2018年高考数学复习高考分项练12统计与统计案例文95

合集下载

2018届高考(新课标)数学(文)大一轮复习检测第十章 统计与统计案例 10-3 Word版含答案

2018届高考(新课标)数学(文)大一轮复习检测第十章 统计与统计案例 10-3 Word版含答案

组专项基础训练(时间:分钟).(·豫东、豫北十所名校联考)根据如下样本数据:().增加个单位.减少个单位.增加个单位.减少个单位【解析】依题意得,=,故+=①,又样本点的中心为(,),故=+②,联立①②,解得=-,=,则=-+,可知当每增加个单位时,就减少个单位.【答案】.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附表及公式=.有以上的把握认为“该市居民能否做到‘光盘’与性别有关”.在犯错误的概率不超过的前提下,认为“该市居民能否做到‘光盘’与性别无关”.在犯错误的概率不超过的前提下,认为“该市居民能否做到‘光盘’与性别有关”.有以上的把握认为“该市居民能否做到‘光盘’与性别无关”【解析】由×列联表得到=,=,=,=,则+=,+=,+=,+=,=,=,=,计算得的观测值=≈.因为<<,所以有以上的把握认为“该市居民能否做到‘光盘’与性别有关”.【答案】.为了解儿子身高与其父亲身高的关系,随机抽取对父子的身高数据如下:则对的线性回归方程为().=-.=+.=+.=【解析】由题意知项明显不符合实际,排除;且==,==,又对的线性回归方程表示的直线恒过点(,),所以将(,)代入,,中检验,只有成立.【答案】.已知某产品连续个月的广告费用为(=,,,)千元,销售额为(=,,,)万元,经过对这些数据的处理,得到如下数据信息:①+++=,+++=;②广告费用和销售额之间具有较强的线性相关关系;③回归直线方程=+中的=(用最小二乘法求得),那么,当广告费用为千元时,可预测销售额约为().万元.万元.万元.万元【解析】依题意得=,=,由回归直线必过样本中心点得=-×=-.当=时,=×-=.【答案】.(·郑州预测)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:线左下方的概率为()【解析】依题意得=×(+++++)=,=×(+++++)=,又回归直线必经过样本中心点(,),于是有=+×=,不等式+-<表示的是回归直线的左下方区域.注意到在个样本数据中,共有个样本数据位于回归直线的左下方区域,因此所求的概率等于.【答案】.(·济宁二模)已知下表所示数据的回归直线方程为=+,则实数=.),∴+)=×+,解得=.。

新课标Ⅰ2018年高考数学总复习专题12概率和统计分项练习含解析理20171001372

新课标Ⅰ2018年高考数学总复习专题12概率和统计分项练习含解析理20171001372

专题12 概率和统计一.基础题组1. 【2014课标Ⅰ,理5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.18B.38C.58D.78【答案】D2. 【2013课标全国Ⅰ,理3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.3. 【2011全国新课标,理4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.34【答案】A 【解析】4. 【2012全国,理 15】(某一部件由三个电子元件按下图方式连接而成,元件 1或元件 2正 常工作,且元件 3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服 从正态分布 N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过 1 000小时的概率为__________.【答案】385. 【2014课标Ⅰ,理 18】从某企业生产的某种产品中抽取 500件,测量这些产品的一项质量指标值,由测量结果 得如下图频率分布直方图:(I )求这 500件产品质量指标值的样本平均值和样本方差 s 2 (同一组的数据用该组区间的中点值作代表);(II )由直方图可以认为,这种产品的质量指标 Z 服从正态分布N,,其中 近似为样2本平均数,2 近似为样本方差 s 2 .(i )利用该正态分布,求 P187.8 Z212.2;(ii )某用户从该企业购买了 100件这种产品,记 X 表示这 100件产品中质量指标值位于区间187.8,212.2的产品件数.利用(i )的结果,求EX . 附: 150 12.2若 ZN则P Z 0.6826 ,~,2PZ。

高考数学统计与统计案例.doc

高考数学统计与统计案例.doc

高考数学统计与统计案例1.小吴一星期的总开支分布如图 1 所示,一星期的食品开支如图 2 所示,则小吴一星期的鸡蛋开支占总开支的百分比为()A.1%B.2%C.3%D.5%C[ 由图 1 所示,食品开支占总开支的 30%,由图 2 所示,鸡蛋开支占食品开支的30 = 1 ,30+40+100+80+ 50 101∴鸡蛋开支占总开支的百分比为30%×10=3%.故选 C.]2.(2019 德·州模拟 )某人到甲、乙两市各7 个小区调查空置房情况,调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为()A.4B. 3C.2D.1B[ 由茎叶图可以看出甲、乙两市的空置房的套数的中位数分别是79,76,因此其差是 79- 76=3,故选 B.]3.某工厂对一批新产品的长度(单位: mm)进行检测,如图是检测结果的频率分布直方,据此估批品的中位数()A.20B. 25C.22.5D.22.75C[ 品的中位数出在概率是 0.5 的地方 . 自左至右各小矩形面依次0.1,0.2,0.4,⋯⋯,中位数是 x,由 0.1+0.2+0.08 ·(x-20)=0.5,得 x= 22.5,故 C.]4.(2019 ·三明模 )在某次高中数学中,随机抽取 90 名考生,其分数如所示,若所得分数的平均数,众数,中位数分 a, b, c, a,b,c 的大小关系 ()A.b<a<c B.c<b<aC.c<a<b D.b<c<a2 50+ 60D [算得平均a=593,众数b=50,中位数c= 2 =55,故b<c<a, A.]5.(2019 南·充模 )如表是我国某城市在2017 年 1 月份至 10 月份各月最低温与最高温 (℃ )的数据一表.月份 1 2 3 4 5 6 7 8 9 10最高温 5 9 9 11 17 24 27 30 31 21最低温-12 - 3 1 - 2 7 17 19 23 25 10 已知城市的各月最低温与最高温具有相关关系,根据一表,下列的是 ()A.最低温与最高温正相关B.每月最高温与最低温的平均在前8 个月逐月增加C.月温差 (最高温减最低温 )的最大出在 1 月D.1 月至 4 月的月温差 (最高温减最低温 )相于 7 月至 10 月,波性更大B[ 根据意,依次分析:于 A ,知城市的各月最低温与最高温具有相关关系,由数据分析可得最低温与最高温正相关, A 正确;于B,由表中数据,每月最高温与最低温的平均依次:-3.5,3,5,4.5,12,20.5,23,26.5,28,15.5,在前 8 个月不是逐月增加, B ;于 C,由表中数据,月温差依次: 17,12,8,13,10,7,8,7,6,11;月温差的最大出在 1 月,C 正确;于 D,有 C 的,分析可得 1 月至 4 月的月温差相于 7 月至 10 月,波性更大, D 正确;故B.]6.某中学的高中女生体重y(位: kg)与身高 x(位: cm)具有性相关关系,根据本数据 (x i, y i )(i =1,2,3,⋯, n),用最小二乘法近似得到回直^方程 y=0.85x-85.71,下列中不正确的是()A.y 与 x 具有正性相关关系––B.回直本点的中心( x , y )C.若中学某高中女生身高增加 1 cm,其体重增加0.85 kgD.若中学某高中女生身高160 cm,可断定其体重必50.29 kg^D[ 因回直方程 y=0.85x-85.71 中 x 的系数 0.85>0,因此 y 与 x 具有正性相关关系,所以 A 正确;由最小二乘法及回直方程的求解––可知回直本点的中心( x , y ),所以 B 正确;由于用最小二乘法得到的回直方程是估,而不是具体,若中学某高中女生身高增加 1 cm,其体重增加0.85 kg,所以 C 正确, D 不正确. ]7.(2018 ·永州三模 )党的十九大告明确提出:在共享等域培育增点、形成新能.共享是公众将置源通社会化平台与他人共享,而得收入的象.考察共享企活度的影响,在四个不同的企各取两个部行共享比,根据四个企得到的数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()D[ 根据四个列联表中的等高条形图可知,图中 D 中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.]8.(2019 ·州模拟惠)已知 x 与 y 之间的几组数据如下表:x 1 2 3 4 5 6y 0 2 1 3 3 4假设根据上表数据所得的线性回归方程为^ ^ ^y= b +若某同学根据上表中的x a.前两组数据 (1,0)和 (2,2)求得的直线方程为y= b′ x+a′,则以下结论正确的是()^ ^ ^ ^A.b>b′, a>a′B.b>b′, a<a′^ ^ ^ ^C.b<b′, a>a′D.b<b′, a<a′C[ 由两组数据 (1,0)和(2,2)可求得直线方程为 y=2x-2,b′=2,a′=-^ 2.而利用线性回归方程的公式与已知表格中的数据,可求得 b =5 ^ – ^– 13 5==7,a= y -b x =6-771^^×2=-3,所以 b<b′,a>a′.]9.(2019 天·津模 )某校高中共有 720 人,其中理科生 480 人,文科生 240 人,采用分抽的方法从中抽取 90 名学生参加研,抽取理科生的人数________.48060[由分抽的定得抽取理科生的人数720×90=60.]–10.已知本数据x1,x2,⋯, x n的平均数 x = 5,本数据2x1+1,2x2 +1,⋯, 2x n+1 的平均数 ________.11[ 由 x1,x2,⋯,x n的平均数 x= 5,得 2x1+1,2x2+1,⋯,2x n+1 的平–均数 2 x +1= 2× 5+ 1= 11.]11.某学校随机抽取部分新生其上学所需(位:分 ),并将所得数据制成率分布直方(如 ),其中,上学所需的范是[0,100] ,本数据分 [0,20),[20,40),[40,60), [60,80), [80,100],(1)中的 x= ________;(2)若上学所需不少于 1 小的学生可申在学校住宿,校600 名新生中估有 ________名学生可以申住宿.0.0125 72[(1) 由率分布直方知20x= 1-20×(0.025+ 0.0065+ 0.003 +0.003),解得 x=0.0125.(2)上学不少于 1 小的学生的率0.12,因此估有0.12×600=72(人)可以申住宿. ]12.以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20 分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;^③在线性回归方程 y=0.2x+12 中,当解释变量x 每增加一个单位时,预报^变量 y平均增加 0.2 个单位;④对分类变量 X 与 Y 的统计量 K2来说, K2越小,“ X 与 Y 有关系”的把握程度越大.②③[①是系统抽样;对于④,统计量 K2越小,说明两个相关变量有关系的把握程度越小. ]。

2018年高考数学总复习统计与统计案例(2021年整理)

2018年高考数学总复习统计与统计案例(2021年整理)

2018年高考数学总复习统计与统计案例(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学总复习统计与统计案例(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学总复习统计与统计案例(word版可编辑修改)的全部内容。

第三节统计与统计案例考纲解读1. 理解随机抽样的必要性和重要性。

2. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.3. 了解分布的意义和作用,会列频率分布表,会画出频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.4. 理解样本数据标准差的意义和作用,会计算数据标准差.5. 能从样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本数字特征,理解用样本估计总体的思想。

6. 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。

7. 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.8. 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

9. 了解常见的统计方法,并能应用这些方法解决一些实际问题。

(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析了解回归分析的基本思想、方法及其简单应用.命题趋势探究1。

本节内容是高考必考内容,以选择题、填空题为主.2. 命题内容为:(1)三种抽样(以分层抽样为主);(2)频率分布表和频率分布直方图的制作、识图及运用。

(1)(2)有结合趋势,考题难度中下.3。

统计案例为新课标教材新增内容,考查考生解决实际问题的能力。

2018年高考数学(理)一轮复习文档第十章统计与统计案例高考零距离10统计与统计案例Word版含答案

2018年高考数学(理)一轮复习文档第十章统计与统计案例高考零距离10统计与统计案例Word版含答案

统计与统计案例1.统计与统计案例是高考命题的热点之一,从题型上看,多为选择题和解答题. 2.选择题常出现在第3~4题的位置,多考查统计图表的识别、抽样方法的选取、变量间的相关性判断等,难度较小.3.解答题常出现在第18~19题的位置,多与概率交汇考查,再考查用求线性回归方程、样本的相关性检验、用样本估计总体等,难度中等.1.(必修3 P58内文改编)某校高三年级共有800名学生,学号从1~800号,现用系统抽样抽出样本容量为n的样本;从小号到大号抽出的第1个数为8号,第6个数为168,则抽取的第3个数是多少号( )A.64 B.72C.80 D.88B 由系统抽样的特点得8+(6-1)×k=168,k=32.所以抽取的第3个数为8+(3-1)×32=72(号),故选B.2.(选修2­3 P97练习改编)某班班主任对全班30名男生进行了“认为作业量多少”的调查,数据如下表:该班主任据此推断男生认为作业多与喜欢玩电脑游戏有关系,则这种推断犯错误的概率不超过________.附表:计算得K 2的观测值为k =30×(12×8-2×8)14×16×20×10≈4.286>3.841,则推断犯错误的概率不超过0.050.0.0503.(必修3 P95习题2.3B 组T1改编)某店经营一批进价为每件4元的商品,在市场调查时发现,此商品的销售单价x 与日销售量y 之间有如下关系:经计算得:x 与y 具有线性相关关系且∑4i =1 (x i -x )(y i -y )=-11,∑4i =1(x i -x )2=5,并据此估计日利润达到最大值时,销售单价约为________(结果保留一位有效数字).(附:y ^=b ^x +a ^中,b ^=∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y -b ^x ) 由题知,b ^=∑4i =1(x i -x (y i -y )∑4i =1 (x i -x )2=-115=-2.2, 结合数表可得x =6.5,y =7,由y ^=b ^x +a ^,得a ^=y -b ^x =7-(-2.2)×6.5=21.3.销售单价为x 时的利润为w =(x -4)(-2.2x +21.3)=-2.2x 2+30.1x -85.2,故当x=错误!≈7时,日利润最大. 7元/件。

2018年高考数学 小题精练系列(第02期)专题15 统计与统计案例 文

2018年高考数学 小题精练系列(第02期)专题15 统计与统计案例 文

专题15 统计与统计案例1.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩,已知甲组数据的平均数为18,乙组数据的中位数为16,则,x y 的值分别为( )A . 8,6B . 8,5C . 5,8D . 8,8 【答案】A2.某高中生共有2400人,其中高一年级800人,高二年级700人,高三年级900人,现采用分层抽样抽取一个容量为48的样本,那么高一、高二、高三各年级抽取人数分别为( ) A . 15,21,12 B . 16,14,18 C . 15,19, 14 D . 16,18,14 【答案】B【解析】由分层抽样在各层中的抽样比为481240050=,则在高一年级抽取的人数是18001650⨯=人, 在高二年级抽取的人数是19001850⨯=人, 在高三年级抽取的人数是17001450⨯=人,故选B .3.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:( )①y 与x 负相关且 2.7567.3ˆ25yx =-+. ②y 与x 负相关且 3.47654ˆ.68yx =+ ③y 与x 正相关且 1.226 6.5ˆ78yx =-- ④y 与x 正相关且8.96786ˆ.13yx =+ 其中正确的结论的序号是( )A . ①② B. ②③ C. ①④ D. ③④【答案】C【解析】由回归直线方程可知, ①③y 与x 负相关, ②④y 与x 正相关, ①④正确,故选C .点睛:两个变量的线性相关:(1)正相关:在散点图中,点散布在从左下角到右上角的区域.对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关:在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系为负相关.(3)线性相关关系、回归直线:如果散点图中点的分布从整体上看大致在一条直线附近 ,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 4.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,变量x 增加一个单位时, y 平均增加5个单位; ③老师在某班学号为1~50的50名学生中依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是系统抽样; 其中正确的个数是( )A . 3B . 2C . 1D . 0 【答案】B5.已知一组数据m , 4, 2, 5, 3的平均数为n ,且m , n 是方程2430x x -+=的两根,则这组数据的方差为( )A . 10B .C . 2D . 【答案】C【解析】方程()()243x 3x 10x x -+=--=的两根为x=3或x=1,又这组数据的其它值都大于1,故m=1,n=3,则()()()()()2222221134323533325S ⎡⎤=-+-+-+-+-=⎣⎦,故选C . 6.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为 ( )A . 0.27,78B . 0.27,83C . 2.7,78D . 2.7,83 【答案】A考点:本题考查了频率分布直方图的运用点评:频率分布直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1,同时考查分析问题的能力,属于基础题.7.如果数据12,,n x x x ⋯的平均数为x ,方差为2s ,则1243,43,,43n x x x ++⋅⋅⋅+的平均数和方差分别为( )A . ,x sB . 243,x s + C . 2,16x s D . 243,16x s + 【答案】D 【解析】因为, ()()()()22221231211...,...n n x x x x x S x x x x x x n n ⎡⎤=++++=-+-++-⎣⎦, 1243,43,...,43n x x x ∴+++的平均数为()1231434343...43n x x x x n ++++++++43,x =+ 1243,43,...,43n x x x +++的方差为()()()222212143434343...434316n x x x x x x S n ⎡⎤+--++--+++--=⎣⎦,故选D . 8.已知变量x 与y 负相关,且由观测数据算得样本平均数3, 3.5x y ==,则由该观测数据算得的线性回归方程可能是( )A . 0.4 2.3y x =+B . 2 2.4y x =-C . 29.5y x =-+D . 0.4 4.4y x =-+ 【答案】C9.某工厂生产,,A B C 三种不同型号的产品,产品数量之比依次为2:3:5。

2018高考数学一轮复习文科训练天天练统计案例有答案和解释

2018高考数学一轮复习文科训练天天练统计案例有答案和解释
16.
(1)

(xi
i)(
1,2

16)





r










一一一


























(

|r|<
025




























)
-
(2
■)
一一一















(x

3s
x
+
3s)












线

















二二二




9
-
(20
18?

2018高考数学(文)第九篇 统计与统计案例 第2节 用样本估计总体

2018高考数学(文)第九篇 统计与统计案例 第2节 用样本估计总体

第2节用样本估计总体【选题明细表】基础对点练(时间:30分钟)1. (2016·陕西西安模拟)如图所示的茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( C )(A)2,5 (B)5,5 (C)5,8 (D)8,8解析:由中位数的定义可知x=5,由(y+5+8)+30+9+24=5×16.8,解得y=8,故选C.2.(2016·湖北武汉华中师大一附中模拟)武汉市2016年各月的平均气温(℃)数据的茎叶图如图所示,则这组数据的中位数是( C )(A)25.5 (B)22 (C)20.5 (D)20解析:由茎叶图,可知该组数据的中位数为=20.5,故选C.60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格(60分及以上)率是( A )(A)75% (B)25% (C)15% (D)40%解析:由图可和,及格率为(0.015+0.03+0.025+0.005)×10=0.75,即及格率为75%,故选A.4.将甲、乙两名同学8次数学测试成绩统计如茎叶图所示,若乙同学8次数学测试成绩的中位数比甲同学8次数学测试成绩的平均数多1,则a 等于( C )(A)4 (B)5 (C)6 (D)7解析:甲同学8次数学测试成绩的平均数为=84,所以=84+1⇒a=6,选C.5.(2016·山东济宁三模)某班m名学生在一次考试中数学成绩的频率分布直方图如图,若在这m名学生中,数学成绩不低于100分的人数为33,则m等于( D )(A)45 (B)48 (C)50 (D)55解析:因成绩大于等于100的频率为(0.030+0.020+0.010)×10=0.6,故m=33÷0.6=55,故选D.6.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为和,样本标准差分别为ss B,则( A )(A)<,s A>s B(B)>,s A>s B(C)>,s A<s B(D)<,s A<s B解析:A中数据都不大于10,B中数据都不小于10,故<,又A中数据变化幅度大,B中数据变化幅度小,所以s A>s B,故选A.7.以下茎叶图记录了某赛季甲、乙两名篮球运动员参加11场比赛的得分(单位:分),若甲运动员的中位数为a,乙运动员的众数为b,则a-b的值是.解析:由茎叶图可知甲的中位数a=19,乙的众数b=11,所以a-b=8.答案:88.(2016·江苏卷)已知一组数据 4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.解析:=5.1,s2=(0.42+0.32+02+0.32+0.42)=0.1.答案:0.19.样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在6,10)内的频数为,数据落在2,10)内的概率约为.解析:样本数据落在6,10)内的频率是0.08×4=0.32,样本数据落在6,10)内的频数为200×0.32=64;样本数据落在2,6)内的频率为0.08,故数据落在2,10)内的频率为0.32+0.08=0.40,这个值近似代替概率,故数据落在2,10)内的概率约为0.40.答案:64 0.4010.(2016·北京卷)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.解:(1)由用水量的频率分布直方图知,该市居民该月用水量在区间0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:根据题意,该市居民该月的人均水费估计为4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).11.(2017·广东珠海高三摸底)2016年8月7日,在里约奥运会射击女子10米气手枪决赛中,中国选手张梦雪以199.4环的总成绩夺得金牌,为中国代表团摘得本届奥运会首金,俄罗斯选手巴特萨拉斯基纳获得银牌.下表是两位选手其中10枪的成绩.(1)请计算两位射击选手的平均成绩,并比较谁的成绩较好;(2)请计算两位射击选手成绩的方差,并比较谁的射击情况比较稳定. 解:(1)=(10.2+…+9.2)=10,=(10.1+…+9.7)=9.9,可知张梦雪的成绩较好.(2)=(0.22+0.32+0.22+0.12+0+0.72+0.92+0.12+0.32+0.82)=0.222,=(0.22+0.12+0.52+0.32+0.72+0.72+0.62+0.32+0.42+0.22)=0.202,因为>,可知巴特萨拉斯基纳成绩较稳定.能力提升练(时间:15分钟)12.甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示.他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为( A )(A)0 (B)3 (C)6 (D)9解析:设看不清的数字为x,甲的平均成绩为=101,所以<101,x<1,所以x=0,故选A.13.(2016·湖南湘西自治州质检)如图是某班50名学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是40,50),50,60),60,70),70,80),80,90),90,100],则图中x的值等于( B )(A)0.012 (B)0.018 (C)0.024 (D)0.016解析:由图得30×0.006+10×0.01+10×0.054+10x=1,解得x=0.018.故选B.14.(2016·湖南永州模拟)一个样本a,3,4,5,6的平均数是b,且不等式x2-6x+c<0的解集为(a,b),则这个样本的标准差是( B )(A)1 (B) (C) (D)2解析:由题设可得a+18=5b,a+b=6,解之得a=2,b=4,所以s==,故选B.15.如图的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:分),已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.(1)求x,y的值;(2)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定). 解:(1)因为甲代表队的中位数为76,其中已知高于76的有77,80,82,88,低于76的有71,71,65,64,所以x=6,因为乙代表队的平均数为75,其中超过75的差值为5,11,13,14,和为43,少于75的差值为3,5,7,7,19,和为41,所以y=3.(2)因为=(64+65+71+71+76+76+77+80+82+88)=75,所以=(64-75)2+(65-75)2+…+(88-75)2]=50.2,又= (56-75)2+(68-75)2+…+(89-75)2]=100.8,所以<,所以甲队成绩较为稳定.16.(2016·四川卷)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5),0.5,1),…,4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(3)估计居民月均用水量的中位数.解:(1)由频率分布直方图,可知月均用水量在0,0.5)的频率为0.08×0.5=0.04.同理,在0.5,1),1.5,2),2,2.5),3,3.5),3.5,4),4,4.5]各组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)由(1)知,100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计该市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.好题天天练某校开展摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x的取值集合为.解析:由茎叶图可知,最低分为88,(1)若x≤4,则最高分为94.由题意,剩余的数据为89,89,92,93,90+x,92,91.由这些数据的平均分为91,得89+89+92+93+(90+x)+92+91]=91,解得x=1.(2)若x>4,则最高分为90+x.由题意,剩余的数据为89,89,92,93,92,91,94.这些数据的平均分为(89+89+92+93+92+91+94)=>91,显然不合题意.答案:{1}。

2018届高考理科数学二轮专题复习讲义。统计与统计案例

2018届高考理科数学二轮专题复习讲义。统计与统计案例

2018届高考理科数学二轮专题复习讲义。

统计与统计案例本文介绍了统计与统计案例中的一些考点和热点分类,以及一些跟踪演练题目的解析。

在考试中,会以选择题、填空题的形式考查随机抽样、样本的数字特征、统计图表、回归方程、独立性检验等。

同时,在概率与统计的交汇处命题,难度适中。

抽样方法有三种:简单随机抽样、系统抽样和分层抽样。

简单随机抽样适用于总体中个体数较少的情况,而系统抽样适用于个体数较多的情况。

分层抽样适用于总体由差异明显的几部分组成的情况。

对于一些具体的题目,我们可以根据题意和抽样比例计算出样本中产品的最小编号或者应该抽取的学生人数。

在随机抽样的各种方法中,每个个体被抽到的概率都是相等的。

系统抽样又称为“等距”抽样,被抽到的各个号码间隔相同。

分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例。

最后,我们来看一道跟踪演练题目。

题目要求从福利彩票“双色球”中选取红色球的6个号码,选取方法是从第1行、第9列和第10列的数字开始从左到右依次选取两个数字。

根据题意和随机数表,我们可以计算出第四个被选中的红色球号码为06.解析:1) 样本编号题目,根据系统抽样的方法,计算出样本组距为9,然后根据已知编号推算出样本中还有一个学生的编号为14,故选B。

2) 该部分内容排版混乱,需要重新排版。

频率分布直方图中,横坐标表示组距,纵坐标表示频率,频率等于组距乘以组距。

各小长方形的面积之和为1.在频率分布直方图中,最高的小长方形底边中点的横坐标即为众数。

中位数左边和右边的小长方形的面积和相等。

平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和。

3) 根据题目可以列出方程,设未知数为x,平均数为a,中位数为b,众数为c,则有:(10+2+5+2+4+2+x)/7=a,中位数为2或5,众数为2,根据众数的定义可得c=2,因此有:b-a=c-b,代入已知数据可得b=3a-4,根据平均数的定义可得:(10+2+5+2+4+2+x)/7=a,解出a=5,代入b=3a-4可得b=11,因此中位数为11,根据中位数的定义可得:(10+2+5+2+4+2+x)/7=11,解出x=3,所以所有可能值之和为25+3=28,因此答案为B。

2018高考数学复习小单元卷 15.统计与统计案例

2018高考数学复习小单元卷 15.统计与统计案例

102336735556790344678891598765统计与统计案例(抽样方法、相关性检验、独立性检验、回归分析)一、选择题:1. 有A 、B 、C 三种零件,分别为a 个、300个、200个,现采用分层抽样法抽取一个容量为45的样本,C 种零件被抽取10个,则此三种零件的总数是 ( ) A .900 B .800 C .600 D .7002. 为了让人们感知丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢的塑料袋的数量,结果如下(单位:个):33、25、28、26、25、31.如果该班有45名学生,那么根据提供的数据估计该班级全班同学各家丢弃塑料袋的数量约为( ) A. 900个 B. 1080个 C. 1260个 D. 1800个3. 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 ( )A. 1B. 2C. 3D. 4 4. 为了了解某学校学生的身体发育情况,抽查了 该校100名高中男生的体重情况,根据所得数据画出 样本的频率分布直方图如右图所示.根据此图,估计 该校2000名高中男生中体重大于70.5公斤的人数 为( )A.180B.360C.700D. 7205. 设两个正态分布2111(,)(0)N μσσ>和222(,)N μσ2(0)σ>的密度函数图象如图所示,则有( ) A .1212<<μμσσ, B .1212<>μμσσ, C .1212><μμσσ, D .1212>>μμσσ,则y 与x 的线性回归方程为y=bx+a 必过点( )A. (0,1)B. (1,3)C. (2,5)D. (1.5,4) 二、填空题:7. 某单位有27名老年人,54名中年人,81名青年人. 为了调查他们的身体情况,用分层抽样的方法从他们中抽取了n 个人进行体检,其中有6名老年人,那么n =_________.则第三组的频率和累积频率分别是 和 .9. 已知一个班的语文成绩的茎叶图如图所示,那么优秀率(90分以上) 为 , 最低分是 .10. 考察棉花种子经过处理跟生病之间的关系得到如下表数据:根据以上数据,则种子经过处理跟是否生病 关)三、解答题:(1)估计甲乙两厂灯泡瓦数的平均值;(2)如果在95—105瓦范围内的灯泡为合格品,计算两厂合格品的比例各是多少? (3)哪个厂的生产情况比较稳定?12. 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生 产能耗y (吨标准煤)的几组对照数据(Ⅰ)请画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bx a =+;(Ⅲ)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)统计与统计案例参考答案一、选择题:1. A 解析: 由于C 种零件有200个, 被抽取10个,可知其抽样比为10120020=, 则B 零件300个应当抽取13001520⨯=个, 共抽取45个样本,则A 应当抽取20个, 即A 零件的个数2020400a =⨯=, 由此可得三种零件总数是400300200900++=, 故应选D.2. C 解析:由已知抽样数据可得平均数为332528262531286+++++=个, 据此可以估计本周全班同学各家丢弃塑料袋的数量约为28451260⨯=个.3. D 解析:由已知可得2222221011910,51[(10)(10)(1010)(1110)(910)]2,5x y x y ++++⎧=⎪⎪⎨⎪-+-+-+-+-=⎪⎩∴2220,(10)(10)18,x y x y +=⎧⎨-+-=⎩解之得12,8,x y =⎧⎨=⎩或8,12,x y =⎧⎨=⎩ ∴|x -y |=4, 故应选D. 4. B 解析: 体重大于70.5公斤的频率为(0.04+0.03+0.02)20.18⨯=,∴该校2000名高中男生中体重大于70.5公斤的人数为20000.18360⨯=人. 5. A 解析: 由正态分布密度函数图象可得12μμ<,2212σσ<,即12σσ<, 故应选A. 6. D 解析:根据回归方程要过样本的中心点(,x y ,x y ),所以过(1.5,4)点. 二、填空题:7. 36 解析:由已知条件可得每一个个体被抽入样的概率为627548127n =++,解之得36n =.8. 0.14和0.37解析:第三组的频率P 3=10014=0.14, 累积频率为P 1+P 2+P 3=10010+10013+10014=0.37. 9. 51%4与解析:由茎叶图可得,样本容量为25, 90分以上的人数为1人, 即优 秀率为14%25=, 最低分为51分. 10. 无 解析:根据题意可以求得,在假设无关的情况下可以得到K 2=0.16,可以得到无关的概率大于50%,所以种子经过处理跟是否生病有关的概率小于50%,所以种子经过处理跟是否生病无关. 三、解答题:11. 解析:(1)1(963986100810221061)99.320x =⨯+⨯+⨯+⨯+⨯=甲1(9419629871004102310421061)99.620x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=乙 所以:甲厂灯泡平均值的估计值为99.3,乙厂灯泡平均值的估计值为99.6 . (2)根据抽样%902018%,952019====乙甲A A . (3)222221[3(9699.3)6(9899.3)8(10099.3)2(10299.3)20O =⨯-+⨯-+⨯-+⨯-甲 21(10699.3)]+⨯- 5.31=222221[1(9499.6)2(9699.6)7(9899.6)4(10099.6)20O =⨯-+⨯-+⨯-+⨯-乙 2223(10299.6)2(10499.6)1(10699.6)+⨯-+⨯-+⨯-]8.64=所以甲的情况稳定. 12. 解析: (Ⅰ)如下图(Ⅱ)y x i ni i ∑=1=3⨯2.5+4⨯3+5⨯4+6⨯4.5=66.5x =46543+++=4.5y =45.4435.2+++=3.5 ∑=ni x i 12=32+42+52+62=86266.54 4.5 3.566.563ˆ0.7864 4.58681b-⨯⨯-===-⨯- ˆˆ 3.50.7 4.50.35aY bX =-=-⨯= 故线性回归方程为y=0.7x+0.35(Ⅲ)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7 100+0.35=70.35 故耗能减少了90-70.35=19.65(吨).。

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考真题数学统计与概率专题(附答案解析)1.(全国卷I,文数、理数第3题.5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案:A2.(全国卷I,文数19题.12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案解析】解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=. 3.(全国卷I ,理数20题12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为()01p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-.因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)YB ,=+.X Y=⨯+,即402520225X Y所以(4025)4025490=+=+=.EX E Y EY(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于400EX>,故应该对余下的产品作检验.4.(全国卷Ⅱ,文数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5C.0.4D.0.3【答案】D5.(全国卷Ⅱ,文数、理数18题.12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5y t=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案解析】解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.6.(全国卷Ⅱ,理数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3【答案】A7.(全国卷Ⅲ,文数5题.5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B8.(全国卷Ⅲ,文数、理数18题.12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,2()0.0500.0100.0013.8416.63510.828P K kk≥.【答案解析】解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科%网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.(北京卷,文数17题,13分)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;学科*网(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000. 第四类电影中获得好评的电影部数是200×0.25=50, 故所求概率为500.0252000=. (Ⅱ)方法一:由题意知,样本中获得好评的电影部数是 140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=. 方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(0P B ==. (Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率. 10.(北京卷,理数17题,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【答案解析】解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB )=P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (Ⅲ)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. 11.(天津卷,文数,15题,13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.【答案解析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分. (Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 12.(天津卷,理数,16题,13分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案解析】本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.学.科网(Ⅰ)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)解:随机变量X的所有可能取值为0,1,2,3.P(X=k)=34337C CCk k-⋅(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望11218412 ()0123353535357E X=⨯+⨯+⨯+⨯=.(ii)解:设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.13.(江苏卷,3题,5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.【答案解析】答案:90解析:8989909191905++++=14.(浙江卷,7题,4分)设0<p<1,随机变量ξ的分布列是ξ0 1 2P12p-122p 则当p在(0,1)内增大时,A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【答案】D第11 页共11 页。

江苏2018届高考数学总复习专题11.2统计与统计案例试题含解析

江苏2018届高考数学总复习专题11.2统计与统计案例试题含解析

专题11.2 统计与统计案例【三年高考】1. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.2.【2016江苏】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 【答案】0.1【考点】方差【名师点睛】本题考查的是总体特征数的估计,重点考查了方差的计算,本题有一定的计算量,属于简单题.认真梳理统计学的基础理论,特别是系统抽样和分层抽样、频率分布直方图、方差等,针对训练近几年的江苏高考类似考题,直观了解本考点的考查方式,强化相关计算能力.3.【2015江苏高考,2】已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6【解析】46587666x+++++==【考点定位】平均数4. 【2017课标3,理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】【考点】 折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.5. 【2017山东,理5】为了研究某班学生的脚长(单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为(A )160 (B )163 (C )166 (D )170【答案】C【解析】试题分析:由已知22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.【考点】线性相关与线性回归方程的求法与应用.【名师点睛】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数公式求出,然后根据的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.6. 【2017课标1,文2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】 试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B【考点】样本特征数【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平; 中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.7. 【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A【解析】【考点】茎叶图、样本的数字特征【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.8.【2016高考新课标3理数改编】某旅游城市为向游客介绍本地的气温情况,绘制了一年中︒,B 月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C︒.下面叙述不正确的是.点表示四月的平均最低气温约为5C︒以上②七月的平均温差比一月的平均温差大①各月的平均最低气温都在0C︒的月份有5个③三月和十一月的平均最高气温基本相同④平均气温高于20C【答案】④【解析】︒均在虚线框内,所以各月的平均最低气温都在0℃以上,①正确;由试题分析:由图可知0C图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,②正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,③正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以④不正确. 考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选②.9.【2016高考上海理数】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 10.2016高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29C BA139142考点: 统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.11.【2015高考重庆,文4改编】重庆市2013年各月的平均气温(°C)数据的茎叶图如下 08 9 12 5 8 20 0 3 3 8 3 1 2则这组数据中的中位数是 .【答案】20【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20.12.【2015高考陕西,文2改编】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为 .(高中部)(初中部)男男女女60%70%【答案】137 【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=.13.【2015高考湖北,文2改编】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石.【答案】169【解析】设这批米内夹谷的个数为x ,则由题意并结合简单随机抽样可知,282541534x =,即281534169254x =⨯≈. 14.【2015高考广东,文12】已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .【答案】11【解析】因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,所以样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=,所以答案应填:11.15.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.16.【2015高考北京,文17】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? (Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=,顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 16.【2015高考广东,文17】某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+=,因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户【2018年高考命题预测】概率统计试题在试卷中的题型仍是填空题型,纵观近几年高考数学试卷中,概率与统计是必考题,而且是基础题,有时以直方图或茎叶图提供问题的背景信息,预测2018年仍会出现此类题,因此掌握概率与统计的基础知识是学习的关键.【2018年高考考点定位】本知识点主要是:随机抽样常以选择、填空题考查分层抽样,难度较低.在用样本估计总体中,会读图、识图,会从频率分布直方图中分析样本的数字特征(众数、中位数、平均数等);重视茎叶图;要重视线性回归方程,不仅会利用公式求,还要能分析其特点(正相关、负相关、回归方程过样本点中心);重视独立性检验( 2×2列联表).【考点1】抽样方法、总体分布的估计【备考知识梳理】1.简单随机抽样:一般地,设一个总体的个体数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.2.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.3.总体:在数理统计中,通常把被研究的对象的全体叫做总体.4.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.【规律方法技巧】分层抽样的步骤:(1)分层;(2)按比例确定每层抽取个体的个数;(3)各层抽样(方法可以不同);(4)汇合成样本.解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=总数频数);(3)画出频率分布直方图,并作出相应的估计.【考点针对训练】1.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为 ,平均数为 .【答案】155;156.8【解析】根据中位数的定义知中位数由200.005200.0150.0200.5m ⨯+⨯+⨯=,解得5m =,所以中位数为:1505155+=;平均数为:1200.0051400.0151600.0201800.0052000.0032200.002156.8⨯+⨯+⨯+⨯+⨯+⨯=,所以答案为:155;156.8.2.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中的值是0.0075.(2)月平均用电量的众数是2202402302+=;因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224.【考点2】相关性、最小二乘估计与统计案例 【备考知识梳理】1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.(2)从散点图上,如果变量之间存在某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合.(3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是非线性相关. 如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. 2.回归方程 (1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用表达式[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是我们所要求的直线,这种方法称为最小二乘法. (2)回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ,b 是待定参数.∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni ii ni ixn xy x n yx x xy y x xb 12211121)())((,-Λ-Λ-=x b y a3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘法估计分别为:∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni ii ni ixn xy x n yx x xy y x xb 12211121)())((,-Λ-Λ-=x b y a ).其中x =1n ∑i =1nx i ,y =1n ∑i =1ny i ,(x ,y )称为样本点的中心.(3)相关系数①1()()nniii x x y y x yn x yr -------==∑∑r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系. 4.独立性检验(1)设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1. 2×2列联表构造一个随机变量2()()()()()n ad bc K a b c d a c b d -=++++其中d c b a n +++=为样本容量.(2)独立性检验:利用随机变量来判断“两个变量有关联”的方法称为独立性检验. (3)当数据量较大时,在统计中,用以下结果对变量的独立性进行判断①当χ2≤2.706时,没有充分的证据判定变量A ,B 有关联,可以认为变量A ,B 是没有关联的;②当χ2>2.706时,有90%的把握判定变量A ,B 有关联; ③当χ2>3.841时,有95%的把握判定变量A ,B 有关联; ④当χ2>6.635时,有99%的把握判定变量A ,B 有关联.【规律方法技巧】1.“相关关系与函数关系”的区别:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系.2.三点提醒: 一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.三是独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.3.正确理解计算b ,a 的公式和准确的计算是求线性回归方程的关键.回归直线方程y =bx +a 必过样本点中心(x ,y ).在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.4.利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,具体做法是根据公式22()()()()()n ad bc K a b c d a c b d -=++++,计算2K 值,2K 值越大,说明“两个变量有关系”的可能性越大. 【考点针对训练】1.已知x 、y 的取值如下表所示,若y 与x 线性相关,且yˆ=0.95x +,则=____________.【答案】6.2 【解析】244310=+++=x ,5.447.68.43.42.2=+++=y ,样本中心点,在回归直线上,所以代入aˆ295.05.4+⨯=,所以6.2ˆ=a 2.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附:22n(ad bc )K (a b )(c d )(a c )(b d )-=++++参照附表,在如下结论:A .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 中正确的是 . 【答案】C【解析】由表计算得:22100(45153010)==3.0355457525K ⨯-⨯⨯⨯⨯,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,填C .【两年模拟详解析】1. 【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】已知一组数据3,6,9,8,4,则该组数据的方差是__________. 【答案】 (或5.2)【解析】2. 【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】下表是一个容量为10的样本数据分组后的频数分布.若利用组中值近似计算本组数据的平均数x ,则x 的值为 .【答案】19.7 【解析】3. 【南京市、盐城市2017届高三年级第一次模拟】已知样本数据12345,,,,x x x x x 的方差23s =,则样本数据123452,2,2,2,2x x x x x 的方差为 ▲ . 【答案】12【解析】由题意得方差为2224312s =⨯=4. 【2017年第三次全国大联考江苏卷】已知样本7,8,9,,x y 的平均数为,且60xy =,则此样本的方差为_____________. 【答案】2 【解析】因为78985x y++++=,所以16x y +=,而60xy =,所以610x y =⎧⎨=⎩或106x y =⎧⎨=⎩,从而样本的方差为22221[(1)01(2)2]25⨯-+++-+=.5. 【2017年高考原创押题预测卷02(江苏卷)】某人次上班途中所花的时间(单位:分钟)分别为9,11,10,8,12,则这组数据的标准差为_______. 【答案】2【解析】因为这组数据的平均数是10591110812=++++=x ,所以其方差25)109()1011()1010()108()1012(222222=-+-+-+-+-=s ,故所求这组数据的标准差2=s .6. 【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】交通部门对某路段公路上行驶的汽车速度实施监控,从速度在h km /9050-的汽车中抽取150辆进行分析,得到数据的频率分布直方图如图所示,则速度在h km /70以下的汽车有 辆.)【答案】75【解析】由频率分布直方图得,速度在h km /70以下的汽车所占频率为(0.020.03)100.5+⨯=,则速度在h km /70以下的汽车有1500.575⨯=辆7.【江苏省清江中学数学模拟试卷】某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度大于25mm.【答案】40【解析】(0.0550.0250.015)10040⨯+⨯+⨯⨯=.8.【扬州市2015—2016学年度第一学期期末检测试题】某学校从高三年级共800名男生中随机抽取50名测量身高. 据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)160155,、第二组[)165160,、……、第八组[]195190,. 按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为 .【答案】144【解析】由图得,身高180cm 以上(含180cm )的频率为()150.0080.0160.0420.060.18-⨯++⨯+=,则人数为8000.18144⨯=9.【南京市、盐城市2016届高三年级第一次模拟考试数学】某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为 . 【答案】17【解析】高一高二人数之比为10:9,因此高二抽出的人数为18人,高三抽出的人数为55-20-18=17人10.【苏州市2016届高三年级第一次模拟考试】若一组样本数据9,8,x ,10,11的平均数为10,则该组样本数据的方差为 . 【答案】2【解析】由题意得12x =,因此方差为221(12201)25++++=11.【江苏省扬州中学2015—2016学年第二学期质量检测】在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】2000(0.0350.030.02)101700⨯++⨯=12.【南京市、盐城市2016届高三年级第二次模拟考试】如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为 .【答案】【解析】950)002.0004.0(30=⨯+⨯13.【江苏省南京市2016届高三年级第三次学情调研适应性测试】一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则月收入在[2500,3000)范围内的应抽出人.【答案】25⨯⨯=【解析】由题意得:0.00055001002514.【南京市2016届高三年级第三次模拟考试】甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:则甲、乙两位选手中成绩最稳定的选手的方差是.【答案】0.02【一年原创真预测】1. 以下四个命题中:R的值判断模型的拟合效果, 2R越大,模型的拟合效果越①在回归分析中,可用相关指数2好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③若数据123,,n x x x x 的方差为1,则1232,2,22n x x x x 的方差为2;④对分类变量与y 的随机变量2k 的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为 . 【答案】2【入选理由】本题考查特称命题真假的判断,回归分析,相关系数,独立性检验等基础知识,意在考查考生转化能力,分析问题解决问题的能力,运算求解能力.此类知识属于高考冷门问题,近年高考有所重视,应多注意,故选此题.2.某单位为了了解某办公楼用电量y (度)与气温x (oC)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:得到的回归方程为a bx y+=ˆ,则a 0,b 0. 【答案】>,<【解析】依题意,画散点图知,两个变量负相关,所以0<b ,0>a .【入选理由】本题考查考查散点图、线性回归方程等基础知识,意在考查考生分析问题解决问题的能力,运算求解能力.近年高考加强了对线性回归方程的考查,应多注意,故选此题. 3.2015国际滑联世界花样滑冰锦标赛于3月23日至29日在上海举行,为调查市民喜欢这项赛事是否与年龄有关,随机抽取了55名市民,得到如下数据表:。

最新-2018届高考数学 总复习阶段性测试题十 统计、统

最新-2018届高考数学 总复习阶段性测试题十 统计、统

阶段性测试题十(统计、统计案例)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018·太原一模)下列关系中,是相关关系的为( )①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系.A.①②B.①③C.②③D.②④[答案] A[解析]学生的学习成绩与学生的学习态度和教师的执教水平是相关的,与学生的身高和家庭经济条件不相关.2.(2018·杭州一模)现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样[答案] A[解析]①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差异较大,宜用分层抽样.3.(2018·重庆文)从一堆苹果中任取10只,称得它们的质量如下(单位:克):125 120 122 118 130 114 116 95 120 134则样本数据落在[114.5,124.5)内的频率为( )A.0.2 B.0.3C .0.4D .0.5[答案] C[解析] 该题考查频率的计算公式.属基础题.在[114.5,124.5)范围内的频数m =4,样本容量n =10,∴所求频率410=0.4.4.(2018·长春十校联考)在抽查某批产品尺寸的过程中,样本尺寸数据的频率分布表如下,则b 等于( )C .0.25D .0.3[答案] A[解析] 由表可知,产品总数为100.05=200,∴m =200-(10+30+40+80+20)=20,∴100.05=20b,b =0.1,故选A. 5.(2018·合肥调研)“毒奶粉”事件引起了社会对食品安全的高度重视,各级政府加强了对食品安全的检查力度.某市工商质检局抽派甲、乙两个食品质量检查组到管辖区域内的商店进行食品质量检查.表示甲、乙两个检查组每天检查到的食品种类的茎叶图如图.则甲、乙两个检查组每天检查到的食品种数的中位数的和是( )A.56 B .57 C .58D .59[答案] B[解析] 根据中位数的定义知,甲检查组每天检查到的食品种数的中位数为32,乙检查组每天检查到的食品种数的中位数为25,故甲、乙两个检查组每天检查到的食品种数的中位数的和是32+25=57.选B.6.(文)(2018·沈阳一模)某学校在校学生2000人,为了迎接“2018年沈阳全运会”,学校举行了“迎全运”跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:其中a :b :c =2:5:3,全校参加登山的人数占总人数的4.为了了解学生对本次活动的满意程度,按分层抽样的方法从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取( )A .15人B .30人C .40人D .45人[答案] D[解析] 由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2000×310=450(人),由分层抽样的特征得高三年级参加跑步的学生中应抽取110×450=45(人).(理)某班有48名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是( )A .70,25B .70,50C .70,1.18D .65,25[答案] B[解析] 易得x -没有改变,x -=70,而s 2=148[(x 21+x 22+…+502+1002+…+x 248)-48x -2]=75,s ′2=148[(x 21+x 22+…802+702+…+x 248)-48x -2]=148[(75×48+48x -2-12500+11300)-48x -2] =75-120048=75-25=50.7.为了宣传6月6日世界爱眼日的到来,某学校随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为( )A .64B .54C .48D .27[答案] B[解析] 前两组中的频数为100×(0.18+0.11)=16,因为后五组频数和为62,所以前三组为38.所以第三组为22,又最大频率为0.32的最大频数为0.32×100=32,∴a =22+32=54. 8.(2018·北京模拟)甲、乙两名学生在5次数学考试中的成绩统计如茎叶图所示,若x甲、x 乙分别表示甲、乙两人的平均成绩,则下结论正确的是( )A.x 甲>x 乙,乙比甲稳定B.x 甲>x 乙,甲比乙稳定C.x 甲<x 乙,乙比甲稳定D.x 甲<x 乙,甲比乙稳定 [答案] A[解析] 由茎叶图知,x 甲=74+82+88+91+955=86,x 乙=77+77+78+86+925=82.∴x 甲>x 乙,s 2甲=54,s 2乙=36.4,s 2甲>s 2乙,∴乙比甲稳定.9.(2018·山东理)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元[答案] B[解析] ∵x -=4+2+3+54=72,y -=49+26+39+544=42,又y ^=b ^x +a ^必过(x -,y -), ∴42=72×9.4+a ^,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元).[点评] 本小题考查了对线性回归方程的理解及应用,求解的关键是明确线性回归方程必过样本中心点(x -,y -),同时考查计算能力.10.(2018·深圳第一次调研)统计某校1000名学生的数学测试成绩,得到样本频率分布直方图如下图所示,若满分为100分,规定不低于60分为及格,则及格率是( )A .20%B .25%C .6%D .80%[答案] D[解析] 根据频率分布直方图,得出不及格的频率为(0.015+0.018)×10=0.2,故及格率为0.8×100%=80%.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11.(2018·上饶一模)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y =bx +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.[答案] 68[解析] x -=10,y -=40,回归方程过点(x -,y -), ∴40=-2×10+a . ∴a =60. ∴y ^=-2x +60.令x =-4,∴y ^=(-2)×(-4)+60=68.12.将容量为n 的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为 2 ∶3 ∶4 ∶6 ∶4 ∶1,且前三组数据的频数之和等于27,则n 等于________.[答案] 60[解析] 本题主要考查频率分布直方图等知识. 2+3+42+3+4+6+4+1×n =27,解得n =60.13.(文)(2018·山东文)某高校甲、 乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.[答案] 16[解析] 考查分层抽样.解答此题必须明确“每个个体被抽到的概率相同”及“每层以相同比例抽取”.所有学生数为150+150+400+300=1000人,则抽取比例为401000=125, 所以应在丙专业抽取400×125=16人.(理)(2018·天津理)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.[答案] 12[解析] 本题主要考查分层抽样的定义,由于男、女运动员比例4 ∶3,而容量为21的样本,因此每份为3人,故抽取男运动员为12人.14.(2018·杭州期末)某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.[答案] 600[解析] 由直方图易得数学考试中成绩小于60分的频率为(0.002+0.018+0.012)×10=0.2,所以所求分数小于60分的学生数为3000×0.2=600.15.(2018·广东文)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________.[答案] 0.5 0.53[解析] 本题主要考查线性回归方程以及运算求解能力.利用公式求系数利用回归方程统计实际问题.小李这5天的平均投篮命中率y =0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的投篮命中率约为0.53.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)(2018·洛阳调研)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.[解析](1)画茎叶图,中间数为数据的十位数从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此乙发挥比较稳定,总体得分情况比甲好.(2)根据公式得:x甲=33,x乙=33;s甲=3.96,s乙=3.35;甲的中位数是33,乙的中位数是33.5.综合比较,选乙参加比赛较为合适.17.(本小题满分12分)(2018·许昌一模)为研究是否喜欢饮酒与性别之间的关系,在某地区随机抽取290人,得到如下列联表:[解析]由列联表中的数据得χ2=-2146×144×225×65≈11.953.∵χ2≈11.953>6.635.∴有99%的把认握为“是否喜欢饮酒与性别有关”.即有超过90%的把握认为饮酒与性别有关.18.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n ad -bc 2a +bc +d a +cb +d[解析] 本题综合考查了统计的知识,主要涉及抽样方法、独立性检验等内容,知识覆盖面广,难度不大,主要体现了新课标下数学知识的结合点,题目定位属于中档题,在解题时要抓住样本特征,适当选择.(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)K 2=-2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.19.(本小题满分12分)高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:(1)根据上面图表,①②③④处的数值分别为________、________、________、________; (2)在所给的坐标系中画出[85,155]的频率分布直方图;(3)根据题中信息估计总体平均数,并估计总体落在[129,155]中的频率.[解析] (1)随机抽出的人数为120.300=40,由统计知识知④处应填1;③处应填440=0.1;②处应填1-0.180-0.1-0.275-0.300-0.200-0.180=0.025;①处应填0.025×40=1.(2)频率分布直方图如图.(3)利用组中值算出平均数:90×0.025+100×0.18+110×0.2+120×0.3+130×0.275+140×0.1+150×0.18=122.5;总体落在[129,155]上的频率为610×0.275+0.1+0.18=0.315.20.(本小题满分13分)(2018·珠海一模)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按照5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为2 ∶3 ∶4 ∶6 ∶4 ∶1,第三组的频数为12,请回答下列问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?[解析] (1)依题意知第三组的频率为 42+3+4+6+4+1=15,又因为第三组的频数为12, ∴本次活动的参评作品数为1215=60(件). (2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×62+3+4+6+4+1=18(件).(3)第四组的获奖率是1018=59,第六组上交的作品数量为 60×12+3+4+6+4+1=3(件),∴第六组的获奖率为23=69>59,显然第六组的获奖率较高.21.(本小题满分14分)(2018·安徽文)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =bx +a ; (2)利用(1)中所求的直线方程预测该地2018年的粮食需求量.温馨提示:若(x 1,y 1),(x 2,y 2),…,(x n ,y n )为样本点,y ^=bx +a 为回归直线,则x -=1n ∑i =1nx i ,y -=1n ∑i =1ny i ,b =∑i =1nx i -x-y i -y-∑i =1nx i -x-2=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2,a =y --b x -.说明:若对数据作适当的预处理,可避免对大数字进行运算.[解析] 由所给数据分析,年需求量与年份之间是近似直线上升,可对数据进行预处理如下表x =0,y =3.2,∑i =15x i y i =-4×(-21)+(-2)×(-11)+2×19+4×29=260,∑i =15x 2i =16+4+0+4+16=40, ∴b =∑i =15x i y i -5x -y-∑i =15x 2i -5x -2=26040=6.5,∴a ^=y -b x =3.2, ∴所求回归直线方程y -257=6.5(x -2018)+3.2 即y =6.5(x -2018)+260.2(2)当x =2018时,y =6.5(2018-2018)+260.2=299.2万吨≈300万吨 故预测2018年粮食需求量约为300万吨.。

2018高考数学复习:第12章概率与统计第2节统计与概率综合及统计案例

2018高考数学复习:第12章概率与统计第2节统计与概率综合及统计案例

第二节统计与概率综合及统计案例题型138 抽样方式2013年1.(2013江西文5)总体有编号为01,02,,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为().A.08B.07C.02D.012. (2013湖南文3)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n ().A. 9B.10C.12D.132014年1.(2014四川文2)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是().A.总体B.个体C.样本的容量D.从总体中抽取的一个样本2.(2014重庆文3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n =( ).A.100B.150C.200D.2503.(2014广东文6)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ).A.50B.40C.25D.204.(2014湖南文3)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( ).A.123p p p =<B. 231p p p =<C.132p p p =<D. 123p p p == 5.(2014湖北文11)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总 数为 件.6.(2014天津文9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生.2015年1.(2015四川文3)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( ).A. 抽签法B. 系统抽样法C. 分层抽样法D. 随机数法 1. 解析 按照各种抽样方法的适用范围可知,应使用分层抽样.故选C.2.(2015福建文13)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 2. 解析 由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=(人).3.(2015北京文4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为( ).A.90B. 100C. 180D. 3003. 解析 依题意,老年教师人数为900320180160043004300⨯=(人).故选C. 2017年1.(2017江苏卷3)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件. 1.解析 按照分层抽样的概念应从丙种型号的产品中抽取60300181000⨯=(件).20330443454365577783210题型139 样本分析——用样本估计总体2013年1. (2013四川文7)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据茎叶图如图所示.以组距为5将数据分组成[)[)[)[)0551030353540,,,,,,,,时,所作的频率分布直方图是( ).A.B.C . D.2. (2013山东文10)将某选手的9个得分去掉1个最高分,去掉一个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( )A.11616 B. 367C. 36D.3. (2013辽宁文5) 某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[)[)[)[)20404060608080100,,,,,,,.若低于60分的人数是15人,则该班的学生人数是( ).A. 45B. 50C. 55D. 604.(2013江苏6)抽样统计甲.乙两位设计运动员的5此训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为5.(2013湖北文12)某学员在一次射击测试中射靶10次,命中环数如下:8779401091x /分7879,,,,5491074,,,,,,则(1)平均命中环数为 ;(2)命中环数的标准差为 .6. (2013辽宁文16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为 .2014年1.(2014陕西文9)某公司10位员工的月工资(单位:元)为1210,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ). A.x ,22100s +B.100x +,22100s +C. x ,2sD.x +100,2s2.(2014山东文8)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[)[)[)[)[]12,13,13,14,14,15,15,16,16,17,将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( ).A. 6B. 8C. 12kPa3.(2014江苏6)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[]80130,上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm .(加上原点处数字0)4.(2014新课标Ⅰ文18) 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如图所示频数分布表: 质量指标值分组[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228(1)作出这些数据的频率分布直方图;频率/组距100 90 80 110 120 0.020 0.025 0.030 0.0100.015 底部周长/cm(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?5.(2014北京文18)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).6. (2014新课标Ⅱ文19) 某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:O 75 85 95 105(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.7.(2014广东文17)某车间20名工人年龄数据如表所示:(1)求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.2015年1.(2015重庆文4) 重庆市2013年各月的平均气温(C )数据的茎叶图如下:0 8 91 2 5 82 0 03 3 8 3 1 2则这组数据的中位数是( ).A. 19B.20C. 21.5D. 23 1. 解析 将茎叶图各数据从小到大排列,中位数为2020202+=.故选B . 2.(2015湖南文2) 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.13 0 0 3 4 5 6 6 8 8 8 914 1 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 8 150 1 2 2 3 3 3若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间[]139,151上的运动员人数是( ).A. 3B. 4C. 5D. 62. 解析 由茎叶图可知,在区间]151,139[的人数为20,再由系统抽样的性质可知人数为435720=⨯人.故选B. 3.(2015湖北文2) 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ).A .134石B .169石C .338石D .1365石 3. 解析 设一石米中有n 粒谷,这批米内夹谷x 石,则281534254x n n ⋅=⋅,得153428169254x ⨯=≈.故选B.4.(2015山东文6)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图. 考虑以下结论: ①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ). A. ①③B. ①④C. ②③D. ②④4.解析 由茎叶图可知,甲的数据为26,28,29,31,31;乙的数据为28,29,30,31,32.所以()12628293131295x =⨯++++=甲,()12829+303132305x =⨯+++=乙. 所以x x <甲乙,①正确; 又()()()()()2222221182629282929293129312955s ⎡⎤=-+-+-+-+-=⎣⎦甲; ()()()()()22222212830293030303130323025s ⎡⎤=-+-+-+-+-=⎣⎦乙.可得22ss >甲乙,所以s s >甲乙.④正确.故选B.5.(2015广东文12) 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .5. 解析 因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,又样本数据121x +,221x +,⋅⋅⋅,21n x +的和为()122n x x x n ++++,所以样本数据的均值为21x +=11.评注 本题考查均值的性质.6.(2015湖北文14)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.30.9],内,其频率分布直方图如图所示. (1)直方图中的a = .(2)在这些购物者中,消费金额在区间[0.50.9],内的购物者的人数为. /万元a6. 解析 由频率分布直方图及频率和等于1,可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[]0.50.9,内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=, 所以消费金额在区间[]0.50.9,内的购物者的人数为0.6100006000⨯=.7.(2015广东文17)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图所示./度(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则从月平均用电量在[)220,240的用户中应抽取多少户?7.解析 ()1由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=, 得0.0075x =.(2)由图可知,月平均用电量的众数是2202402302+=. 因为()0.0020.00950.011200.450.5++⨯=<, 又()0.0020.00950.0110.0125200.70.5+++⨯=>, 所以月平均用电量的中位数在[)220,240内.设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=, 得224a =,所以月平均用电量的中位数是224.(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=(户);月平均用电量为[)240,260的用户有0.00752010015⨯⨯=(户); 月平均用电量为[)260,280的用户有0.0052010010⨯⨯=(户); 月平均用电量为[]280,300的用户有0.0025201005⨯⨯=(户). 抽取比例为11125151055=+++,所以从月平均用电量在[)220,240的用户中应抽取12555⨯=(户).2016年1.(2016山东文3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ). A.56B.60C.120D.1401. D 解析 由图可知组距为2.5,每周的自习时间少于22.5小时的频率为0.30=2.5×)0.1+0.02(,所以,每周自习时间不少于22.5小时的人数是140=0.301×200)(-人.故选D.2.(2016上海文4)某次体检,5位同学的身高(单位:m )分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是 (m ).2. 1.76解析 将数据从小到大排序1.69,1.72,1.76,1.78,1.80,故中位数为1.76./小时3.(2016江苏4)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 3. 0.1解析 由题意得 5.1x =,故()22222210.40.300.30.40.15s =++++=.4.(2016四川文16)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)00.50.5,1⋅⋅⋅,,,[]4,4.5分成9组,制成了如图所示的频率分布直方图. (1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.请说明理由; (3)估计居民月均用水量的中位数.4.解析 (1)由频率分布直方图,可知:月用水量在[]0,05.的频率为0.080.5=0.04.⨯ 同理,在[)(][)[)[)[)0.5,1 1.5,222.53,3.5 3.5,44,4.5,,,,,,等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由()10.04+0.08+0.21+0.25+0.06+0.04+0.020=0.5+0.5a a -⨯⨯,解得0.30.a =(2)由(1)得,100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为3000000.13=36000.⨯(3)设中位数为x 吨.因为前5组的频率之和为0.040.080.15+0.21+0.250.730.5++=>,而前4组的频率之和为0.040.080.150.210.480.5+++=<,所以22.5.x <由()0.5020.50.48x ⨯-=-,解得 2.04.x =故可估计居民月均用水量的中位数为2.04吨.5.(2016北京文17)某市民用水拟实行阶梯水价,每人用水米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直用水量(立方米)方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?w=时,估计该市居民该月(2)假设同组中的每个数据用该组区间的右端点值代替,当3的人均水费.5.解析(1)由用水量的频率分布直方图知,该市居民该月用水量在区间[](](](](]0.5,1,1,1.5,1.5,2,2,2.5,2.5,3内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表根据题意,该市居民该月的人均水费估计为⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=10.540.160.1580.2100.25120.15170.05220.05270.05(元).2017年1.(2017全国1文2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12n x x x ⋯,,,,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ).A .12n x x x ⋯,,,的平均数 B .12n x x x ⋯,,,的标准差 C .12n x x x ⋯,,,的最大值 D .12n x x x ⋯,,,的中位数 1. 解析 刻画评估这种农作物亩产量稳定程度的指标是标准差.故选B. 2.(2017山东卷文8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件). 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ). A. 3,5B. 5,5C. 3,7D. 5,72. 解析 由于甲组中位数为65,故5y =,计算得乙组平均数为66,故3x =.故选A. 题型140 统计图表与概率的综合2013年1. (2013陕西文5)对一批产品的长度(单位: 毫米)进行抽样检测,下图为检测结果的频率分布直方图. 根据标准,产品长度在区间[)2025,上为一等品, 在区间[)1520,和区间[)2530,上为二等品, 在区间[)1015,和[]3035,上为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为( ).0.030.060.040.02353025长度/毫米O0.060.040.02频率/组距101520A. 0.09B. 0.20C. 0.25D. 0.452. (2013重庆文6) 下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[)2230, 内的概率为( ).A. 0.2B. 0.4C. 0.5D. 0.63. (2013安徽文17)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30 名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲 乙7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12x x ,,估计12x x -的值. 4.(2013广东文17)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:开始结束(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,其中重量在[)80,85的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有1的概率.5. (2013四川文18)某算法的程序框图如图所示,其中输入的变量x 在 12324,,,,这24个整数中都可能随机产生. (1)分别求出按程序框图正确编程运行时输出y 的值为i 的 概率()123i P i =,,; (2)甲、乙两同学依据自己对程序框图的理解,各自编写程序 重复运行n 次后,统计记录了输出y 的值为()123i i =,,的频数 以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分) 乙的频数统计表(部分)3014610…………21001027 376 697当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(123)i i =,,的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大. 6. (2013湖南文18)某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X1 23 4 Y51 4845 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)完成下表,并求所种作物的平均年收获量;Y51484542频数4(2)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率.运行 次数n输出y 的值 为1的频数输出y 的值 为2的频数输出y 的值 为3的频数3012117…………21001051 696 3532014年1.(2014重庆文17)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示:7632(I )求频率分布直方图中a 的值;(II )分别求出成绩落在[)6050,与[)7060,中的学生人数; (III )从成绩在[)7050,的学生中任选2人,求此2人的成绩都在[)7060,中的概率.2015年1.(2015全国Ⅱ文3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ). A. 逐年比较,2008年减少二氧化碳排放量的效果显著 B. 2007年我国治理二氧化碳排放显现成效C. 2006年以来我国二氧化碳年排放量呈逐渐减少趋势D. 2006年以来我国二氧化碳年排放量与年份正相关2010年2012年2009年2013年2004年2006年2007年2008年2011年2005年190020001. 解析 由柱形图可以看出,我国二氧化硫排放量呈下降趋势,故年排放量与年份是负相关关系,依题意,需选不正确的.故选D.命题意图 本题考查统计的基本知识,要注意读懂题意和图表,理解相关性有正相关和负相关.2.(2015安徽文17)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[)40,50,[)50,60,,[)80,90,[]90,100.(1)求频率分布图中a 的值;(2)估计该企业的职工对该部门评分不低于80分的概率;(3)从评分在[)40,60的受访职工中,随机抽取2人,求此2人评分都在[)40,50的概率.2. 解析 (1)由频率分布直方图可知,()0.0040.0180.02220.028101a +++⨯+⨯=,解得0.006a =.(2)由频率估计概率,评分不低于80分的概率为()0.0220.018100.4+⨯=. (3)由频率分布直方图可知:在[)40,50内的人数为0.00410502⨯⨯=(人), 在[)50,60内的人数为0.00610503⨯⨯=(人).设[)40,50内的2人评分分别为12,a a ,[)50,60内的3人评分分别为123,,A A A , 则从[)40,60的受访职工中随机抽取2人,2人评分的基本事件有()12,a a ,()11,a A ,()12,a A ,()13,a A ,()21,a A ,()22,a A ,()23,a A ,()12,A A ,()13,A A ,()23,A A ,共10种.其中2人评分都在[)40,50的概率为110. 3.(2015全国Ⅱ文18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得出A 地区用户满意评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表(1)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B 地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.3. 分析 (1) 根据题意通过两地区用户满意度评分的频率分布直方图可以看出B 地区用户满意评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,A 地区用户的评分满意度比较分散;(2)由直方图得()A P C 的估计值为0.6.()B P C 的估计值为0.25,所以A 地区的用户满意度等级为不满意的概率大.解析 (1)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值;B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(2)A 地区用户的满意度等级为不满意的概率大.记A C 表示事件:“A 地区用户的满意度等级为不满意”;B C 表示事件:“B 地区用户的满意度等级为不满意”.由直方图得()A P C 的估计值为()0.010.020.03100.6++⨯=,()B P C 的估计值为()0.0050.02100.25+⨯=.所以A 地区用户的满意度等级为不满意的概率大.评注 高考中对统计与概率的考查,主要建立在实际问题中,特别要能读懂题意,分析题目中的数据,并对数据进行处理,在解答中要注意概率的计算方法.2016年1.(2016全国甲文18)某险种的基本保费为a (单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求()P A 的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求()P B 的估计值;(3)求续保人本年度平均保费的估计值.1.解析 (1)由所给数据知,事件A 发生当且仅当一年内出险次数小于2,所以()60500.55200P A +==. (2)由所给数据知,事件B 发生当且仅当一年内出险次数大于等于1且小于等于4,所以3030()0.3200P B +==. (3)由题所求分布列为调查200名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.1020.05 1.1925a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=.2.(2016山东文16)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下: ①若3xy ,则奖励玩具一个; ②若8xy ,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.2.解析 用数对(),x y 表示儿童参加活动先后记录的数,则基本事件空间Ω与点集(){},|,,14,14S x y x y x y =∈∈N N 一一对应.因为S 中元素个数是4416,⨯=所以基本事件总数为16.n =(1)记“3xy ”为事件A .则事件A包含的基本事件共有5个,即()()()()()1,1,1,2,1,3,2,1,3,1,所以()5,16P A =即小亮获得玩具的概率为516. (2)记“8xy ”为事件B ,“38xy <<”为事件C .则事件B 包含的基本事件共有6个,即()()()()()()2,4,3,3,3,44,2,4,3,4,4,所以()63.168P B == 3421则事件C 包含的基本事件共有5个,即()()()()()1,4,2,2,2,3,3,2,4,1,所以()5.16P C = 因为35,816> 所以小亮获得水杯的概率大于获得饮料的概率. 3.(2016全国乙文19)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图. 记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若19n =,求y 与x 的函数解析式;(2)若要求 “需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?3.解析 (1)当19x 时,192003800y =⨯=(元);当19x >时,()19200195005005700y x x =⨯+-⨯=-(元),所以3800,,195005700,,19x x y x x x ∈⎧=⎨-∈>⎩N N .(2)由柱状图可知更换易损零件数的频率如表所示.更换的易损零件数16 1718 19 20 21 频率0.060.160.240.240.200.10所以更换易损零件数不大于18的频率为:0.060.160.240.460.5++=<,更换易损零件数不大于19的频率为:0.060.160.240.240.700.5+++=>,故n 最小值为19.(3)若每台都购买19个易损零件,则这100台机器在购买易损零件上所需费用的平均数为:10019200205002105004000100⨯⨯+⨯+⨯⨯=(元);若每台都够买20个易损零件,则这100台机器在购买易损零件上所需费用的平均数为10020200105004050100⨯⨯+⨯=(元).因为40004050<,所以购买1台机器的同时应购买19个易损零件.2017年1.(2017全国3卷文3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是( ). A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 1.解析 由图易知月接待游客量是随月份的变化而波动的,有上升也有下降,所以选项A 错误.故选A.评注 与2016年的雷达图考法类似,近年来,对各类图形与图表的理解与表示成为高考的一个热点,总体来说,此类题型属于基础类题型,用排除法解此类问题会比较快,但要注意题目要求选择错误的一项,如果审题不仔细可能会造成失分!2.(2017全国2卷文19)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg )的某频率直方图如图所示.(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg ”,估计A 的概率;(修图:下面表中原点处加数字0)(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关.箱产量/kg新养殖法旧养殖法箱产量/kg。

江苏专用2018年高考数学总复习专题11.2统计与统计案例试题含解析201710013148

江苏专用2018年高考数学总复习专题11.2统计与统计案例试题含解析201710013148

专题11.2 统计与统计案例【三年高考】1. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i =n∶N.2.【2016江苏】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .【答案】0.1【考点】方差【名师点睛】本题考查的是总体特征数的估计,重点考查了方差的计算,本题有一定的计算量,属于简单题.认真梳理统计学的基础理论,特别是系统抽样和分层抽样、频率分布直方图、方差等,针对训练近几年的江苏高考类似考题,直观了解本考点的考查方式,强化相关计算能力. 3.【2015江苏高考,2】已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6【解析】46587666x+++++==【考点定位】平均数4. 【2017课标3,理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】【考点】 折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.5. 【2017山东,理5】为了研究某班学生的脚长(单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为(A )160 (B )163 (C )166 (D )170【答案】C【解析】试题分析:由已知22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.【考点】线性相关与线性回归方程的求法与应用.【名师点睛】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数公式求出,然后根据的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.6. 【2017课标1,文2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】 试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B【考点】样本特征数【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平; 中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.7. 【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A【解析】【考点】茎叶图、样本的数字特征【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.8.【2016高考新课标3理数改编】某旅游城市为向游客介绍本地的气温情况,绘制了一年中︒,B 月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C︒.下面叙述不正确的是.点表示四月的平均最低气温约为5C︒以上②七月的平均温差比一月的平均温差大①各月的平均最低气温都在0C︒的月份有5个③三月和十一月的平均最高气温基本相同④平均气温高于20C【答案】④【解析】︒均在虚线框内,所以各月的平均最低气温都在0℃以上,①正确;由试题分析:由图可知0C图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,②正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,③正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以④不正确. 考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选②.9.【2016高考上海理数】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.10.2016高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29C BA139142考点: 统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.11.【2015高考重庆,文4改编】重庆市2013年各月的平均气温(°C)数据的茎叶图如下 08 9 12 5 8 20 0 3 3 8 3 1 2则这组数据中的中位数是 .【答案】20【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20.12.【2015高考陕西,文2改编】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为 .(高中部)(初中部)男男女女60%70%【答案】137 【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=.13.【2015高考湖北,文2改编】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石.【答案】169【解析】设这批米内夹谷的个数为x ,则由题意并结合简单随机抽样可知,282541534x =,即281534169254x =⨯≈. 14.【2015高考广东,文12】已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .【答案】11【解析】因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,所以样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=,所以答案应填:11.15.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.16.【2015高考北京,文17】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? (Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=,顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 16.【2015高考广东,文17】某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+=,因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户【2018年高考命题预测】概率统计试题在试卷中的题型仍是填空题型,纵观近几年高考数学试卷中,概率与统计是必考题,而且是基础题,有时以直方图或茎叶图提供问题的背景信息,预测2018年仍会出现此类题,因此掌握概率与统计的基础知识是学习的关键.【2018年高考考点定位】本知识点主要是:随机抽样常以选择、填空题考查分层抽样,难度较低.在用样本估计总体中,会读图、识图,会从频率分布直方图中分析样本的数字特征(众数、中位数、平均数等);重视茎叶图;要重视线性回归方程,不仅会利用公式求,还要能分析其特点(正相关、负相关、回归方程过样本点中心);重视独立性检验( 2×2列联表).【考点1】抽样方法、总体分布的估计【备考知识梳理】1.简单随机抽样:一般地,设一个总体的个体数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.2.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.3.总体:在数理统计中,通常把被研究的对象的全体叫做总体.4.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.【规律方法技巧】分层抽样的步骤:(1)分层;(2)按比例确定每层抽取个体的个数;(3)各层抽样(方法可以不同);(4)汇合成样本.解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=总数频数);(3)画出频率分布直方图,并作出相应的估计.【考点针对训练】1.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为 ,平均数为 .【答案】155;156.8【解析】根据中位数的定义知中位数由200.005200.0150.0200.5m ⨯+⨯+⨯=,解得5m =,所以中位数为:1505155+=;平均数为:1200.0051400.0151600.0201800.0052000.0032200.002156.8⨯+⨯+⨯+⨯+⨯+⨯=,所以答案为:155;156.8.2.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中的值是0.0075.(2)月平均用电量的众数是2202402302+=;因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224.【考点2】相关性、最小二乘估计与统计案例 【备考知识梳理】1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.(2)从散点图上,如果变量之间存在某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合.(3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是非线性相关. 如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. 2.回归方程 (1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用表达式[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是我们所要求的直线,这种方法称为最小二乘法. (2)回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ,b 是待定参数.∑∑∑∑=-=--=--=-Λ--=---=n i ni i ni ii ni ixn x yx n yx x xy y x xb 12211121)())((,-Λ-Λ-=x b y a3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘法估计分别为:∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni i i ni ixn xy x n yx x x y y x xb 12211121)())((,-Λ-Λ-=x b y a ).其中x =1n ∑i =1n x i ,y =1n ∑i =1ny i ,(x ,y )称为样本点的中心.(3)相关系数①1()()nniii x x y y x yn x yr -------==∑∑r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系. 4.独立性检验(1)设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1. 2×2列联表构造一个随机变量2()()()()()n ad bc K a b c d a c b d -=++++其中d c b a n +++=为样本容量.(2)独立性检验:利用随机变量来判断“两个变量有关联”的方法称为独立性检验. (3)当数据量较大时,在统计中,用以下结果对变量的独立性进行判断①当χ2≤2.706时,没有充分的证据判定变量A ,B 有关联,可以认为变量A ,B 是没有关联的;②当χ2>2.706时,有90%的把握判定变量A ,B 有关联; ③当χ2>3.841时,有95%的把握判定变量A ,B 有关联; ④当χ2>6.635时,有99%的把握判定变量A ,B 有关联.【规律方法技巧】1.“相关关系与函数关系”的区别:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系. 2.三点提醒: 一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.三是独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.3.正确理解计算b ,a 的公式和准确的计算是求线性回归方程的关键.回归直线方程y =bx +a 必过样本点中心(x ,y ).在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.4.利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,具体做法是根据公式22()()()()()n ad bc K a b c d a c b d -=++++,计算2K 值,2K 值越大,说明“两个变量有关系”的可能性越大. 【考点针对训练】1.已知x 、y 的取值如下表所示,若y 与x 线性相关,且yˆ=0.95x +,则=____________.【答案】6.2 【解析】244310=+++=x ,5.447.68.43.42.2=+++=y ,样本中心点,在回归直线上,所以代入aˆ295.05.4+⨯=,所以6.2ˆ=a2.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表: 附:22n(ad bc )K (a b )(c d )(a c )(b d )-=++++参照附表,在如下结论:A .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 中正确的是 . 【答案】C【解析】由表计算得:22100(45153010)==3.0355457525K ⨯-⨯⨯⨯⨯,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,填C .【两年模拟详解析】1. 【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】已知一组数据3,6,9,8,4,则该组数据的方差是__________. 【答案】 (或5.2)【解析】2. 【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】下表是一个容量为10的样本数据分组后的频数分布.若利用组中值近似计算本组数据的平均数x ,则x 的值为 .【答案】19.7 【解析】3. 【南京市、盐城市2017届高三年级第一次模拟】已知样本数据12345,,,,x x x x x 的方差23s =,则样本数据123452,2,2,2,2x x x x x 的方差为 ▲ . 【答案】12【解析】由题意得方差为2224312s =⨯=4. 【2017年第三次全国大联考江苏卷】已知样本7,8,9,,x y 的平均数为,且60xy =,则此样本的方差为_____________. 【答案】2【解析】因为78985x y++++=,所以16x y +=,而60xy =,所以610x y =⎧⎨=⎩或106x y =⎧⎨=⎩,从而样本的方差为22221[(1)01(2)2]25⨯-+++-+=.5. 【2017年高考原创押题预测卷02(江苏卷)】某人次上班途中所花的时间(单位:分钟)分别为9,11,10,8,12,则这组数据的标准差为_______. 【答案】2【解析】因为这组数据的平均数是10591110812=++++=x ,所以其方差25)109()1011()1010()108()1012(222222=-+-+-+-+-=s ,故所求这组数据的标准差2=s .6. 【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】交通部门对某路段公路上行驶的汽车速度实施监控,从速度在h km /9050-的汽车中抽取150辆进行分析,得到数据的频率分布直方图如图所示,则速度在h km /70以下的汽车有 辆.)【答案】75【解析】由频率分布直方图得,速度在h km /70以下的汽车所占频率为(0.020.03)100.5+⨯=,则速度在h km /70以下的汽车有1500.575⨯=辆7.【江苏省清江中学数学模拟试卷】某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度大于25mm.【答案】40【解析】(0.0550.0250.015)10040⨯+⨯+⨯⨯=.8.【扬州市2015—2016学年度第一学期期末检测试题】某学校从高三年级共800名男生中随机抽取50名测量身高. 据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)160155,、第二组[)165160,、……、第八组[]195190,. 按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为 .【答案】144【解析】由图得,身高180cm 以上(含180cm )的频率为()150.0080.0160.0420.060.18-⨯++⨯+=,则人数为8000.18144⨯=9.【南京市、盐城市2016届高三年级第一次模拟考试数学】某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为 . 【答案】17【解析】高一高二人数之比为10:9,因此高二抽出的人数为18人,高三抽出的人数为55-20-18=17人10.【苏州市2016届高三年级第一次模拟考试】若一组样本数据9,8,x ,10,11的平均数为10,则该组样本数据的方差为 . 【答案】2【解析】由题意得12x =,因此方差为221(12201)25++++=11.【江苏省扬州中学2015—2016学年第二学期质量检测】在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】2000(0.0350.030.02)101700⨯++⨯=12.【南京市、盐城市2016届高三年级第二次模拟考试】如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为 .【答案】【解析】950)002.0004.0(30=⨯+⨯13.【江苏省南京市2016届高三年级第三次学情调研适应性测试】一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则月收入在[2500,3000)范围内的应抽出 人.【答案】25【解析】由题意得:0.000550010025⨯⨯=14.【南京市2016届高三年级第三次模拟考试】甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距(第6题)则甲、乙两位选手中成绩最稳定的选手的方差是 . 【答案】0.02【一年原创真预测】 1. 以下四个命题中:①在回归分析中,可用相关指数2R 的值判断模型的拟合效果, 2R 越大,模型的拟合效果越好; ②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1; ③若数据123,,n x x x x 的方差为1,则1232,2,22n x x x x 的方差为2;④对分类变量与y 的随机变量2k 的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为 . 【答案】2【入选理由】本题考查特称命题真假的判断,回归分析,相关系数,独立性检验等基础知识,意在考查考生转化能力,分析问题解决问题的能力,运算求解能力.此类知识属于高考冷门问题,近年高考有所重视,应多注意,故选此题.2.某单位为了了解某办公楼用电量y (度)与气温x (oC)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:得到的回归方程为a bx y+=ˆ,则a 0,b 0. 【答案】>,<【解析】依题意,画散点图知,两个变量负相关,所以0<b ,0>a .【入选理由】本题考查考查散点图、线性回归方程等基础知识,意在考查考生分析问题解决问题的能力,运算求解能力.近年高考加强了对线性回归方程的考查,应多注意,故选此题. 3.2015国际滑联世界花样滑冰锦标赛于3月23日至29日在上海举行,为调查市民喜欢这项赛事是否与年龄有关,随机抽取了55名市民,得到如下数据表:(I )判断是否有99.5%的把握认为喜欢这项赛事与年龄有关?(II )用分层抽样的方法从喜欢这项赛事的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.下面的临界值表供参考:(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)【解析】(I )由公式得()2255202010511.9787.87930252530K ⨯-⨯=≈>⨯⨯⨯,所以有99.5%的把握认为喜欢这项赛事与年龄有关.(II )设所抽样本中有m 个“大于40岁”市民,则62030m =,解得4m =,所以样本中有4个“大于40岁”市民,同理可得样本中有2个“20岁至40岁”的市民,他们分别记作123412,,,,,,B B B B C C 从中任选2人的基本事件有{}{}{}{}{}{}{}12131411122324,,,,,,,,,,,,,,B B B B B B BC B C B B B B。

2018高三第一轮复习统计与统计案例

2018高三第一轮复习统计与统计案例

2018高三第一轮复习统计与统计案例(总34页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2018高三第一轮复习统计与统计案例一、随机抽样三种抽样方法的比较二、用样本估计总体1.用样本频率分布估计总体频率分布(1)频率分布直方图的作法①求极差:即最大数与最小数的差;②决定组距与组数:组距与组数的确定没有固定的标准,试题中一般有规定;③数据分组:计算各小组的频数和频率,列出频率分布表;④画频率分布直方图:图中纵轴表示频率组距,各小矩形宽为组距,面积为频率.(2)茎叶图茎叶图中,茎是指中间的一列数,叶是茎的旁边的数,茎中一个数与叶中的一个数并在一起构成一个完整数据.茎叶图的优点是所有数据都可以在图中得到,且便于记录和表示,数据的分布情况也比较明显.缺点是当数据较多时,用起来不太方便.2.众数、中位数、平均数3.方差和标准差:方差和标准差反映了数据波动程度的大小.(1)方差:s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2];(2)标准差:s=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2].性质:标准差(或方差)越小,说明数据波动越小,越稳定;标准差越大,说明数据越分散,越不稳定.三、变量间的相关关系及回归分析1.相关关系:当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫作相关关系.与函数关系不同,相关关系是一种不确定关系. 2.散点图:表示具有相关关系的两个变量的一组数据的图形叫作散点图,它可直观地判断两变量的关系是否可以用线性关系表示.若这些点散布在从左下角到右上角的区域,则称两个变量正相关;若这些点散布在从左上角到右下角的区域,则称两个变量负相关.3.回归分析:对具有相关关系的两个变量进行统计分析的方法叫作回归分析.在线性回归模型y =bx +a +e 中,因变量y 的值由自变量x 和随机误差e 共同确定,即自变量x 只能解释部分y 的变化,在统计中,我们把自变量x 称为解释变量,因变量y 称为预报变量.4.回归方程:y ^=b ^x +a ^,其中b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑n i =1x i y i -nx - y -∑ni =1x 2i -nx -2,a ^=y --b ^x -.主要用来估计和预测取值,从而获得对这两个变量之间整体关系的了解.5.回归中心:点(x -,y -)叫作回归中心,回归直线一定经过回归中心.6.相关系数:r =∑ni =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2∑n i =1(y i -y -)2.主要用于相关量的显著性检验,以衡量它们之间的线性相关程度.当r >0时,表示两个变量正相关;当r <0时,表示两个变量负相关.|r |越接近1,表明两个变量的线性相关性越强;当|r |接近0时,表明两个变量间几乎不存在线性相关关系. 四、独立性检验 1.分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.2.列联表列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:可构造一个随机变量K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量.3.独立性检验利用随机变量、独立性假设来确定是否一定有把握认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.两个分类变量X和Y是否有关系的判断方法:统计学研究表明:当K2≤时,认为X与Y无关;当K2>时,有95%的把握说X与Y有关;当K2>时,有99%的把握说X与Y有关;当K2>时,有%的把握说X与Y有关.题型一:抽样方法1.(2013·安徽,5,易)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( ) A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数小于该班女生成绩的平均数2.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.3.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.4.某工厂36名工人的年龄数据如上表.(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (2)计算(1)中样本的平均值x -和方差s 2;(3)36名工人中年龄在x --s 与x -+s 之间有多少人?所占的百分比是多少(精确到%)5.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为( )A.7 B.9 C.10 D.156.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11 B.12 C.13 D.147.(2016·重庆巴蜀一模,5)一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )A.12,24,15,9 B.9,12,12,7 C.8,15,12,5 D.8,16,10,68.设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a为非零常数,i =1,2,…,10),则y1,y2,…,y10的均值和方差分别为( )A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a9.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .3210.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( )A .25,17,8B .25,16,9C .26,16,8D .24,17,911.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )分层抽样和系统抽样中的计算(1)系统抽样总体容量为N ,样本容量为n ,则要将总体均分成n 组,每组N n个(有零头时要先去掉).若第一组抽到编号为k的个体,则以后各组中抽取的个体编号依次为k+N n ,…,k+(n-1)Nn.(2)分层抽样按比例抽样,计算的主要依据是:各层抽取的数量之比=总体中各层的数量之比.题型二:频率分布直方图1.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[,30],样本数据分组为[,20),[20, 22.5),[,25),[25,,[,30].根据直方图,这200名学生中每周的自习时间不少于小时的人数是( )A.56 B.60 C.120 D.1402.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.3.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.4.为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6 B.8 C.12 D.185.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按[0,,[,1),…,[4,]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.6.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x -,则( )A .m e =m 0=x -B .m e =m 0<x -C .m e <m 0<x -D .m 0<m e <x -7.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45)的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )A .B .C .D .8.一所中学共有4 000名学生,为了引导学生树立正确的消费观,需抽样调查学生每天使用零花钱的数量(取整数元)情况,分层抽取容量为300的样本,作出频率分布直方图如图所示,请估计在全校所有学生中,一天使用零花钱在6元~14元的学生大约有________人.9.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图①②所示,据此解答如下问题:(1)求高三(1)班全体女生的人数;(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)之间的矩形的高;(3)若要从分数在[80,100)之间的试卷中任取两份分析女生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.10.(2015·课标Ⅱ,18,12分,中)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 8276 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 7665 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.11.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数及平均数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?12.(12分)(2014·课标Ⅰ,18)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?题型三、线性回归方程1.(2014·课标Ⅱ,19,12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1(t i -t -)(y i -y -)∑n i =1(t i -t -)2,a ^=y --b ^t -.2.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y ^=b ^x +a ^,其中b ^=,a ^=y --b ^x -.据此估计,该社区一户年收入为15万元家庭的年支出为( )A .万元B .万元C .万元D .万元3.根据如下样本数据得到的回归方程为y ^=bx +a ,则( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <04.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y ′=b ′x +a ′,则以下结论正确的是( )>b ′,a ^>a ′ >b ′,a ^<a ′ <b ′,a ^>a ′ <b ′,a ^<a ′5.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到,预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑7i =1y i =,∑7i =1t i y i =,∑7i =1(y i -y -)2=,7≈. 参考公式:相关系数r =∑ni =1 (t i -t -)(y i -y -)∑n i =1(t i -t -)2∑n i =1(y i -y -)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1(t i -t -)(y i -y -)∑n i =1(t i -t -)2,a ^=y --b ^t -.6.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为 kg7.已知变量x 和y 满足关系y =-+1,变量y 与z 正相关.下列结论中正确的是( ) A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关8.(2012·课标全国,3,易)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x+1上,则这组样本数据的样本相关系数为( ) A .-1 B .0 D .19.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于t 的回归方程y =b t +a ;10.表中提供了某厂节能降耗技术改造后生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据.根据下表提供的数据,求出y 关于x 的线性回归方程为y ^=+,那么表中t 的值为( )B .C .D .题型四、2K 检验 1.2×2列联表设X ,Y 为两个变量,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)如下:2.独立性检验利用随机变量K 2(也可表示为χ2)=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c+d 为样本容量)来判断“两个变量有关系”的方法称为独立性检验.独立性检验的方法(1)构造2×2列联表;(2)计算K2;(3)查表确定有多大的把握判定两个变量有关联.注意:查表时不是查最大允许值,而是先根据题目要求的百分比找到第一行对应的数值,再将该数值对应的k值与求得的K2相比较.另外,表中第一行数据表示两个变量没有关联的可能性p,所以其有关联的可能性为1-p.3.独立性检验的一般步骤(1)根据样本数据列出2×2列联表;(2)计算随机变量K2的观测值k,查下表确定临界值k0:(3)0P(K2≥k0);否则,就认为在犯错误的概率不超过P(K2≥k0)的前提下不能推断“X与Y有关系”.另外一种说法是有1-p的把握认为X与Y有关。

§12_4 统计与统计案例

§12_4 统计与统计案例

下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资
额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据
对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性
增长趋势,利用2010年至2016年的数据建立的线性模型 y^ =99+17.5t可以较好地描述2010年以 后的环境基础设施投资额的变化趋势,因此利用模型一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月上午3时35分21.9.1803:35September 18, 2021
+
16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021年9月18日星期六3时35分54秒03:35:5418 September 2021
+
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.9.1821.9.18Saturday, September 18, 2021
+
10、阅读一切好书如同和过去最杰出的人谈话。03:35:5403:35:5403:359/18/2021 3:35:54 AM
根据该折线图,下列结论错误的是 ( ) A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
答案 A 本题考查统计,数据分析. 观察2014年的折线图,发现从8月至9月,以及10月开始的三个月接待游客量都是减少的,故A选 项是错误的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12+4分项练12 统计与统计案例
1.(2017·贵州省贵阳市第一中学适应性考试)从编号为01,02,…,49,50的50个个体中利用下面的随机数表选取5个个体,选取方法从随机数表第1行第5列的数开始由左到右依次抽取,则选出来的第5个个体的编号为( )
A.14 B
C.32 D.43
答案 D
解析由题意知选定的第一个数为65(第1行的第5列和第6列),按由左到右选取两位数(大于50的跳过、重复的不选取),前5个个体编号为08、12、14、07、43.故选出来的第5个个体的编号为43,故选D.
2.(2017届重庆市一诊)我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )
A.104人B.108人
C.112人D.120人
答案 B
解析由题设可知这是一个分层抽样的问题,其中北乡可抽取的人数为
300×
8 100
8 100+7 488+6 912
=300×
8 100
22 500
=108,故选B.
3.(2017·河北省武邑中学质检)某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…,[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是( )
答案 B
解析从题设中提供的频率分布直方图可算得在区间[0,5),[5,10)内各有0.01×20×5=1(个),答案A被排除;在区间[10,15)内有0.04×20×5=4(个);在区间[15,20)内有0.02×20×5=2(个);在区间[20,25)内有0.04×20×5=
4(个),答案C被排除;在区间[25,30),[30,35)内各有0.03×20×5=3(个),答案D被排除.依据这些数据信息可推知,应选答案B.
4.(2017届内蒙古包头市十校联考)在某中学举行的环保知识竞赛中,将三个年级参赛的学生的成绩进行整理后分为5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80-100分的学生人数是( )
A.15 B.18
C.20 D.25
答案 A
解析第二组的频率是0.04×10=0.4,所有参赛的学生人数为
40
0.4
=100,那
么80-100分的频率是(0.01+0.005)×10=0.15 ,所以人数为0.15×100=15,故选A.
5.(2017届江西省南昌市一模)设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,3,…,n),
用最小二乘法近似得到回归直线方程为y ^
=0.85x -85.71,则下列结论中不正确的是( )
A .y 与x 具有正线性相关关系
B .回归直线过样本点的中心(x ,y )
C .若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kg
D .若该中学某高中女生身高为160 cm ,则可断定其体重必为50.29 kg 答案 D
解析 由回归直线方程定义知,因为斜率大于零,所以y 与x 具有正线性相关关系;回归直线过样本点的中心(x ,y );身高每增加1 cm ,则其体重约增加k =0.85 kg ;身高为160 cm ,则可估计其体重约为0.85×160-85.71=50.29 kg ,但不可断定.故选D.
6.(2017届广西南宁市金伦中学模拟)有两位射击运动员在一次射击测试中各射靶7次,每次命中的环数如下:
甲 7 8 10 9 8 8 6
乙 9 10 7 8 7 7 8
则下列判断正确的是( )
A .甲射击的平均成绩比乙好
B .乙射击的平均成绩比甲好
C .甲射击的成绩的众数小于乙射击的成绩的众数
D .甲射击的成绩的极差大于乙射击的成绩的极差
答案 D
解析 由题意得,甲射击的平均成绩为x 甲=
7+8+10+9+8+8+67=8,众数为8,极差为4;乙射击的平均成绩为x 乙=9+10+7+8+7+7+87=8,众数为。

相关文档
最新文档