集合1-2集合之间的关系

合集下载

高中数学第一章集合1.2集合的基本关系课件北师大版必修1

高中数学第一章集合1.2集合的基本关系课件北师大版必修1
§2 集合的基本关系
自主学习·新知突破
实数有相等关系,大小关系,类比实数之间的关系,集合之间是否具备类似 的关系?
观察下列各组集合: (1)A={1,2,3};B={1,2,7};C={1,2,3,4,5}. (2)D={x|x 是长方形};E={x|x 是平行四边形}. (3)P=(1)下列图形中,表示 M⊆N 的是( )
(2)集合 A={x|y=x2+1},B={y|y=x2+1},则下列关系正确的是( )
A.A B
B.A=B
C.A⊆B
D.B A
解析: (2)∵A={x|x∈R}=R,B={y|y≥1},∴B A.
答案: (1)C (2)D
有限集合子集的确定
(1)集合 M={a,b,c}的真子集个数是( )
因忽视空集的特殊性而出错 ◎若集合 A={x|x2+x-6=0},B={x|mx+1=0},且 B A,求 m 的值. 【错解】 A={x|x2+x-6=0}={-3,2}. ∵B A, ∴mx+1=0 的解为-3 或 2. 当 mx+1=0 的解为-3 时, 由 m·(-3)+1=0,
1 得 m=3;
当 A={2}时,4-4m+m2-m+2=0, 即 m2-5m+6=0, 解得 m=2 或 m=3, 故实数 m 的取值范围为{2,3}.
[规范解答] 由于 B={x|x2-3x+2=0}={1,2},A⊆B 可分以下三种情况:2 分
(1)若 A=∅, 此时有 Δ=4m2-4(m2-m+2)=4m-8<0, 解得 m<2.5 分 (2)若 A B,且 A≠∅, 则 A={1}或 A={2}, 此时 Δ=4m-8=0,∴m=2. 代入方程解得 A={2},符合题意, ∴m=2.8 分
(2)集合相等的实质 如果集合 A 与集合 B 中的元素完全相同,则称集合 A 与集合 B 相等.如果 两集合相等,则所含元素完全相同,与元素顺序无关. (3)子集、真子集、集合相等之间的关系 集合 A⊆B⇒A=B 或 A B.

高中数学第一章集合1.2集合之间的关系与运算1.2.2.1交集与并集bb高一数学

高中数学第一章集合1.2集合之间的关系与运算1.2.2.1交集与并集bb高一数学
条件是
.
解析:由题意得A={x|x>a},B={x|x>2},
因为A∪B=B,所以A⊆B.
在数轴上分别表示出集合A,B,如图所示,
则实数a必须在2的右边或与2重合,所以a≥2.
答案:a≥2
12/13/2021
5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=
解析:由于A∩B={2,3},则3∈B,又B={2,m,4},则m=3.
事实上有:A∩(B∪C)=(A∩B)∪(A∩C);
A∪(B∩C)=(A∪B)∩(A∪C).
12/13/2021



3.填写下表:
交集的运算性质
A∩B=B∩A
A∩A=A
A∩⌀=⌀∩A=⌀
如果 A⊆B,则 A∩B=A
并集的运算性质
A∪B=B∪A
A∪A=A
A∪⌀=⌀∪A=A
如果 A⊆B,则 A∪B=B
3.做一做:已知集合M={x|-2≤x<2},N={0,1,2},则M∩N等于(
A.{0}
B.{1}
C.{0,1,2}
D.{0,1}
解析:按照交集的定义求解即可.
M∩N={x|-2≤x<2}∩{0,1,2}={0,1}.
故选D.
答案:D
12/13/2021
)



二、并集
【问题思考】
1.集合A∪B中的元素个数如何确定?
提示:(1)当两个集合无公共元素时,A∪B的元素个数为这两个集
合元素个数之和;
(2)当两个集合有公共元素时,根据集合元素的互异性,同时属于A
和B的公共元素,在并集中只列举一次,所以A∪B的元素个数为两个

高中数学必修一 《1 2 集合间的基本关系》获奖说课导学案

高中数学必修一 《1 2 集合间的基本关系》获奖说课导学案

【新教材】1.2 集合的基本关系学案(人教A版)1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。

重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.一、预习导入阅读课本7-8页,填写。

1.集合与集合的关系(1)一般地,对于两个集合A,B,如果集合A中_____________元素都是集合B中的元素,我们就说这两个集合有_____________关系,称集合A为B的______.记作:A_________ B(或B _________ A)读作:A包含于B(或B包含A).图示:(2)如果两个集合所含的元素完全相同(A______ B且B ______ A),那么我们称这两个集合相等.记作:A ______B读作:A等于B.图示:2. 真子集A ,存在元素x______ B且x______ A,则称集合A是集合B的真子集。

若集合B记作:A ______B (或B ______A ) 读作:A 真包含于B (或B 真包含A )3.空集__________________的集合称为空集,记作:∅. 规定:空集是任何集合的子集。

4.常用结论(1)A __________ A (类比a a ≤)(2)空集是__________的子集,是_____________的真子集。

(3)若,,A B B C ⊆⊆则A __________ C (类比b a ≤,c b ≤则c a ≤)(4)一般地,一个集合元素若为n 个,则其子集数为________个,其真子集数为________个,特别地,空集的子集个数为________,真子集个数为________。

1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素. ( ) (2)任何一个集合都有子集. ( ) (3)若A =B ,则A ⊆B . ( ) (4)空集是任何集合的真子集. ( ) 2.用适当的符号填空(1) a______{a,b,c} (2) 0_______{x|x 2=0} (3) ∅________{x ∈R|x 2+1=0} (4) {0,1}_____N(5) {∅}_____{x|x 2=x} (6){2,1}____{x|x 2−3x +2=0} 3.设a ∈R ,若集合{2,9}={1-a,9},则a =________.例1 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题:由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?例2 下列能正确表示集合M={-1,0,1}和N={x|x 2+x=0}的关系的维恩图是( )例3 已知集合A={x|-5<x<2},B={x|2a-3<x<a-2}. (1)若a=-1,试判断集合A,B 之间是否存在子集关系; (2)若A ⊇B,求实数a 的取值范围.变式1. [变条件] 【例3】(2)中,是否存在实数a,使得A ⊆B?若存在,求出实数a 的取值范围;若不存在,试说明理由.变式2. [变条件] 若集合A={x|x<-5或x>2},B={x|2a-3<x<a-2},且A ⊇B,求实数a 的取值范围.1.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( )A .2B .-1C .2或-1D .42.已知集合A ={x|-1-x<0},则下列各式正确的是( )A .0⊆AB .{0}∈AC .∅∈AD .{0}⊆A3.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( )A .6B .5C.4 D.34.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是( ) A.A⊆B B.A=BC.A B D.A B5.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有两个子集,则a的值是( ) A.1 B.-1C.0,1 D.-1,0,1=1},则A,B的关系是________.6.设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx7.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.8.已知A={x∈R|x<-2或x>3},B={x∈R|a≤x≤2a-1},若B⊆A,求实数a的取值范围.答案小试牛刀1.答案:(1) ×(2) √(3) √ (4)×2.(1)∈(2)= (3)=(4)⊆(5)⊈(6)=3.-1自主探究例1【答案】见解析【解析】分析:(1)利用子集的概念,按照集合中不含任何元素、含有一个元素、含有两个元素、含有三个元素这四种情况分别写出子集.(2)由特殊到一般,归纳得出.解:(1)不含任何元素的子集为⌀;含有一个元素的子集为{0},{1},{2};含有两个元素的子集为{0,1},{0,2},{1,2};含有三个元素的子集为{0,1,2}.故集合{0,1,2}的所有子集为⌀,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是2n,真子集的个数是2n-1,非空真子集的个数是2n-2. 例2【答案】B【解析】∵N={x|x 2+x=0}={x|x=0或x=-1}={0,-1},∴N ⫋M,故选B. 例3【答案】见解析【解析】分析:(1)令a=-1,写出集合B,分析两个集合中元素之间的关系,判断其子集关系;(2)根据集合B 是否为空集进行分类讨论;然后把两集合在数轴上标出,根据子集关系确定端点值之间的大小关系,进而列出参数a 所满足的条件.解:(1)若a=-1,则B={x|-5<x<-3}. 如图在数轴上标出集合A,B.由图可知,B ⫋A. (2)由已知A ⊇B.①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合, 由图可得{2a -3≥-5,a -2≤2,解得-1≤a≤4.又因为a<1,所以实数a 的取值范围为-1≤a<1 变式1.【答案】见解析【解析】因为A={x|-5<x<2},所以若A ⊆B,则B 一定不是空集.此时有{2a -3≤-5,a -2≥2,即{a ≤-1,a ≥4,显然实数a 不存在.变式2.【答案】见解析【解析】①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合,由图可知2a-3≥2或a-2≤-5,解得a ≥52 或a ≤-3.又因为a<1,所以a ≤-3.综上,实数a 的取值范围为a ≥1或a ≤-3. 当堂检测1-5.CDADD 6.B A 7.m≥38.【答案】见解析【解析】∵B ⊆A ,∴B 的可能情况有B ≠∅和B =∅两种. ①当B =∅时,由a>2a -1,得a<1. ②当B≠∅时,∵B ⊆A ,∴⎩⎪⎨⎪⎧a>3,a≤2a-1或⎩⎪⎨⎪⎧2a -1<-2,a≤2a-1成立,解得a>3;综上可知,实数a 的取值范围是{a|a<1或a>3}.。

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。

1.2 集合之间的关系

1.2 集合之间的关系

1.子集对于两个集合A和B,如果集合A中任何一个元素都属于集合B,那么集合A叫做集合B的子集,记作A⊆B或(B⊇A),读作“A包含于B”或“B包含A”.我们规定,空集包含于任何一个集合,空集是任何集合的子集.2.相等的集合对于两个集合A和B,如果A⊆B且B⊆A,那么叫做集合A与集合B相等,记作A=B,读作“集合A等于集合B”.因此,如果两个集合所含的元素完全相同,那么这两个集合相等.3.真子集对于两个集合A、B,如果A⊆B,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A⫋B,读作“A真包含于B”.4.子集的个数5.韦恩图(文氏图)【例题】判断下列说法是否正确,并说明理由.(1)A⊆A;(2)若A⊆B,B⊆C,则A⊆C;(3)∅⊆A;(4)A⫋B,B⫋C,则A⫋C.【例题】在下面写法中,错误写法的个数是()①{0}∈{0,1};②∅⫋{0};③{0,-1,1}={1,-1,0};④0∈∅;⑤{(0,0)}={0}.A.2B.3C.4D.5【判别】a与{a},{0}与∅之间有何区别?【例题】已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0}的子集个数为 . 【例题】设集合A={1,2,3},B={x|x⊆A},求集合B.【例题】设集合A={1,2,3},B={x|x∈A},求集合B.【例题】已知A={x|x2-2x-3=0},B={x|ax-1=0},若B⫋A,试求a的值.【例题】已知集合A={x|x2-3x+2=0},B={x|0<x<5,x∈N},则满足A⫋C⫋B的集合的个数是()A.1B.2C.3D.4【例题】已知集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}.(1)若B⊆A,求实数a的取值范围;(2)若A⫋B,求a的范围.。

1.2集合之间的关系

1.2集合之间的关系
集合A的子集比集合A的真子集多其自身.
典型例题
例1:用适当的符号(,, , 或=)填空.
(1){, , , }
{ , };
(2) { };
(3)N
Z;
(4)0 ;
(5){1} =
{x | x-1=0};
(6){x|-2<x<3}
{ x|x≥-3 };
典型例题
例2:写出集合 = {, , }的所有子集,并指出哪些是它的真子集.
(2)该集合的所有真子集个数是 .
问题:如果一个集合中有 n 个元素,那么它的所有非空子集个数有多少?
它的非空真子集又有多少个?
结论2:如果一个集合中有 n 个元素;
(1)该集合的所有非空子集个数是 − ;
(2)该集合的所有非空真子集个数是 .
集合M={0,1,3}中,子集个数是 8
{, , }; {, , };
{, , , }
∅, {}
∅; {}; {}; {, }

∅;{}; {};
子集个数
真子集个数
2
=21
1 =21-1
4
=22
3 =22-1
8Байду номын сангаас
=23
7 =23-1
16 =24
15 =24-1
结论1:如果一个集合中有 n 个元素;
(1)该集合的所有子集个数是 ;
练习:判断集合是否为集合的真子集,若是打√, 若不是打×.
(1) = {, , }, = {, , , , , }
(

)
(2) = {, , }, = {, , , }
(
×
)
(3) = ∅, = {}.

高中数学高一上册第一章-1.1.2集合之间的关系课件

高中数学高一上册第一章-1.1.2集合之间的关系课件
A B
读作 “集合A 等于B 集合” 显然 若 A B 且 B A,则 A B
想一想用图示法怎么表示A=B?
三、真子集
对于两个集合 A 和 B , 如果 A B ,且 B 中至少有一个元素不属于 A
那么集合 A 叫做集合B 的真子集.
记作
A B ( B A )
读作 “ A 真包含于B ” (“B 真包含A ”)
70,1 0,1
例3.求出所有符合条件的集合C (1) C{1,2,3}
(2) C {a , b}
(3) {1,2,3} C{1,2,3,4,5} 解: (1) C 可以是以下集合: , { 1 } , { 2 } , { 3 } , { 1 , 2 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } (2) C 可以是以下集合: ,{a},{b} (3) C 可以是以下集合: { 1 ,2 ,3 ,4 } ,{ 1 ,2 ,3 ,5 } ,{ 1 ,2 ,3 ,4 ,5 }解毕
当B=时, a = 0
当B={-2}时,a = 1
当B={3}时,a
=
2
1
3
解毕
有勇气承担命运这才是英雄好汉。——黑塞 说话不要有攻击性,不要有杀伤力,不夸已能,不扬人恶,自然能化敌为友。 树立必信的信念,不要轻易说“我不行”。志在成功,你才能成功。 不会生气的人是愚者,不生气的人乃真正的智者。 友谊要像爱情一样才温暖人心,爱情要像友谊一样才牢不可破。 每天都将自己最好的一面展示给别人。——杨丽娜 我们最值得自豪的不在于从不跌倒,而在于每次跌倒之后都爬起来。 我们不能选择命运,但是我们能改变命运。
答:x2,y5.
例 5 : 已 知 集 合 A = { x | x 2 x 6 0 } 与 集 合 B = {x |a x 1 0 }

集合之间的关系(子集

集合之间的关系(子集

集合之间的关系(子集篇一:集合之间的关系教案1.2集合之间的关系与运算1.2.1 集合之间的关系【学习要求】1.理解子集、真子集、两个集合相等的概念.2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.3.会求已知集合的子集、真子集.4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.【学法指导】通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.填一填:知识要点、记下疑难点1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A?B或B?A,读作“A包含于B”,或“B包含A”.2.子集的性质:①A?A(任意一个集合A都是它本身的子集);②??A(空集是任意一个集合的子集).3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A B (或BA),读作“A真包含于B ”,或“B真包含A ”.4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果A?B ,且B?A ,那么A=B .6.一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x) .反之,如果p(x)?q(x),则A?B研一研:问题探究、课堂更高效[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是ab,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一子集与真子集的概念导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述法?答:集合A,B的表示是用列举法;集合C,D,P,Q的表示是用描述法.问题2 这三组集合每组彼此之间有何关系?答:集合A中的任意一个元素都是集合B的元素,集合C中的任意一个元素都是集合D的元素,集合Q中的任意一个元素都是集合P的元素.小结:一般地,如果集合A中的任意一个元素都是集合B中的元素,那么集合A叫做集合B的子集.记作:A?B或B?A,读作:A 包含于B或B包含A.问题3 类比表示两集合间子集关系的符号与表示两个实数大小关系的等号之间有什么类似之处?答:在实数中如果a大于或等于b,则a,b的关系可表示为a ≥b或b≤a;在集合中如果集合A是集合B的子集,则A,B的关系可表示为A?B(或B?A).所以这是它们的相似之处.问题4 在导引中集合P与集合Q之间的关系如何表示?答:集合P不包含于Q,或Q不包含P,分别记作P Q或QP.问题5 空集与任意一个集合A有什么关系,集合A与它本身有什么关系?答:(1)空集是任意一个集合的子集;(2)任何一个集合A是它本身的子集.问题6 对于集合A,B,C,如果A?B,B?C,那么集合A与C 有什么关系?答:A与C的关系为A?C.问题7 “导引”中集合A中的元素都是集合B的元素,集合B 中的元素不都是集合A的元素,我们说集合A是集合B的真子集,那么如何定义集合A是集合B的真子集?答:如果说集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作:A B(或B A),读作“A真包含于B”或“B真包含A”.问题8 集合A,B的关系能不能用图直观形象的表示出来?1 / 3答:能.我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.问题9 如何用维恩(Venn)图表示集合A是集合B的真子集?答:如图所示:例1 写出集合A={1,2,3}的所有子集和真子集.分析:为了一个不漏地写出集合A={1,2,3}的所有子集,可以分类写,即空集,含一个元素的子集,含两个元素的子集,含三个元素的子集.解:集合A的所有子集是:?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.3小结:集合A={1,2,3}中有三个元素,其子集的个数为8个,即2个,事实上,如果一个集合含有n个元素,则它的子集个数为2个.跟踪训练1 写出满足{3,4}P?{0,1,2,3,4}的所有集合P.解:由题意知,集合P中一定含有元素3,4并且是至少含有三个元素的集合.此所有满足题意的集合P为{0,3,4},{1,3,4},{2,3,4},{0,1,3,4},{0,2,3,4},{1,2,3,4},{0,1,2,3,4}.探究点二集合的相等问题1 观察下面几个例子,你能发现两个集合间有什么关系吗?(1)集合C={x|x是两条边相等的三角形},D={x|x是等腰三角形};(2)集合C={2,4,6},D={6,4,2};(3)集合A={x|(x+1)(x+2)=0},B={-1,-2}.答:可以看出每组的两个集合的元素完全相同,只是表达形式不同.问题2 与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?答:若A?B,且B?A,则A=B.小结:一般地,对于两个集合A与B,如果集合A的每一个元素都是集合B的元素,同时集合B的每一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B.即:如果A?B,且B?A,那么A=B.例2 说出下列每对集合之间的关系:(1)A={1,2,3,4,5},B={1,3,5};2(2)P={x|x=1},Q={x||x|=1};(3)C={x|x是奇数},D={x|x是整数}.解(1)B A;(2)P=Q;(3)C D.小结:在两个集合A,B的关系中,有一个集合是另一个集合的“子集”;或一个集合是另一个集合的“真子集”;或两个集合“相等”;另外还可能有“集合A不包含于B”或“集合B不包含于A”.跟踪训练2 用适当的符号(∈,?)填空:(1)0______{0};0______?;?______{0};22(2)?______{x|x+1=0,x∈R};{0}______{x|x+1=0,x∈R};(3)设A={x|x=2n-1,n∈Z},B={x|x=2m+1,m∈Z},C={x|x =4k±1,k∈Z},则A______B______C. 解析(1)0∈{0},0??,?{0};22(2)?={x|x+1=0,x∈R},{0}{x|x+1=0,x∈R};(3)A,B,C均表示所有奇数组成的集合,∴A=B=C.探究点三集合关系与其特征性质之间的关系问题1 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确命题,试问集合A和B的关系如何?并举例说明.答:集合A是集合B的子集,例如Q={x|x是有理数},P={x|x 是实数},易知Q?P,也容易判断命题“如果x是有理数,则x是实数”是正确命题.这个命题还可以表述为:x是有理数?x是实数,符号“?”表示推出.小结:一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x).反之,如果p(x)?q(x),则A?B.问题2 如果命题“p(x)?q(x)”和命题“q(x)?p(x)”都是正确的命题,那么怎样表示p(x),q(x)的关系?答:p(x)?q(x),符号“?”表示相互推出.例3 判定下列集合A与集合B的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x>3},B={x|x>5};(3)A={x|x是矩形},B={x|x是有一个角为直角的平行四边形}.解:(1)因为x是12的约数?x是36的约数,所以A?B;2 / 3n(2)因为x>5?x>3,所以B?A;(3)因为x是矩形?x是有一个角为直角的平行四边形,所以A=B.小结:当判定用特征性质描述法表示的两个集合关系时,一是可用赋值法,二是从两集合元素的特征性质p(x)入手,通过整理化简,看是否是一类元素.跟踪训练3 确定下列每组两个集合的包含关系或相等关系:(1)A={n|n=2k+1,k∈Z}和B={m|m=2l-1,l∈Z};**(2)C={n|n=2k+1,k∈N}和D={m|m=2l-1,l∈N}.解(1)当k∈Z,l∈Z时,n=2k+1?m=2l-1,所以A=B;**(2)当k∈N,l∈N时,n=2k+1?m=2l-1,所以C?D.练一练:当堂检测、目标达成落实处1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若?A,则A≠?.其中正确的个数是( )A.0B.1C.2D.3解析:由于任何集合都是它本身的子集,故①错;空集只有一个子集就是它本身,故②错;空集是任何非空集合的真子集,故③错;2.满足条件{1,2}M?{1,2,3,4,5}的集合M的个数是( )A.3 B.6C.7 D.8解析:M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.若集合{2x,x+y}={7,4},则整数x,y分别等于__________.???2x=7?2x=4?解:由集合相等的定义得或?,?x+y=4?x+y =7??7x=??2∴?1y=??2舍?x=2?或???y=5 .∴x,y的值分别是2,5.4.观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}.(2)A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}.(4)A={育才中学高一(11)班的女生},B={育才中学高一(11)班的学生}.解:通过观察就会发现,这四组集合中,集合A都是集合B的一部分,从而有A?B.课堂小结:1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;注意:子集并不是由原来集合中的部分元素组成的集合.2.空集是任何集合的子集,是任何非空集合的真子集.3.注意区别“包含于”,“包含”,“真包含”.4.注意区分“∈”与“?”的不同涵义.3 / 3篇二:集合间的基本关系知识点集合间的基本关系1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,(2)A与B是同一集合。

高中数学 第一章 集合 1.2.1 集合之间的关系课件 新人

高中数学 第一章 集合 1.2.1 集合之间的关系课件 新人
1.2 集合之间的关系与运算
1.2.1 集合之间的关系
课程目标
1.理解集合之间包含与 相等的含义,能写出一 些给定集合的子集. 2.能使用维恩(Venn)图 表达集合之间的关系, 尤其要注意空集这一特 殊集合的意义. 3.理解集合关系与其特 征性质之间的关系,并 能写出有限集的子集、 真子集与非空真子集.
3.子集、真子集的性质 (1)规定:空集是任意一个集合的子集.也就是说,对任意集合 A,都有 ⌀⊆A. (2)任何一个集合 A 都是它本身的子集,即 A⊆A. (3)对于集合 A,B,C,如果 A⊆B,B⊆C,则 A⊆C. (4)对于集合 A,B,C,如果 A⫋B,B⫋C,则 A⫋C.
思考 2⌀与{⌀}的关系如何?
A.1
B.2
C.3
D.4
探究一
探究二
探究三
探究四
探究五
解析:(1)由于四边形包括正方形、菱形、平行四边形,故集合 M,N,Q 均 为 P 的子集,再结合正方形、菱形、平行四边形的概念易知 Q⊆M⊆N⊆P.
(2)①中根据元素与集合的关系可知 0∈{0}正确; ②中由空集是任意非空集合的真子集可知⌀⫋{0}正确; ③中集合{0,1}的元素是数,而集合{(0,1)}的元素是点,因此没有包含关 系,故③错误; ④中集合中的元素是点,而点的坐标有顺序性,因此{(a,b)}≠{(b,a)},故 ④错误.综上,应选 B. 答案:(1)B (2)B
提示:⌀⫋{⌀}与⌀∈{⌀}的写法都是正确的,前者是从两个集合间的关系 来考虑的,后者则把⌀看成集合{⌀}中的元素来考虑.
4.集合关系与其特征性质之间的关系 设 A={x|p(x)},B={x|q(x)},则有
集合间的关系 特征性质间的关系
A⊆B

高中数学第一章集合1.2集合之间的关系与运算1.2.2集合的运算教案新人教B版必修1

高中数学第一章集合1.2集合之间的关系与运算1.2.2集合的运算教案新人教B版必修1

高中数学第一章集合1.2集合之间的关系与运算1.2.2集合的运算教案新人教B版必修1整体设计教学分析课本从学生熟悉的集合出发,结合实例,引入集合间的运算,同时,结合相关内容介绍补集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如归纳等.值得注意的问题:在全集和补集的教学中,应注意利用Venn图的直观作用,帮助学生理解补集的概念,并能够用Venn图进行求补集的运算.三维目标1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高归纳的能力.2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.重点难点教学重点:交集与并集,全集与补集的概念.教学难点:理解交集与并集的概念,以及符号之间的区别与联系.课时安排2课时教学过程第1课时导入新课思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.引导学生通过观察、归纳、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.思路3.(1)①如下图甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B 有什么关系?②观察集合A与B与集合C={1,2,3,4}之间的关系.(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A 与B中的所有元素组成的集合C.学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.推进新课新知探究提出问题①通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?②用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.③用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.④试用Venn图表示A∪B=C.⑤请给出集合的并集定义.⑥求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A与B与集合C之间有什么关系?(ⅰ)A={2,4,6,8,10},B={3,5,8,12},C={8};(ⅱ)A={x|x是国兴中学2007年9月入学的高一年级女同学},B={x|x是国兴中学2007年9月入学的高一年级男同学},C={x|x是国兴中学2007年9月入学的高一年级同学}.⑦类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来显示.讨论结果:①集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集,记为A∪B=C,读作A并B.②所有属于集合A或属于集合B的元素组成了集合C.③C={x|x∈A,或x∈B}.④如下图所示.⑤一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B}.⑥集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.(ⅰ)A∩B=C,(ⅱ)A∪B=C.⑦一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.其含义用符号表示为:A∩B={x|x∈A,且x∈B}.用Venn图表示,如下图所示.应用示例思路1例1设A={4,5,6,8},B={3,5,7,8},求A∪B,A∩B.活动:让学生回顾集合的表示法和交集、并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于Venn图写出.观察这两个集合中的元素,或用Venn图来表示,如下图所示.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.A∩B={4,5,6,8}∩{3,5,7,8}={5,8}.点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用Venn图或直接观察得到结果.本题易错解为A∪B={3,4,5,5,6,7,8,8}.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.例2 设A ={x|-1<x <2},B ={x|1<x <3},求A∪B,A∩B.活动:学生回顾集合的表示法和并集、交集的含义.利用数轴,将A 、B 分别表示出来,则阴影部分即为所求.用数轴表示描述法表示的数集.解:将A ={x|-1<x <2}及B ={x|1<x <3}在数轴上表示出来,如下图所示的阴影部分即为所求.由图得A∪B={x|-1<x <2}∪{x|1<x <3}={x|-1<x <3},A∩B={x|-1<x <2}∩{x|1<x <3}={x|1<x <2}.点评:本类题主要考查集合的并集和交集.用描述法表示的数集,运算时常利用数轴来变式训练1.设A ={x|2x -4<2},B ={x|2x -4>0},求A∪B,A∩B.答案:A∪B=R ,A∩B={x|2<x <3}.2.设A ={x|2x -4=2},B ={x|2x -4=0},求A∪B,A∩B.答案:A∪B={3,2},A∩B=∅.3.设A ={x|x 是奇数},B ={x|x 是偶数},求A∩Z ,B∩Z ,A∩B.解:A∩Z ={x|x 是奇数}∩{x|x 是整数}={x|x 是奇数}=A ,B∩Z ={x|x 是偶数}∩{x|x 是整数}={x|x 是偶数}=B ,A∩B={x|x 是奇数}∩{x|x 是偶数}=∅.4.已知A ={(x ,y)|4x +y =6},B ={(x ,y)|3x +2y =7},求A∩B.分析:集合A 和B 的元素是有序实数对(x ,y),A ,B 的交集即为方程组⎩⎪⎨⎪⎧ 4x +y =6,3x +2y =7的解集.解:A∩B={(x ,y)|4x +y =6}∩{(x,y)|3x +2y =7}={(x ,y)|{ 4x +y =63x +2y +7}={(1,2)}.5.已知A ={x|x 是等腰三角形},B ={x|x 是直角三角形},求A∩B.解:A∩B={x|x 是等腰三角形}∩{x|x 是直角三角形}={x|x 是等腰直角三角形}.思路2例1 A ={x|x <5},B ={x|x >0},C ={x|x≥10},则A∩B,B∪C,A∩B∩C 分别是什么?活动:学生先思考集合中元素特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果的寻求就容易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.解:因A ={x|x <5},B ={x|x >0},C ={x|x≥10},在数轴上表示,如下图所示,所以A∩B={x|0<x <5},B∪C={x|x >0},A∩B∩C=∅.点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,借助于直观(数轴或Venn 图)写出结果. 变式训练1.设A ={x|x =2n ,n∈N +},B ={x|x =2n ,n∈N },求A∩B,A∪B.解:对任意m∈A,则有m =2n =2·2n -1,n∈N +,因n∈N +,故n -1∈N ,有2n -1∈N ,那么m∈B,即对任意m∈A 有m∈B,所以A ⊆B.而10∈B 但10A ,即A B ,那么A∩B=A ,A∪B=B.2.求满足{1,2}∪B={1,2,3}的集合B 的个数.解:满足{1,2}∪B={1,2,3}的集合B 一定含有元素3,B ={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.3.设A ={-4,2,a -1,a 2},B ={9,a -5,1-a},已知A∩B={9},求a.解:因A∩B={9},则9∈A,a -1=9或a 2=9,a =10或a =±3,当a =10时,a -5=5,1-a =-9;当a =3时,a -1=2不合题意;当a =-3时,a -1=-4不合题意.故a =10,此时A ={-4,2,9,100},B ={9,5,-9},满足A∩B={9}.4.设集合A ={x|2x +1<3},B ={x|-3<x <2},则A∩B 等于… ( )A .{x|-3<x <1}B .{x|1<x <2}C .{x|x >-3}D .{x|x <1}解析:集合A ={x|2x +1<3}={x|x <1},观察或由数轴得A∩B={x|-3<x <1}. 答案:A例2 设集合A ={x|x 2+4x =0},B ={x|x 2+2(a +1)x +a 2-1=0,a∈R },若A∩B=B ,求a 的值.活动:明确集合A 、B 中的元素,教师和学生共同探讨满足A∩B=B 的集合A 、B 的关系.集合A 是方程x 2+4x =0的解集,可以发现,B ⊆A ,通过分类讨论集合B 是否为空集来求a 的值.利用集合的表示法来认识集合A 、B 均是方程的解集,通过画Venn 图发现集合A 、B 的关系,从数轴上分析求得a 的值.解:由题意得A ={-4,0}.∵A∩B=B ,∴B ⊆A.∴B=∅或B≠∅.当B =∅时,即关于x 的方程x 2+2(a +1)x +a 2-1=0无实数解,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1. 当B≠∅时,若集合B 仅含有一个元素,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时,B ={x|x 2=0}={0}⊆A ,即a =-1符合题意. 若集合B 含有两个元素,则这两个元素是-4、0,即关于x 的方程x 2+2(a +1)x +a 2-1=0的解是-4、0.则有⎩⎪⎨⎪⎧ -4+0=-2(a +1),-4×0=a 2-1.解得a =1,则a =1符合题意.综上所得,a =1或a≤-1.点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题. 变式训练1.已知非空集合A ={x|2a +1≤x≤3a-5},B ={x|3≤x≤22},求能使A (A∩B)成立的所有a 值的集合.解:由题意知A ⊆(A∩B),即A ⊆B ,A 非空,得⎩⎪⎨⎪⎧ 2a +1≤3a-5,2a +1≥3,3a -5≤22.解得6≤a≤9,即所有a 值的集合是{a|6≤a≤9}.2.已知集合A ={x|-2≤x≤5},集合B ={x|m +1≤x≤2m-1},且A∪B=A ,试求实数m 的取值范围.分析:由A∪B=A 得B ⊆A ,则有B =∅或B≠∅,因此对集合B 分类讨论.解:∵A∪B=A ,∴B ⊆A.又∵A={x|-2≤x≤5}≠∅,∴B=∅,或B≠∅.当B =∅时,有m +1>2m -1,∴m<2.当B≠∅时,观察下图:由数轴可得⎩⎪⎨⎪⎧ m +1≤2m-1,-2≤m+1,2m -1≤5.解得-2≤m≤3. 综上所述,实数m 的取值范围是m <2或-2≤m≤3,即m≤3.知能训练1.设a ={3,5,6,8},B ={4,5,7,8},(1)求A∩B,A∪B.(2)用适当的符号(⊇、⊆)填空:(A∩B)________A ,B________(A∩B),(A∪B)________A ,(A∪B)________B ,(A∩B)________(A∪B).解:(1)因A 、B 的公共元素为5、8,则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.又A 、B 两集合的元素为3、4、5、6、7、8,故A∪B={3,4,5,6,7,8}.(2)(A∩B) ⊆A ,B ⊇ (A∩B),(A∪B) ⊇A ,(A∪B) ⊇B ,(A∩B) ⊆ (A∪B).2.设A ={x|x <5},B ={x|x≥0},求A∩B.解:因x <5及x≥0的公共部分为0≤x<5,故A∩B={x|x <5}∩{x|x≥0}={x|0≤x<5}.3.设A ={x|x 是锐角三角形},B ={x|x 是钝角三角形},求A∩B.解:因三角形按角分类时,锐角三角形和钝角三角形彼此孤立,故A 、B 两集合没有公共部分.所以A∩B={x|x 是锐角三角形}∩{x|x 是钝角三角形}=∅.4.设A={x|x>-2},B={x|x≥3},求A∪B.解:在数轴上将A、B分别表示出来,得A∪B={x|x>-2}.5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.分析:M、N中元素是数,A、B中元素是平面内点集,关键是找其元素.解:∵M={1},N={1,2},则A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.7.若A、B、C为三个集合,A∪B=B∩C,则一定有( )A.A⊆C B.C⊆A C.A≠C D.A=∅解析:思路一:∵(B∩C)⊆B,(B∩C)⊆C,A∪B=B∩C,∴(A∪B)⊆B,(A∪B) ⊆C.∴A⊆B⊆C.∴A⊆C.思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B、D,令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,而此时A=C,排除C.答案:A拓展提升观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B、A∪B这两个运算结果与集合A、B 的关系;(2)当A=∅时,A∩B、A∪B这两个运算结果与集合A、B的关系;(3)当A=B={1,2}时,A∩B、A∪B这两个运算结果与集合A、B的关系.由(1)(2)(3)你发现了什么结论?活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A、B的关系.用Venn 图来发现运算结果与集合A、B的关系.(1)(2)(3)中的集合A、B均满足A⊆B,用Venn图表示,如下图所示,就可以发现A∩B、A∪B与集合A、B的关系.解:A∩B=A⇔A⊆B⇔A∪B=B.可用类似方法,可以得到集合的运算性质,归纳如下:A∪B=B∪A,A⊆(A∪B),B⊆(A∪B);A∪A=A,A∪∅=A,A⊆B⇔A∪B=B;A∩B=B∩A;(A∩B)⊆A,(A∩B)⊆B;A∩A=A;A∩∅=∅;A⊆B⇔A∩B=A.课堂小结本节主要学习了:1.集合的交集和并集.2.通常借助于数轴或Venn图来求交集和并集.作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.3.书面作业:课本习题1—2A 3、4、5.设计感想由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn 图写出集合运算的结果,这是突破本节教学难点的有效方法.(设计者:尚大志)第2课时导入新课问题:①分别在整数范围和实数范围内解方程(x -3)(x -3)=0,其结果会相同吗? ②若集合A ={x|0<x <2,x∈Z },B ={x|0<x <2,x∈R },则集合A 、B 相等吗? 学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.推进新课新知探究提出问题①用列举法表示下列集合:A ={x∈Z |(x -2)(x +13)(x -2)=0}; B ={x∈Q |(x -2)(x +13)(x -2)=0}; C ={x∈R |(x -2)(x +13)(x -2)=0}. ②问题①中三个集合相等吗?为什么?③由此看,解方程时要注意什么?④问题①,集合Z 、Q 、R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.⑤已知全集U ={1,2,3},A ={1},写出全集中不属于集合A 的所有元素组成的集合B. ⑥请给出补集的定义.⑦用Venn 图表示U A.活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.讨论结果:①A={2},B ={2,-13},C ={2,-13,2}. ②不相等,因为三个集合中的元素不相同.③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.④在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,通常用U 表示.⑤B={2,3}.⑥对于一个集合A ,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.集合A 相对于全集U 的补集记为U A ,即U A ={x|x∈U,且x A}.⑦如下图所示,阴影表示补集.应用示例思路1例1设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求U A,U B.活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出U A,U B.解:根据题意,可知U={1,2,3,4,5,6,7,8},所以U A={4,5,6,7,8};U B={1,2,7,8}.点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.常见结论:U(A∩B)=(U A)∪(U B);U(A∪B)=(U A)∩(U B).变式训练1.已知U={1,2,3,4,5,6},A={1,3,5}.求U A,A∩U A,A∪U A.解:U A={2,4,6},A∩U A=∅,A∪U A=U.2.已知U={x|x是实数},Q={x|x是有理数},求U Q.解:U Q={x|x是无理数}.3.已知U=R,A={x|x>5},求U A.解:U A={x|x≤5}.例2设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B,U(A∪B).活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B是由集合A、B中公共元素组成的集合,U(A∪B)是全集中除去集合A∪B中剩下的元素组成的集合.解:根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},U(A∪B)={x|x是直角三角形}.变式训练1.已知集合A ={x|3≤x<8},求R A. 解:R A ={x|x <3或x≥8}.2.设S ={x|x 是至少有一组对边平行的四边形},A ={x|x 是平行四边形},B ={x|x 是菱形},C ={x|x 是矩形},求B∩C,A B ,S A.解:B∩C={x|正方形},A B ={x|x 是邻边不相等的平行四边形},S A ={x|x 是梯形}.3.已知全集I =R ,集合A ={x|x 2+ax +12b =0},B ={x|x 2-ax +b =0},满足(I A)∩B={2},(I B)∩A={4},求实数a 、b 的值.答案:a =87,b =-127. 4.设全集U =R ,A ={x|x≤2+3},B ={3,4,5,6},则(U A)∩B 等于…( )A .{4}B .{4,5,6}C .{2,3,4}D .{1,2,3,4}解析:∵U=R ,A ={x|x≤2+3},∴U A ={x|x >2+3}.而4、5、6都大于2+3,∴(U A)∩B ={4,5,6}.答案:B思路2例1已知全集U =R ,A ={x|-2≤x≤4},B ={x|-3≤x≤3},求:(1)U A ,U B ;(2)(U A)∪(U B),U (A∩B),由此你发现了什么结论?(3)(U A)∩(U B),U (A∪B),由此你发现了什么结论?活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.在数轴上表示集合A ,B.解:如下图所示,(1)由图得U A={x|x<-2或x>4},U B={x|x<-3或x>3}.(2)由图得(U A)∪(U B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3}.∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},∴U(A∩B)=U{x|-2≤x≤3}={x|x<-2或x>3}.∴得出结论U(A∩B)=(U A)∪(U B).(3)由图得(U A)∩(U B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4}.∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴U(A∪B)=U{x|-3≤x≤4}={x|x<-3或x>4}.∴得出结论U(A∪B)=(U A)∩(U B).变式训练1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(U A)∪(U B)等于( )A.{1,6} B.{4,5}C.{1,2,3,4,5,7} D.{1,2,3,6,7}答案:D2.设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(I B)等于( )A.{1} B.{1,2} C.{2} D.{0,1,2}答案:D例2设全集U={x|x≤20,x∈N,x是质数},A∩(U B)={3,5},(U A)∩B={7,19},(U A)∩(U B)={2,17},求集合A、B.活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A、B的关键是确定它们的元素,由于全集是U,则集合A、B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.解:U={2,3,5,7,11,13,17,19},由题意借助于Venn图,如下图所示,∴A={3,5,11,13},B={7,11,13,19}.点评:本题主要考查集合的运算、Venn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表现出来,这正体现了数形结合思想的优越性.变式训练1. 设I为全集,M、N、P都是它的子集,则下图中阴影部分表示的集合是( )A.M∩[(I N)∩P] B.M∩(N∪P)C.[(I M)∩(I N)]∩P D.M∩N∪(N∩P)解析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B、D.思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内即在(I N)∩P 内,所以阴影部分表示的集合是M∩[(I N)∩P].答案:A2.设U={1,2,3,4,5,6,7,8,9},(U A)∩B={3,7},(U B)∩A={2,8},(U A)∩(U B)={1,5,6},则集合A=________,B=________.解析:借助Venn图,如下图,把相关运算的结果表示出来,自然地就得出集合A、B了.答案:{2,4,8,9} {3,4,7,9}知能训练1.设全集U=R,A={x|2x+1>0},试用文字语言表述U A的意义.解:A={x|2x+1>0}即不等式2x+1>0的解集,U A中元素均不能使2x+1>0成立,即U A中元素应当满足2x+1≤0.∴U A即不等式2x+1≤0的解集.2.如下图所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是________.解析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M、P的公共部分内.因此阴影部分表示的集合是集合S的补集与集合M、P的交集的交集,即(U S)∩(M∩P).答案:(U S)∩(M∩P)3.设集合A、B都是U={1,2,3,4}的子集,已知(U A)∩(U B)={2},(U A)∩B={1},则A等于( )A.{1,2} B.{2,3} C.{3,4} D.{1,4}解析:如下图所示.由于(U A)∩(U B)={2},(U A)∩B={1},则有U A={1,2}.∴A={3,4}.答案:C4.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则U(S∪T)等于…()A. B.{2,4,7,8}C.{1,3,5,6} D.{2,4,6,8}解析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则U(S∪T)={2,4,7,8}.答案:B5.已知集合I={1,2,3,4},A={1},B={2,4},则A∪(I B)等于( )A.{1} B.{1,3} C.{3} D.{1,2,3}解析:∵I B={1,3},∴A∪(I B)={1}∪{1,3}={1,3}.答案:B拓展提升问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:(1)至少解对其中一题者有多少人?(2)两题均未解对者有多少人?分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},A∪B∪C={至少解对一题的学生},U(A∪B∪C)={两题均未解对的学生}.由已知,A∪C有34个人,C有20个人,从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),U(A∪B∪C)有N2=50-42=8(人).所以至少解对其中一题者有42个人,两题均未解对者有8个人.课堂小结本节课学习了:①全集和补集的概念和求法.②常借助于数轴或Venn图进行集合的补集运算.作业课本习题1—2A 9.设计感想本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节也对此也予以体现,可以利用课余时间学习有关解不等式的知识.备课资料[备选例题]例1已知A={y|y=x2-4x+6,x∈R,y∈N},B={y|y=-x2-2x+7,x∈R,y∈N},求A∩B,并分别用描述法、列举法表示它.解:y=x2-4x+6=(x-2)2+2≥2,A={y|y≥2,y∈N},又∵y=-x2-2x+7=-(x+1)2+8≤8,∴B={y|y≤8,y∈N}.故A∩B={y|2≤y≤8}={2,3,4,5,6,7,8}.例2设S={(x,y)|xy>0},T={(x,y)|x>0且y>0},则( )A.S∪T=S B.S∪T=TC.S∩T=S D.S∩T=解析:S={(x,y)|xy>0}={(x,y)|x>0且y>0或x<0且y<0},则T S,所以S∪T =S.答案:A例3 某城镇有1 000户居民,其中有819户有彩电,有682户有空调,有535户彩电和空调都有,则彩电和空调至少有一种的有________户.解析:设这1 000户居民组成集合U,其中有彩电的组成集合A,有空调的组成集合B,如下图所示.有彩电无空调的有819-535=284户;有空调无彩电的有682-535=147户,因此二者至少有一种的有284+147+535=966户.答案:966差集与补集有两个集合A、B,如果集合C是由所有属于A但不属于B的元素组成的集合,那么C 就叫做A与B的差集,记作A-B(或A\B).例如,A={a,b,c,d},B={c,d,e,f},C=A-B={a,b}.也可以用维恩图表示,如下图甲所示(阴影部分表示差集).特殊情况,如果集合B是集合I的子集,我们把I看作全集,那么I与B的差集I-B,叫做B在I中的补集,记作B.例如,I={1,2,3,4,5},B={1,2,3},B=I-B={4,5}.也可以用维恩图表示,如上图乙所示(阴影部分表示补集).从集合的观点来看,非负整数的减法运算,就是已知两个不相交集合的并集的基数,以及其中一个集合的基数,求另一个集合的基数,也可以看作是求集合I与它的子集B的差集的基数.。

数学教案:集合之间的关系

数学教案:集合之间的关系
2、A={a,b,e,f},B={a,f,b,e},A、B间有包含关系吗?
根据子集的定义可知,任何集合A都是它本身的子集,即
我们规定,空集 是任何集合的子集,即 。
定义2真子集:如果集合B是集合A的子集,并且A中至少有一个元素不属于B,那么集合B叫做集合A真子集,记作:B A或A B, 读作B真包含于A或A真包含B。( )
学年学期课程名称:数学
班级
12大专
周节次
日期
课题
1-2集合之间的关系
课型
新授课
教学地点
教室
教学目标
1.理解集合之间的关系。
2.理解集合子集、真子集的区别和联系。
3.培养学生分析、比较、归纳的逻辑思维能力。
教学重点
子集、真子集定义的理解,
教学难点
如何写出给定集合的子集和真子集。
教学方法与教学手段
讲授法,多媒体,三角板
如 Φ {0}, 。不能写成Φ={0},Φ∈{0}
3、例题:
例1、写出N,Z,Q,R的包含关系,并用文氏图表示。
解: ,如图:
例2写出集合A={a,b,c}的所有子集,指出其中的真子集。
解:子集有 Φ {a} {b} {c} {a,b} {a,c} {b,c} {a,b,c};
真子集有Φ {a} {b} {c} {a,b} {a,c} {b,c}.
板书设计
一、复习注意
1、集合的定义,元素的定义2)真子集
2、集合与元素的关系定义
3、常用数集的表示符号性质
4、集合的表示方法例题
二、新课练习
1、集合的包含关系3、集合的相等关系
1)子集定义
定义例题
例题练习
三、小结
四、作业

集合间的基本关系新教材人教版高中必修第一册

集合间的基本关系新教材人教版高中必修第一册

课前预习
课堂互动
素养达成
本节内容结束
27
4
课前预习
课堂互动
素养达成
(2)空集 注意区分与空集有关的符号:∅,0,{∅},{0}
一般地,我们把__不__含__任__何__元__素___的集合叫做 空集 ,记作∅.规定:空集是任何集合的
子集.
空集是任何非空集合的真子集
5
课前预习
课堂互动
素养达成
2.集合间关系的性质 (1)任何一个集合都是它本身的子集,即A⊆A. (2)对于集合A,B,C: ①若A⊆B,且B⊆C,则A⊆C; ②若A B,B C,则A C; ③若A⊆B,A≠B,则A B.
10
课前预习
课堂互动
素养达成
角度2 数集间的包含关系 【例1-2】 设集合A={0,1},集合B={x|x<2或x>3},则A与B的关系为( )
A.A∈B
B.B∈A
C.A⊆B
D.B⊆A
解析 ∵0<2,∴0∈B.
又∵1<2,∴1∈B.∴A⊆B.
答案 C
11
课前预习
课堂互动
素养达成
规律方法 判断集合关系的方法 (1)观察法:一一列举观察. (2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集 合元素的特征判断关系. (3)数形结合法:利用数轴或Venn图.
∵B⊆A,∴m3 =1 或m3 =3,解之得 m=3 或 m=1. 综上可知,所求实数m的取值集合为{0,1,3}.
18
课前预习
课堂互动
素养达成
规律方法 由集合间的关系求参数问题的注意点及常用方法 (1)注意点:①不能忽视集合为∅的情形;②当集合中含有字母参数时,一般需要 分类讨论. (2)常用方法:对于用不等式给出的集合,已知集合的包含关系求相关参数的范 围(值)时,常采用数形结合的思想,借助数轴解答.

数学人教B必修1第一章121 集合之间的关系

数学人教B必修1第一章121 集合之间的关系

1、2、1 集合之间的关系1。

子集一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A、读作“A包含于B",或“B包含A".理解子集的定义要注意以下七点:(1)“A是B的子集”的含义:集合A中的任意一个元素都是集合B中的元素,即由任意x∈A,能推出x∈B、例如:{1,2,3}⊆N,N⊆R,{x|x为山东人}⊆{x|x为中国人}等.(2)当集合A中存在着不是集合B的元素,我们就说A不是B的子集,记作“A B”(或B A),读作“A不包含于B”(或“B不包含A”)。

例如:A={1,2,3}不是B={2,3,4,5,6}的子集,因为集合A中的元素1不是集合B中的元素。

(3)任意一个集合是它本身的子集.因为对于任意一个集合A,它的任意一个元素都属于集合A本身,记作A⊆A、例如:{1,5}⊆{1,5}等。

(4)空集是任意一个集合的子集,即对于任意一个集合A,都有∅⊆A、(5)在子集的定义中,不能理解为子集A是B中的“部分元素"所组成的集合.因为若A =∅,则A中不含任何元素;若A=B,则A中含有B中的所有元素。

但在这两种情况下集合A都是集合B的子集.(6)包含关系具有传递性:对于集合A,B,C,若A⊆B,B⊆C,则A⊆C、(7)写集合的所有子集时,注意按一定顺序写出,避免遗漏和重复.【例1】已知集合M={0,1},集合N={0,2,1-m},若M⊆N,则实数m=__________、解析:∵M⊆N,M={0,1},∴1∈N、∴1-m=1,即m=0、答案:0点技巧有限集合子集的确定技巧(1)确定所求的集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合自身,看它们是否能取到。

2。

真子集如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B 的真子集,记作A B或B A,读作“A真包含于B”,或“B真包含A”.例如:{1}{1,2,3}.关于真子集注意以下四点:(1)空集是任何非空集合的真子集。

第一章-1.2-集合的基本关系高中数学必修第一册北师大版

第一章-1.2-集合的基本关系高中数学必修第一册北师大版

2
1
6
∈ }, = {| = + , ∈ },则,,满足的关系是( B
A. = ⫋
B. ⫋ =
)
C. ⫋ ⫋
D. ⫋ ⫋
【解析】方法1 简单地列举出各集合中的元素. = {⋯
1 7 13 19
, , , , ,⋯ },
66 6 6
27
或ቐ2 − 1 ≤ 5,
D.4
方法帮|关键能力构建
题型1 判断集合之间的关系
例9 指出下列各组中两个集合之间的关系:
(1) = {| = 2 − 1, ∈ }, = {| = 2 + 1, ∈ };
【解析】,都表示奇数集,故 = .
(2) = {| − 1 < < 4}, = {| − 5 < 0}.
(【易错点】解题时易忽略空集这种情形,从而致错)和 ≠ ⌀ 两种情况讨论.
(1)当 = ⌀ 时, − 2 = 0无解,可得 = 0.
(2)当 ≠ ⌀ 时, = {−1}或 = {3}.
①当 = {−1}时,由 × −1 − 2 = 0,可得 = −2;
2
3
②当 = {3}时,由 × 3 − 2 = 0,可得 = .
【解析】集合 = {| < 5},用数轴表示集合,,如图1-1.2-6所示,由图可知 ⫋ .
图1-1.2-6

2
1
4

4
1
2
例10 (2024·江西省南昌一中期中)设集合 = {| = + , ∈ }, = {| = + ,
∈ },则它们之间的关系是( B
)
A. =
方法2(证明两集合互为子集)

1.1.2 集合间的基本关系

1.1.2 集合间的基本关系

1.1.2 集合间的基本关系一、子集1、定义:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含包含关系,称集合A 为集合B 的子集2、记法与读法:记作B A ⊆(或A B ⊇),读作“A 含于B ”(或“B 包含A ”)3、结论(1)任何一个集合是它本身的子集,即A A ⊆.(2)对于集合A ,B ,C ,若A ⊆B ,且B ⊆C ,则C A ⊆4、对子集概念的理解(1)集合A 是集合B 的子集的含义是:集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A 能推出x ∈B .例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A 中存在着不是集合B 的元素,那么集合A 不包含于B ,或B 不包含A .此时记作A B 或B ⊉A .(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N.而不能写成{0}∈N ,“∈”只能用于元素与集合之间.如0∈N ,而不能写成0⊆N.二、集合相等1、集合相等的概念如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集合A 的子集(B ⊆A ),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作B A =.2、对两集合相等的认识(1)若A ⊆B ,又B ⊆A ,则A =B ;反之,如果A =B ,则A ⊆B ,且B ⊆A .这就给出了证明两个集合相等的方法,即欲证A =B ,只需证A ⊆B 与B ⊆A 同时成立即可.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.三、真子集1、定义:如果集合A ⊆B ,但存在元素A x ∈,且B x ∈,我们称集合A 是集合B 的真子集2、记法与表示:3、对真子集概念的理解(1)在真子集的定义中,A B 首先要满足A ⊆B ,其次至少有一个x ∈B ,但x ∉A .(2)若A 不是B 的子集,则A 一定不是B 的真子集.四、空集1、定义:我们把不含任何元素的集合,叫做空集2、记法:∅3、规定:空集是任何集合的子集,即∅⊆A4、特性:(1)空集只有一个子集,即它的本身,∅⊆∅(2)A ≠∅,则∅真包含A5、∅与{0}的区别(1)∅是不含任何元素的集合;(2){0}是含有一个元素的集合,∅{0}.题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是( B )①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0} A.1B.2 C.3 D.4题型二、有限集合子集的确定例2(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}M⊆{1,2,3,4,5}的集合M有________个.[解析](1)集合M的真子集所含有的元素的个数可以有0个,1个或2个,含有0个为∅,含有1个有3个真子集{1},{2},{3},含有2个元素有3个真子集{1,2}{1,3}和{2,3},共有7个真子集,故选B.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M共有7个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.[活学活用]非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.解析:由“若a∈S,则6-a∈S”知和为6的两个数都是集合S中的元素,则()集合S中含有1个元素:{3};集合S中含有2个元素:{2,4},{1,5};集合S中含有3个元素:{2,3,4},{1,3,5};集合S中含有4个元素:{1,2,4,5};集合S中含有5个元素:{1,2,3,4,5}.故满足题意的集合S共有7个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.[解]当B=∅时,只需2a>a+3,即a>3;当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.[活学活用]1、已知集合A ={x |1<ax <2},B ={x |-1<x <1},求满足A ⊆B 的实数a 的取值范围. 解:(1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1}且A ⊆B , 如图作出满足题意的数轴:∴⎩⎪⎨⎪⎧ a >0,1a≥-1,2a ≤1,∴a ≥2. (3)当a <0时,A ={x |2a <x <1a } ∵A ⊆B ,如图所示, ∴⎩⎪⎨⎪⎧ a <0,2a≥-1,1a ≤1,∴a ≤-2.综上所述,a 的取值范围是{a |a =0或a ≥2或a ≤-2}.2、已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R},若B ⊆A ,求实数a 的取值范围.解:A ={x |x 2+4x =0}={0,-4},∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}.(1)当B =∅时,方程x 2+2(a +1)x +a 2-1=0无实根,则Δ<0,即4(a +1)2-4(a 2-1)<0.∴a <-1.(2)当B ={0}时,有⎩⎪⎨⎪⎧Δ=0,a 2-1=0,∴a =-1.(3)当B ={-4}时,有⎩⎪⎨⎪⎧Δ=0,a 2-8a +7=0,无解. (4)当B ={0,-4}时,由韦达定理得a =1.综上所述,a =1或a ≤-1.课堂练习1.给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有( )A .0个B .1个C .2个D .3个解析:由空集的性质可知,只有④正确,①②③均不正确.答案:B2.已知A ={x |x 是菱形},B ={x |x 是正方形},C ={x |x 是平行四边形},那么A ,B ,C 之间的关系是 ( B )A .A ⊆B ⊆C B .B ⊆A ⊆C C .A B ⊆CD .A =B ⊆C3.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.解析 :∵B ⊆A ,B ={3,4},A ={-1,3,m}∴m ∈A ,∴m =4.答案:44.集合A ={x|0≤x<3且x ∈N}的真子集的个数为________.解析:由题意得A ={0,1,2},故集合A 有7个真子集.答案:75.已知集合A ={x|1≤x ≤2},B ={x|1≤x ≤a}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:(1)若A 是B 的真子集,即A B ,故a>2.(2)若B 是A 的子集,即B ⊆A ,则a ≤2.(3)若A =B ,则必有a =2.课时跟踪检测(三) 集合间的基本关系一、选择题1.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间最适合的关系是( )A .A ⊆BB .A ⊇BC .A BD .A B2.已知集合M ={x |-5<x <3,x ∈Z },则下列集合是集合M 的子集的为( )A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤3,x∈N}3.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是( ) A.1 B.-1C.1或-1 D.0,1或-14.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为( ) A.6 B.5C.4 D.35.已知集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么( ) A.P M B.M PC.M=P D.M P二、填空题6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.8.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值构成的集合为________.三、解答题9.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求实数a组成的集合C.10.设集合A={x|-1≤x+1≤6},B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.答 案课时跟踪检测(三)1.选D 显然B 是A 的真子集,因为A 中元素是3的整数倍,而B 的元素是3的偶数倍.2.选D 先用列举法表示集合,再观察元素与集合的关系.集合M ={-2,-1,0,1},集合R ={-3,-2},集合S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而集合S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .故选D.3.选D 由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1.4.选A 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.故选A.5.选C ∵⎩⎪⎨⎪⎧ x +y <0,xy >0,∴⎩⎪⎨⎪⎧ x <0,y <0. ∴M =P .6.解析:∵y =(x -1)2-2≥-2,∴M ={y |y ≥-2}.∴N M .答案:N M7.解析:由Venn 图可得AB ,CD B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.答案:小说 文学作品 叙事散文 散文8.解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时,方程化为2x =0,∴x =0,此时A ={0},符合题意.当a ≠0时,Δ=22-4·a ·a =0,即a 2=1,∴a =±1.此时A ={-1},或A ={1},符合题意.∴a =0或a =±1.答案:{0,1,-1}9.解:由x 2-3x +2=0,得x =1,或x =2.∴A ={1,2}.∵B ⊆A ,∴对B 分类讨论如下:(1)若B =∅,即方程ax -2=0无解,此时a =0.(2)若B ≠∅,则B ={1}或B ={2}.当B ={1}时,有a -2=0,即a =2;当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.10.解:化简集合A 得A ={x |-2≤x ≤5}.(1)∵x ∈Z ,∴A ={-2,-1,0,1,2,3,4,5},即A 中含有8个元素,∴A 的非空真子集数为28-2=254(个).(2)①当m ≤-2时,B =∅⊆A ;②当m >-2时,B ={x |m -1<x <2m +1},因此,要B ⊆A ,则只要⎩⎪⎨⎪⎧ m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述,知m 的取值范围是:{m |-1≤m ≤2或m ≤-2}.。

1_2集合之间的关系

1_2集合之间的关系

【课题】1.2 集合之间的关系
【教学目标】
知识目标:
掌握集合之间的关系(子集、真子集、相等)的概念,会判断集合之间的关系.
水平目标:
(1)通过集合语言的学习与使用,培养学生的数学思维水平;
(2)通过集合的关系的图形分析,培养学生的观察水平.
情感目标:
(1)经历利用集合语言描绘集合与集合间的关系的过程,养成规范意识,发展严谨的作风;
(2)经历利用图形研究集合间关系的过程,体验“数形结合”的探究方法.
【教学重点】
集合与集合间的关系及其相关符号表示.
【教学难点】
真子集的概念.
【教学设计】
(1)从复习上节课的学习内容入手,通过实际问题导入知识;
(2)通过实际问题引导学生理解真子集,突破难点;
(3)通过简单的实例,理解集合的相等关系;
(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
}6
x<.
是用来表示集合与集合之间关系的符号;
”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,准确选用符号.
的元素,所以
}6
x<的元素,
}6
x<.
∈”或“∉
}2
的子集,并且集合
叫做集合
B(或B A),读作“

空集是任何非空集合的真子集.
对于集合A、B、C,假如A
典型例题
{1,2,3,4,5,6}
=9}={3,-3}
x x=={x x= |2}
;⑸a{0}∅ 2
{|x x+ |10}
x x+=2。

1.2 集合之间的关系

1.2 集合之间的关系

【例题精解】
【例1】 用适当的符号(∈,∉,⊆,⊇,⊈,⫋,⫌,=)填空:
(1)2
{2,4,6,8}
(2){a}
{a,b,c,d}
(3){1,3,7}
{1,7}
(4)∅
{0}
(5){矩形}
{平行四边形}
(6)∅
{0,1,2}
(7){4,5,6}
{6,5,4}
(8)∅
{x|x2+1=0,x∈R}
【点评】 正确理解∈,∉,⊆,⊇,⊈,⫋的涵义:元素与集合的关
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/122021/9/122021/9/122021/9/129/12/2021
•14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月12日星期日2021/9/122021/9/122021/9/12
系是“从属关系”:“属于”或“不属于”,集合与集合的关系是
“包含关系”:“包含”或“不包含”;正确区分子集与真子集.
【例2】 (1)集合A={-2,2},B={-2,0,2},则 (
A.A⊈B
B.A⫋BC.A=B)Fra bibliotekD.A∈B
【点评】 由真子集、集合相等的概念,集合与集合的关系
很快排除A、C、D.
(2)已知集合M={x|x2=4}与集合N={-2,2},则下列关系正确的是
D.(1,2)∉{(x,y)|x+y=3,x∈N+,y∈N+}
【答案】B
5.下列关系正确的是 (
A.0⊆{0}
C.(1,2)⊆{(1,2)}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑵A={x|x是我校高一(6)班女生}, B={x|x是我校高一(6)班学生};
A ≠ B
⑶ A={x|x是两条边相等的三角形}, B={x|x是等腰三角形}.
BA
A B
王新敞
奎屯
新疆
如果两个集合的元素相同, 3.集合相等:
那么这两个集合相等。
记作A=B 如果 A B,又 B A,那么 A=B; 反之,如果 A=B,那么 A B,并且 B A.
②A={1,3,5}, B={1,3,6,9}
③A={0}, B={x | x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}
( ×)
( ×) (√)
注意
(1)任何一个集合A都是它本身的子 集,即 A A 2) 集合A不包含于集合B,或集合B 不包含集合A时,
(ቤተ መጻሕፍቲ ባይዱ
记作
A A/ B , B /
奎屯
新疆
• 1.子集:
• 2.真子集: • 3.集合相等:
王新敞
奎屯
新疆
1.子集:如果集合A的任何一个元素都是集合B的元
素,那么集合A叫做集合B的子集, 记作:A集合A包含于集合B,或集合B包含 集合A
记作
A B (或B A)
读作 “A包含于B”(或B包含A)
练习1、判断集合A是否为 集合B的子集,若是则在( )打√,若 不是则在( )打×: ①A={1,3,5}, B={1,2,3,4,5,6} ( √ )

, BC ,
B
那么A C
.
C
A
B (3)对于集合A, B, C, 如果A ≠ 那么 A ≠ C
.
C , , B≠
例1:写出{1,2,3}的所有子集,并指出 其中哪些是它的真子集.
解: {1,2,3}的所有子集有: , {1} , {2}, {3} , {1,2} , {1,3} , {2,3}, {1,2,3}

练习3
用适当的符号(,,=,
(1)a
(2){3,5}____{1,3,5,7} ;
(3){a,b}___{b,a} ; (4){2,4,6,8}___{2,8}; (5) (7)5 { 1,2,3 };
{ a};


)填空: ,

(6){x | x是矩形 } (8) ____{0}
王新敞
奎屯
新疆
如果集合A 是B的子集,但B中至少 2.真子集:
有一个元素不属于,我们称集合A是 集合B的真子集。
记作:
B A≠
(或 B ≠ A )
读作:A真包含于B(或B真包含A)
B A
练习2、观察下面几个例子,你能 发现两个集合之间的关系吗?A中 任意一个元素与集合B有什么关系? A ≠ B ⑴ A={1,2,3} , B={1,2,3,4,5};
中等职业教育规划教材——数学 第一章集合
1.2 集合之间的关系
授课人:谭君玲
教学目的:
(1)使同学们初步理解子集、真子集的概念; (2)使同学们理解集合相等的含义;
(3)使同学们会判断集合与集合之间的关系。
教学重点:理解子集、真子集的概念;
教学难点: 会判断集合与集合之间的关系。
课型:
新授课
王新敞
⑶ A={x|x是两条边相等的三角形},A B
B={x|x是等腰三角形}.
BA
A B
子集和真子集的区别是什么? 子集包括真子集和相等两种关系
注意
子集、真子集的性质
(1)规定:空集是任何集合的子集( A ); 是任何非空集合的真子集。 A(非空) (2)对于集合A, B, C, 如果 A B

{x | x是平行四边形 };
Q;
课堂小结
1.子集,真子集的概念与性质; 2. 集合的相等;
3. 求集合的子集和真子集; 4.集合与集合,元素与集合的关系.
作业布置
1.课本第9页1,2,3
2. 练习册 第5页A组
.
本节课到此结束,请同学们 课后再做好复习。谢谢!
再见!
例2
指出下面集合之间的关系: T={ -1,1 };
(1)A={ 2,4,5,7 },B={ 2,5 };
(2)S={ x | x2=1 }, (3)C={x|x是正奇数}, D={x|x是正整数}; 解
(3)C ≠ D ; 或者D C
(1)B A ; 或者 A B ≠ ≠ ( 2) S = T ;
相关文档
最新文档