山东省临沂市沂水县2018-2019学年七年级下期中数学测试卷(附参考答案)
七年级下册数学期中考试题及答案
七年级下册数学期中考试题及答案一、选择题(共12小题,每小题3分,共36分)1.(3分)在3.14,,,π,,0.1010010001…中,无理数有()A.1个B.2个C.3个D.4个2.(3分)下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(0,﹣2)3.(3分)如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角4.(3分)下列各项是真命题的是()A.从直线外一点到已知直线的垂线段叫做这点到直线的距离B.过一点有且只有一条直线与已知直线垂直C.有公共顶点且相等的两个角是对顶角D.同一平面内,两条直线的位置关系只有相交和平行两种5.(3分)如图,要把小河里的水引到田地A处,则作AB⊥l,垂足为点B,沿AB挖水沟,水沟最短,理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线6.(3分)如图:一张宽度相等的纸条折叠后,若∠ABC=120°,则∠1的度数是()A.80°B.70°C.60°D.50°7.(3分)如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°8.(3分)若a是﹣1的整数部分,b是5+的小数部分,则a(﹣b)的值为()A.6B.4C.9D.39.(3分)如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°10.(3分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1C.1D.﹣3或111.(3分)线段EF是由线段PQ平移得到的,点P(﹣1,4)平移后的对应点为E(0,4),则点F(﹣3,1)的对应点Q的坐标为()A.(﹣2,1)B.(﹣2,﹣2)C.(2,4)D.(﹣4,1)12.(3分)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)二、填空题(本大题共8个小题,每小题3分,共24分)13.(3分)的算术平方根是.14.(3分)把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是.15.(3分)如图,AD∥BC,∠B=30°,点E在BC上,且∠ADE=3∠BDE,则∠DEC 的度数为.16.(3分)如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为cm2.17.(3分)如果一个数的平方根是a+6和2a﹣15,则这个数为.18.(3分)若P(2﹣a,3a+6)到两坐标轴的距离相等,则P点坐标为.19.(3分)如图,AB∥CD,∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=.20.(3分)在一平面中,两条直线相交有一个交点;三条直线两两相交最多有3个交点;四条直线两两相交最多有6个交点……当相交直线的条数从2至n变化时,最多可有的交点数P与直线条数n之间的关系如下表:则n与p的关系式为:.三、解答题(共6题,共60分)21.(8分)计算:(1)×+﹣(﹣2)2.(2)×﹣+.22.(10分)(1)4(x﹣1)2=25(2)23.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试说明DE∥BC.下面是部分推导过程,请你在括号内填上推导依据或内容:证明:∵∠1+∠2=180°(已知)∠1=∠4 ()∴∠2+∠4=180°(等量代换)∵EH∥AB()∴∠B=()∵∠3=∠B(已知)∴∠3=∠EHC(等量代换)∴DE∥BC()24.(12分)如图所示的正方形网格中,每个小正方形的边长为1各单位,格点三角形(顶点是网格线的交点的三角形)中△ABC的顶点A,B的坐标分别为(1,4)和(﹣3,1)(1)请在网格所在的平面内作出符合上述表述的平面直角坐标系;(2)请你将A、B、C的横坐标不变,纵坐标乘以﹣1所得到的点A1、B1、C1描在坐标系中,并画出△A1B1C1,其中点C1的坐标为.(3)△ABC的面积是.25.(8分)已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.26.(12分)如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.2018-2019学年山东省临沂市郯城县六校联考七年级(下)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.(3分)在3.14,,,π,,0.1010010001…中,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数的概念,找出6个数中是无理数的数,此题得解.【解答】解:在 3.14,,,π,,0.1010010001…中,无理数有、π和0.1010010001…这3个,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(0,﹣2)【分析】根据点的坐标特征求解即可.【解答】解:A、(2,3)在第一象限,不符合题意;B、(2,﹣3)在第四象限,不符合题意;C、(﹣2,3)在第二象限,符合题意;D、(0,﹣2)在y轴的负半轴,不符合题意;故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选:B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.(3分)下列各项是真命题的是()A.从直线外一点到已知直线的垂线段叫做这点到直线的距离B.过一点有且只有一条直线与已知直线垂直C.有公共顶点且相等的两个角是对顶角D.同一平面内,两条直线的位置关系只有相交和平行两种【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、从直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,是假命题;B、在同一平面内,过一点有且只有一条直线与已知直线垂直,是假命题;C、有公共顶点且相等的两个角不一定是对顶角,是假命题;D、同一平面内,两条直线的位置关系只有相交和平行两种,是真命题;故选:D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(3分)如图,要把小河里的水引到田地A处,则作AB⊥l,垂足为点B,沿AB挖水沟,水沟最短,理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线【分析】从图中可知利用的知识是:垂线段最短.【解答】解:从题意:把小河里的水引到田地A处,则作AB⊥l,垂足为点B,沿AB挖水沟,可知利用:垂线段最短.故选:C.【点评】本题用了知识点是:垂线段最短,读懂题意是解决问题的关键.6.(3分)如图:一张宽度相等的纸条折叠后,若∠ABC=120°,则∠1的度数是()A.80°B.70°C.60°D.50°【分析】根据两直线平行,内错角相等可得∠1+∠2=∠ABC,再根据翻折变换的性质可得∠1=∠2,然后求解即可.【解答】解:∵纸条两边互相平行,∴∠1+∠2=∠ABC=120°,由翻折变换的性质得,∠1=∠2,∴∠1=60°.故选:C.【点评】本题考查了平行线的性质,翻折变换的性质,熟记性质并准确识图是解题的关键.7.(3分)如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°【分析】先延长AE交CD于F,根据AB∥CD,∠A=115°,即可得到∠AFD=65°,再根据∠AED是△DEF的外角,∠E=80°,即可得到∠CDE=80°﹣65°=15°.【解答】解:延长AE交CD于F,∵AB∥CD,∠A=115°,∴∠AFD=65°,又∵∠AED是△DEF的外角,∠E=80°,∴∠CDE=80°﹣65°=15°.故选:A.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(3分)若a是﹣1的整数部分,b是5+的小数部分,则a(﹣b)的值为()A.6B.4C.9D.3【分析】先估算和的大小,然后求出a、b的值,代入所求式子计算即可.【解答】解:∵2<﹣1<3,∴a=2,又∵7<5+<8,∴5+的整数部分为7∴b=5+﹣7=﹣2;∴a(﹣b)=2×(﹣+2)=4.故选:B.【点评】本题主要考查估算无理数的大小,解题的关键是求出无理数整数部分的值,属于基础题.9.(3分)如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.10.(3分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1C.1D.﹣3或1【分析】依据平方根的性质列方程求解即可.【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.【点评】本题主要考查的是平方根的性质,明确2m﹣4与3m﹣1相等或互为相反数是解题的关键.11.(3分)线段EF是由线段PQ平移得到的,点P(﹣1,4)平移后的对应点为E(0,4),则点F(﹣3,1)的对应点Q的坐标为()A.(﹣2,1)B.(﹣2,﹣2)C.(2,4)D.(﹣4,1)【分析】首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.【解答】解:∵点P(﹣1,4)的对应点为E(0,4),∴E点是P点横坐标+1,纵坐标保持不变得到的,∴点F(﹣3,1)的对应点F坐标为(﹣3﹣1,1),即(﹣4,1).故选:D.【点评】此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.12.(3分)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;此时甲乙回到原出发点,则每相遇三次,甲乙两物体回到出发点,∵2017÷3=672…1,故两个物体运动后的第2014次相遇地点的是:第一次相遇地点,即物体甲行的路程为12×1×=4,物体乙行的路程为12×1×=8;此时相遇点F的坐标为:(﹣1,1),故选:B.【点评】此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.二、填空题(本大题共8个小题,每小题3分,共24分)13.(3分)的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.14.(3分)把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是如果两个角相等,那么它们是对顶角.【分析】对顶角相等的条件是两个角是对顶角,结论是两角相等,据此即可改写成“如果…,那么…”的形式.【解答】解:∵原命题的条件是:“相等的角”,结论是:“这两个角是对顶角”,∴命题“相等的角是对顶角”写成“如果,那么”的形式为:“如果两个角相等,那么两个角是对顶角”故答案为:如果两个角相等,那么两个角是对顶角.【点评】本题考查了确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式,难度适中.15.(3分)如图,AD∥BC,∠B=30°,点E在BC上,且∠ADE=3∠BDE,则∠DEC 的度数为45°.【分析】依据AD∥BC,∠B=30°,即可得到∠B=∠ADB=30°,再根据∠ADE=3∠BDE,可得∠BDE=∠ADB=15°,进而得出∠DEC=∠B+∠BDE=45°.【解答】解:∵AD∥BC,∠B=30°,∴∠B=∠ADB=30°,又∵∠ADE=3∠BDE,∴∠BDE=∠ADB=15°,∴∠DEC=∠B+∠BDE=45°,故答案为:45°.【点评】此题考查了平行线的性质以及角平分线的定义.此题注意掌握两直线平行,内错角相等.16.(3分)如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为6cm2.【分析】由平移的性质知,⊙O1与⊙O2是全等的,所以图中的阴影部分的面积与图中的矩形的面积是相等的,故图中阴影部分面积可求.【解答】解:∵⊙O1平移3cm到⊙O2∴⊙O1与⊙O2全等∴图中的阴影部分的面积=图中的矩形的面积∴2×3=6cm2∴图中阴影部分面积为6cm2.故答案为:6.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.解题的关键是要知道图中的阴影部分的面积=图中的矩形的面积.17.(3分)如果一个数的平方根是a+6和2a﹣15,则这个数为81.【分析】根据两个平方根互为相反数,即可列方程得到a的值,然后根据平方根的定义求得这个数.【解答】解:根据题意得:a+6+(2a﹣15)=0,解得:a=3.则这个数是(a+6)2=(3+6)2=81.故答案是:81.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,正确求得a的值是关键.18.(3分)若P(2﹣a,3a+6)到两坐标轴的距离相等,则P点坐标为(3,3)或(6,﹣6).【分析】根据点到坐标轴的距离的定义,分点的横坐标与纵坐标相等和互为相反数列式求出a的值,然后求解即可.【解答】解:∵P(2﹣a,3a+6)到两坐标轴的距离相等,∴2﹣a=3a+6,解得a=﹣1,此时,2﹣a=2﹣(﹣1)=2+1=3,点P的坐标为(3,3),或2﹣a+3a+6=0,解得a=﹣4,此时,2﹣a=2﹣(﹣4)=2+4=6,点P的坐标为(6,﹣6),综上所述,点P的坐标为(3,3)或(6,﹣6).故答案为:(3,3)或(6,﹣6).【点评】本题考查了点的坐标,是基础题,难点在于分两种情况讨论求解.19.(3分)如图,AB∥CD,∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=15°.【分析】过点P作一条直线平行于AB,根据两直线平行内错角相等得:∠APC=∠BAP+∠PCD,得到关于α的方程,解即可.【解答】解:过点P作PM∥AB,∴AB∥PM∥CD,∴∠BAP=∠APM,∠DCP=∠MPC,∴∠APC=∠APM+∠CPM=∠BAP+∠DCP,∴45°+α=(60°﹣α)+(30°﹣α),解得α=15°.故答案为:15°.【点评】考查了一元一次方程的应用,注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.20.(3分)在一平面中,两条直线相交有一个交点;三条直线两两相交最多有3个交点;四条直线两两相交最多有6个交点……当相交直线的条数从2至n变化时,最多可有的交点数P与直线条数n之间的关系如下表:则n与p的关系式为:p=n(n﹣1).【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点.【解答】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点.即p=n(n﹣1),故答案为:p=n(n﹣1).【点评】本题主要考查了相交线,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.三、解答题(共6题,共60分)21.(8分)计算:(1)×+﹣(﹣2)2.(2)×﹣+.【分析】(1)原式利用平方根、立方根定义,以及平方的定义计算即可求出值;(2)直接利用立方根的性质以及二次根式的性质分别化简得出答案.【解答】解:(1)原式=0.4×2﹣2﹣4,=0.8﹣2﹣4,=﹣5.2.(2)原式=3×2﹣﹣,=6﹣2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(10分)(1)4(x﹣1)2=25(2)【分析】(1)根据平方根的定义,把原方程转化为两个一元一次方程,解之即可,(2)利用加减消元法解之即可.【解答】解:(1)(x﹣1)2=,x﹣1=或x﹣1=﹣,x=或x=﹣,原方程的解为:x1=,x2=﹣,(2)原方程组可整理得:,①+②得:5x=5,解得:x=1,把x=1代入①得:3+y=1,解得:y=﹣2,原方程组的解为:.【点评】本题考查了解二元一次方程组,平方根,解题的关键:(1)正确掌握平方根的定义,(2)正确掌握加减消元法解二元一次方程组.23.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试说明DE∥BC.下面是部分推导过程,请你在括号内填上推导依据或内容:证明:∵∠1+∠2=180°(已知)∠1=∠4 (对顶角相等)∴∠2+∠4=180°(等量代换)∵EH∥AB(同旁内角互补,两直线平行)∴∠B=EHC(两直线平行,同位角相等)∵∠3=∠B(已知)∴∠3=∠EHC(等量代换)∴DE∥BC(内错角相等,两直线平行)【分析】根据对顶角相等,得出∠1=∠4,根据等量代换可知∠2+∠4=180°,根据同旁内角互补,两直线平行,得出EH∥AB,再由两直线平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,有等量代换可知∠3=∠EHC,再根据内错角相等,两直线平行,即可得出DE∥BC.【解答】解:∵∠1+∠2=180°,(已知)∠1=∠4,(对顶角相等)∴∠2+∠4=180°,∴EH∥AB,(同旁内角互补,两直线平行)∴∠B=∠EHC,(两直线平行,同位角相等)∵∠3=∠B,(已知)∴∠3=∠EHC,(等量代换)∴DE∥BC,(内错角相等,两直线平行)故答案为:对顶角相等;同旁内角互补,两直线平行;EHC;两直线平行,同位角相等;内错角相等,两直线平行.【点评】本题主要考查了利用平行线的性质和平行线的判定解答,命题意图在于训练学生的证明书写过程,难度适中.24.(12分)如图所示的正方形网格中,每个小正方形的边长为1各单位,格点三角形(顶点是网格线的交点的三角形)中△ABC的顶点A,B的坐标分别为(1,4)和(﹣3,1)(1)请在网格所在的平面内作出符合上述表述的平面直角坐标系;(2)请你将A、B、C的横坐标不变,纵坐标乘以﹣1所得到的点A1、B1、C1描在坐标系中,并画出△A1B1C1,其中点C1的坐标为(5,2).(3)△ABC的面积是18.【分析】(1)根据点A、C的坐标即可确定平面直角坐标系;(2)根据点A、B、C的纵坐标乘以﹣1,所得到的点A1、B1、C1描在坐标系中,并画出△A1B1C1;(3)利用割补法求解可得△ABC的面积.【解答】解:(1)平面直角坐标系如图所示;(2)如图所示,△A1B1C1即为所求,其中点C1的坐标为(5,2);故答案为:(5,2);(3)△ABC的面积是×6×(3+3)=18.故答案为:18【点评】本题考查的是轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.25.(8分)已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.【分析】(1)由AB∥x轴,可以知道A、B两点纵坐标相等,解关于m的一元一次方程,求出m的值;(2)由(1)求得m值求出点A、B坐标,由A、B两点横坐标相减的绝对值即为AB的长度.【解答】解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.【点评】题目考查了平面直角坐标系中图形性质,题目较为简单.学生在解决此类问题时一定要灵活运用点的特征.26.(12分)如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E 作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC =S△APG+S△CPG进行计算.【解答】解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=|t﹣1|•2+|t﹣1|•2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.最新七年级下册数学期中考试题(含答案)一、选择题(每小题4分,共52分)1.(4分)计算(a m)3•a n的结果是()A.a B.a3m+n C.a3(m+n)D.a3mn2.(4分)下列各式中,能用平方差公式计算的是()A.(p+q)(﹣p﹣q)B.(p﹣q)(q﹣p)C.(5x+3y)(3y﹣5x)D.(2a+3b)(3a﹣2b)3.(4分)生活中太阳能热水器已进入千家万户,你知道吗,在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.所晒时间D.热水器4.(4分)如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A.线段AM B.线段BN C.线段CN D.无法确定5.(4分)某种感冒病毒的直径是0.00000012米,将0.00000012用科学记数法可表示为()A.12×10﹣8B.1.2×10﹣8C.1.2×10﹣7D.0.12×10﹣7 6.(4分)下列说法中,正确的是()A.一个角的补角一定大于这个角B.任何一个角都有补角C.若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余D.一个角如果有余角,则这个角的补角与它的余角的差为90°7.(4分)在一个数值转换机中(如图),当输入x=﹣5时,输出的y值是()A.26B.﹣13C.﹣24D.78.(4分)已知x a=2,x b=3,则x3a﹣2b=()A.﹣1B.1C.D.9.(4分)洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()A.B.C.D.10.(4分)如图,OA⊥OB,OC⊥OD,∠AOC=α,则∠BOD=()A.180°﹣2αB.2α﹣90°C.90°+αD.180°﹣α11.(4分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 12.(4分)如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°13.(4分)长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=12﹣x2C.y=(12﹣x)•x D.y=2(12﹣x)二、填空题(每题4分,共28分)14.(4分)长为3m+2n,宽为5m﹣n的长方形的面积为.15.(4分)已知x2﹣kx+9是一个完全平方式,则k的值是.16.(4分)a2﹣ab+b2=()2﹣3ab,(a﹣b)()=b2﹣a2.17.(4分)游客爬山所用时间t(小时)与山高h(千米)间的函数关系如图所示,请写出游客爬山的过程:.18.(4分)若a+b=5,ab=6,则(a﹣b)2=.19.(4分)有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(3a+2b)的大长方形,则需要C类卡片张.20.(4分)已知直线l1、l2、l3互相平行,直线l1与l2的距离是4cm,直线l2与l3的距离是6cm,那么直线l1与l3的距离是.三、解答题(写出必要的计算和步骤,共70分)21.(20分)计算:(1)(﹣1)2006+(﹣)﹣2﹣(3.14﹣π)0(2)(x﹣2y)(x2﹣4y2)(x+2y)(3)(0.125)1998•(﹣8)1999(4)(+5)2﹣(﹣5)2(5)10252﹣1024×1026(运用乘法公式计算)22.(5分)已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:不写作法,但要保留作图痕迹,且写出结论)23.(8分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:∵EF∥AD∴∠2=(又∵∠1=∠2∴∠1=∠3()∴AB∥()∴∠BAC+=180°()∵∠BAC=70°()∴∠AGD=()24.(6分)先化简,再求值:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b =﹣1.25.(6分)如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)若∠BOC=a°,求∠DOE的度数;(3)图中是否有互余的角?若有请写出所有互余的角.26.(7分)如图,在边长为1个单位长度的小正方形组成的网格中,已知AB∥CD,分别探讨下面三个图形中∠BAP与∠APC、∠DCP的关系,请任选一个加以说明.27.(8分)小明家距离学校8千米,今天早晨,小明骑车上学途中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他增加速度骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行的路程s与他所用的时间t之间的关系.请根据图象,解答下列问题:(1)小明行了多少千米时,自行车出现故障?修车用了几分钟?(2)小明共用了多少时间到学校的?(3)小明修车前、后的行驶速度各是多少?(4)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟(精确到0.1)?28.(10分)如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积.方法1:方法2:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2=.2017-2018学年甘肃省兰州市永登县七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共52分)1.(4分)计算(a m)3•a n的结果是()A.a B.a3m+n C.a3(m+n)D.a3mn【分析】首先根据幂的乘方的运算方法:(a m)n=a mn,求出(a m)3的值是多少;然后根据积的乘方的运算方法,求出计算(a m)3•a n的结果是多少即可.【解答】解:(a m)3•a n=a3m•a n=a3m+n.故选:B.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.2.(4分)下列各式中,能用平方差公式计算的是()A.(p+q)(﹣p﹣q)B.(p﹣q)(q﹣p)C.(5x+3y)(3y﹣5x)D.(2a+3b)(3a﹣2b)【分析】运用平方差公式(a+b)(a﹣b)=a2﹣b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【解答】解:A、不存在相同的项,不能运用平方差公式进行计算B、不存在相同的项,不能运用平方差公式进行计算,C、3y是相同的项,互为相反项是5x与﹣5x,符合平方差公式的要求;D、不存在相同的项,不能运用平方差公式进行计算;故选:C.【点评】本题考查了平方差公式的应用,熟记公式是解题的关键.3.(4分)生活中太阳能热水器已进入千家万户,你知道吗,在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.所晒时间D.热水器【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:A.【点评】本题主要考查的是对函数的定义以及对自变量和因变量的认识和理解.4.(4分)如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A.线段AM B.线段BN C.线段CN D.无法确定【分析】由点到直线的距离的定义及跳远比赛的规则作出分析和判断.【解答】解:他的跳远成绩是线段BN的长度.故选:B.【点评】本题考查了垂线段最短性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.5.(4分)某种感冒病毒的直径是0.00000012米,将0.00000012用科学记数法可表示为()A.12×10﹣8B.1.2×10﹣8C.1.2×10﹣7D.0.12×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7.故选:C.。
沂水镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
沂水镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)满足方程组的解x与y之和为2,则a的值为()A. ﹣4B. 4C. 0D. 任意数【答案】B【考点】三元一次方程组解法及应用【解析】【解答】解:根据题意可列出方程组,(1 )﹣(2)得x+2y=2,代入(3)得y=0,则x=2,把y=0,x=2代入(1)得:a+2=6,∴a=4.故答案为:B.【分析】根据题意建立三元一次方程组,观察系数的特点,两个方程中含有a,且a的系数是1,因此利用加减消元消去a后的方程与x+y=2,建立二元一次方程组,求出x、y的值,就可求出a的值。
2、(2分)不等式3(x-1)≤5-x的非负整数解有()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】解一元一次不等式,一元一次不等式的特殊解【解析】【解答】解:3x-3≤5-x4x≤8解之:x≤2不等式的非负整数解为:2、1、0一共3个故答案为:C【分析】先求出不等式的解集,再确定不等式的非负整数解即可。
3、(2分)如图,与∠1是内错角的是()A. ∠2B. ∠3C. ∠4D. ∠5【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:∠1与∠2是邻补角,故A不符合题意;∠1与∠3是同位角,故B不符合题意;∠1与∠4不满足三线八角的关系,故C不符合题意;∠1与∠5是内错角,故D符合题意。
故答案为:D。
【分析】根据三线八角的定义,两条直线被第三条直线所截,截出的八个角中,位置上形如“F”的两个角是同位角;位置上形如“Z”的两个角是内错角;位置上形如“U”的两个角是同旁内角;根据定义意义判断即可。
4、(2分)等式组的解集在下列数轴上表示正确的是()。
A. B.C. D.【答案】B【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:不等式可化为:.即-3<x≤2;在数轴上表示为:故答案为:B.【分析】先分别求得两个不等式的解集,再在数轴上表示出两个解集,这两个解集的公共部分就是不等式的解集.5、(2分)下列生活现象中,属于平移的是()A. 足球在草地上滚动B. 拉开抽屉C. 投影片上的文字经投影转换到屏幕上D. 钟摆的摆动【答案】B【考点】生活中的平移现象【解析】【解答】解:拉开抽屉是平移。
2018-2019学年人教新版山东省临沂市沂水县七年级第二学期期中数学试卷 含解析
2018-2019学年七年级第二学期期中数学试卷一、选择题1.实数的平方根()A.3 B.﹣3 C.±3 D.±2.如图,直线AC和直线BD相交于点O,若∠1+∠2=90°,则∠BOC的度数是()A.100°B.115°C.135°D.145°3.下列语句正确的是()A.负数没有立方根B.8的立方根是±2C.立方根等于本身的数只有±1D.=﹣4.下列关系中,互相垂直的两条直线是()A.两直线相交成的四角中相邻两角的角平分线所在直线B.互为对顶角的两角的平分线C.互为补角的两角的平分线D.相邻两角的角平分线5.若直线l外一点P与直线l上三点的连线段长分别为2cm,3cm,4cm,则点P到直线l 的距离是()A.2cm B.不超过2cm C.3cm D.大于4cm6.下列说法中正确的是()A.的算术平方根是±4 B.12是144的平方根C.的平方根是±5 D.a2的算术平方根是a7.如图,∠1=65°,CD∥EB,则∠B的度数为()A.115°B.110°C.105°D.65°8.点A(m﹣3,m+1)在第二、四象限的平分线上,则A的坐标为()A.(﹣1,1)B.(﹣2,﹣2)C.(﹣2,2)D.(2,2)9.如图,若△DEF是由△ABC平移后得到的,已知点A、D之间的距离为1,CE=2,则BC =()A.3 B.1 C.2 D.不确定10.若点P(a,b)在第二象限,则点Q(b+2,2﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限11.如图所示,数轴上A,B两点表示的数分别是﹣1和,则A,B两点之间的距离是()A.2B.2﹣1 C.2+1 D.112.已知,平面直角坐标系中A点坐标是(3,2),B点坐标是(﹣2,﹣5),将线段AB 平移后得到点A的对应点A'的坐标是(5,﹣1),则点B的对应点B'的坐标为()A.(0,﹣6)B.(3,﹣8)C.(1,﹣4)D.(0,﹣8)13.如图,下列条件:①∠1=∠2,②∠2=∠3,③∠5+∠6=180°,④∠1+∠4=180°,⑤∠7=∠2+∠3中能判断直线a∥b的有()A.2个B.3个C.4个D.5个14.如图,在x轴的正半轴和与x轴平行的射线上各放置一块平面镜,发光点(0,1)处沿如图所示方向发射一束光,每当碰到镜面时会发生反射(反射时反射角等于入射角,仔细看光线与网格线和镜面的夹角),当光线第20次碰到镜面时的坐标为()A.(60,0)B.(58,0)C.(61,3)D.(58,3)二、填空题(本题5个小题,每小题3分,共15分)15.已知2x﹣1的平方根是±3,则5x+2的立方根是.16.如图,已知直线AB,CD相交于点O,EO⊥AB,垂足为O.若∠EOC=32°,则∠AOD度数为.17.已知点P(a+3,2a+4)在y轴上,则点P的坐标为.18.如图,直线a、b被c所截,a⊥d于M,b⊥d于N,∠1=66°,则∠2=.19.已知点A(m﹣1,﹣5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为.三、解答题(本题7个小题,共63分)20.如图,已知锐角∠AOB,M,N分别是∠AOB两边OA,OB上的点.用直尺或三角板按下列要求画图:(1)过点M作OB的垂线段MC,C为垂足;(2)过点N作OA的平行线ND;(3)平移△OMC,使点M移动到点N处,画出平移后的△ENF,其中E,F分别为点O,C 的对应点.21.已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P的横坐标比纵坐标大3;(2)点P在过点A(2,﹣4)且与y轴平行的直线上.22.直线AB,CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O,若∠EOF=54°.求∠AOF 的度数.23.阅读理解“∵1<2<4,∴1<<2,∴的整数部分是1,将这个数减去其整数部分,差就是小数部分.即:的小数部分为(﹣1)”“类似的:∵2<<3,∴的小数部分就是(﹣2)”解决问题:已知5+的小数部分为a,5﹣的小数部分为b,求a+b.24.如图,D,E分别是三角形ABC的边AB,BC上的点,DE∥AC,点F在DE的延长线上,且∠DFC=∠A.(1)求证:AB∥CF;(2)若∠ACF比∠BDE大40°,求∠BDE的度数.25.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.26.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,猜测∠PFD与∠AEM的数量关系,并说明理由;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°.参考答案一、选择题(本题14个小题,每小题3分,共42分:每题中只有一个答案符合要求)1.实数的平方根()A.3 B.﹣3 C.±3 D.±【分析】先将原数化简,然后根据平方根的性质即可求出答案.解:∵=3,∴3的平方根是,故选:D.2.如图,直线AC和直线BD相交于点O,若∠1+∠2=90°,则∠BOC的度数是()A.100°B.115°C.135°D.145°【分析】根据对顶角和邻补角的定义即可得到结论.解:∵∠1=∠2,∠1+∠2=90°,∴∠1=∠2=45°,∴∠BOC=135°,故选:C.3.下列语句正确的是()A.负数没有立方根B.8的立方根是±2C.立方根等于本身的数只有±1D.=﹣【分析】根据立方根的定义和性质逐一判断即可得.解:A.负数有一个负的立方根,此选项错误;B.8的立方根是2,此选项错误;C.立方根等于本身的数有±1和0,此选项错误;D.=﹣=﹣2,此选项正确;故选:D.4.下列关系中,互相垂直的两条直线是()A.两直线相交成的四角中相邻两角的角平分线所在直线B.互为对顶角的两角的平分线C.互为补角的两角的平分线D.相邻两角的角平分线【分析】根据垂直的含义:两条直线相交成直角时,这两条直线相互垂直,逐项分析即可.解:A、如图,∵OE平分∠AOD,OF平分∠BOD,∴2∠DOE=∠AOD,2∠DOF=∠BOD,∵∠AOD+∠BOD=180°,∴2∠DOE+2∠DOF=180°,∴∠DOE+∠DOF=90°,∴∠EOF=90°,即:两直线相交成的四角中相邻两角的角平分线互相垂直;B、互为对顶角的两角的平分线所成角为180°;C、若互为补角的两角不是邻补角,则它们的平分线不垂直;D、相邻两角不是邻补角,则它们的角平分线不垂直;故选:A.5.若直线l外一点P与直线l上三点的连线段长分别为2cm,3cm,4cm,则点P到直线l 的距离是()A.2cm B.不超过2cm C.3cm D.大于4cm 【分析】根据垂线段最短,可得答案.解:由垂线段最短,得点P到直线l的距离小于或等于2cm,故选:B.6.下列说法中正确的是()A.的算术平方根是±4 B.12是144的平方根C.的平方根是±5 D.a2的算术平方根是a【分析】直接利用算术平方根以及平方根的定义分别分析得出答案.解:A、=4,4的算术平方根是2,故此选项错误;B、12是144的平方根,正确;C、=5,5的平方根是±,故此选项错误;D、a2的算术平方根是|a|,故此选项错误.故选:B.7.如图,∠1=65°,CD∥EB,则∠B的度数为()A.115°B.110°C.105°D.65°【分析】根据对顶角相等求出∠2=65°,然后根据CD∥EB,判断出∠B=115°.解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选:A.8.点A(m﹣3,m+1)在第二、四象限的平分线上,则A的坐标为()A.(﹣1,1)B.(﹣2,﹣2)C.(﹣2,2)D.(2,2)【分析】根据二四象限角平分线上的点横坐标与纵坐标互为相反数,可得关于m的方程,根据解方程,可得m的值,根据m的值,可得点A的坐标.解:由A(m﹣3,m+1)在第二、四象限的平分线上,得(m﹣3)+(m+1)=0,解得m=1,m﹣3=﹣2,m+1=2,A的坐标为(﹣2,2),故选:C.9.如图,若△DEF是由△ABC平移后得到的,已知点A、D之间的距离为1,CE=2,则BC =()A.3 B.1 C.2 D.不确定【分析】根据平移的性质,结合图形可直接求解.解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,根据对应点所连的线段平行且相等,得BE=AD=1.所以BC=BE+CE=1+2=3,故选:A.10.若点P(a,b)在第二象限,则点Q(b+2,2﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的坐标特点得出a,b的符号进而得出答案.解:∵点P(a,b)在第二象限,∴a<0,b>0,∴b+2>0,2﹣a>0,∴点Q(b+2,2﹣a)所在象限应该是第一象限.故选:A.11.如图所示,数轴上A,B两点表示的数分别是﹣1和,则A,B两点之间的距离是()A.2B.2﹣1 C.2+1 D.1【分析】根据题意列出算式,计算即可得到结果.解:∵A,B两点表示的数分别是﹣1和,∴A,B两点之间的距离是:﹣(﹣1)=1;故选:D.12.已知,平面直角坐标系中A点坐标是(3,2),B点坐标是(﹣2,﹣5),将线段AB 平移后得到点A的对应点A'的坐标是(5,﹣1),则点B的对应点B'的坐标为()A.(0,﹣6)B.(3,﹣8)C.(1,﹣4)D.(0,﹣8)【分析】根据点A、A′的坐标确定出平移规律,然后求解即可.解:∵点A(3,2)的对应点A′是(5,﹣1),∴平移规律是横坐标加2,纵坐标减3,∴点B(﹣2,﹣5)的对应点B'的坐标为(0,﹣8).故选:D.13.如图,下列条件:①∠1=∠2,②∠2=∠3,③∠5+∠6=180°,④∠1+∠4=180°,⑤∠7=∠2+∠3中能判断直线a∥b的有()A.2个B.3个C.4个D.5个【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法即可得出结论.解:①由∠1=∠2,可得a∥b;②由∠2=∠3,不能得到a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠1+∠4=180°,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;故能判断直线a∥b的有3个.故选:B.14.如图,在x轴的正半轴和与x轴平行的射线上各放置一块平面镜,发光点(0,1)处沿如图所示方向发射一束光,每当碰到镜面时会发生反射(反射时反射角等于入射角,仔细看光线与网格线和镜面的夹角),当光线第20次碰到镜面时的坐标为()A.(60,0)B.(58,0)C.(61,3)D.(58,3)【分析】观察图象,镜面上的反射点分布在x轴和直线y=3上,每次向右3个单位.解:观察图象可以第1次碰到镜面位置在x轴上坐标为(1,0),第二次在(4,3),第三次在(7,0)等.则每次碰到镜面横坐标增加3.则第20次横坐标为:(20﹣1)×3+1=58.第20次在直线y=3上故选:D.二、填空题(本题5个小题,每小题3分,共15分)15.已知2x﹣1的平方根是±3,则5x+2的立方根是 3 .【分析】先根据平方根定义得出2x﹣1=9,求出x=5,求出5x+2的值,最后根据立方根定义求出即可.解:∵2x﹣1的平方根是±3,∴2x﹣1=9,∴x=5,∴5x+2=27,∴5x+2的立方根是3,故答案为:316.如图,已知直线AB,CD相交于点O,EO⊥AB,垂足为O.若∠EOC=32°,则∠AOD度数为122°.【分析】根据图形求得∠COB=122°;然后由对顶角相等的性质来求∠AOD的度数.解:∵EO⊥AB,∴∠BOE=90°又∵∠EOC=32°,∴∠BOC=90°+32°=122°∴∠AOD=∠BOC=122°.故答案为:122°.17.已知点P(a+3,2a+4)在y轴上,则点P的坐标为(0,﹣2).【分析】直接利用y轴上点的坐标特点得出a的值,进而得出答案.解:∵点P(a+3,2a+4)在y轴上,∴a+3=0,解得:a=﹣3,故2a+4=﹣2,则点P的坐标为:(0,﹣2).故答案为:(0,﹣2).18.如图,直线a、b被c所截,a⊥d于M,b⊥d于N,∠1=66°,则∠2=114°.【分析】根据a⊥d,b⊥d,可得出a∥b,再根据两直线平行,内错角相等,求得∠2即可.解:∵a⊥d,b⊥d,∴a∥b,∴∠1=∠2,∵∠1=66°,∴∠2=114°,故答案为114°.19.已知点A(m﹣1,﹣5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为9 .【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.解:∵点A(m﹣1,﹣5)和点B(2,m+1),直线AB∥x轴,∴m+1=﹣5,解得m=﹣6.∴2﹣(﹣6﹣1)=9,故答案为:9.三、解答题(本题7个小题,共63分)20.如图,已知锐角∠AOB,M,N分别是∠AOB两边OA,OB上的点.用直尺或三角板按下列要求画图:(1)过点M作OB的垂线段MC,C为垂足;(2)过点N作OA的平行线ND;(3)平移△OMC,使点M移动到点N处,画出平移后的△ENF,其中E,F分别为点O,C 的对应点.【分析】(1)利用直角三角形过点M作OB的垂线段MC即可;(2)利用直尺和直角三角板画OA的平行线ND;(3)根据平移的性质:对应点所连线段平行且相等作图即可.解:(1)如图所示,垂线段MC即为所求;(2)如图所示,直线ND即为所求;(3)如图所示,△ENF即为所求;21.已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P的横坐标比纵坐标大3;(2)点P在过点A(2,﹣4)且与y轴平行的直线上.【分析】(1)根据横坐标比纵坐标大3列方程求出m的值,再求解即可;(2)根据平行于y轴的直线上的点的横坐标相等列方程求出m的值,再求解即可.解:(1)∵点P(2m+4,m﹣1)的横坐标比纵坐标大3,∴(2m+4)﹣(m﹣1)=3,解得m=﹣2,∴2m+4=2×(﹣2)+4=0,m﹣1=﹣2﹣1=﹣3,∴点P的坐标为(0,﹣3);(2)∵点P(2m+4,m﹣1)在过点A(2,﹣4)且与y轴平行的直线上,∴2m+4=2,解得m=﹣1,∴m﹣1=﹣1﹣1=﹣2,∴点P的坐标为(2,﹣2).22.直线AB,CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O,若∠EOF=54°.求∠AOF 的度数.【分析】依据垂线的定义,即可得到∠DOE的度数,再根据角平分线的定义,即可得到∠BOD的度数,进而得出结论.解:∵OF⊥CD,∠EOF=54°,∴∠DOE=90°﹣54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°,又∵∠COF=90°,∴∠AOF=90°+72°=162°.23.阅读理解“∵1<2<4,∴1<<2,∴的整数部分是1,将这个数减去其整数部分,差就是小数部分.即:的小数部分为(﹣1)”“类似的:∵2<<3,∴的小数部分就是(﹣2)”解决问题:已知5+的小数部分为a,5﹣的小数部分为b,求a+b.【分析】根据题意得出a,b的值,进而得出答案.解:∵2<<3,∴7<5+<8,∴a=5+﹣7=﹣2,∵2<<3,∴﹣3<﹣<﹣2,∴2<5﹣<3,∴b=5﹣﹣2=3﹣,∴a+b=﹣2+3﹣=1.24.如图,D,E分别是三角形ABC的边AB,BC上的点,DE∥AC,点F在DE的延长线上,且∠DFC=∠A.(1)求证:AB∥CF;(2)若∠ACF比∠BDE大40°,求∠BDE的度数.【分析】(1)只要证明∠DFC=∠BDE,即可解决问题;(2)用构建方程组的思想即可解决问题;【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DFC=∠A,∴∠DFC=∠BDE,∴AB∥CF.(2)解:∵DE∥AC,∴∠ACF+∠DFC=180°,由(1)中已证∠DFC=∠BDE,∴∠ACF+∠BDE=180°,又∵∠ACF比∠BDE大40°,∴∠BDE+40°+∠BDE=180°,∴∠BDE=70°.25.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB∥x轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解;(3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y 轴上,满足题意的P点有两个.解:(1)描点如图;(2)依题意,得AB∥x轴,且AB=3﹣(﹣2)=5,∴S△ABC=×5×2=5;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,﹣3).26.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,猜测∠PFD与∠AEM的数量关系,并说明理由;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°.【分析】(1)作PH∥AB,然后利用平行线的性质可得∠PFD=∠MPH,∠AEM=∠HPM,再由条件∠MPN=90°,可得∠PFD+∠AEM=90°;(2)过P作PG∥AB,根据平行线的性质可得∠AEM=∠GPM,∠PFD=∠FPG,再由条件∠MPN=90°可得∠PFD﹣∠AEM=90°.解:(1)∠PFD+∠AEM=90°,理由:作PH∥AB,∵AB∥CD,∴PH∥CD,∴∠PFD=∠MPH,∠AEM=∠HPM,∵∠MPN=90°,∴∠PFD+∠AEM=90°;(2)证明:过P作PG∥AB,∴∠AEM=∠GPM,∵AB∥CD,∴PG∥CD,∴∠PFD=∠FPG,又∵∠FPG=∠FPM+∠GPM=90°+∠AEM,∴∠PFD=90°+∠AEM,∴∠PFD﹣∠AEM=90°.。
临沂市2018-2019学年七年级下期中数学测试卷(附配套答案)
2018-2019学年山东省临沂市七年级(下)期中测试卷数学一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.52.下列各式中,正确的是()A.±=± B.±=C.±=± D.=±3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣14.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4) C.(﹣4,3)D.(4,3)9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是()A.110°B.120°C.140° D.150°二、填空题(每小题3分,共18分)15.把命题“同角的余角相等”改写成“如果…那么…”的形式.16.3﹣的相反数是,绝对值是.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是.18.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P 的坐标是.19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB 的长度:AB7cm.(填>或者<或者=或者≤或者≥).20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(共60分)21.(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.22.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=()∠ABE=()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.24.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B 两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?25.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.26.如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.2018-2019学年山东省临沂市七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.5【考点】26:无理数.【分析】根据无理数的定义及常见的无理数的形式即可判定.【解答】解:在下列各数:3.1415926、、0.2、、、、中,根据无理数的定义可得,无理数有、两个.故选A.2.下列各式中,正确的是()A.±=± B.±=C.±=± D.=±【考点】22:算术平方根.【分析】根据平方根的定义得到±=±,即可对各选项进行判断.【解答】解:因为±=±,所以A选项正确;B、C、D选项都错误.故选A.3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣1【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式求出a、b的值,计算即可.【解答】解:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选:B.4.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】2B:估算无理数的大小.【分析】估算出的范围,即可确定出所求式子的范围.【解答】解:∵16<21<25,∴4<<5,即2<﹣2<3,则﹣2的值在2到3之间,故选B5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【分析】正确的命题叫真命题,错误的命题叫做假命题,据此逐项判断即可.【解答】解:∵若a>0,b>0,则a+b>0,∴选项①符合题意;∵若a≠b,且|a|=|b|时,a2=b2,∴选项②不符合题意;∵两点之间,线段最短,∴选项③符合题意;∵同位角相等,两直线平行,∴选项④符合题意,∴真命题的个数是3个:①、③、④.故选:C.6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A .B .C .D .【考点】Q1:生活中的平移现象.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A 、由图中所示的图案通过旋转而成,故本选项错误;B 、由图中所示的图案通过翻折而成,故本选项错误C 、由图中所示的图案通过旋转而成,故本选项错误;D 、由图中所示的图案通过平移而成,故本选项正确.故选D .7.如图,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100°【考点】IH :方向角. 【分析】本题考查了方向角有关的知识,若需要和出发时的方向一致,在C 点的方向应调整为向右80度.【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选:A .8.已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A .(﹣3,4)B .(3,4)C .(﹣4,3)D .(4,3)【考点】D1:点的坐标.【分析】根据题意,P 点应在第一象限,横、纵坐标为正,再根据P 点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】让B的横坐标加5,纵坐标减3即可得到所求点A的坐标.【解答】解:∵将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A (x,y)重合,∴所求点A的横坐标为:﹣3+5=2,纵坐标为2﹣3=﹣1,∴所求点的坐标为(2,﹣1).故选D.10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】D3:坐标确定位置.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°【考点】JA:平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是()A.110°B.120°C.140° D.150°【考点】PB:翻折变换(折叠问题).【分析】由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC﹣∠EFG.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°﹣2∠EFG=140°,在图c中∠CFE=∠GFC﹣∠EFG=120°,故选B.二、填空题(每小题3分,共18分)15.把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【考点】O1:命题与定理.【分析】命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.16.3﹣的相反数是﹣3,绝对值是﹣3.【考点】28:实数的性质.【分析】根据只有符号不同的两数叫做互为相反数解答;根据负数的绝对值等于它的相反数解答.【解答】解:3﹣的相反数是﹣3,绝对值是﹣3.故答案为:﹣3;﹣3.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是49.【考点】21:平方根.【分析】根据平方根的定义得到2a﹣3与5﹣a互为相反数,列出关于a的方程,求出方程的解得到a的值,即可确定出这个正数.【解答】解:根据题意得:2a﹣3+5﹣a=0,解得:a=﹣2,则这个正数为49.故答案为:4918.点P (2a ,1﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为4,则点P的坐标是 (﹣,) .【考点】D1:点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度列方程求出a 的值,再求解即可.【解答】解:∵点P (2a ,1﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为4,∴﹣2a +1﹣3a=4,解得a=﹣,∴2a=2×(﹣)=﹣,1﹣3a=1﹣3×(﹣)=1+=,所以,点P 的坐标为(﹣,).故答案为(﹣,).19.直线m 外有一定点A ,A 到直线m 的距离是7cm ,B 是直线m 上的任意一点,则线段AB 的长度:AB ≥ 7cm .(填>或者<或者=或者≤或者≥).【考点】J4:垂线段最短;J5:点到直线的距离.【分析】利用“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可以作出判断.【解答】解:A 到直线m 的距离是7cm ,根据点到直线距离的定义,7cm 表示垂线段的长度,根据垂线段最短,其它线段的长度大于或等于7cm ,故答案填:≥.20.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为 98 米.【考点】Q1:生活中的平移现象.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.三、解答题(共60分)21.(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.【考点】2C:实数的运算.【分析】(1)原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=2+2+=4+;(2)方程整理得:(x﹣2)2=9,开方得:x﹣2=±3,解得:x=5或x=﹣1.22.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=∠ABC(两直线平行,同位角相等)∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义)∠ABE=∠ABC(角平分线定义)∴∠ADF=∠ABE∴DF∥BE(同位角相等,两直线平行)∴∠FDE=∠DEB.(两直线平行,内错角相等)【考点】JB:平行线的判定与性质.【分析】根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.【解答】解:理由是:∵DE∥BC(已知),∴∠ADE=∠ABC(两直线平行,同位角相等),∵DF、BE分别平分ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义),∠ABE=∠ABC(角平分线定义),∴∠ADF=∠ABE,∴DF∥BE(同位角相等,两直线平行),∴∠FDE=∠DEB(两直线平行,内错角相等),故答案为:∠ABC,两直线平行,同位角相等;∠ADE,角平分线定义;∠ABC,角平分线定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(1、1)、B′(3、5)、C′0、4)(4)求△ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案.【解答】解:(1)A(2,﹣1),B(4,3);(2)如图所示:(3)A′(1,1),B′(3,5),C′(0,4);(4)△ABC的面积:3×4﹣×1×3﹣×2×4﹣×1×3=5.24.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B 两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?【考点】IH:方向角;J5:点到直线的距离.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:(1)由两地南北方向平行,根据内错角相等,可知B地所修公路的走向是南偏西46°;(2)∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣46°﹣44°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.25.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.【考点】J9:平行线的判定.【分析】(1)证明∠1=∠CDB,利用同位角相等,两直线平行即可证得;(2)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(3)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),∴∠1=∠CDB,∴AE∥FC(同位角相等两直线平行);(2)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等),又∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC(同位角相等,两直线平行);(3)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.26.如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【考点】JA:平行线的性质.【分析】(1)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.(2)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.。
沂水县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
沂水县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)小涛在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示-3的点重合,若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为()A. -1006B. -1007C. -1008D. -1009【答案】C【考点】实数在数轴上的表示【解析】【解答】解:设点A表示的数为a,点B表示的数为b,∵数轴上表示1的点与表示-3的点重合,∴中点为:=-1,∴,解得:,∴A点表示的数为:-1008.故答案为:-1008.【分析】设点A表示的数为a,点B表示的数为b,根据题意可知折叠点为-1,从而列出方程组,解之即可得出a值,即可得A点表示的数.2、(2分)如图是测量一颗玻璃球体积的过程:(1)将300mL的水倒进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在(1mL水的体积为1cm3)()A. 20cm3以上,30cm3以下B. 30cm3以上,40cm3以下C. 40cm3以上,50cm3以下D. 50cm3以上,60cm3以下【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:设玻璃球的体积为x,则有,解得40<x<50.故一颗玻璃球的体积在40cm3以上,50cm3以下.故答案为:C【分析】先设出一颗球的体积,利用条件(2)可列出第一个不等式,利用(3)可列出第二个不等式,解不等式组即可求得一颗玻璃球体积的范围.3、(2分)如图,直角三角板的直角顶点落在直尺边上,若∠1=56°,则∠2的度数为()A. 56°B. 44°C. 34°D. 28°【答案】C【考点】平行线的性质【解析】【解答】解:如图,依题意知∠1+∠3=90°.∵∠1=56°,∴∠3=34°.∵直尺的两边互相平行,∴∠2=∠3=34°,故答案为:C.【分析】根据∠1+∠3=90°,求出∠3=34°,再根据两直线平行,内错角相等,得出∠2=∠3=34°4、(2分)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A. 4B. 4或5C. 5或6D. 6【答案】B【考点】一元一次不等式组的应用【解析】【解答】解:设长度为4、12的高分别是a、b边上的,边c上的高为h,△ABC的面积是s,那么又∵a-b<c<a+b,∴,即,解得3<h<6,∴h=4或h=5.【分析】先设出三边边长及第三条高的长度,利用面积与高的比值表示出三条边长,再利用三角形三边关系可以列出不等式组,将不等式组利用不等式性质即可化解求得第三条高的取值范围,进而可求得第三条高的值.5、(2分)关于x的不等式-x+a≥1的解集如图所示,则a的值为()A.-1B.0C.1D.2【答案】D【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:解不等式得:,由图形可知,不等式的解集为,,则得:a=2.故答案为:D.【分析】先用a表示出不等式的解集,在根据数轴上x的取值范围可得关于a的方程,解方程即可求出答案。
2018-2019学年七年级下学期期中考试数学试卷含答案详解
第1页(共21页)2018-2019学年七年级下学期期中考试数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列式子中,属于最简二次根式的是( )ABCD2x 的取值范围是( )A .3x <B .3x …C .3x >D .3x …3.下列计算错误的是( )A=B=C= D.3=4.实数a( )A .7B .7-C .215a -D .无法确定 5.已知a =b =,则a 与b 的关系是( )A .a b =B .1ab =C .a b =-D .5ab =-6.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形7.如图,ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若4AB =,6AC =,则BD的长是( )A .8B .9C .10D .11 8.如图,在ABC ∆中,45A ∠=︒,30B ∠=︒,CD AB ⊥,垂足为D ,1AD =,则BD 的长第2页(共21页)为( )AB .2 CD .39.如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .40海里D .50海里10.如图,平行四边形ABCD 中,5AD =,3AB =,AE 平分BAD ∠交BC 边于点E ,则EC 等于( )A .1B .2C .3D .411.如图, 在ABC ∆中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH BC⊥于H ,8FD =,则HE 等于( )A . 20B . 16C . 12D . 812.如图,已知OP 平分AOB ∠,60AOB ∠=︒,2CP =,//CP OA ,PD OA ⊥于点D ,PE OB⊥于点E .如果点M 是OP 的中点,则DM 的长是( )。
沂水县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
沂水县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列图形可以由一个图形经过平移变换得到的是()A. B. C. D.【答案】B【考点】平移的性质【解析】【解答】解:A、图形的方向发生变化,不符合平移的性质,不属于平移得到,A不符合题意;B、图形的大小没有发生变化,符合平移的性质,属于平移得到,B符合题意;C、图形的方向发生变化,不符合平移的性质,不属于平移得到,C不符合题意;D、图形的大小发生变化,不属于平移得到,D不符合题意.故答案为:B【分析】根据平移的性质,平移后的图形与原图形对应线段平行且相等或在同一条直线上,可知B正确.2、(2分)在3.14,﹣,π,,﹣0.23,1.131331333133331…(每两个1之间依次多一个3)中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】无理数的认识【解析】【解答】解:无理数有:、π、1.131331333133331…(每两个1之间依次多一个3),一共有3个。
故答案为:C【分析】根据无理数是无限不循环的小数,或开方开不尽的数,或有规律但不循环的数,即可解答。
3、(2分)如图,,、、分别平分的内角、外角、外角.以下结论:①∥;②;③;④;⑤平分.其中正确的结论有()A. 2个B. 3个C. 4个D. 5个【答案】C【考点】平行线的判定与性质,三角形内角和定理,三角形的外角性质,等边三角形的判定,菱形的判定【解析】【解答】解:延长BA,在BA的延长线上取点F.①∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确;故①符合题意,②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=∠ABC+∠MBC=×180∘=90∘,∴EB⊥DB,故②正确,故②符合题意,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=②∠BAC,∵∠BAC+2∠ACB=180∘,∴∠BAC+∠ACB=90∘,∴∠BDC+∠ACB=90∘,故③正确,故③符合题意,④∵∠BEC=180∘−(∠MBC+∠NCB)=180∘−(∠BAC+∠ACB+∠BAC+∠ABC)=180∘−(180∘+∠BAC)∴∠BEC=90∘−∠BAC,∴∠BAC+2∠BEC=180∘,故④正确,故④符合题意,⑤不妨设BD平分∠ADC,则易证四边形ABCD是菱形,推出△ABC是等边三角形,这显然不可能,故⑤错误。
临沂初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
临沂初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列说法中,不正确的是()A. 8的立方根是22B. -8的立方根是-2C. 0的立方根是0D. 125的立方根是±5 【答案】D【考点】立方根及开立方【解析】【解答】A、8的立方根是2,故不符合题意;B、-8的立方根是-2,故不符合题意;C、0的立方根是0,故不符合题意;D、∵5的立方等于125,∴125的立方根等于5,故符合题意.故答案为:D.【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
(1)根据立方根的意义可得原式=2;(2)根据立方根的意义可得原式=-2;(3)根据立方根的意义可得原式=0;(4)根据立方根的意义可得原式=5.2、(2分)下列计算正确的是()A.=0.5B.C.=1D.-=-【答案】C【考点】立方根及开立方【解析】【解答】A选项表示0.0125的立方根,因为0.53=0.125,所以,A选项错误;B选项表示的立方根,因为,所以,B选项错误;C选项表示的立方根,因为,,所以,C选项正确;D选项表示的立方根的相反数,因为,所以,D选项错误。
故答案为:C【分析】分别求出0.5,,,的3次方的值,再与A、B、C、D四个选项中的被开方数进行比较,相等的即为正确的选项。
3、(2分)三元一次方程组的解为()A. B. C. D.【答案】C【考点】三元一次方程组解法及应用【解析】【解答】解:②×4−①得2x−y=5④②×3+③得5x−2y=11⑤④⑤组成二元一次方程组得,解得,代入②得z=−2.故原方程组的解为.故答案为:C.【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
临沂初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
临沂初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列说法中,不正确的是()A. 8的立方根是22B. -8的立方根是-2C. 0的立方根是0D. 125的立方根是±5【答案】D【考点】立方根及开立方【解析】【解答】A、8的立方根是2,故不符合题意;B、-8的立方根是-2,故不符合题意;C、0的立方根是0,故不符合题意;D、∵5的立方等于125,∴125的立方根等于5,故符合题意.故答案为:D.【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
(1)根据立方根的意义可得原式=2;(2)根据立方根的意义可得原式=-2;(3)根据立方根的意义可得原式=0;(4)根据立方根的意义可得原式=5.2、(2分)下列计算正确的是()A.=0.5B.C.=1D.-=-【答案】C【考点】立方根及开立方【解析】【解答】A选项表示0.0125的立方根,因为0.53=0.125,所以,A选项错误;B选项表示的立方根,因为,所以,B选项错误;C选项表示的立方根,因为,,所以,C选项正确;D选项表示的立方根的相反数,因为,所以,D选项错误。
故答案为:C【分析】分别求出0.5,,,的3次方的值,再与A、B、C、D四个选项中的被开方数进行比较,相等的即为正确的选项。
3、(2分)三元一次方程组的解为()A. B. C. D.【答案】C【考点】三元一次方程组解法及应用【解析】【解答】解:②×4−①得2x−y=5④②×3+③得5x−2y=11⑤④⑤组成二元一次方程组得,解得,代入②得z=−2.故原方程组的解为.故答案为:C.【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
沂水镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
沂水镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)适合下列二元一次方程组中的()A. B. C. D.【答案】C【考点】二元一次方程组的解【解析】【解答】把分别代入各个方程组,A、B、D都不适合,只有C适合.故答案为:C.【分析】将x=2、y=-1,分别代入各个方程组A、B、C、D中,判断即可。
2、(2分)为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是()A. 全区所有参加中考的学生B. 被抽查的1000名学生C. 全区所有参加中考的学生的数学成绩D. 被抽查的1000名学生的数学成绩【答案】D【考点】总体、个体、样本、样本容量【解析】【解答】解:本题考查的对象是某区初中中考数学成绩,故样本是所抽查的1000名学生的数学成绩,D正确,符合题意.考查的对象是数学成绩而不是学生,因而A、B错误,不符合题意.全区所有参加中考的学生的数学成绩是总体,则C错误,不符合题意.故答案为:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据样本、总体、个体、样本容量的定义即可进行判断.3、(2分)小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()A.3支笔B.4支笔C.5支笔D.6支笔【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设他可以买x支笔。
则3×2+3x⩽22解得x⩽,∴x为整数,∴最多可以买5支笔。
临沂市2018-2019学年七年级下期中数学测试卷(附答案)
2018-2019学年山东省临沂市七年级(下)期中测试卷数学一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.52.下列各式中,正确的是()A.±=± B.±=C.±=± D.=±3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣14.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4) C.(﹣4,3)D.(4,3)9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是()A.110°B.120°C.140° D.150°二、填空题(每小题3分,共18分)15.把命题“同角的余角相等”改写成“如果…那么…”的形式.16.3﹣的相反数是,绝对值是.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是.18.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P 的坐标是.19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB 的长度:AB7cm.(填>或者<或者=或者≤或者≥).20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(共60分)21.(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.22.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=()∠ABE=()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.24.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B 两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?25.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.26.如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.2018-2019学年山东省临沂市七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.5【考点】26:无理数.【分析】根据无理数的定义及常见的无理数的形式即可判定.【解答】解:在下列各数:3.1415926、、0.2、、、、中,根据无理数的定义可得,无理数有、两个.故选A.2.下列各式中,正确的是()A.±=± B.±=C.±=± D.=±【考点】22:算术平方根.【分析】根据平方根的定义得到±=±,即可对各选项进行判断.【解答】解:因为±=±,所以A选项正确;B、C、D选项都错误.故选A.3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣1【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式求出a、b的值,计算即可.【解答】解:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选:B.4.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】2B:估算无理数的大小.【分析】估算出的范围,即可确定出所求式子的范围.【解答】解:∵16<21<25,∴4<<5,即2<﹣2<3,则﹣2的值在2到3之间,故选B5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【分析】正确的命题叫真命题,错误的命题叫做假命题,据此逐项判断即可.【解答】解:∵若a>0,b>0,则a+b>0,∴选项①符合题意;∵若a≠b,且|a|=|b|时,a2=b2,∴选项②不符合题意;∵两点之间,线段最短,∴选项③符合题意;∵同位角相等,两直线平行,∴选项④符合题意,∴真命题的个数是3个:①、③、④.故选:C.6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A .B .C .D .【考点】Q1:生活中的平移现象.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A 、由图中所示的图案通过旋转而成,故本选项错误;B 、由图中所示的图案通过翻折而成,故本选项错误C 、由图中所示的图案通过旋转而成,故本选项错误;D 、由图中所示的图案通过平移而成,故本选项正确.故选D .7.如图,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100°【考点】IH :方向角. 【分析】本题考查了方向角有关的知识,若需要和出发时的方向一致,在C 点的方向应调整为向右80度.【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选:A .8.已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A .(﹣3,4)B .(3,4)C .(﹣4,3)D .(4,3)【考点】D1:点的坐标.【分析】根据题意,P 点应在第一象限,横、纵坐标为正,再根据P 点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】让B的横坐标加5,纵坐标减3即可得到所求点A的坐标.【解答】解:∵将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A (x,y)重合,∴所求点A的横坐标为:﹣3+5=2,纵坐标为2﹣3=﹣1,∴所求点的坐标为(2,﹣1).故选D.10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】D3:坐标确定位置.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°【考点】JA:平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是()A.110°B.120°C.140° D.150°【考点】PB:翻折变换(折叠问题).【分析】由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC﹣∠EFG.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°﹣2∠EFG=140°,在图c中∠CFE=∠GFC﹣∠EFG=120°,故选B.二、填空题(每小题3分,共18分)15.把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【考点】O1:命题与定理.【分析】命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.16.3﹣的相反数是﹣3,绝对值是﹣3.【考点】28:实数的性质.【分析】根据只有符号不同的两数叫做互为相反数解答;根据负数的绝对值等于它的相反数解答.【解答】解:3﹣的相反数是﹣3,绝对值是﹣3.故答案为:﹣3;﹣3.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是49.【考点】21:平方根.【分析】根据平方根的定义得到2a﹣3与5﹣a互为相反数,列出关于a的方程,求出方程的解得到a的值,即可确定出这个正数.【解答】解:根据题意得:2a﹣3+5﹣a=0,解得:a=﹣2,则这个正数为49.故答案为:4918.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是(﹣,).【考点】D1:点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列方程求出a的值,再求解即可.【解答】解:∵点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,∴﹣2a+1﹣3a=4,解得a=﹣,∴2a=2×(﹣)=﹣,1﹣3a=1﹣3×(﹣)=1+=,所以,点P的坐标为(﹣,).故答案为(﹣,).19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB 的长度:AB≥7cm.(填>或者<或者=或者≤或者≥).【考点】J4:垂线段最短;J5:点到直线的距离.【分析】利用“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可以作出判断.【解答】解:A到直线m的距离是7cm,根据点到直线距离的定义,7cm表示垂线段的长度,根据垂线段最短,其它线段的长度大于或等于7cm,故答案填:≥.20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为98米.【考点】Q1:生活中的平移现象.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.三、解答题(共60分)21.(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.【考点】2C:实数的运算.【分析】(1)原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=2+2+=4+;(2)方程整理得:(x﹣2)2=9,开方得:x﹣2=±3,解得:x=5或x=﹣1.22.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=∠ABC(两直线平行,同位角相等)∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义)∠ABE=∠ABC(角平分线定义)∴∠ADF=∠ABE∴DF∥BE(同位角相等,两直线平行)∴∠FDE=∠DEB.(两直线平行,内错角相等)【考点】JB:平行线的判定与性质.【分析】根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.【解答】解:理由是:∵DE∥BC(已知),∴∠ADE=∠ABC(两直线平行,同位角相等),∵DF、BE分别平分ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义),∠ABE=∠ABC(角平分线定义),∴∠ADF=∠ABE,∴DF∥BE(同位角相等,两直线平行),∴∠FDE=∠DEB(两直线平行,内错角相等),故答案为:∠ABC,两直线平行,同位角相等;∠ADE,角平分线定义;∠ABC,角平分线定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(1、1)、B′(3、5)、C′0、4)(4)求△ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案.【解答】解:(1)A(2,﹣1),B(4,3);(2)如图所示:(3)A′(1,1),B′(3,5),C′(0,4);(4)△ABC的面积:3×4﹣×1×3﹣×2×4﹣×1×3=5.24.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B 两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?【考点】IH:方向角;J5:点到直线的距离.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:(1)由两地南北方向平行,根据内错角相等,可知B地所修公路的走向是南偏西46°;(2)∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣46°﹣44°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.25.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.【考点】J9:平行线的判定.【分析】(1)证明∠1=∠CDB,利用同位角相等,两直线平行即可证得;(2)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(3)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),∴∠1=∠CDB,∴AE∥FC(同位角相等两直线平行);(2)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等),又∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC(同位角相等,两直线平行);(3)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.26.如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【考点】JA:平行线的性质.【分析】(1)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.(2)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.。
山东省临沂市沂水县2018-2019学年七年级下期中数学测试卷(附答案)
2018-2019学年山东省临沂市沂水县七年级(下)期中测试卷数学一、选择题(共14小题,每小题3分,满分42分)1.4的平方根是()A.±4 B.±2 C.2 D.﹣22.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A.45°B.55°C.115°D.135°3.的立方根是()A.﹣1 B.0 C.1 D.±14.如图,已知AB,CD相交于点O,OE⊥CD于O,∠AOC=35°,则∠BOE的度数是()A.35°B.55°C.125°D.145°5.的平方根是()A.2 B.±2 C.D.±6.如图,AB∥CD,CB平分∠ABD,若∠C=35°,则∠D的度数为()A.100°B.110°C.120°D.130°7.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.AC=DF B.BE=EC C.∠A=∠D D.∠DEF=90°8.估算﹣2的值()A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间9.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)10.如图,能判定EC∥AB的条件是()A.∠B=∠ECD B.∠A=∠ECD C.∠B=∠ACE D.∠A=∠ACB11.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)13.如图,∠1=∠2,∠3=25°,则∠4等于()A.165°B.155°C.145°D.135°14.如图,在平面直角坐标系中,直径为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2016秒时,点P的坐标是()A. B. C. D.二、填空题(共5小题,每小题3分,满分15分)15.的相反数是.16.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=142°,则∠AOC的度数是.17.若实数m,n满足(m﹣1)2+=0,则(m+n)5=.18.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b⊥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)19.如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为.三、解答题(共7小题,满分63分)20.已知某正数的两个平方根分别是m+4和2m﹣16,n的立方根是﹣2,求﹣n﹣m的算术平方根.21.如图,AD∥BE,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AB∥CD.22.如图,△ABC是△DEF向右平移4个单位长度后得到的,且三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△DEF,并写出点D,E,F的坐标;(2)求出△DEF的面积.23.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.24.在数轴上点A表示的数是.(1)若把点A向左平移2个单位得到点为B,则点B表示的数是什么?(2)点C和(1)中的点B所表示的数互为相反数,点C表示的数是什么?(3)求出线段OA,OB,OC的长度之和.25.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.26.(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM 与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.2018-2019学年山东省临沂市沂水县七年级(下)期中数学测试卷参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.4的平方根是()A.±4 B.±2 C.2 D.﹣2【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选A.2.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A.45°B.55°C.115°D.135°【考点】对顶角、邻补角.【分析】根据互为邻补角的两个角的和等于180°列式计算即可得解.【解答】解:由图可知,∠1与∠2互为邻补角,∴∠2=180°﹣∠1=180°﹣45°=135°.故选D.3.的立方根是()A.﹣1 B.0 C.1 D.±1【考点】立方根.【分析】根据开立方运算,可得一个数的立方根.【解答】解:的立方根是1,故选:C.4.如图,已知AB,CD相交于点O,OE⊥CD于O,∠AOC=35°,则∠BOE的度数是()A.35°B.55°C.125°D.145°【考点】垂线;对顶角、邻补角.【分析】先根据垂足求得∠DOE的度数,再根据对顶角相等,求得∠BOD的度数,最后计算∠BOE的度数.【解答】解:∵OE⊥CD,∴∠DOE=90°,∵∠AOC=35°,∴∠BOD=35°,∴∠BOE=∠BOD+∠DOE=35°+90°=125°.故选(C)5.的平方根是()A.2 B.±2 C.D.±【考点】算术平方根;平方根.【分析】先化简,然后再根据平方根的定义求解即可.【解答】解:∵=2,∴的平方根是±.故选D.6.如图,AB∥CD,CB平分∠ABD,若∠C=35°,则∠D的度数为()A.100°B.110°C.120°D.130°【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠ABC=∠C,再根据角平分线的定义求出∠ABD,然后根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:∵AB∥CD,∴∠ABC=∠C=35°,∵CB平分∠ABD,∴∠ABD=2∠ABC=2×35°=70°,∵AB∥CD,∴∠D=180°﹣∠ABD=180°﹣70°=110°.故选B.7.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.AC=DF B.BE=EC C.∠A=∠D D.∠DEF=90°【考点】平移的性质.【分析】由平移的性质得出△ABC≌△DEF,得出对应边相等,对应角相等,即可得出结论.【解答】解:∵Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,∴△ABC≌△DEF,∴AC=DF,BC=EF,∠A=∠D,∠DEF=∠ACB=90°,∴BC﹣CE=EF﹣CE,即BE=CF,∴选项A、C、D正确,选项B错误;故选B.8.估算﹣2的值()A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间【考点】估算无理数的大小.【分析】先估算的值,再估算﹣2,即可解答.【解答】解:∵5<<6,∴3<﹣2<4,故选:C.9.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)【考点】坐标确定位置.【分析】以帅的坐标向左两个单位,向上3个单位为坐标原点建立平面直角坐标系,然后写出将的坐标即可.【解答】解:建立平面直角坐标系如图所示,将(1,6).故选C.10.如图,能判定EC∥AB的条件是()A.∠B=∠ECD B.∠A=∠ECD C.∠B=∠ACE D.∠A=∠ACB【考点】平行线的判定.【分析】根据平行线的判定方法,逐一判定即可.【解答】解:A、∵∠B=∠ECD,∴AB∥CE(同位角相等两直线平行).故A正确.B、∠A与∠ECD不是直线AB、CE被直线BD所截的同位角或内错角,故错误.C、∠B与∠ACE不是直线AB、CE被直线BD所截的同位角或内错角,故错误.D、∠A与∠ACB不是直线AB、CE被直线BD所截的同位角或内错角,故错误.故选A.11.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【解答】解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(﹣,+)∴点P在第二象限.故选:B.12.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:根据题意:A点坐标为(﹣3,﹣2),平移后,A'的坐标为(0,0);故①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P'的坐标为(a+3,b+2).故选C.13.如图,∠1=∠2,∠3=25°,则∠4等于()A.165°B.155°C.145°D.135°【考点】平行线的判定与性质.【分析】先根据∠1=∠2,判定a∥b,再根据平行线的性质,求得∠5的度数,进而根据邻补角得出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,又∵∠3=25°,∴∠5=25°,∴∠4=180°﹣∠5=155°.故选(B)14.如图,在平面直角坐标系中,直径为1个单位长度的半圆O 1、O 2、O 3,…组成一条平滑的曲线,点P从点O 出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2016秒时,点P 的坐标是( )A .B .C .D .【考点】规律型:点的坐标.【分析】设第n 秒运动到P n (n 为自然数)点,根据点P 的运动规律找出部分P n 点的坐标,根据坐标的变化找出变化规律“P 4n +1(,),P 4n +2(2n +1,0),P 4n +3(,﹣),P 4n +4(2n +2,0)”,依此规律即可得出结论.【解答】解:设第n 秒运动到P n (n 为自然数)点,观察,发现规律:P 1(,),P 2(1,0),P 3(,﹣),P 4(2,0),P 5(,),…,∴P 4n +1(,),P 4n +2(2n +1,0),P 4n +3(,﹣),P 4n +4(2n +2,0).∵2016=4×503+4,∴P 2016为.故选A .二、填空题(共5小题,每小题3分,满分15分)15.的相反数是 3﹣ .【考点】实数的性质.【分析】根据相反数的定义即可求解.【解答】解:的相反数是﹣(﹣3)=3﹣,故答案为3﹣.16.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,若∠AOE=142°,则∠AOC 的度数是 76° .【考点】对顶角、邻补角;角平分线的定义.【分析】根据两直线相交,对顶角相等,可推出∠AOC=∠DOB ,又根据OE 平分∠BOD ,∠AOE=142°,可求∠BOE ,从而可求∠BOD ,根据对顶角的性质即可得到结论.【解答】解:∵AB 、CD 相交于O ,∴∠AOC 与∠DOB 是对顶角,即∠AOC=∠DOB ,∵∠AOE=142°,∴∠BOE=180°﹣∠AOE=38°,又∵OE 平分∠BOD ,∴∠BOD=2∠BOE=2×38°=76°,∴∠BOD=∠AOC=76°,故答案为:76°.17.若实数m ,n 满足(m ﹣1)2+=0,则(m +n )5= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质可求出m 、n 的值,进而可求出(m +n )5的值.【解答】解:由题意知,m,n满足(m﹣1)2+=0,∴m=1,n=﹣2,∴(m+n)5=(1﹣2)5=﹣1.故答案为:﹣1.18.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b⊥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①④.(填写所有真命题的序号)【考点】命题与定理.【分析】根据平行线的判定定理与性质对各小题进行逐一分析即可.【解答】解:①∵a∥b,a⊥c,∴b⊥c,①是真命题;②∵b∥a,c∥a,∴b∥c,∴②是假命题;③∵b⊥a,c⊥a,∴b∥c,∴③是假命题;④∵b⊥a,c⊥a,∴b∥c,④是真命题.故答案为:①④.19.如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为(3,0)或(9,0).【考点】坐标与图形性质;三角形的面积.【分析】设P点坐标为(x,0),则根据三角形面积公式得到•4•|6﹣x|=6,然后去绝对值求出x的值,再写出P点坐标.【解答】解:设P点坐标为(x,0),根据题意得•4•|6﹣x|=6,解得x=3或9,所以P点坐标为(3,0)或(9,0).故答案为:(3,0)或(9,0).三、解答题(共7小题,满分63分)20.已知某正数的两个平方根分别是m+4和2m﹣16,n的立方根是﹣2,求﹣n﹣m的算术平方根.【考点】立方根;平方根;算术平方根.【分析】首先根据平方根的性质,求出m值,再根据立方根的性质求出n,带入﹣n﹣m,求出这个值的算术平方根即可.【解答】解:∵某正数的两个平方根分别是m+4和2m﹣16,可得:m+4+2m﹣16=0,解得:m=4,∵n的立方根是﹣2,∴n=﹣8,把m=4,n=﹣8代入﹣n﹣m=8﹣4=4,所以﹣n﹣m的算术平方根是2.21.如图,AD∥BE,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AB∥CD.【考点】平行线的判定与性质.【分析】由AE为角平分线得到一对角相等,再由AD与BE平行得到一对内错角相等,等量代换得到∠1=∠E,再由已知∠CFE=∠E,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AD∥BE,∴∠2=∠E,∴∠1=∠E,∵∠CFE=∠E,∴∠1=∠CFE,∴AB∥CD.22.如图,△ABC是△DEF向右平移4个单位长度后得到的,且三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△DEF,并写出点D,E,F的坐标;(2)求出△DEF的面积.【考点】作图-平移变换.【分析】(1)直接把△ABC是向左平移4个单位,再写出点D、E、F的坐标即可;(2)由正方形的面积减去三个三角形的面积即可得出结论.【解答】解:(1)如图所示,D(﹣3,1),E(0,2),F(﹣1,4);=3×3﹣×2×3﹣×1×2﹣×1×3=9﹣3﹣1﹣1.5=3.5.(2)S△DEF23.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.【考点】对顶角、邻补角;角平分线的定义;垂线.【分析】由∠BOD=∠AOC=72°,OF⊥CD,求出∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=∠BOD=36°,因此∠EOF=36°+18°=54°.【解答】解:∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=∠BOD=36°,∴∠EOF=36°+18°=54°.24.在数轴上点A表示的数是.(1)若把点A向左平移2个单位得到点为B,则点B表示的数是什么?(2)点C和(1)中的点B所表示的数互为相反数,点C表示的数是什么?(3)求出线段OA,OB,OC的长度之和.【考点】实数与数轴.【分析】(1)根据左减右加进行计算;(2)关于原点对称的两个点即为互为相反数;(3)求其长度之和,即是求它们的绝对值的和.【解答】解:(1)点B表示的数是﹣2.(2)点C表示的数是2﹣.(3)由题可得:A表示,B表示﹣2,C表示2﹣,∴OA=,OB=﹣2,OC=|2﹣|=﹣2.∴OA+OB+OC==3﹣4.25.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【考点】点的坐标.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(4)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或相反数进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).26.(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM 与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.【考点】平行线的判定与性质.【分析】(1)根据角平分线的性质和三角形内角和定理即可得出答案;(2)过M作MF∥AB,根据平行线的性质得出∠BAM=∠AMF,∠FMC=∠DCM,再根据∠M=90°,即可得出∠BAM+∠MCD=90°;(3)过点G作GP∥AB,根据平行线的性质得出∠BAC=∠PGC,∠CHG=∠PGH,从而得出∠BAC=∠CHG+∠CGH.【解答】解:(1)∵CM平分∠ACD,AM平分∠BAC,∴∠BAC=2∠MAC,∠ACD=2∠ACM,∵∠MAC+∠ACM=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;(2)∠BAM+∠MCD=90°;理由:如图2,过M作MF∥AB,∵AB∥CD,∴MF∥AB∥CD,∴∠BAM=∠AMF,∠FMC=∠DCM,∵∠M=90°,∴∠BAM+∠MCD=90°;(3)过点G作GP∥AB,∵AB∥CD∴GP∥CD,∴∠BAC=∠PGC,∠CHG=∠PGH,∴∠PGC=∠CHG+∠CGH,∴∠BAC=∠CHG+∠CGH.2016年11月29日。
临沂市 2018-2019学年七年级下期中数学试卷
OABCD临沂市2018-2019学年七年级下期中数学试卷(时间:120分钟总分:120 分)题号一二三总分得分1.下列各图中,∠1与∠2是对顶角的是:()2. 在平面直角坐标系中,点P(-3,2015)在:()A.第一象限 B.第二象限C.第三象限D.第四象限3.4的平方根是()A.2B. -2C. ±2D.164、如图1,直线AB、CD相交于点O,已知∠AOC+∠BOD=90°,则∠BOC=()A.90°B.145°°C.125°D.135°5. 下列图形中,正确画出AC边上的高的是().6. 如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中可以看作由“基本图案”经过平移得到的是()7、如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1)C.(2,2) D.(-2,2)8. 如下图,若m∥n,∠1=105º,则∠2=()A.55º B.60º C .65º D .75ºA.B.C.D.21m9. 下列各数中,不是无理数的是 ( )A.7B. 0.5C. 2πD. 0.151151115…)个之间依次多两个115( 10. 如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于点P ,若∠A=50°,则 ∠BPC 等于( )A 、90°B 、130°C 、100°D 、150°二、填空(每小题3分,共15分)11.把命题“两直线平行,同位角相等”写成“如果....那么....” 的形式 。
12. 38-=( ), 3的平方根是 ; 271的立方根是 ,13. 点A (-1,2)关于y 轴的对称点坐标是A ’____________ 。
2018-2019学年山东省临沂市沂水县七年级(下)期中数学试卷
2018-2019学年山东省临沂市沂水县七年级(下)期中数学试卷一、选择题(本题14个小题,每小题3分,共42分:每题中只有一个答案符合要求)1.(3分)实数的平方根()A.3B.﹣3C.±3D.±2.(3分)如图,直线AC和直线BD相交于点O,若∠1+∠2=90°,则∠BOC的度数是()A.100°B.115°C.135°D.145°3.(3分)下列语句正确的是()A.负数没有立方根B.8的立方根是±2C.立方根等于本身的数只有±1D.=﹣4.(3分)下列关系中,互相垂直的两条直线是()A.两直线相交成的四角中相邻两角的角平分线B.互为对顶角的两角的平分线C.互为补角的两角的平分线D.相邻两角的角平分线5.(3分)若直线l外一点P与直线l上三点的连线段长分别为2cm,3cm,4cm,则点P到直线l的距离是()A.2cm B.不超过2cm C.3cm D.大于4cm6.(3分)下列说法中正确的是()A.的算术平方根是±4B.12是144的平方根C.的平方根是±5D.a2的算术平方根是a7.(3分)如图,∠1=65°,CD∥EB,则∠B的度数为()A.115°B.110°C.105°D.65°8.(3分)点A(m﹣3,m+1)在第二、四象限的平分线上,则A的坐标为()A.(﹣1,1)B.(﹣2,﹣2)C.(﹣2,2)D.(2,2)9.(3分)如图,若△DEF是由△ABC平移后得到的,已知点A、D之间的距离为1,CE=2,则BC=()A.3B.1C.2D.不确定10.(3分)若点P(a,b)在第二象限,则点Q(b+2,2﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限11.(3分)如图所示,数轴上A,B两点表示的数分别是﹣1和,则A,B两点之间的距离是()A.2B.2﹣1C.2+1D.112.(3分)已知,平面直角坐标系中A点坐标是(3,2),B点坐标是(﹣2,﹣5),将线段AB平移后得到点A的对应点A'的坐标是(5,﹣1),则点B的对应点B'的坐标为()A.(0,﹣6)B.(3,﹣8)C.(1,﹣4)D.(0,﹣8)13.(3分)如图,下列条件:①∠1=∠2,②∠2=∠3,③∠5+∠6=180°,④∠1+∠4=180°,⑤∠7=∠2+∠3中能判断直线a∥b的有()A.2个B.3个C.4个D.5个14.(3分)如图,在x轴的正半轴和与x轴平行的射线上各放置一块平面镜,发光点(0,1)处沿如图所示方向发射一束光,每当碰到镜面时会发生反射(反射时反射角等于入射角,仔细看光线与网格线和镜面的夹角),当光线第20次碰到镜面时的坐标为()A.(60,0)B.(58,0)C.(61,3)D.(58,3)二、填空题(本题5个小题,每小题3分,共15分)15.(3分)已知2x﹣1的平方根是±3,则5x+2的立方根是.16.(3分)如图,已知直线AB,CD相交于点O,EO⊥AB,垂足为O.若∠EOC=32°,则∠AOD度数为.17.(3分)已知点P(a+3,2a+4)在y轴上,则点P的坐标为.18.(3分)如图,直线a、b被c所截,a⊥d于M,b⊥d于N,∠1=66°,则∠2=.19.(3分)已知点A(m﹣1,﹣5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为.三、解答题(本题7个小题,共63分)20.(8分)如图,已知锐角∠AOB,M,N分别是∠AOB两边OA,OB上的点.用直尺或三角板按下列要求画图:(1)过点M作OB的垂线段MC,C为垂足;(2)过点N作OA的平行线ND;(3)平移△OMC,使点M移动到点N处,画出平移后的△ENF,其中E,F分别为点O,C的对应点.21.(8分)已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P的横坐标比纵坐标大3;(2)点P在过点A(2,﹣4)且与y轴平行的直线上.22.(8分)直线AB,CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O,若∠EOF=54°.求∠AOF的度数.23.(9分)阅读理解“∵1<2<4,∴1<<2,∴的整数部分是1,将这个数减去其整数部分,差就是小数部分.即:的小数部分为(﹣1)”“类似的:∵2<<3,∴的小数部分就是(﹣2)”解决问题:已知5+的小数部分为a,5﹣的小数部分为b,求a+b.24.(9分)如图,D,E分别是三角形ABC的边AB,BC上的点,DE∥AC,点F在DE的延长线上,且∠DFC=∠A.(1)求证:AB∥CF;(2)若∠ACF比∠BDE大40°,求∠BDE的度数.25.(10分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.26.(11分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,猜测∠PFD与∠AEM的数量关系,并说明理由;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°.2018-2019学年山东省临沂市沂水县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题14个小题,每小题3分,共42分:每题中只有一个答案符合要求)1.【解答】解:∵=3,∴3的平方根是,故选:D.2.【解答】解:∵∠1=∠2,∠1+∠2=90°,∴∠1=∠2=45°,∴∠BOC=135°,故选:C.3.【解答】解:A.负数有一个负的立方根,此选项错误;B.8的立方根是2,此选项错误;C.立方根等于本身的数有±1和0,此选项错误;D.=﹣=﹣2,此选项正确;故选:D.4.【解答】解:A、两直线相交成的四角中相邻两角的角平分线互相垂直;B、互为对顶角的两角的平分线所成角为180°;C、若互为补角的两角不是邻补角,则它们的平分线不垂直;D、相邻两角不是邻补角,则它们的角平分线不垂直;故选:A.5.【解答】解:由垂线段最短,得点P到直线l的距离小于或等于2cm,故选:B.6.【解答】解:A、=4,4的算术平方根是2,故此选项错误;B、12是144的平方根,正确;C、=5,5的平方根是±,故此选项错误;D、a2的算术平方根是|a|,故此选项错误.故选:B.7.【解答】解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选:A.8.【解答】解:由A(m﹣3,m+1)在第二、四象限的平分线上,得(m﹣3)+(m+1)=0,解得m=1,m﹣3=﹣2,m+1=2,A的坐标为(﹣2,2),故选:C.9.【解答】解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,根据对应点所连的线段平行且相等,得BE=AD=1.所以BC=BE+CE=1+2=3,故选:A.10.【解答】解:∵点P(a,b)在第二象限,∴a<0,b>0,∴b+2>0,2﹣a>0,∴点Q(b+2,2﹣a)所在象限应该是第一象限.故选:A.11.【解答】解:∵A,B两点表示的数分别是﹣1和,∴A,B两点之间的距离是:﹣(﹣1)=1;故选:D.12.【解答】解:∵点A(3,2)的对应点A′是(5,﹣1),∴平移规律是横坐标加2,纵坐标减3,∴点B(﹣2,﹣5)的对应点B'的坐标为(0,﹣8).故选:D.13.【解答】解:①由∠1=∠2,可得a∥b;②由∠2=∠3,不能得到a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠1+∠4=180°,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;故能判断直线a∥b的有3个.故选:B.14.【解答】解:观察图象可以第1次碰到镜面位置在x轴上坐标为(1,0),第二次在(4,3),第三次在(7,0)等.则每次碰到镜面横坐标增加3.则第20次横坐标为:(20﹣1)×3+1=58.第20次在直线y=3上故选:D.二、填空题(本题5个小题,每小题3分,共15分)15.【解答】解:∵2x﹣1的平方根是±3,∴2x﹣1=9,∴x=5,∴5x+2=27,∴5x+2的立方根是3,故答案为:316.【解答】解:∵EO⊥AB,∴∠BOE=90°又∵∠EOC=32°,∴∠BOC=90°+32°=122°∴∠AOD=∠BOC=122°.故答案为:122°.17.【解答】解:∵点P(a+3,2a+4)在y轴上,∴a+3=0,解得:a=﹣3,故2a+4=﹣2,则点P的坐标为:(0,﹣2).故答案为:(0,﹣2).18.【解答】解:∵a⊥d,b⊥d,∴a∥b,∴∠1=∠2,∵∠1=66°,∴∠2=114°,故答案为114°.19.【解答】解:∵点A(m﹣1,﹣5)和点B(2,m+1),直线AB∥x轴,∴m+1=﹣5,解得m=﹣6.∴2﹣(﹣6﹣1)=9,故答案为:9.三、解答题(本题7个小题,共63分)20.【解答】解:(1)如图所示,垂线段MC即为所求;(2)如图所示,直线ND即为所求;(3)如图所示,△ENF即为所求;21.【解答】解:(1)∵点P(2m+4,m﹣1)的横坐标比纵坐标大3,∴(2m+4)﹣(m﹣1)=3,解得m=﹣2,∴2m+4=2×(﹣2)+4=0,m﹣1=﹣2﹣1=﹣3,∴点P的坐标为(0,﹣3);(2)∵点P(2m+4,m﹣1)在过点A(2,﹣4)且与y轴平行的直线上,∴2m+4=2,解得m=﹣1,∴m﹣1=﹣1﹣1=﹣2,∴点P的坐标为(2,﹣2).22.【解答】解:∵OF⊥CD,∠EOF=54°,∴∠DOE=90°﹣54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°,又∵∠COF=90°,∴∠AOF=90°+72°=162°.23.【解答】解:∵2<<3,∴7<5+<8,∴a=5+﹣7=﹣2,∵2<<3,∴﹣3<﹣<﹣2,∴2<5﹣<3,∴b=5﹣﹣2=3﹣,∴a+b=﹣2+3﹣=1.24.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DFC=∠A,∴∠DFC=∠BDE,∴AB∥CF.(2)解:∵DE∥AC,∴∠ACF+∠DFC=180°,由(1)中已证∠DFC=∠BDE,∴∠ACF+∠BDE=180°,又∵∠ACF比∠BDE大40°,∴∠BDE+40°+∠BDE=180°,∴∠BDE=70°.25.【解答】解:(1)描点如图;(2)依题意,得AB∥x轴,且AB=3﹣(﹣2)=5,∴S△ABC=×5×2=5;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,﹣3).26.【解答】解:(1)∠PFD+∠AEM=90°,理由:作PH∥AB,∵AB∥CD,∴PH∥CD,∴∠PFD=∠MPH,∠AEM=∠HPM,∵∠MPN=90°,∴∠PFD+∠AEM=90°;(2)证明:过P作PG∥AB,∴∠AEM=∠GPM,∵AB∥CD,∴PG∥CD,∴∠PFD=∠FPG,又∵∠FPG=∠FPM+∠GPM=90°+∠AEM,∴∠PFD=90°+∠AEM,∴∠PFD﹣∠AEM=90°.。
2018-2019学年七年级(下)期中数学试卷及答案解析
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)
2018-2019学年度下学期七年级(下册)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.化简()0的结果为()A.2B.0C.1D.2.下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2 3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.4、6、9D.3、1、15.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.6.五边形的内角和是()A.180°B.360°C.540°D.600°7.如图,下面判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠A=∠3.则AD∥BCC.若∠1=∠2,则AB∥CDD.若∠A+∠ADC=180°,则AD∥BC8.如图,将一张长方形纸片折叠后再展开,如果∠1=62°,那么∠2等于()A.56°B.68°C.62°D.66°二、填空题(本大题共10小题,每小题3分,共30分)9.化简:(x+2)2=.10.若3m=5,3n=6,则3m﹣n的值是.11.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.12.若x2+mx+9是一个完全平方式,则m的值是.13.计算:4﹣2=.14.计算:(﹣0.125)2017×82018=.15.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.16.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=°.17.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.18.如图,△ABC的面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,△A3B3C3的面积为.三、解答题(本大题共9小题,共计96分)19.(20分)计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.(10分)分解因式(1)x2﹣25(2)2x2y﹣8xy+8y21.(10分)用简便方法计算(1)101×99;(2)9.92+9.9×0.2+0.01.22.(10分)如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)线段AA′与BB′的数量关系是,位置关系是.(3)△A′B′C′的面积为.23.(10分)已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2(2)x2+y224.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?25.(8分)如图,BD平分∠ABC,ED∥BC,∠1=30°,求∠2,∠3的度数.26.(10分)如图AD⊥BC,EG⊥BC,垂足分别为D,G,EG与AB相交于点F,且∠1=∠2,∠BAD=∠CAD相等吗?为什么?27.(10分)实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC度数.②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C =71°,则∠A的度数为.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选:C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选:C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【分析】根据三角形的高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.【点评】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.6.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.7.【分析】根据平行线的判定判断即可.【解答】解:A、若∠1=∠2,则DC∥AB,错误;B、若∠A+∠3+∠1=180°.则DC∥AB,错误;C、若∠1=∠2,则AB∥CD,正确;D、若∠A+∠ADC=180°,则CD∥AB,错误;故选:C.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.8.【分析】根据翻折的性质可得∠3=∠1,然后根据平角等于180°列式求出∠4,再根据两直线平行,内错角相等解答即可.【解答】解:根据翻折的性质,∠3=∠1=62°,∴∠4=180°﹣∠1﹣∠2=180°﹣62°﹣62°=56°,∵长方形纸条的对边平行,∴∠2=∠4=56°.故选:A.【点评】本题考查了两直线平行,内错角相等的性质,翻折变换的性质,熟记性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.【分析】(a+b)2=a2+2ab+b2,根据以上公式求出即可.【解答】解:(x+2)2=x2+4x+4,故答案为:x2+4x+4.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.10.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法的法则计算.11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0036=3.6×10﹣6.故答案为:3.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据负整数指数幂的法则计算.【解答】解:4﹣2=.故答案为.【点评】负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.14.【分析】首先把82018化为82017×8,然后再计算(﹣0.125)2017×82017,进而可得答案.【解答】解:原式=(﹣0.125)2017×82017×8=(﹣0.125×8)2017×8=﹣1×8=﹣8,故答案为:﹣8.【点评】此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).15.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.16.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,推出∠A +∠ABC =2∠D +∠ABC ,得出∠A =2∠D ,即可求出答案.【解答】解:∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,∴∠A +∠ABC =2∠D +∠ABC ,∴∠A =2∠D ,∵∠A =45°,∴∠D =22.5°,故答案为:22.5.【点评】本题考查了三角形外角性质,角平分线定义的应用,关键是推出∠A =2∠D . 18.【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再解答即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343;故答案为:343【点评】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题(本大题共9小题,共计96分)19.【分析】(1)先计算乘方,再计算乘法;(2)先计算乘法、乘方、除法,再合并同类项即可得;(3)先计算完全平方式、单项式乘多项式,再合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=x 4y 2•x 6y 3=x 10y 5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.20.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式、完全平方公式,可得答案.【解答】解:(1)原式=(x+5)(x﹣5);(2)原式=2y(x2﹣4x+4)=2y(y﹣2)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.21.【分析】(1)根据101=100+1、99=100﹣1结合平方差公式,即可求出结论;(2)由0.2=2×0.1、0.01=0.12结合结合完全平方公式,即可求出结论.【解答】解:(1)原式=(100+1)×(100﹣1),=10000﹣1=9999;(2)原式=9.92+2×9.9×0.1+0.12,=(9.9+0.1)2,=102,=100.【点评】本题考查了平方差公式以及完全平方公式,牢记平方差公式、完全平方公式是解题的关键.22.【分析】(1)根据点B的对应点B′的位置知,需将三角形向下平移2个单位、再向左平移4个单位,据此可得画出△A′B′C′即可;(2)利用平移变换的性质可得;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)线段AA′与BB′的数量关系是相等,位置关系是平行,故答案为:相等、平行;(3)△A′B′C′的面积为×4×4=8,故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【分析】(1)将x+y、xy的值代入原式=xy(x+y),计算可得;(2)将x+y、xy的值代入原式=(x+y)2﹣2xy,计算可得.【解答】解:(1)当x+y=6、xy=4时,原式=xy(x+y)=4×6=24;(2)当x+y=6、xy=4时,原式=(x+y)2﹣2xy=62﹣2×4=36﹣8=28.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握因式分解和完全平方公式及整体代入思想的运用.24.【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.25.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:∵BD平分∠ABC,∴∠4=∠1=30°,∵ED∥BC,∴∠2=∠4=30°,∴∠3=∠1+∠2=30°+30°=60°【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.26.【分析】由条件可证明AD∥BG,结合平行线的性质可得∠1=∠CAD,∠2=∠BAD,结合条件可得∠BAD=∠CAD.【解答】解:相等.理由如下:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠1=∠CAD,∠2=∠BAD,∵∠1=∠2,∴∠BAD=∠CAD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.27.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,(3)应用(2)的结论即可解决问题①②.【解答】解:(1)动手操作:①如图1中,∵BC∥EF,∴∠DBC=∠E=∠F=∠DCB=45°,∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,∴∠ABD+∠ACD=60°;②如图2中,在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠A=60°.故答案为60°;60°;(2)猜想:∠A+∠B+∠C=∠BDC;证明:如图3中,连接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.(3)灵活应用:①如图4中,由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,∵∠BAC=40°,∠BDC=120°,∴∠ABD+∠ACD=120°﹣40°=80°∵BE平分∠ABD,CE平分∠ACB,∴∠ABE+∠ACE=40°,∴∠BEC=40°+40°=80°;②如图5中,由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠A+∠ABF3+∠ACF3=∠BF3C=71°,∵∠ABF3=∠ABD,∠ACF3=∠ACD,∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=71°,∴∠A+(120°﹣∠A)=71°,∴∠A=50°,故答案为50°.【点评】本题考查了三角形内角和定理:三角形内角和是180°,准确识别图性是解题的关键,学会添加常用辅助线,构造三角形解决问题,学会利用新的结论解决问题.。
2018—2019学年度第二学期期中测试卷
1 / 3—学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共小题,每小题分,共分).; .; .; .; .; .; .; ..二、填空题(本大题共小题,每小题分,共分).; .; .°; .; .; .αβ+或αβ-或βα-.三、解答题(本大题共小题,每小题分,共分).解:()由题意,得-,-, ……………分 解得,. ……………分()22a b +的算术平方根是5. ……………分 .解:()∵<211<, ……………分12<.即<. ……………分()原式21|2……………分2 ……………分 - ……………分.解:()由题意,得(+)+(-2a ),解得. ……………分 ∴(). ……………分()当,时,2是有理数. ……………分 .解:图 图()如图中垂线为所画. ……………分 ()如图中平行线为所画. ……………分 说明:每图分,说明分.四、解答题(本大题共小题,每小题分,共分).解:()∵∥轴, ∴、两点的纵坐标相同. ……………分 ∴+,解得. ……………分 ∴、两点间的距离是(-)+-+. ……………分 ()∵⊥轴,∴、两点的横坐标相同.∴(-,).∵,∴,解得1b =±. ……………分 当时,点的坐标是(-,). ……………分当-时,点的坐标是(-,-). ……………分2 /3 .解:()(,)、(,)、(,). ……………分()当运动秒时,点在上,点与点重合, ……………分 此时,,, . ……………分∴△梯形-△-△111(48)48242222+⨯-⨯⨯-⨯⨯ ……………分 ……………分.解:()∥,其理由是: ……………分∵∥,∴∠∠. ……………分∵∠∠,∴∠∠,∴∥. ……………分()∵∥,且∠°,∴∠°,∠∠. ……………分∵∠∠,∴∠∠.∵平分∠,∴∠∠, ……………分 ∴∠∠+∠12∠° …………分()∠+∠°. ……………分五、探究题(本大题共小题,共分).解:() ① 过作∥,则∠+∠°.∵∥,∴∥,∴∠+∠°. ……………分∴∠+∠+∠+∠°.即∠+∠+∠ °. ……………分②过作∥,则∠∠.∵∥,∴∥,∴∠∠. ……………分∴∠+∠∠+∠.即∠+∠∠. ……………分 ()∠+∠°,其理由是: ……………分∵、分别平分∠、∠,∴∠12∠,∠12∠. ∴∠+∠12(∠+∠).即(∠+∠)∠+∠.3 / 3 由()结果知∠°-∠ ,即∠+∠ °. ……………分 ∵13ABM ABF ∠=∠,13CDM CDF ∠=∠, ∴∠∠+∠11()33ABF CDF BFD ∠+∠=∠.∴∠∠. ……………分 由上证得∠+∠ °,∴∠+∠°. ……………分 ()当1ABMABF n ∠=∠,1CDM CDF n ∠=∠,且∠°时, ∴∠3602m n︒-︒. ……………分。
山东省2018-2019学年七年级下学期期中教学质量监测数学试题 含解析 (1)
2018-2019学年七年级下学期期中教学质量监测数学试题一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,把正确答案序号填涂在答题纸相应的位置)1.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.2.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a23.下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为()A.4个B.3个C.2个D.1个4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm35.如图,AD⊥BC,DE∥AB,则∠B和∠1的关系是()A.相等B.互补C.互余D.不能确定6.如图,已知直线AB∥CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于()A.159°B.148°C.142°D.138°7.若|3x+2y﹣4|+27(5x+6y)2=0,则x,y的值分别是()A.B.C.D.8.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°9.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定10.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.411.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.412.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.二、填空题(请直接将答案填写在横线上)13.已知∠AOB=80°,∠AOC=30°,则∠BOC=.14.如图所示,OP∥QR∥ST,若∠2=110°,∠3=120°,则∠1=度.15.已知2x=3,2y=5,则22x+y﹣1=.16.如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为度.17.已知是二元一次方程组的解,则a﹣b的值为.18.若(3x2﹣2x+1)(x﹣b)的积中不含x的一次项,则b的值为.三.解答题(本题共7小题,解答题要写出必要的步骤)19.计算(1)(﹣4)2007x(0.25)2018(2)3(2﹣y)2﹣4(y+5)(3)(a+2b)(a﹣2b)﹣b(a﹣8b)(4)(a﹣b)(a2+ab+b2)20.解下列方程组:(1)(2).21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.22.已知,如图,直线AB,CD被直线EF所截,H为CD与EF的交点,GH⊥CD于点H,∠2=30°,∠1=60°.求证:AB∥CD.23.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,(一张铁皮只能生产一种产品)(1)向用多少张铁皮做盒身,多少张铁皮做盒底,可以正好用完190张铁皮并制成一批完整的盒子?(2)这批盒子一共有多少个?24.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=20°,求∠FEC的度数.25.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,购买总费用/元购买商品A的数量/个购买商品B的数量/个第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062 (1)在这三次购物中,第次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?26.我们知道.求类似于值,我们可以采取这样的思路,注意到然后再相加,我们就可以解决的求和问题(1)求的结果:(2)我们如何求:的值呢;由上面问题的处理思路,我们考虑是不是能将写成和差的形式,为此我们不妨假设:再想法交形计算.①A、B、C的值;②的值.参考答案与试题解析一.选择题(共12小题)1.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.【分析】根据角的四种表示方法和具体要求回答即可.【解答】解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C、以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选:D.2.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a2【分析】A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.【解答】解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.3.下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为()A.4个B.3个C.2个D.1个【分析】根据余角和补角的概念、对顶角的性质、垂线段最短、平行公理判断即可.【解答】解:对顶角相等,①正确;过直线外一点有且只有一条直线与这条直线平行,②正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,③正确;一个角的补角比它的余角大90°,④错误.故选:B.4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001239=1.239×10﹣3.故选:A.5.如图,AD⊥BC,DE∥AB,则∠B和∠1的关系是()A.相等B.互补C.互余D.不能确定【分析】由DE∥AB,得出∠B=∠EDC,由AD⊥BC,得出∠1+∠EDC=90°,即可得出∴∠B和∠1互余.【解答】解:∵DE∥AB,∴∠B=∠EDC,∵AD⊥BC,∴∠1+∠EDC=90°,∴∠B+∠1=90°,∴∠B和∠1互余.故选:C.6.如图,已知直线AB∥CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于()A.159°B.148°C.142°D.138°【分析】根据平行线的性质可得∠GEB=∠1=42°,然后根据EF为∠GEB的平分线可得出∠FEB的度数,根据两直线平行,同旁内角互补即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠GEB=∠1=40°,∵EF为∠GEB的平分线,∴∠FEB=∠GEB=21°,∴∠2=180°﹣∠FEB=159°.故选:A.7.若|3x+2y﹣4|+27(5x+6y)2=0,则x,y的值分别是()A.B.C.D.【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值即可.【解答】解:∵|3x+2y﹣4|+27(5x+6y)2=0,∴,①×3﹣②得:4x=12,即x=3,把x=3代入①得:y=﹣,则方程组的解为,故选:B.8.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠1=∠2=58°,∴a∥b,∴∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,∴∠4=∠5=110°,故选:C.9.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定【分析】方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.【解答】解:方程组两方程相加得:4(x+y)=2+2a,将x+y=0代入得:2+2a=0,解得:a=﹣1.故选:A.10.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.【解答】解:(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.故选:C.11.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.12.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.【分析】根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人,以及在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,”分别得出等式方程组成方程组,即可得出答案.【解答】解:设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意得:.故选:B.二.填空题(共6小题)13.已知∠AOB=80°,∠AOC=30°,则∠BOC=110°或50°.【分析】分两种情况进行讨论:①射线OC在∠AOB的外部;②射线OC在∠AOB的内部;从而算出∠AOC的度数.【解答】解:①射线OC在∠AOB的外部,如图1,∠AOC=∠AOB+∠BOC=80°+30°=110°;②射线OC在∠AOB的内部,如图2,∠AOC=∠AOB﹣∠BOC=80°﹣30°=50°.故答案为:110°或50°.14.如图所示,OP∥QR∥ST,若∠2=110°,∠3=120°,则∠1=50 度.【分析】本题主要利用平行线的性质进行做题.【解答】解:∵OP∥QR,∴∠2+∠PRQ=180°(两直线平行,同旁内角互补),∵QR∥ST,∴∠3=∠SRQ(两直线平行,内错角相等),∵∠SRQ=∠1+∠PRQ,即∠3=180°﹣∠2+∠1,∵∠2=110°,∠3=120°,∴∠1=50°,故填50.15.已知2x=3,2y=5,则22x+y﹣1=.【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.【解答】解:22x+y﹣1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=,故答案为:.16.如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为25 度.【分析】首先过点B作BE∥l,可得BE∥l∥m,然后根据两直线平行,内错角相等,即可求得答案.【解答】解:过点B作BE∥l,∵l∥m,∴BE∥l∥m,∴∠1=∠α,∠2=∠β=20°,∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠α=∠1=∠ABC﹣∠2=25°.故答案为:25.17.已知是二元一次方程组的解,则a﹣b的值为 5 .【分析】把方程组的解代入方程组,得出关于a、b的方程组,求出方程组的解,再代入求出即可.【解答】解:根据题意得,,①+②,得:4a=8,解得:a=2,②﹣①,得:2b=﹣6,解得:b=﹣3,∴a﹣b=2﹣(﹣3)=5,故答案为:5.18.若(3x2﹣2x+1)(x﹣b)的积中不含x的一次项,则b的值为﹣.【分析】先根据多项式乘以多项式法则展开,再合并同类项,根据已知得出2b+1=0,求出即可.【解答】解:(3x2﹣2x+1)(x﹣b)=3x3﹣3bx2﹣2x2+2bx+x﹣b=3x3﹣(3b+2)x2+(2b+1)x﹣b,∵积中不含x的一次项,∴2b+1=0,解得:b=﹣,故答案为:﹣.三.解答题(共8小题)19.计算(1)(﹣4)2007x(0.25)2018(2)3(2﹣y)2﹣4(y+5)(3)(a+2b)(a﹣2b)﹣b(a﹣8b)(4)(a﹣b)(a2+ab+b2)【分析】(1)利用积的乘方继续计算;(2)先去括号,再合并同类项;(3)先去括号,再合并同类项;(4)直接利用立方差公式计算.【解答】解:(1)原式=[(﹣4)×(﹣0.25)]2017×(﹣0.25)=﹣0.25;(2)原式=3(4﹣4y+y2)﹣4y﹣20=12﹣12y+3y2﹣4y﹣20=3y2﹣16y﹣8;(3)原式=a2﹣4b2﹣ab+4b2=a2﹣ab;(4)原式=a3﹣b3.20.解下列方程组:(1)(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①×2得:11y=﹣11,即y=﹣1,把y=﹣1代入①得:x=3,则方程组的解为;(2)方程组整理得:,①×2﹣②×3得:x=﹣18,把x=﹣18代入②得:y=﹣,则方程组的解为.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.【分析】根据OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,可以求得∠AOC、∠AOD的度数,从而可以求得∠COD的度数.【解答】解:∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD==57°.∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=.∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.22.已知,如图,直线AB,CD被直线EF所截,H为CD与EF的交点,GH⊥CD于点H,∠2=30°,∠1=60°.求证:AB∥CD.【分析】要证AB∥CD,只需证∠1=∠4,由已知条件结合垂线定义和对顶角性质,易得∠4=60°,故本题得证.【解答】证明:∵GH⊥CD,(已知)∴∠CHG=90°.(垂直定义)又∵∠2=30°,(已知)∴∠3=60°.∴∠4=60°.(对顶角相等)又∵∠1=60°,(已知)∴∠1=∠4.∴AB∥CD(同位角相等,两直线平行).23.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,(一张铁皮只能生产一种产品)(1)向用多少张铁皮做盒身,多少张铁皮做盒底,可以正好用完190张铁皮并制成一批完整的盒子?(2)这批盒子一共有多少个?【分析】(1)设用x张铁皮做盒身,用y张铁皮做盒底,由题意列出方程组,解方程组即可;(2)由题意“一个盒身与两个盒底配成一个完整的盒子”即可得出答案.【解答】解:(1)设用x张铁皮做盒身,用y张铁皮做盒底,根据题意,得:,解得:;答:用110张铁皮做盒身,80张铁皮做盒底,可以正好用完190张铁皮并制成一批完整的盒子;(2)110×8=880(个);答:这批盒子一共有880个.24.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=20°,求∠FEC的度数.【分析】根据平行于同一条直线的两直线平行可得EF∥BC,再根据平行线的性质可得∠ACB+∠DAC=180°,进而可得∠ACB的度数,然后求出∠FCB的度数,再根据角平分线的性质可得∠BCE=22°.再利用平行线的性质可得答案.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∵AD∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=116°,∴∠ACB=64°,∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=44°,∵CE平分∠BCF,∴∠BCE=22°.∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=22°.25.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,购买总费用/元购买商品A的数量/个购买商品B的数量/个第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062 (1)在这三次购物中,第三次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【分析】(1)根据图表可得小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据图表列出方程组求出x和y的值;(3)设商店是打a折出售这两种商品,根据打折之后购买9个A商品和8个B商品共花费1062元,列出方程求解即可.【解答】解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.26.我们知道.求类似于值,我们可以采取这样的思路,注意到然后再相加,我们就可以解决的求和问题(1)求的结果:(2)我们如何求:的值呢;由上面问题的处理思路,我们考虑是不是能将写成和差的形式,为此我们不妨假设:再想法交形计算.①A、B、C的值;②的值.【分析】(1)先根据得出的规律展开,再合并,最后求出即可;(2)①先得出的规律,即可求得A、B、C的值;①提取后将各项拆开即可相加即可求得结果;【解答】解:(1)=1﹣+﹣+﹣…+﹣=1﹣=;(2)①∵=•﹣+•=[(﹣)﹣(﹣)],∴A=,B=﹣1,C=;②原式=(1﹣+﹣+…+﹣)﹣(﹣+﹣+…+﹣)=×﹣×=.。
临沂市沂水县第二学期七年级期中考试数学试卷
临沂市沂水县第二学期七年级期中考试数学试卷一、选择题:1.点P (-3,-4)的横坐标是 A .3B .4C .-3D .-42.如图,直线a ,b ,c 两两相交,下列互为对顶角的是 A .∠1与∠2B .∠1与∠3C .∠3与∠4D .∠4与∠63.自线段AB 外一点P 向AB 引垂线,下列画图正确的是4.下列所给出的三条线段,能构成三角形的是 A .3,8,4 B .5,7,10C .3,3,6D .12,13,285.下列命题是真命题的是 A .相等的角是对顶角 B .同位角相等C .与同一条直线平行的两条直线也互相平行D .三角形的两个内角互余 6.下列图形具有稳定性的是7.同一坐标系内有序数对(2a 一1,3b+1)与(3,一2)所表示的位置相同,则a ,b 的值分别为 A .2,-lB .-l ,2C .-21,32D .32,-218.直角三角形ABE的两条直角边长分别为3,5,直角顶点C的坐标为(-2,1),顶点B 的坐标为(3,1),则顶点A的坐标为A.(一2,4)B.(-2,-2)C.(3,4)或(3,-2)D.(-2,4)或(-2,-2)二、填空题:将正确的结果直接填在题中的横线上。
9.五边形的外角和为__________度。
10.如图,已知a,b,c三条直线两两相交,∠l的一个同位角是_________。
11.已知AB=2cm,AC=4cm,平移线段AC,使点A移动到B的位置,则点C移动的距离是_____________cm。
12.点A(1,-4)沿x轴负方向平移3个单位,再沿y轴正方向平移6个单位,所得到点的坐标为_______________。
13.若mn<0,则点M(m,n)所在的象限是_________________。
14.已知三条直线a,b,c,且知a⊥b,a⊥c,则6与c之间的位置关系是__________。
15.—个多边形的内角和为900°,则这个多边形的边数为__________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年山东省临沂市沂水县七年级(下)期中测试卷数学一、选择题(共14小题,每小题3分,满分42分)1.4的平方根是()A.±4 B.±2 C.2 D.﹣22.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A.45°B.55°C.115°D.135°3.的立方根是()A.﹣1 B.0 C.1 D.±14.如图,已知AB,CD相交于点O,OE⊥CD于O,∠AOC=35°,则∠BOE的度数是()A.35°B.55°C.125°D.145°5.的平方根是()A.2 B.±2 C.D.±6.如图,AB∥CD,CB平分∠ABD,若∠C=35°,则∠D的度数为()A.100°B.110°C.120°D.130°7.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.AC=DF B.BE=EC C.∠A=∠D D.∠DEF=90°8.估算﹣2的值()A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间9.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)10.如图,能判定EC∥AB的条件是()A.∠B=∠ECD B.∠A=∠ECD C.∠B=∠ACE D.∠A=∠ACB11.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)13.如图,∠1=∠2,∠3=25°,则∠4等于()A.165°B.155°C.145°D.135°14.如图,在平面直角坐标系中,直径为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2016秒时,点P的坐标是()A. B. C. D.二、填空题(共5小题,每小题3分,满分15分)15.的相反数是.16.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=142°,则∠AOC的度数是.17.若实数m,n满足(m﹣1)2+=0,则(m+n)5=.18.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b⊥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)19.如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为.三、解答题(共7小题,满分63分)20.已知某正数的两个平方根分别是m+4和2m﹣16,n的立方根是﹣2,求﹣n﹣m的算术平方根.21.如图,AD∥BE,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AB∥CD.22.如图,△ABC是△DEF向右平移4个单位长度后得到的,且三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△DEF,并写出点D,E,F的坐标;(2)求出△DEF的面积.23.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.24.在数轴上点A表示的数是.(1)若把点A向左平移2个单位得到点为B,则点B表示的数是什么?(2)点C和(1)中的点B所表示的数互为相反数,点C表示的数是什么?(3)求出线段OA,OB,OC的长度之和.25.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.26.(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM 与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.2018-2019学年山东省临沂市沂水县七年级(下)期中数学测试卷参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.4的平方根是()A.±4 B.±2 C.2 D.﹣2【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选A.2.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A.45°B.55°C.115°D.135°【考点】对顶角、邻补角.【分析】根据互为邻补角的两个角的和等于180°列式计算即可得解.【解答】解:由图可知,∠1与∠2互为邻补角,∴∠2=180°﹣∠1=180°﹣45°=135°.故选D.3.的立方根是()A.﹣1 B.0 C.1 D.±1【考点】立方根.【分析】根据开立方运算,可得一个数的立方根.【解答】解:的立方根是1,故选:C.4.如图,已知AB,CD相交于点O,OE⊥CD于O,∠AOC=35°,则∠BOE的度数是()A.35°B.55°C.125°D.145°【考点】垂线;对顶角、邻补角.【分析】先根据垂足求得∠DOE的度数,再根据对顶角相等,求得∠BOD的度数,最后计算∠BOE的度数.【解答】解:∵OE⊥CD,∴∠DOE=90°,∵∠AOC=35°,∴∠BOD=35°,∴∠BOE=∠BOD+∠DOE=35°+90°=125°.故选(C)5.的平方根是()A.2 B.±2 C.D.±【考点】算术平方根;平方根.【分析】先化简,然后再根据平方根的定义求解即可.【解答】解:∵=2,∴的平方根是±.故选D.6.如图,AB∥CD,CB平分∠ABD,若∠C=35°,则∠D的度数为()A.100°B.110°C.120°D.130°【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠ABC=∠C,再根据角平分线的定义求出∠ABD,然后根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:∵AB∥CD,∴∠ABC=∠C=35°,∵CB平分∠ABD,∴∠ABD=2∠ABC=2×35°=70°,∵AB∥CD,∴∠D=180°﹣∠ABD=180°﹣70°=110°.故选B.7.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.AC=DF B.BE=EC C.∠A=∠D D.∠DEF=90°【考点】平移的性质.【分析】由平移的性质得出△ABC≌△DEF,得出对应边相等,对应角相等,即可得出结论.【解答】解:∵Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,∴△ABC≌△DEF,∴AC=DF,BC=EF,∠A=∠D,∠DEF=∠ACB=90°,∴BC﹣CE=EF﹣CE,即BE=CF,∴选项A、C、D正确,选项B错误;故选B.8.估算﹣2的值()A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间【考点】估算无理数的大小.【分析】先估算的值,再估算﹣2,即可解答.【解答】解:∵5<<6,∴3<﹣2<4,故选:C.9.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)【考点】坐标确定位置.【分析】以帅的坐标向左两个单位,向上3个单位为坐标原点建立平面直角坐标系,然后写出将的坐标即可.【解答】解:建立平面直角坐标系如图所示,将(1,6).故选C.10.如图,能判定EC∥AB的条件是()A.∠B=∠ECD B.∠A=∠ECD C.∠B=∠ACE D.∠A=∠ACB【考点】平行线的判定.【分析】根据平行线的判定方法,逐一判定即可.【解答】解:A、∵∠B=∠ECD,∴AB∥CE(同位角相等两直线平行).故A正确.B、∠A与∠ECD不是直线AB、CE被直线BD所截的同位角或内错角,故错误.C、∠B与∠ACE不是直线AB、CE被直线BD所截的同位角或内错角,故错误.D、∠A与∠ACB不是直线AB、CE被直线BD所截的同位角或内错角,故错误.故选A.11.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【解答】解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(﹣,+)∴点P在第二象限.故选:B.12.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:根据题意:A点坐标为(﹣3,﹣2),平移后,A'的坐标为(0,0);故①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P'的坐标为(a+3,b+2).故选C.13.如图,∠1=∠2,∠3=25°,则∠4等于()A.165°B.155°C.145°D.135°【考点】平行线的判定与性质.【分析】先根据∠1=∠2,判定a∥b,再根据平行线的性质,求得∠5的度数,进而根据邻补角得出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,又∵∠3=25°,∴∠5=25°,∴∠4=180°﹣∠5=155°.故选(B)14.如图,在平面直角坐标系中,直径为1个单位长度的半圆O 1、O 2、O 3,…组成一条平滑的曲线,点P从点O 出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2016秒时,点P 的坐标是( )A .B .C .D .【考点】规律型:点的坐标.【分析】设第n 秒运动到P n (n 为自然数)点,根据点P 的运动规律找出部分P n 点的坐标,根据坐标的变化找出变化规律“P 4n +1(,),P 4n +2(2n +1,0),P 4n +3(,﹣),P 4n +4(2n +2,0)”,依此规律即可得出结论.【解答】解:设第n 秒运动到P n (n 为自然数)点,观察,发现规律:P 1(,),P 2(1,0),P 3(,﹣),P 4(2,0),P 5(,),…,∴P 4n +1(,),P 4n +2(2n +1,0),P 4n +3(,﹣),P 4n +4(2n +2,0).∵2016=4×503+4,∴P 2016为.故选A .二、填空题(共5小题,每小题3分,满分15分)15.的相反数是 3﹣ .【考点】实数的性质.【分析】根据相反数的定义即可求解.【解答】解:的相反数是﹣(﹣3)=3﹣,故答案为3﹣.16.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,若∠AOE=142°,则∠AOC 的度数是 76° .【考点】对顶角、邻补角;角平分线的定义.【分析】根据两直线相交,对顶角相等,可推出∠AOC=∠DOB ,又根据OE 平分∠BOD ,∠AOE=142°,可求∠BOE ,从而可求∠BOD ,根据对顶角的性质即可得到结论.【解答】解:∵AB 、CD 相交于O ,∴∠AOC 与∠DOB 是对顶角,即∠AOC=∠DOB ,∵∠AOE=142°,∴∠BOE=180°﹣∠AOE=38°,又∵OE 平分∠BOD ,∴∠BOD=2∠BOE=2×38°=76°,∴∠BOD=∠AOC=76°,故答案为:76°.17.若实数m ,n 满足(m ﹣1)2+=0,则(m +n )5= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质可求出m 、n 的值,进而可求出(m +n )5的值.【解答】解:由题意知,m,n满足(m﹣1)2+=0,∴m=1,n=﹣2,∴(m+n)5=(1﹣2)5=﹣1.故答案为:﹣1.18.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b⊥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①④.(填写所有真命题的序号)【考点】命题与定理.【分析】根据平行线的判定定理与性质对各小题进行逐一分析即可.【解答】解:①∵a∥b,a⊥c,∴b⊥c,①是真命题;②∵b∥a,c∥a,∴b∥c,∴②是假命题;③∵b⊥a,c⊥a,∴b∥c,∴③是假命题;④∵b⊥a,c⊥a,∴b∥c,④是真命题.故答案为:①④.19.如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为(3,0)或(9,0).【考点】坐标与图形性质;三角形的面积.【分析】设P点坐标为(x,0),则根据三角形面积公式得到•4•|6﹣x|=6,然后去绝对值求出x的值,再写出P点坐标.【解答】解:设P点坐标为(x,0),根据题意得•4•|6﹣x|=6,解得x=3或9,所以P点坐标为(3,0)或(9,0).故答案为:(3,0)或(9,0).三、解答题(共7小题,满分63分)20.已知某正数的两个平方根分别是m+4和2m﹣16,n的立方根是﹣2,求﹣n﹣m的算术平方根.【考点】立方根;平方根;算术平方根.【分析】首先根据平方根的性质,求出m值,再根据立方根的性质求出n,带入﹣n﹣m,求出这个值的算术平方根即可.【解答】解:∵某正数的两个平方根分别是m+4和2m﹣16,可得:m+4+2m﹣16=0,解得:m=4,∵n的立方根是﹣2,∴n=﹣8,把m=4,n=﹣8代入﹣n﹣m=8﹣4=4,所以﹣n﹣m的算术平方根是2.21.如图,AD∥BE,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AB∥CD.【考点】平行线的判定与性质.【分析】由AE为角平分线得到一对角相等,再由AD与BE平行得到一对内错角相等,等量代换得到∠1=∠E,再由已知∠CFE=∠E,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AD∥BE,∴∠2=∠E,∴∠1=∠E,∵∠CFE=∠E,∴∠1=∠CFE,∴AB∥CD.22.如图,△ABC是△DEF向右平移4个单位长度后得到的,且三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△DEF,并写出点D,E,F的坐标;(2)求出△DEF的面积.【考点】作图-平移变换.【分析】(1)直接把△ABC是向左平移4个单位,再写出点D、E、F的坐标即可;(2)由正方形的面积减去三个三角形的面积即可得出结论.【解答】解:(1)如图所示,D(﹣3,1),E(0,2),F(﹣1,4);=3×3﹣×2×3﹣×1×2﹣×1×3=9﹣3﹣1﹣1.5=3.5.(2)S△DEF23.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.【考点】对顶角、邻补角;角平分线的定义;垂线.【分析】由∠BOD=∠AOC=72°,OF⊥CD,求出∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=∠BOD=36°,因此∠EOF=36°+18°=54°.【解答】解:∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=∠BOD=36°,∴∠EOF=36°+18°=54°.24.在数轴上点A表示的数是.(1)若把点A向左平移2个单位得到点为B,则点B表示的数是什么?(2)点C和(1)中的点B所表示的数互为相反数,点C表示的数是什么?(3)求出线段OA,OB,OC的长度之和.【考点】实数与数轴.【分析】(1)根据左减右加进行计算;(2)关于原点对称的两个点即为互为相反数;(3)求其长度之和,即是求它们的绝对值的和.【解答】解:(1)点B表示的数是﹣2.(2)点C表示的数是2﹣.(3)由题可得:A表示,B表示﹣2,C表示2﹣,∴OA=,OB=﹣2,OC=|2﹣|=﹣2.∴OA+OB+OC==3﹣4.25.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【考点】点的坐标.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(4)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或相反数进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).26.(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM 与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.【考点】平行线的判定与性质.【分析】(1)根据角平分线的性质和三角形内角和定理即可得出答案;(2)过M作MF∥AB,根据平行线的性质得出∠BAM=∠AMF,∠FMC=∠DCM,再根据∠M=90°,即可得出∠BAM+∠MCD=90°;(3)过点G作GP∥AB,根据平行线的性质得出∠BAC=∠PGC,∠CHG=∠PGH,从而得出∠BAC=∠CHG+∠CGH.【解答】解:(1)∵CM平分∠ACD,AM平分∠BAC,∴∠BAC=2∠MAC,∠ACD=2∠ACM,∵∠MAC+∠ACM=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;(2)∠BAM+∠MCD=90°;理由:如图2,过M作MF∥AB,∵AB∥CD,∴MF∥AB∥CD,∴∠BAM=∠AMF,∠FMC=∠DCM,∵∠M=90°,∴∠BAM+∠MCD=90°;(3)过点G作GP∥AB,∵AB∥CD∴GP∥CD,∴∠BAC=∠PGC,∠CHG=∠PGH,∴∠PGC=∠CHG+∠CGH,∴∠BAC=∠CHG+∠CGH.2016年11月29日。