1.1.2集合间的基本关系练习题
2022-2022年高一必修一第1章 1.1.2 集合的基本关系数学题带答案和解析(人教A版)

2022-2022年高一必修一第1章1.1.2 集合的基本关系数学题带答案和解析(人教A版)填空题已知集合M={x|2m<x<m+1},且M=∅,则实数m的取值范围是____.【答案】m≥1【解析】∵M=∅,∴2m≥m+1,∴m≥1.故答案为m≥1解答题判断下列集合间的关系:(1)A={x|x-3>2},B={x|2x-5≥0};(2)A={x∈Z|-1≤xB(2) B A.【解析】试题分析:(1)利用一元一次不等式的解法分别求出集合A和集合B,由此能得到集合A是集合B的真子集.(2)A={x∈Z|-1≤x},∴利用数轴判断A、B的关系.如图所示,A B.(2)∵A={x∈Z|-1≤xA.选择题如果集合A={x|x≤},a=,那么()A. a∉AB. {a}AC. {a}∈AD. a⊆A【答案】B【解析】a=,∴a∈A,A错误.由元素与集合之间的关系及集合与集合之间的关系可知,C、D错,B正确.故选B点睛:本题考查了元素与集合,集合与集合的关系,元素与集合之间用属于∈,不属于∉的符号;集合与集合之间用包含于⊆,真包含,不包含相等=,的符号表示.解答题已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P ={x|x=+,p∈Z},试确定M,N,P之间的关系.【答案】M P=N.【解析】试题分析:M={x|x=m+,m∈Z}={x|x=,m ∈Z}={x|x=,m∈Z}M表示3的偶数倍加1除以6的数;N ={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},N表示3的整数倍加1除以6的数;P={x|x=+,p∈Z}={x|x=,p∈Z},P表示3的整数倍加1除以6的数即可得出结论.试题解析:∵M={x|x=m+,m∈Z}={x|x=,m∈Z}={x|x=,m∈Z},N={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},P={x|x=+,p∈Z}={x|x=,p∈Z},比较3×2m+1,3(n-1)+1与3p+1可知,3(n-1)+1与3p+1表示的数完全相同,∴N=P,3×2m+1只相当于3p+1中当p为偶数时的情形,∴M P=N.综上可知M P=N.解答题设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,求实数a、b的值.【答案】a=-1,b=1, a=b=1, a=0,b=-1【解析】试题分析:集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1},分情况进行讨论即可.试题解析:∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1}.当B={-1}时,Δ=4a2-4b=0且1+2a+b=0,解得a=-1,b=1.当B={1}时,Δ=4a2-4b=0且1-2a+b=0,解得a=b=1.当B={-1,1}时,有(-1)+1=2a,(-1)×1=b,解得a=0,b=-1.综上:a=-1,b=1;或a=b=1;或a=0,b=-1选择题集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的子集个数为()A. 7B. 12C. 32D. 64【答案】D【解析】集合P*Q的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P*Q的子集个数为26=64.故选D选择题若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A 有()A. 3个B. 4个C. 5个D. 6个【答案】D【解析】集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.故选D选择题设A={x|-1a},若A B,则a的取值范围是()A. {a|a≥3}B. {a|a≤-1}C. {a|a>3}D. {a|aB,画出数轴如图可求得a≤-1,注意端点能取否得-1是正确求解的关键.故选B填空题集合⊆{(x,y)|y=3x+b},则b=____.【答案】2【解析】得,代入y=3x+b得b=2.故答案为2选择题已知集合M={(x,y)|x+y0}和P={(x,y)|xM B. M P C. M=P D. M P【答案】C【解析】∴M=P.故选C填空题已知集合A={1,2,m3},B={1,m},B⊆A,则m=____.【答案】0或2或-1【解析】由B⊆A得m∈A,所以m=m3或m=2,所以m=2或m=-1或m=1或m=0,又由集合中元素的互异性知m≠1.所以m =0或2或-1.故答案为0或2或-1填空题已知集合{2x,x+y}={7,4},则整数x=___,y=____.【答案】25【解析】由集合相等的定义可知或解得或,又x,y∈Z.故x=2,y=5.故答案为2,5选择题已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x 是等腰直角三角形},D={x|x是等边三角形},则()A. A⊆BB. C⊆BC. D⊆CD. A⊆D【答案】B【解析】∵等腰直角三角形必是等腰三角形,∴C⊆B.故选B选择题下列命题中,正确的有()①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A. ①②B. ②③C. ②④D. ③④【答案】C【解析】空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.选择题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则a的值不可能是()A. 0B. 1C. 2D. 3【答案】D【解析】试题分析:由B={x|ax﹣2=0},且B⊆A,故讨论B的可能性,从而求a.解:∵B={x|ax﹣2=0},且B⊆A,∴若B=∅,即a=0时,成立;若B={1},则a=2,成立;若B={2},则a=1,成立;故a的值有0,1,2;故不可能是3;故选D.选择题若{1,2}={x|x2+bx+c=0},则()A. b=-3,c=2B. b=3,c=-2C. b=-2,c=3D. b=2,c=-3【答案】A【解析】由条件知,1,2是方程x2+bx+c=0的两根,由韦达定理得b=-3,c=2.故选A选择题集合A={(x,y)|y=x}和B=,则下列结论中正确的是()A. 1∈AB. B⊆AC. (1,1)⊆BD. ∅∈A【答案】B【解析】B=={(1,1)},而A={(x,y)|y=x},B 中的元素在A中,所以B⊆A故选B.选择题下列四个集合中,是空集的是()A. {0}B. {x|x>8,且x<5}C. {x∈N|x2-1=0}D. {x|x>4}【答案】B【解析】选项A、C、D都含有元素.而选项B无元素,故选B.填空题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则实数a的所有可能值构成的集合为____.【答案】{0,1,2}【解析】∵B⊆A,∴B=∅,{1}或{2}.当B=∅时,a=0;当B={1}时,a=2,当B={2}时,a=1.∴a∈{0,1,2}.故答案为{0,1,2}11。
1.2 集合间的基本关系(基础知识+基本题型)(含解析)

1.2 集合间的基本关系(基础知识+基本题型) 知识点一 子集1.子集定义 一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”) 图示或 结论 (1)任何一个集合是它本身的子集,即A A ⊆;(2)对于集合A ,B ,C ,若A B ⊆,且B C ⊆,则A C ⊆.2.V enn 图用平面上封闭曲线的内部代表集合,这种图称为Venn 图.表示集合的Venn 图的边界是封闭曲线,它可以是圆、矩形、椭圆,也可以是其他封闭曲线.提示:(1)注意符号“∈”与“⊆”的区别. “⊆”只用于集合与集合之间,如{0}N ⊆,而不能写成0N ⊆;“∈”只能用于元素与元素之间,如0N ∈,而不能写成{0}N ∈.(2)“A 是B 的子集”:集合A 中的任何一个元素都是集合B 中的元素,即由任意x A ∈能推出x B ∈.(3)当A 不是B 的子集时,我们记作“A B ”(或“B A ”),读作“A 不含于B ”(或“B 不包含A ”),此时A 中至少存在一个元素不是B 中的元素,用图形语言表示如图1.1-2所示.例如,集合{,,}A a b c =不是集合{,,,,}B b c d e f =的子集,因为集合A 中的元素a 不是集合B 中的元素.知识点二 集合相等如果集合A 是集合B 的子集()A B ⊆,且集合B 是集合A 的子集()B A ⊆,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.拓展:(1)若A B ⊆,且B A ⊆,则A B =;反之,若A B =,则A B ⊆,且B A ⊆,这就给出了证明两个集合相等的方法,即欲证A B =,只需要证A B ⊆与B A ⊆均成立即可.(2)若两个集合相等,则这两个集合中所含的元素完全相同,与元素的排列顺序无关.(3) 要判断两个集合是否相等,对于元素较少的有限集,可用列举法将元素列举出来,看两个集合中的元素是否完全相同;对于元素较多的有限集或无限集,应从“互为子集”入手进行判断.()A B B A A A AB B B 1.12-图知识点三 真子集定义 如果集合A B ⊆,但存在元素x B ∈,且x A ∈/,我们称集合A 是集合B 的真子集,记作A B (或B A )图示结论(1)若A B ⊆,且A B ≠,则AB ; (2)若AB ,且BC ,则A C . 提示(1)在证明AB ,时,应先证明A B ⊆,再证明B 中至少存在一个元素a ,使得a A ∉即可. (2) A B 对任意x A ∈都有x B ∈,但存在0x B ∈,且0x A ∉.(3)注意符号“⊆”与“”的区别. A B ⊆⇒A B =或A B ,例如,若集合{}1,2A =,{}1,2,3B =,则A 是B 的子集,也是真子集,用A B ⊆与A B 均可,但用AB 更准确. 知识点四 空集我们把不含任何元素的集合叫做空集,记为φ,并规定:空集是任何集合的子集.在这个规定的基础上,结合子集和真子集的有关概念。
1.1.2集合间的基本关系2

结论: 任何一个集合是它本身的子集
观察集合A与集合B的关系: (1)A={1,3,5}, B={1,2,3,4,5,6} (2) A={四边形}, B={多边形}
观察集合A与集合B的关系: (1) A={a,b,c,d}, B={d,b,c,a} (2) A={-1,1}, B={x x2-1=0}
0,1,2 2,0,1
A.1
B.2
C.3
D. 4
5.下列六个关系式中正确的有( )
①a,b b, a;②a,b b, a;③a,b b, a;④0 ;⑤ 0;
⑥ 0 0.
A.6个 B.5个 C.4个 D.3个及3个以下
答案 ACAA B
记作 A B(或B A) 也说集合A是集合B的子集.
A B
A,B BA
或
图中A是否为B的子集?
B
A
(1)
BA (2)
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} (√ )
②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2+2=0} (× )
④A={a,b,c,d}, B={d,b,c,a} (√ )
定义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集
合A等于集合B,记作 A=B 若A B且B A, 则A=B;
例题讲解 例1 写出{0,1,2}的所有子集,并
指出其中哪些是它的真子集.
例2、集合 A={x|x-3>2},B={x|x 2}表
1.1.2集合间的基本关系

空集是任何非空集合的真子集.
小结:集合之间的基本关系:
( 1 )任何一个集合是它本身的子集,即 A A ( 2 )对于集合A、B、C,如果A B,B C,那么 A C.
例题: 写出集合{a, b}的所有子集,并指出哪些是它 的真子集.
练习三.反馈演练
1、下列命题: (1)空集没有子集; (2)任何集合至少有两个 子休; (3)空集是任何集合的真子集; (4)若 1、元素与集合是什么关系? (属于与不属于的关系) 2、集合的两种表示方法是什么? (列举法和描述法) 3、用适当的符号填空: (1 )0 N;(2) 2 Q;(3)-1.5 R。 4、用适当的方法表示下列集合? (1)由1~10以内的所有合数组成的集合。 (2)不等式2x+1>5的所有的解组成的集合。 (3)方程x2+1=0的所有实数根组成的集合。
B为这个班学生的全体组成的集合; 集合A的任何一个元素都是集合B的元素 ⑶ 设C={x|x是两条边相等的三角形},D={x|x是 等腰三角形}.
集合C的任何一个元素都是集合D的元素
1.1.2集合间的基本关系
子集的概念
一般地,对于两个集合A、B, 如果集合A中任 意一个元素都是集合B中的元素,我们就说这两个 集合有包含关系。 称集合A为集合B的子集. 记作 A B ( 或B A) 读作 “A含于B”( 或“B包含A” )
③A={-1,1}, B={x|x2-1=0} ( ×) ④A={1,3,5,}, B={3,5,1,6} (√ )
问题四: 已知M={x|x2+1=0}.你能否用列举法表示该集合?
我们知道,方程x 2 1 0没有实数根,所以,方程 x 2 1 0的实数组成的集合没有元素.
1.1.2集合间的基本关系

任何一个元素都是集合B中的元素,我们就说这两个集 合有包含关系。称集合A为集合B的子集(subset)。 记作合是它本身的子集,即A A
结论2 若集合中的元素有n个,其子集个数 为2n,真子集个数为2n-1,非空真子 集个数为2n-2。
试一试
判断下列2个集合之间的关系
(1) A={1,2,4} B={X|X是8的约数}
(2) A={X|X=3k,k∊Z} B={X|X=6k,k∊Z} (3) A={X|X是4与10的公倍数,X∊N+} B={X|X=20m,m∊N+}
读作:“A含于B”(或B 包含A) 数学语言表示形式:
若对任意x∊A,有x ∊B,则 A⊆B。
A⊆B的图形语言
你能用图形形象地表示A⊆B?
用平面上封闭 的曲线的内部 代表集合,这 图叫Venn图
B
A
韦恩图
判断集合A是否为集合B的子集,若是则在 ( )打√,若不是则在( )打×: ①A={1,3,5}, B={1,2,3,4,5,6} ( ②A={1,3,5}, B={1,3,6,9} ③A={0}, B={x x2+2=0} ( ) )
把不含有任何元素的集合叫做空集(empty set)
记作∅。
规定:空集是任何集合的子集.
即对任何集合A, 都有: A
思考
{0} 与∅有什么区别?
写出集合{a,b}的所有子集,并指出哪些 是它的真子集。
1.1.2集合间的基本关系

目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
故事记忆法小妙招
费曼学习法
费曼学习法-简介
理查德·菲利普斯·费曼 (Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解, 这也是这个学习法命名的由来!
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆 规律
记忆前
选择记忆的黄金时段
前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
硬背“在复合句中,修饰某一名词或代词的从句叫做定语从句”这个概念。
3.这个步骤可以使用思维导图或流程图,可以更好加深自己的理解哦~
1.1.2集合间的基本关系

课堂练习
设集合A={x|1≤x≤3} B={x|xA={x|1≤x≤3}, 1 设集合A={x|1≤x≤3},B={x|x-a≥0} 的真子集,求实数a的取值范围。 若A是B的真子集,求实数a的取值范围。 A={1,2},B={x|x⊆A}, 2 设A={1,2},B={x|x⊆A},问A与B有什 么关系?并用列举法写出B 么关系?并用列举法写出B?
3.已知A = { x | −2 ≤ x ≤ 5}, B = { x | a + 1 ≤ x ≤ 2a − 1}, B ⊆ A, 求实数a的取值范围.
∵ 解: ∅ ⊆ A, 当B = ∅,有a + 1 > 2a − 1, 即a < 2 ∴ 2 a − 1 ≥ a + 1 当B ≠ ∅时,有a + 1 ≥ -2 2 a − 1 ≤ 5 ∴2 ≤ a ≤ 3 综上所述,a的取值范围a ≤ 3.
例3、写出集合{a, b}的所有子集,并指出哪些是它 的真子集.
5.反馈演练 5.反馈演练
1、下列命题: 空集没有子集; 任何集合至少有两个 (1) (2) 子休; 空集是任何集合的真子集; 若∅ ⊂ A,则A ≠ (3) (4) ∅.其中正确的有( A.0个 ) D.3个 B.1个 C.2个
y-3 2.设x, y ∈ R,A = {(x, y) | y - 3 = x - 2}, B = {(x, y) | = 1}, x-2 则A,B的关系是______.
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一 班女生的全体组成的集合 为新华中学高一(2)班女生的全体组成的集合 为新华中学高一 班女生的全体组成的集合, B为这个班学生的全体组成的集合 为这个班学生的全体组成的集合; 为这个班学生的全体组成的集合 是两条边相等的三角形}, ⑶ 设C={x|x是两条边相等的三角形 ,D={x|x是 = 是两条边相等的三角形 是 等腰三角形}. 等腰三角形
高中数学 1.1.2集合间的基本关系课堂随练 苏教版必修1

集合间的基本关系1、下列八个关系式①{0}=φ ②φ=0 ③φ {φ} ④φ∈{φ} ⑤{0}⊇φ ⑥0∉φ ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数( )A 、4B 、5C 、6D 、72、集合{1,2,3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个3、集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有( )A 、(a+b )∈ AB 、 (a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个4. 集合{1,2,3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个5、集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有( )A 、(a+b )∈ AB 、 (a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个6、下列各式中,正确的是( )A 、2}2{≤⊆x xB 、{12<>x x x 且}C 、{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠D 、{Z k k x x ∈+=,13}={Z k k x x ∈-=,23}7、设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,则不等式ax 2+bx+c ≥0的解集为( )A 、RB 、φC 、{a b x x 2-≠} D 、{a b 2-}8.下列语句:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示为{1,1,2};(4)集合{54<<x x }是有限集,正确的是( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对9、在直角坐标系中,坐标轴上的点的集合可表示为10、设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.2集合间的基本关系
一、选择题
1.对于集合A ,B ,“A ⊆B ”不成立的含义是( )
A .
B 是A 的子集
B .A 中的元素都不是B 的元素
C .A 中至少有一个元素不属于B
D .B 中至少有一个元素不属于A
[答案] C
[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.
2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( )
A .P M
B .M P
C .M =P
D .M P
[答案] C
[解析] 由xy >0知x 与y 同号,又x +y <0
∴x 与y 同为负数 ∴⎩⎨⎧ x +y <0xy >0等价于⎩⎨⎧
x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ⊆C ,B ⊆C ,则集合C 中元素最少有( )
A .2个
B .4个
C .5个
D .6个 [答案] C
[解析] A ={-1,1},B ={0,1,2,3},
∵A ⊆C ,B ⊆C ,
∴集合C 中必含有A 与B 的所有元素-1,0,1,2,3,故C 中至少有5个元素.
4.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满足条件的实数x 的个数是( )
A .1
B .2
C .3
D .4
[答案] C
[解析] ∵B ⊆A ,∴x 2∈A ,又x 2≠1
∴x 2=3或x 2=x ,∴x =±3或x =0.故选C. 5.已知集合M ={x |y 2=2x ,y ∈R }和集合P ={(x ,y )|y 2=2x ,y ∈R },则两个集合间的关系是( )
A .M P
B .P M
C .M =P
D .M 、P 互不包含
[答案] D
[解析] 由于两集合代表元素不同,因此M 与P 互不包含,故选D.
6.集合B ={a ,b ,c },C ={a ,b ,d };集合A 满足A ⊆B ,A ⊆C .则满足条件的集合A 的个数是( )
A .8
B .2
C .4
D .1 [答案] C
[解析] ∵A ⊆B ,A ⊆C ,∴集合A 中的元素只能由a 或b 构成.∴这样的集合共有22=4个.
即:A =∅,或A ={a },或A ={b }或A ={a ,b }.
7.设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12
,k ∈Z },则( ) A .M =N
B .M N
C .M N
D .M 与N 的关系不确定 [答案] B
[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得
M ={…-34,-14,14,34,54
…}, N ={…0,14,12,34
,1…}, ∴M N ,故选B.
解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24
(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.
[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整
数,则k+m(m是一个整数)也是任意整数,而2k+1,2k-1均为任意奇数,2k为任意偶数.8.集合A={x|0≤x<3且x∈N}的真子集的个数是()
A.16 B.8
C.7 D.4
[答案] C
[解析]因为0≤x<3,x∈N,∴x=0,1,2,即A={0,1,2},所以A的真子集个数为23-1=7.
9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()
[答案] B
[解析]由N={x|x2+x=0}={-1,0}得,N M,选B.
10.如果集合A满足{0,2}A⊆{-1,0,1,2},则这样的集合A个数为()
A.5 B.4
C.3 D.2
[答案] C
[解析]集合A里必含有元素0和2,且至少含有-1和1中的一个元素,故A={0,2,1},{0,2,-1}或{0,2,1,-1}.
二、填空题
11.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A、B、C、D、E之间的关系是________.
[答案]A D B C E
[解析]由各种图形的定义可得.
12.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则集合M与集合P 的关系为________.
[答案]M P
[解析]P={x|x=a2-4a+5,a∈N*}
={x |x =(a -2)2+1,a ∈N *}
∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .
13.用适当的符号填空.(∈,∉,⊆,⊇,,,=)
a ________{
b ,a };a ________{(a ,b )};
{a ,b ,c }________{a ,b };{2,4}________{2,3,4};
∅________{a }.
[答案] ∈,∉,,,
*14.已知集合A =⎩⎨⎧⎭
⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13
,b ∈Z }, C ={x |x =c 2+16
,c ∈Z }. 则集合A ,B ,C 满足的关系是________(用⊆,,=,∈,∉,⃘中的符号连接A ,B ,
C ).
[答案] A B =C
[解析] 由b 2-13=c 2+16
得b =c +1, ∴对任意c ∈Z 有b =c +1∈Z .
对任意b ∈Z ,有c =b -1∈Z ,
∴B =C ,又当c =2a 时,有c 2+16=a +16
,a ∈Z . ∴A C .也可以用列举法观察它们之间的关系.
15.(09·北京文)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,那么k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有______个.
[答案] 6
[解析] 由题意,要使k 为非“孤立元”,则对k ∈A 有k -1∈A .∴k 最小取2.
k -1∈A ,k ∈A ,又A 中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合.
三、解答题
16.已知A ={x ∈R |x <-1或x >5},B ={x ∈R |a ≤x <a +4},若A 包含B ,求实数a
的取值范围.
[解析] 如图
∵A 包含B ,∴a +4≤-1或者a >5.
即a ≤-5或a >5.
17.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.
[解析] ∵A ={x |x <-1或x >2},
B ={x |4x +a <0}={x |x <-a 4
}, ∵A ⊇B ,∴-a 4
≤-1,即a ≥4, 所以a 的取值范围是a ≥4.
18.A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},a 、x ∈R ,求:
(1)使A ={2,3,4}的x 的值;
(2)使2∈B ,B ⊆A 成立的a 、x 的值;
(3)使B =C 成立的a 、x 的值.
[解析] (1)∵A ={2,3,4} ∴x 2-5x +9=3
解得x =2或3
(2)若2∈B ,则x 2+ax +a =2
又B ⊆A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a =2中得a =-23或-74
(3)若B =C ,则⎩⎪⎨⎪⎧
x 2+ax +a =1①
x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6
此时x =3或-1.
*19.已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合
C .
[解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C =。