分开的。

机器人硬件设备包含主体,三条链轮和如例2显示的三个离合轮部分。

机器人长80mm,外扩至100mm。

机械联动装置可确保制动功能的实现,这是因为装置有效避免了电磁制动器的缺点,比如滑移、电力不足以及规格限制。

例1.装备有机械离合装置的管道检测机器人系统
机器人装置可实现两种不同的操作模式:驱动模式与制动模式。

驱动模式下的机器人会运行,制动模式会使机器人停止运行并且
可以返回到原点。

例2管道机器人检测系统整体结构:a,3D模型,b,机器人实体
为了确保驱动与制动两种模式的实现,可通过为机器人三个驱动轮分别安装电机,并且主轴也有一个电机,如例2所示,这样我们就可以控制机器人的前进与后退以及在弯头的转向运动。

从一种模式到另一种模式的转换可以通过驱动主轴电机实现。

B 机器人主体
如例3所示,机身包含两个螺母、两个滑块、两个弹簧和一个主
轴电机。

螺母的作用是往主轴的两面传递力,滑块与离合器部分相连接并且沿着螺母的凹槽滑移。

弹簧起到缓冲的作用,与链轮的直径变化相适应。

这种设计允许了机器人身体的可折叠性。

主轴包括齿轮、左旋螺杆、右旋螺杆。

电机通过齿轮传递力至主轴,并且运动模式可以通过控制主轴电机来切换。

主轴螺旋运动取决于螺杆的平移运动,这也将同时导致螺母的位移以及滑块的运动。

例3 主体结构
C部分
主轴螺杆左末端与减速器结构连接。

链轮部分包括平行连杆机构、驱动电机与驱动轮、惰轮。

如同例4所示,每一条链轮都与减速器结构相连接。

例4:链轮及减速器机构
电机通过斜齿轮减速器驱动。

减速器机构包括离合轮,以及离合轮与主轴相连接部分。

如同例4所示,离合轮是惰轮,链轮与主轴通过4连杆与5连杆机构连接。

平行四边形机构保证链轮的水平状态。

链轮的运动与离合轮相关联,离合轮通过四连杆机构连接主轴与链轮。

D 机器人设备运行与制动模式
当机器人插入到管道中,机器人通过控制主轴电机改变机构直径以适应管道。

例5标示机器人驱动模式下进入管道的状态,两个螺母靠近中间。

当机器人通过不规则表面,外力将作用在链轮上,
从而导致与链轮相连接的滑块作出例6所示动作。

主轴两面的压缩弹簧起到减震的作用。

当机器人通过不规则表面,弹簧力将使滑块恢复到例5所示状态。

例5 运行模式
例6展示了制动模式,通过驱动主轴电机,主轴将重置成两个螺母远离中心的模式。

这将导致链轮中的驱动轮远离管道内壁,且链轮中的惰轮与内壁接触。

于是,可以通过拉机器人尾部的电缆来实现后退。

例7与例8详细解释了此动作。

例6 制动模式
链轮中的驱动轮如图例7所示那样在减速轮外,机器人将会进入
运行模式。

机器人可通过电机驱动轮子与管道内表面接触,来实现前进。

与此相反的是,当驱动轮改变到减速轮内的时候,即减速轮与管道内表面相接触的时候,机器人转变为制动模式。

在这种模式下运行,减速轮与管道内表面相接触,同时,两惰轮连成一条线运行,这将保证机器人的制动模式的成功。

除此之外,当机器人突然断电时,机器人将会因电机转轴减弱的转矩导致支持轮子的外部力减弱,从而实现机器人自动转变到制动模式。

从上述所看,机器人可轻松实现制动。

例7 装有减速装置的管道检测机器人系统
A,运行模式B,制动模式
4运动机构
在这一部分,为了根据主轴电机驱动所引起的d变化表示减速轮的动作,将会推导出离合轮、驱动轮和惰轮的位置。

例8展示了链轮与减速结构。

每一链轮均包含两个4连杆机构、一个5连杆
机构,4连杆机构包含四个转动关节,5连杆机构包含四个转动关节和一个移动关节。

当外力作用在轮子上面时,链轮的高度d 随之改变。

c
例8 工作模式原理图A,驱动模式B,制动模式

例9中的注释,余弦可表达为
机器人设备:
电机嵌入车轮机构的马达箱体中,最大扭矩为17.5mNm, 电机选MAXRON RE 6 型号,减速器选择GP 6A 型号。

表1详细介绍了电机和减速器规格。

MAXRON RE 6 规格说明书
直径6mm
额定电压6v
额定转速5320 rpm
最大连续扭矩0.321mNm
最大持续性电流:0.118A
减速器说明书
减速比:221:1
减速器最大连续扭矩:30mNm
表2为机器人规格说明书,机器人模块长80mm至100mm之间,机器人机身直径变换在90mm至110mm之间。

机器人包括摄像机、照明设备在内的总长是122mm,机器人中189g.在测试环节中使用的管道直径为100mm.
表2
机器人规格说明书
规格Tbot-100
重量189g
电机直径6mm
机器人模块长度80mm
机器人总长122mm
直径变化范围90-110mm
直线速度14cm/s
串行通信15M。

相关文档
最新文档