新人教版七年级数学下册第六章《实数》测试卷及答案[1]

合集下载

新人教版七年级数学下册第六章实数测试卷及答案

新人教版七年级数学下册第六章实数测试卷及答案

第六章 实数〔一〕一、选择题〔第小题3分,共30分〕1.25的平方根是〔 〕A.5B .-5C. ± 5D. ±52.以下说法错误的选项是〔 〕A.1的平方根是1B .-1的立方根是-1C. 2是2的平方根D .-3是()23-的平方根3.以下各组数中互为相反数的是〔 〕A .-2与()22-B .-2与38- C.2与()22- D. 2-与2 4.数8.032032032是〔 〕A.有限小数B.有理数C.无理数D.不能确定5.在以下各数:0.51525354…,10049,0.2,π1,7,11131,327,中,无理数的个数是〔 〕 A.2个B.3个C.4个D.5个6.立方根等于3的数是〔 〕A.9B. ± 9C.27D. ±277.在数轴上表示5和-3的两点间的距离是〔 〕 A. 5+3B. 5-3C .-〔5+3〕D. 3-58.满足-3<x <5的整数是〔 〕A .-2,-1,0,1,2,3B .-1,0,1,2,3C .-2,-1,0,1,2,D .-1,0,1,29.当14+a 的值为最小时,a 的取值为〔 〕A .-1 B.0 C. 41- D.1 10. ()29-的平方根是x ,64的立方根是y ,则x +y 的值为〔 〕A.3B.7C.3或7D.1或7二、填空题11.算术平方根等于本身的实数是 .12.化简:()23π-= .13. 94的平方根是 ;125的立方根是 . 14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍.15.估量60的大小约等于 或 .〔误差小于1〕16.假设()03212=-+-+-z y x ,则x +y +z = .17.我们了解53422=+,黄老师又用计算器求得:55334422=+,55533344422=+,55553333444422=+,则计算:22333444 +〔202X 个3,202X 个4〕= .18.比拟以下实数的大小〔填上>、<或=〕.;②215- 21;③53. 19.假设实数a 、b 中意足0=+b b a a ,则ab ab = . 20.实a 、b 在数轴上的位置如下图,则化简()2a b b a -++= .三、解答题〔共40分〕 21.〔4分〕求以下各数的平方根和算术平方根:〔1〕1; 〔2〕410-;22.〔4分〕求以下各数的立方根:〔1〕21627 ; 〔2〕610--; 23.〔8分〕化简:〔1〕5312-⨯; 〔2〕236⨯; 〔3〕()()27575+⨯-; 〔4〕8145032-- 24. 〔1〕42x =25 〔2〕()027.07.03=-x .25.〔4分〕已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.26.〔5分〕请在同一个数轴上用尺规作出2-和5的对应的点.27.〔5分〕已知:字母a 、b 满足021=-+-b a .求()()()()()()2001201112211111++++++++++b a b a b a ab 的值. 28.〔6分〕〔1〕做一做:画四个宽为1,长分别为2、3、4、5的矩形;〔2〕算一算:它们的对角线有多长?〔3〕试一试:平方等于5,平方等于10,平方等于17,平方等于26的数各有几个?〔4〕依据上面的探究过程,你能得出哪些结论?〔5〕利用其中的某些结论解决下面的问题:如果a >b ,那么a 与b 有何关系?参考答案1. C ;2.A ;3.A ;4.B ;5.B ;6.C ;7.A ;8.D ;9.C ;10.D11.0.1;12. π-3;13. ±32,5;14. 2m ,3n ;15.7或8;16.6;17.202X 个5;18. <,>,<; 19.-1;20. a 2-;21.〔1〕 ±1,1;〔2〕±210-,210-;22. 〔1〕21,〔2〕210--;23.〔1〕1,〔2〕3;〔3〕0,〔4〕22-; 24.〔1〕±25,〔2〕1; 25.0; 26.如下图:27.解:a =1,b =2原式=20132012143132121⨯++⨯+⨯+=1-21+21-31+31-41+…+2013120121-=1-20131=20132012。

新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)

新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)

新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2⼈教版数学七下第六章实数能⼒⽔平检测卷⼀.选择题(共10⼩题)1.下列选项中的数,⼩于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-12 3.若实数a,b是同⼀个数的两个不同的平⽅根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.⽤计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想⼀想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=2 C.±20x=20 D.3x=±20 6.下列选项中正确的是()A.27的⽴⽅根是±3B的平⽅根是±4C.9的算术平⽅根是3D.⽴⽅根等于平⽅根的数是17.在四个实数、3、-1.4中,⼤⼩在-1和2之间的数是()A .B .3CD .-1.481-的相反数是()A .1-B 1-C .1-D 1+9a ,⼩数部分为b ,则a-b 的值为()A .- 13B .6-C .8-D 6- 10.下列说法:①-1是1的平⽅根;②如果两条直线都垂直于同⼀直线,那么这两条直线平⾏;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以⽤数轴上的点表⽰,反过来,数轴上的所有点都表⽰有理数;⑤⽆理数就是开放开不尽的数;正确的个数为()A .1个B .2个C .3个D .4个⼆.填空题(共6⼩题)11.已知a 的平⽅根是±8,则它的⽴⽅根是;36的算术平⽅根是.122(3)b ++=0= .13A 的算术平⽅根为B ,则A+B= .14.若45,<<则满⾜条件的整数a 有个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有⼀点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是(M 、N 、P 、R 中选).16.=5,付⽼师⼜⽤计算器求得:=55=555, =5555,个3,2016个4)= .三.解答题(共7⼩题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围⼀个⾯积为50m2的长⽅形场地,⼀边靠旧墙(墙长为10m),另外三边⽤篱笆围成,并且它的长与宽之⽐为5:2.讨论⽅案时,⼩马说:“我们不可能围成满⾜要求的长⽅形场地”⼩⽜说:“⾯积和长宽⽐例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的⽴⽅根是3,3a+b-1的算术平⽅根是4,c(1)求a,b,c的值;(2)求3a-b+c的平⽅根.21.如果⼀个正数的两个平⽅根是a+1和2a-22,求出这个正数的⽴⽅根.22-的⼩数部分,此1事实上,⼩明的表⽰⽅法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,⼈教版七年级数学下册章末质量评估第六章实数⼈教版七年级数学下册第六章实数单元检测卷⼀、选择题1.若⼀个数的算术平⽅根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成⽴的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平⽅根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个⽆理数的和是⽆理数;②两个⽆理数的积是有理数;③⽆理数与有理数的和是⽆理数;④有理数除以⽆理数的商是⽆理数.A.1个 B.2个 C.3个 D.4个6. 下列选项中正确的是( C )A.27的⽴⽅根是±3B.的平⽅根是±4A.6.69 B.6.7 C.6.70 D.±6.708.⼀个底⾯是正⽅形的⽔池,容积是11.52m3,池深2m,则⽔池底边长是( C ) A.9.25m B.13.52m C.2.4m D.4.2m9. ⽐较2, , 的⼤⼩,正确的是(C )A. 2< <B. 2< <C. <2<10.如果⼀个实数的算术平⽅根等于它的⽴⽅根,那么满⾜条件的实数有(C)A.0个B.1个om]C.2个D.3个⼆、填空题11.3的算术平⽅根是____3____.12.(1)⼀个正⽅体的体积是216cm3,则这个正⽅体的棱长是____6________cm;(2) 表⽰_______9_____的⽴⽅根;13.已知a,b为两个连续整数,且a<1514.已知⼀个有理数的平⽅根和⽴⽅根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________.三、解答题17.求下列各数的平⽅根和算术平⽅根:(1)1.44;解:1.44的平⽅根是± 1.44=±1.2,算术平⽅根是 1.44=1.2.(2)169289;解:169289的平⽅根是±169289=±1317,算术平⽅根是169289=1317.(3)(-911)2. 解:(-911)2的平⽅根是±(-911)2=±911,算术平⽅根是(-911)2=911.[] 18.已知⼀个正数x 的两个平⽅根分别是3-5m 和m -7,求这个正数x 的⽴⽅根.由已知得(3-5m)+(m -7)=0,-4m -4=0,解得:m=-1.所以3-5m=8,m -7=-8.所以x=(±8)2=64.所以x 的⽴⽅根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12。

(完整版)新人教版七年级数学下册第六章《实数》测试卷及答案[1][1]

(完整版)新人教版七年级数学下册第六章《实数》测试卷及答案[1][1]

22、已知 1 3a 和︱ 8b- 3︱互为相反数,求 (ab)2- 27 的值。
23、已知 2a- 1 的平方根是 ±3, 3a+b- 1 的算术平方根是 4,求 a+ 2b 的值。
24、已知 m 是 3 13 的整数部分, n 是 13 的小数部分,求 m- n 的值。
2
人教版七年级数学第十章《实数》测试卷
人教版七年级数学第六章《实数》测试卷
班级 _______ 姓名 ________ 坐号 _______ 成绩 _______
一、选择题(每小题 3 分,共 30 分)
1、若 x 是 9 的算术平方根,则 x 是( )
A、3
B 、- 3
C、9
D、 81
2、下列说法不正确的是(

A 、 1 的平方根是 1
D、 22 =2
5、估计 76 的值在哪两个整数之间(

A 、 75 和 77
B、6 和 7
C、7 和 8
D、8 和 9
6、下列各组数中,互为相反数的组是(

A 、- 2 与 ( 2) 2
B、- 2 和 3 8
C、- 1 与 2 2
D 、︱- 2︱和 2
7、在- 2, 4 , 2 , 3.14, 3 27 , ,这 6 个数中,无理数共有 (
4
3
四、 21、 256; 22、 37 23、 9
五、 24、5- 13 ;25、( 1)、D( 2; 2 ),( 2)、 s= 3 2 ≈4、24;( 3)、 A'(4;- 2 )
B'( 7;- 2 )C'( 7;- 2 2 ) D'( 4;- 2 2 )
3
25
5
B、- 9 是 81 的一个平方根

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。

真命题的逆命题都是真命题B。

无限小数都是无理数C。

0.720精确到了百分位D。

16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。

3B。

7C。

3或7D。

1或73.3(-1)²的立方根是()A。

-1B。

1C。

-4D。

44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。

-1B。

-1/2C。

3/2D。

25.若a=2,则a的值为()A。

2B。

±2C。

4D。

±46.下列计算中,错误的是()A。

30.125=0.5B。

3-273=-644C。

33/31=1/82D。

-3/8²=-125/577.下列说法正确的是()A。

实数分为正实数和负实数B。

3/2是有理数C。

0.9是有理数D。

30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。

其中,不正确的有() A。

2个B。

3个C。

4个D。

5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。

4 cm~5 cm之间B。

5 cm~6 cm之间C。

6 cm~7 cm之间D。

7 cm~8 cm之间10.计算-4-|-3|的结果是()A。

-1B。

-5C。

1D。

5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。

15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。

人教版初中七年级数学下册第六单元《实数》经典测试题(含答案解析)(1)

人教版初中七年级数学下册第六单元《实数》经典测试题(含答案解析)(1)

一、选择题1.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .10D 解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D .【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.2.下列各数中无理数共有( )①–0.21211211121111,②3π,③227, A .1个B .2个C .3个D .4个C 解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个. 故答案为C .【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.3.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×2014A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯,∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.4.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .4C解析:C【分析】根据平方根的概念从而得出a 的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a 的一个平方根,∴4a =,∴4的算术平方根是2,故选:C .【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.5.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a ab b ★,b a a b★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b aa a ab b b ba b ====★★★★, ∴()()a b b a ★★不一定等于1, 当a b <时, ∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1, ∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b>,∴1a b≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★,当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个C 解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31 4.4285717=小数点后的428571是无限循环的,属于有理数,3=-属于有理数,=则无理数为π-⋯,共有3个,故选:C .【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.7.下列说法中,错误的是()A .实数与数轴上的点一一对应B .1π+是无理数C .2是分数 D C 解析:C【分析】根根据有理数和无理数的定义可对C 、B 、D 进行判断;根据实数与数轴上点的关系可对A 进行判断.【详解】解:A. 实数与数轴上的点是一一对应的,此说法正确,不符合题意;B.1π+是无理数,此说法正确,不符合题意;C.2是无理数,原说法错误,符合题意;是无限不循环小数,此说法正确,不符合题意.故选:C .本题考查了实数的有关概念:有理数和无理数统称为实数;整数和分数统称为有理数;无限不循环小数叫无理数;实数与数轴上的点是一一对应的.8.下列选项中,属于无理数的是( )A .πB .227-C .4D .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】 解:A.π是无理数;B.227-是分数,属于有理数; C.4=2是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.9.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与6B 解析:B【分析】根据327<350<364,可得答案.【详解】解:由327<350<364,得3<350<4,所以,50的立方根在3与4之间故选:B .【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系. 10.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68C 解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b +2a-c 【分析】根据数轴得到a<b<0<c 由此得到a-c<0a+b<0依此化简各式再合并同类项即可【详解】由数轴得a<b<0<c ∴a-c<0a+b<0∴=-b-(c-a )+(a+b)=-b-c+a+解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0, ∴()323|-|b a c a b -+=-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 13.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键 解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=,故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.14.()220y -=,则xy =_________.-1【分析】由非负数的性质可知x=-y=2然后求得xy 的值即可【详解】解:∵|+(y-2)2=0∴2x+1=0y-2=0∴x=-y=2∴xy=-×2=-1故答案为:-1【点睛】本题考查了非负数的性质解析:-1【分析】由非负数的性质可知x=-12,y=2,然后求得xy 的值即可. 【详解】解:∵(y-2)2=0,∴2x+1=0,y-2=0,∴x=-12,y=2. ∴xy=-12×2=-1. 故答案为:-1.【点睛】本题考查了非负数的性质,掌握非负数的性质是解题的关键.15的相反数是________的数是________【分析】直接利用相反数的定义以及绝对值的性质分析得出答案【详解】的相反数是;绝对值等于的数是故答案为:;【点睛】本题主要考查了绝对值以及相反数正确掌握相关定义是解题关键【分析】直接利用相反数的定义以及绝对值的性质分析得出答案.【详解】;【点睛】本题主要考查了绝对值以及相反数,正确掌握相关定义是解题关键.16.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.(1);(2)【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值再根据算术平方根的定义求解【详解】解:(1)解得:;(2)的算术平方根为【点睛】本题考查了非负数的性质以及算术平方根的定义根解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.17.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<5,a 为整数, ∴∴整数a 有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.18.设a ,b a b <<,是,则a b =____.9【分析】求出的范围求出ab 的值代入求出即可【详解】∵2<<3∴a =2b =3∴ba =32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab的值解析:9【分析】a、b的值,代入求出即可.【详解】∵23,∴a=2,b=3,∴b a=32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a、b的值.a-的平方根是2±,则a的值为_______.5【分析】根据平方根的定义求19.已知1解即可【详解】的平方根是a-1=4a=5故答案为:5【点睛】此题考查了平方根的定义一个整数的平方根有两个它们互为相反数解析:5【分析】根据平方根的定义求解即可.【详解】a-的平方根是2±,1∴a-1=4,∴a=5.故答案为:5【点睛】此题考查了平方根的定义,一个整数的平方根有两个,它们互为相反数.20.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).515【分析】由已知条件可得:①中各数都符合2n的形式②中各数比①中对应数字大3按此规律即可求得①②中第8个数的值再求和即可【详解】根据题意可知①中第8个数为28=256;②第8个数为28+3=25解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.三、解答题21.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2; (2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.22.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.23.1解析:1【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键.24.求下列各式中x 的值.(1)4(x ﹣3)2=9;(2)(x +10)3+125=0.解析:(1)x =92或32;(2)x =﹣15 【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可.【详解】解:(1)4(x ﹣3)2=9,(x ﹣3)2=94, x ﹣3=32±, x ﹣3=32或x ﹣3=32-, 解得:x =92或32; (2)(x +10)3+125=0,(x +10)3=﹣125,x +10x +10=﹣5,解得x =﹣15.【点睛】本题主要考查利用平方根解方程、利用立方根解方程,熟练掌握解方程的方法和步骤是解答的关键,注意平方根有两个.25.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴240c d d ++=∴2040c d d +=⎧⎨+=⎩ ∴24c d =⎧⎨=-⎩ ∴()23223416c d -=⨯-⨯-=∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.26.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.27.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.解析:±3【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案.【详解】解::由题意,得: 2a−1=1,解得:a=1,3a+b−1=4,解得:b=2,c=8,所以b ﹣a +c =2﹣1+8=9∴9的平方根是±3故答案为:±3【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.28.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

人教版七年级数学下册第六章 实数 单元检测卷(含解析)

人教版七年级数学下册第六章 实数 单元检测卷(含解析)

第六章实数单元检测卷人教版七年级数学下册一、选择题1.64的平方根是( )A.4B.±4C.8D.±8 2.16的平方根是( )A.4B.2C.±4D.±2 3.下列运算正确的是( )A.9=±3B.|−3|=−3C.−9=−3D.−32=9 4.式子x−2中,x的取值范围是( )A.x≥2B.x>2C.x≥0D.x>0 5.下列各式中正确的是( )A.9=±3B.−4=2C.3−64=−4D.279=5 96.面积为2 的正方形的边长是( )A.2的平方根B.2的算术平方根C.2开平方的结果D.2的立方根7.下列说法错误的是( )A.−1的立方根是−1B.算术平方根等于本身的数是±1,0C.0.09=0.3D.3的平方根是±38.下列各数中的无理数是( )A.4B.πC.0D.−2279.比较2,5,37的大小,正确的是( )A.2< 5< 37B.2< 37< 5C.37<2< 5D.5< 37<2 10.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )A.2B.3C.2D.3二、填空题11.一个自然数的算术平方根是a ,则相邻的下一个自然数的算术平方根是 .12.在等式[()+5]2=49中,( )内的数等于 .13.依据图中呈现的运算关系,可知m +n = .14.已知 a 、b 为两个连续的整数,且 a <11<b ,则 a +b = .三、计算题15.计算: −12+(−2)3×18−3−27×(−19)16.解方程:(1)(x−1)2−9=0;(2)2(2x−1)3+16=0四、解答题17.已知实数a +9的一个平方根是-5,2b−a 的立方根是-2,求2a +b 的算术平方根.18.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm 2和32dm 2的正方形木板.(1)截出的两块正方形木料的边长分别为  .(2)求剩余木料的面积.(3)如果木工想从剩余的木料中截出长为1.5dm ,宽为1dm 的长方形木条,最多能截出多少块这样的木条.19.如图,依次连结2×2方格四条边的中点A ,B ,C ,D ,得到一个阴影正方形.设每一方格的边长为1个单位,请讨论下面的问题:(1)阴影正方形的面积是多少?(2)阴影正方形的边长是多少?应怎样表示?(3)阴影正方形的边长介于哪两个相邻整数之间?20.已知3a+2的立方根是2,3a+b−1的算术平方根是4,c是8的整数部分.(1)求a、b、c的值;(2)求a+b−c的平方根.21.如果要制作一个立方体,使它的体积是已知立方体体积的27倍,那么它的棱长应是已知立方体的棱长的几倍?22.比较6−5和7−6的大小.23.把下列各有理数:﹣(+4),|﹣3|,0,﹣5,1.5(1)分别在数轴上表示出来:(2)将上述有理数填入图中相应的圈内.24.如图1,这是由8个同样大小的正方体组成的魔方,其体积为64.(1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD,求出阴影部分的边长及其面积;(3)如图2,把正方形ABCD放到数轴上,使点A与﹣1重合,那么点B表示的数为a,请计算(a﹣1)(a+1)﹣|2﹣a|的值.答案解析部分1.【答案】D【解析】【解答】解:∵(±8)2=64,∴64的平方根是±8,故答案为:D.【分析】直接根据平方根的定义即可求解.2.【答案】D【解析】【分析】首先根据平方根的定义求出4的平方根,然后就可以解决问题.【解答】∵16=4∵±2的平方等于4,∴4的平方根是:±2.故选D.【点评】此题主要考查了平方根的定义和性质,根据平方根的定义得出是解决问题的关键.3.【答案】C【解析】【解答】根据算术平方根,平方,绝对值的定义,得:A. 9=3 B. |−3|=3 C. −9 =−3 D. −32=−9.故答案为:C.【分析】根据算术平方根,绝对值的定义及有理数的乘方分别求出结果,然后判断即可.4.【答案】A【解析】【解答】解:根据题意得:x-2≥0,解得x≥2.故答案为:A.【分析】根据算数平方根有意义的条件,被开方数是非负数即可求解.5.【答案】C【解析】【解答】解:A、9=3,故选项A错误;B、负数没有平方根,故选项B错误;C、3−64=−4,故选项C正确;D、279=259=53,故选项D错误.故答案为:C.【分析】正数的正平方根叫做算术平方根,据此可判断A选项;负数没有平方根,据此可判断B选项;如果一个数的立方等于a,那么这个数叫做a的立方根,据此可判断C选项;求一个带分数的算术平方根,需要将这个带分数化为假分数,进而将分子分母分别开方,据此可判断D选项.6.【答案】B【解析】【解答】解:面积为2的正方形的边长是2的算术平方根.故答案为:B .【分析】由于正方形的面积等于边长的平方,且正方形的边长是一个正数,故可以根据算术平方根的定义求解.7.【答案】B【解析】【解答】A、∵−1的立方根是−1,∴A正确,不符合题意;B、∵-1没有算术平方根,∴B不正确,符合题意;C、∵0.09=0.3,∴C正确,不符合题意;D、∵3的平方根是±3,∴D正确,不符合题意;故答案为:B.【分析】利用立方根、平方根的性质及计算方法逐项判断即可.8.【答案】B【解析】【解答】解:A.4=2是有理数,故不符合题意;B.π是无理数,故符合题意;C.0是有理数,故不符合题意;D.−22是有理数,故不符合题意;7故答案为:B.【分析】根据无理数的定义逐项判断即可。

新人教版初中数学七年级下册第六章《实数》检测试题(含答案)

新人教版初中数学七年级下册第六章《实数》检测试题(含答案)

人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平方根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个B.的平方根是±4A.6.69 B.6.7 C.6.70 D.±6.708.一个底面是正方形的水池,容积是11.52m3,池深2m,则水池底边长是( C )A.9.25m B.13.52m C.2.4m D.4.2m9. 比较2, , 的大小,正确的是(C )A. 2<<B. 2<<C.<2<D.<<210.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C) A .0个 B .1个om] C .2个D .3个二、填空题11.3的算术平方根是____3____.12.(1)一个正方体的体积是216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示_______9_____的立方根;13.已知a ,b 为两个连续整数,且a<15<b ,则a +b 的值为 7 . 14.已知一个有理数的平方根和立方根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________. 三、解答题17.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317.(3)(-911)2.解:(-911)2的平方根是±(-911)2=±911,算术平方根是(-911)2=911.[]18.已知一个正数x的两个平方根分别是3-5m和m-7,求这个正数x的立方根.由已知得(3-5m)+(m-7)=0,-4m-4=0,解得:m=-1.所以3-5m=8,m-7=-8.所以x=(±8)2=64.所以x的立方根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;(3)0.36×4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12人教版初中数学七年级下册第六章《实数》检测卷一、选择题(每题3分,共30分)1. 下列各数中,没有平方根的是( )A. |-4|B. -(-4)C. (-4)2D. -422. 1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间3. 下列说法中,错误的是( )A. ±2B. 是无理数C.是有理数 D. 4. 下列说法中,错误的是 ( )A. -4是16的一个平方根B. 17是(-17)2的算术平方根C.164的算术平方根是18D. 0.9的算术平方根是0.03 5. 下列语句写成式子正确的是 ( )A. 4是16的算术平方根,即±4B. 4是(-4)2 4C. ±4是16的平方根,即 4D. ±4是16±46. 如图,数轴上点 N 表示的数可能是 ( )A. 10B. 5C. 3D. 27. 在实数0,π,227( ) A. 1个 B. 2个 C. 3个 D. 4个 8. a ,b ,c 在数轴上的对应点如图所示,则|a -b |+|b +c |-|a +c |的值为 ( )A. 2b +2cB. b +cC. 0D. a +b +c 9. 下列四个结论中,正确的是 ( )A.32<52 B. 54<32C.32<2<2 D. 1<2<5410. 一个自然数的算术平方根是a ,则下一个自然数的平方根是 ( ) A. a 2+1 B. ±(a 2+1) C. a 2+1 D. ±a 2+1二、填空题(每题3分,共24分)11.的算术平方根为 ,(-3)2的平方根是 .12. -338的立方根是 ,的立方根是 . 13. 在-5,- 3,0,π,6中,最大的一个数是 .14. =9,则x = ;若x 2=9,则x = .15. 若a <b 且a ,b 为连续正整数,则a 2+b 2的平方根为 .16. 5.70618.044= .17. =3,|b |=5,且ab <0,则a +b 的算术平方根为 .18. 请你辨别:下图依次是面积为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有 个,边长是无理数的正方形有 个.三、解答题(共66分)19. (8分)计算下列各题.(1) |3-|2;(2)20. (8分)求下列各式中的x的值.(1)(x+2)3+27=0;(2)2(2x+1)2-12=0.21. (9分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求x2-y2人教版七年级数学下册第六章实数复习检测试题一、选择题(每小题3分,共30分)1.下列各数中最大的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.的立方根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上二、填空题(每小题3分,共24分)1.按键顺序是“,,则计算器上显示的数是.2.一个数的平方根和它的立方根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平方根为a+3和2a-15,则这个数是.5.比较大小:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.6.(8分)设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.参考答案与解析一、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A二、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2。

人教版七年级下册数学第六章-实数含答案(附答案)

人教版七年级下册数学第六章-实数含答案(附答案)

人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、8的立方根等于()A. 2B.-2C.±2D.2、的算术平方根是()A. B. C.± D.3、下列实数是无理数的是A. B. C. D.4、估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间5、下列说法正确的是()A.a的平方根是±B.a的立方根是C. 的平方根是0.1 D.6、下列等式正确是A. B. C. D.7、下列实数中的无理数是()A.1B.0C.D.π8、下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8),A.2个B.3个C.4个D.5个9、由图可知,a、b、c的大小关系为()A.a < b < cB.a < c <bC.c < a <bD.c < b < a10、给出四个实数﹣2,0,0.5,,其中无理数是()A.﹣2B.0C.0.5D.11、实数π,,﹣3. ,,中,无理数有()个.A.1B.2C.3D.412、下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个&nbsp;C.4个D.5个13、下列说法正确的是()A. =±3B. 的立方根是2C.D.的算术平方根是214、在实数范围内,下列判断正确的是()A.若|a|=|b|,则a=bB.若|a|=()2,则a=bC.若a>b,则a 2>b 2D.若= ,则a=b15、如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点AB.点BC.点CD.点D二、填空题(共10题,共计30分)16、实数a、b在数轴上的位置如图所示,则化简|a+2b|﹣|a﹣b|的结果为________.17、设的小数部分为b,那么(4+b)b的值是________.18、比较下列实数的大小(在横线填上>、<或=)①2 ________ 3 ;② ________ ;③﹣________﹣.19、16的平方根是________,算术平方根是________.20、如果实数a、b在数轴上的位置如图所示,那么化简=________.21、若x3=﹣,则x=________.22、若=0.7160,=1.542,则=________,=________.23、比较大小:________1(填“ ”“ ”或“ ”)24、若|x|=3,y2=4,且x>y,则x﹣y=________.25、计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________ .三、解答题(共6题,共计25分)26、已知的立方根是2,的算术平方根是4,的整数部分是,求的值.27、将下列各数填入相应的集合内:,1.010010001,,0,,…(相邻的两个2之间的3一次增加1个),.有理数集合{ …}无理数集合{ …}28、在数轴上作出表示的点.29、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.30、计算:9×(﹣)+ +|﹣3|参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A5、B6、D7、D8、B9、C10、D11、B12、B13、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。

人教版数学七年级下册第六章实数检测题测试卷(含答案)

人教版数学七年级下册第六章实数检测题测试卷(含答案)

人教版七年级下册第六章实数检测题测试卷(含答案)一、选择题(每题3分,共30分) 1.下列各数中为无理数的是( )A.9B .3.14C .πD .02.在实数-13,-1,0,3中,最小的实数是( )A .-1B .0C .-13D. 33.116的平方根是( )A .±12B .±14C.14 D.12 4.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间6.下列等式正确的是( )A.22=2B.33=3C.44=4D.55=57.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0 8.制作一个表面积为30 cm 2的无盖正方体纸盒,则这个正方体纸盒的棱长是( ) A. 6 cmB. 5 cmC.30 cmD .±5 cm9.已知x -1的立方根是1,2y +2的算术平方根是4,则x +y 的平方根是( )A .9B .±9C .±3D .310.已知实数a ,b 在数轴上对应的点的位置如图所示,则下列式子正确的是( )(第10题)A.ab>0 B.a+b<0 C.|a|<|b| D.a-b>0二、填空题(每题3分,共24分)11.4的算术平方根是_______,9的平方根是_______,-8的立方根是_______.12.已知a为实数,若-a2有意义,则-a2=________.13.计算:|2-3|+2=________.14.一个正数的平方根分别是x+1和x-5,则x=________.15.实数28-2的整数部分是________.16.如图,数轴上A,B两点之间表示整数的点有________个.(第16题)17.已知 2 019≈44.93,201.9≈14.21,那么20.19≈__________.18.一个数值转换器,原理如图所示.当输入x为512时,输出y的值是________.(第18题)三、解答题(19题16分,20,22题每题8分,21,23题每题10分,24题14分,共66分)19.计算:(1)0.09+38-14;(2) 33-2(3-1);(3)|3-32|-32-(-5)2;(4)214-(-2)4+31-1927-(-1)2 019.20.求下列各式中x的值:(1)(x+2)3+1=7 8;(2)25(x2-1)=24.21.已知|2a+b|与3b+12互为相反数.(1)求2a-3b的平方根;(2)解关于x的方程ax2+4b-2=0.22.座钟的摆摆动一个来回所需的时间称为一个周期,其计算公式为T=2πl g,其中T表示周期(单位:s),l表示摆长(单位:m),g≈9.8 m/s2.假如一台座钟的摆长为0.5 m,它每摆动一个来回发出一次滴答声,那么在一分钟内,该座钟大约发出多少次滴答声(可利用计算器计算,其中π≈3.14)?23.如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+2)2的值.(第23题)24.你能找出规律吗?(1)计算:9×16=________,9×16=________;25×36=________,25×36=________.(2)请按找到的规律计算:①5×125;②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.答案一、1. C 2. A 3. A 4. D 5. C 6. A7.A8. A9. C10.D点拨:根据a,b在数轴上对应的点的位置可知1<a<2,-1<b <0,∴ab<0,a+b>0,|a|>|b|,a-b>0.故选D.二、11. 2;±3;-212. 013. 314.215. 316. 417. 4.4918. 3 2三、19.解:(1)原式=0.3+2-12=1.8;(2)原式=33-23+2=3+2;(3)原式=32-3-32-5=-8;(4)原式=94-16+3827-(-1)=32-4+23+1=-56.20.解:(1)(x+2)3=-18,x+2=-12,x=-52;(2)x2-1=2425,x2=4925,x=±75.21.解:由题意,得2a+b=0,3b+12=0,解得b=-4,a=2.(1)2a-3b=2×2-3×(-4)=16,所以2a-3b的平方根为±4.(2)把b=-4,a=2代入方程,得2x2+4×(-4)-2=0,即x2=9,解得x=±3.22.解:由题意知l=0.5 m,g≈9.8 m/s2,∴T=2πlg≈2×3.14×0.59.8≈1.42(s).∴在一分钟内,该座钟大约发出601.42≈42(次)滴答声.23.解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,∴点B所表示的数比点A表示的数大2.∵点A表示-2,点B表示m,∴m=-2+2.(2)|m-1|+(m+2)2=|-2+2-1|+(-2+2+2)2=|-2+1|+4=2-1+4=2+3.24.解:(1)12;12;30;30(2)①原式=5×125=625=25;②原式=53×485=16=4.(3)40=2×2×10=2×2×10=a2b。

人教版初中七年级数学下册第六单元《实数》基础卷(含答案解析)(1)

人教版初中七年级数学下册第六单元《实数》基础卷(含答案解析)(1)

一、选择题1.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 2.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个 3.-18的平方的立方根是( ) A .4 B .14 C .18 D .164 4.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b 5.在实数﹣34,0,9,215中,是无理数的是( ) A .﹣34 B .0 C .9 D .215 6.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 137.81的平方根是( )A .9B .-9C .9和9-D .81 8.和数轴上的点一一对应的数是( ) A .自然数 B .有理数 C .无理数 D .实数 9.设,A B 均为实数,且33,3A m B m =-=-,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ 10.在3223.14,0.4,0.001,23,, 5.12112111227π---……中,无理数的个数为 ( )A .5B .2C .3D .411.已知:m 、n 为两个连续的整数,且5m n <<,以下判断正确的是( ) A .5的整数部分与小数部分的差是45- B .3m =C .5的小数部分是0.236D .9m n += 12.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 13.下列各数中是无理数的是( ) A .227 B .1.2012001 C .2π D .8114.下列说法正确的有( )(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数.A .1个B .2个C .3个D .4个 15.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π,2;C .2,6,π;D .0.1010101……101,π,3 二、填空题16.已知一个正数m 的平方根为2n +1和4﹣3n .(1)求m 的值;(2)|a ﹣3|b ++(c ﹣n )2=0,a +b +c 的立方根是多少?17.已知2x +1的算术平方根是0,y =4,z 是﹣27的立方根,求2x +y +z 的平方根. 18.已知10+3的整数部分是x ,小数部分是y ,求x ﹣y 的相反数_____. 19.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.20.27-的立方根是___________81___________;| 3.14|π-的绝对值是___________.21.若2x =,29y =,且0xy <,则x y -等于______.22.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.23.3x -+(y +2)2=0,那么xy 的值为___________.24.设a ,b 88a b <<,是,则a b =____. 25.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______. 26.已知实数,x y 满足()2380x y -+=,求xy -的平方根. 三、解答题27.已知(253|530x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.28.已知31a +的算数平方根是4,421c b +-的立方根是3,c 1322a b c +-的平方根. 29.(1223143)8-; (2)求 (x -1)2-36=0中x 的值. 30.2 1.414≈,于是我们说:2的整数部分为1,小数部分则可记为21”.则:(121的整数部分是__________,小数部分可以表示为__________; (232的小数部分是a ,73-b ,那么a b +=__________; (311x 11的小数部分为y ,求1(11)x y --的平方根.。

人教版数学七年级下册第6章《实数》综合测评(附答案)

人教版数学七年级下册第6章《实数》综合测评(附答案)

人教版版七年级下册第6章《实数》综合测评满分120分检测时间100分钟班级________姓名________座号______成绩________一.选择题(共10小题,满分30分)1.下列各数中最小的是()A.0B.1C.﹣D.﹣π2.在,3.1415926,(π﹣2)0,﹣3,,﹣,0这些数中,无理数有()A.2个B.3个C.4个D.5个3.已知,则的值是()A.1B.2C.3D.44.下列说法不正确的是()A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数5.实数m、n在数轴上的位置如图所示,化简|n﹣m|﹣m的结果为()A.n﹣2m B.﹣n﹣2m C.n D.﹣n6.如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.1333 7.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.98.设a,b,c为不为零的实数,那么的不同的取值共有()A.6种B.5种C.4种D.3种9.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100C.0.01D.0.110.已知min{,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{,x2,x}=min{,92,9}=3﹒当min{,x2,x}=时,则x的值为()A.B.C.D.二.填空题(共6小题,满分24分)11.5的平方根是,算术平方根是.12.若的平方根为±3,则a=.13.正方形的面积为5m2,则它的周长为m.14.﹣3的相反数是.15.一次数学游戏活动时,有7个同学藏在大木牌后面,男同学的木牌前写的是正数,女同学的木牌前写的是负数,7个木牌如下所示,则男生有人.16.我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)三.解答题(共8小题,满分66分)17.(6分)计算:18.(6分)已知一个正数的平方根为2a﹣1和﹣a+2,求这个正数.19.(8分)求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6420.(8分)把下列各数填入表示它所在的数集的大括号:﹣2.4,π,2.008,﹣,﹣0.,0,﹣10,﹣1.1010010001….整数集合:{ };负分数集合:{ };正数集合:{ };无理数集合:{ }.21.(8分)有一张面积为256cm2的正方形贺卡,另有一个长方形信封,长宽之比为3:2,面积为420cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.22.(10分)某地气象资料表明:某地雷雨持续的时间t(h)可以用下面的公式来估计:,其中d(km)是雷雨区域的直径.(1)雷雨区域的直径为8km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了2h,那么这场雷雨区域的直径大约是多少?23.(10分)观察下表后回答问题:a0.00010.011100100000.01x1y100(1)表格中x=,y=;(2)由上表你发现什么规律?;(3)根据你发现的规律填空:①已知≈1.732,则≈,≈;②已知=0.056,则=.24.(10分)课堂上,老师出了一道题,比较与的大小.小明的解法如下:解:﹣==,因为42=16<19,所以>4,所以﹣4>0.所以>0,所以>,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“>”“=”或“<”):①若a﹣b>0,则a b;②若a﹣b=0,则a b;③若a﹣b<0,则a b.(2)利用上述方法比较实数与的大小.参考答案一.选择题(共10小题)1.【解答】解:﹣π<﹣<0<1.则最小的数是﹣π.故选:D.2.【解答】解:无理数有,,共2个,故选:A.3.【解答】解:∵,∴1﹣a=﹣8,a=9,∴==3,故选:C.4.【解答】解:A、﹣2小于零,是负数,故A正确;B、﹣2小于零是负数,是整数,也是有理数,故B正确;C、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故C错误;D、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故D正确.故选:C.5.【解答】解:由实数m、n在数轴上的位置可知,n﹣m<0,所以|n﹣m|﹣m=m﹣n﹣m=﹣n,故选:D.6.【解答】解:∵≈1.333,∴=≈1.333×10=13.33.故选:C.7.【解答】解:∵≈2.646,∴与最接近的是2.6,故选:B.8.【解答】解:①当a>0,b>0,c>0时,原式=1+1+1=3;②当a>0,b>0,c<0时,原式=1+1﹣1=1;③当a>0,b<0,c>0时,原式=1﹣1+1=1;④当a>0,b<0,c<0时,原式=1﹣1﹣1=﹣1;⑤当a<0,b>0,c>0时,原式=﹣1+1+1=1;⑥当a<0,b>0,c<0时,原式=﹣1+1﹣1=﹣1;⑦当a<0,b<0,c>0时,原式=﹣1﹣1+1=﹣1;⑧当a<0,b<0,c<0时,原式=﹣1﹣1﹣1=﹣3.∴的不同的取值共有4种.故选:C.9.【解答】解:根据题意得:102=100,=0.01,=0.1;0.12=0.01,=100,=10;…∵2018=6×336+2,∴按了第2018下后荧幕显示的数是0.01.故选:C.10.【解答】解:当=时,x=,x<,不合题意;当x2=时,x=±,当x=﹣时,x<x2,不合题意;当x=时,=,x2<x <,符合题意;当x=时,x2=,x2<x,不合题意,故选:C.二.填空题(共6小题)11.【解答】解:5的平方根是±,算术平方根是.12.【解答】解:∵的平方根为±3,∴=9,解得:a=81,故答案为:8113.【解答】解:设正方形的边长为xm,则x2=5,所以x=或x=﹣(舍),即正方形的边长为m,所以周长为4cm故答案为:4.14.【解答】解:﹣3的相反数是3﹣,故答案为:3﹣.15.【解答】解:∵=,=1,﹣(﹣3.5)=3.5∴正数有:,,,﹣(﹣3.5)四个,∵男同学的木牌前写的是正数,∴有4个男同学,故答案为4.16.【解答】解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.三.解答题(共8小题)17.【解答】解:原式==.18.【解答】解:∵一个正数的平方根为2a﹣1和﹣a+2,∴2a﹣1﹣a+2=0,解得:a=﹣1,则2a﹣1=﹣3,故这个正数是:(﹣3)2=9.19.【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;∴x1=2,x2=﹣2.(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.20.【解答】解:整数集合:{0,﹣10,…};负分数集合:{﹣2.4,﹣,﹣0.,…};正数集合:{π,2.008,…};无理数集合{π,﹣1.1010010001…,…}.21.【解答】解:放不进去;理由:正方形贺卡面积为256cm2,∴贺卡边长为16cm,∵长方形信封,长宽之比为3:2,面积为420cm2,∴信封长3cm,宽为2cm,∵3>16,∴放不进去.22.【解答】解:(1)根据,其中d=8(km),∴t2=,∵t>0,∴t=(h),答:这场雷雨大约能持续h;(2)根据,其中t=2h,∴d2=3600,∵d>0,∴d=60(km),答:这场雷雨区域的直径大约是60km.23.【解答】解:(1)x=0.1,y=10;故答案为:0.1,10;(2)规律是:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;故答案为:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;①=17.32,=0.1732,故答案为:17.32,0.1732;②=560,故答案为:560.24.【解答】解:(1)①若a﹣b>0,则a>b;②若a﹣b=0,则a=b;③若a﹣b<0,则a<b.故答案为:>,=,<;(2)﹣===,∵192=361>198,∴19>,∴19﹣>0.∴>0,∴>.。

人教版初中数学七年级下册《实数》测试题(含答案)

人教版初中数学七年级下册《实数》测试题(含答案)

第六章《题一、单选题(每小题只有一个 1.25的平方根是() A .±5B .﹣5C .5D .25 2.下列式子中,正确的是() A .3838B .3.60.6C . (3)3D .36623.要使代数式x 2有意x 的取是()A .x ≠2B .x ≥2C .x>2D .x ≤2 4.下列说法正确的是() A .一个数的平方根有两个,它们互为相反数 B .一个数的立方根不是正数就是负数 C .负数没有立方根 D.如果一个数的立方根是这个,那么这个数一定是-1或0或15.在下列各数322 2,3,8,,,36,0.1010010001 3(两个1之间,依次增 加1个0),其中无理数有() A .6个B .5个C .4个D .3个 6.下列说法正确的是() A .正有理数和负有理数统称为有理数 B .符号不同的两个数互为相反数 C.绝对值等于它的相反数的正数 D .两数相加,和一定大于任何一个加数 7.下列各组数中互为相反数的是() A .-2与(-2)2B .-2与38C .2与(-2) 2D .|-2|与2 8.估计56﹣24的值应在() A .5和6之间B .6和7之间C .7和8之间D .8和9之间 9.如图,若A 是实数a 在数轴上对应的点,则关于a ,a ,1的大小关系表示 正确的是()A .a1aB .aa1C .1aaD .1aa10.一个正数的两个平方根分别是2a 1与a 为() A .-1B .1C .-2D .2 11.比较2,5,37的大小,正确的是() A .3725B .2537 C .2375D .5372 12.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形 ABCD 绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;按此规 律继续翻转下去,则数轴上数2020所对应的点是() A .点AB .点BC .点CD .点D二、填空题13.计算:(3)2=________;364 125=________. 14.52的相反数是__________,-36的绝对值是__________. 15.若x +x 有意义,则x +1___________. 16.已知a 、b为两个连续的整数,且a 11b ,则ab__________. 17.已知913与913的小数部分分别是a 和b ,则a b_____________。

新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)(1)

新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)(1)

人教版七年级下册数学第六章实数培优试题一.选择题(共10小题)1.下列实数中,无理数是()A.-1 B.22C.16D.2)A.线段AB上B.线段BC上C.线段CD上D.线段DE上3.下列说法正确的是()A.立方根等于它本身的实数只有0和1B.平方根等于它本身的实数是0C.1的算术平方根是±1D.绝对值等于它本身的实数是正数4是2的()A.倒数B.平方根C.立方根D.算术平方根5-8的立方根之和是()A.0 B.-4 C.4 D.0或-46.已知则以下对m的估算正确的是()A.3<m<4 B.4<m<5 C.5<m<6 D.6<m<77.已知实数a在数轴上的位置如图所示,则化简|a+2|-|a-1|的结果为()A.-2a-1 B.2a+1 C.-3 D.38.数轴上A,B,C,D,E的点在()A.点A与点B之间B.点B与点C之间C.点C与点D之间D.点D与点E之间9.已知a ,b 为两个连续整数,且,a b <<则a+b 的值为( ) A .9B .8C .7D .610.最“接近1)-的整数是( ) A .0B .1C .2D .3二.填空题(共6小题)11.若一个数的立方根是-3,则这个数是 .12.9的平方根是 .13=0.102,则x= ,已知=155.8,则y= 14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= .15.如图,在数轴上点A ,B 表示的数分别是1,若点B ,C 到点A 的距离相等,则点C 所表示的数是 .16.现在规定一种新运算:对于任意实数对(a,b),满足a ※b=a 2-b-5,若45※m=1,则m= .三.解答题(共7小题) 17.求出下列x 的值(1)3(x-1)2(2)8(x 3+1)=-5618.计算:2018(1)|2|---19.将12--在数轴上表示,并将原数用“<”连接.20.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.21.将一个体积为364cm 的立方体木块锯成8个同样大小的小立方体木块.求每个小立方体木块的表面积.22.对于实数a 、b 定义运算"#"a#b=ab-a-1. (1)求(-2)#3的值;(2)通过计算比较3#(-2)与(-2)#3的大小关系;(3)若x#(-4)=9,求x的值.23.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=1,4EH M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x为何值时,原点O 恰为线段MN的三等分点.答案:1-5 BCBDD6-10 BBCCA11.-2712. ±3,213. 0.010404 , 378000014.15. 2+16.201917.解:(1)3(x-1)2=9,(x-1)2=3,x-1=±,x1=+1,x2=-+1;(2)x3+1=-7,x3=-8,x=-2.18. 解:原式=-1-(2-)+9-3=-1-2++9-3=3+.19.解:20. 解:(1)∵|a|=5,b2=4,c3=-8.∴a=±5,b=±2,c=-2,∵a<b,∴a=-5,b=±2,∴a+b=-5+2=-3或a+b=-5-2=-7, 即a+b 的值为-3或-7; (2)∵abc >0,c=-2, ∴ab <0,∴a=5,b=-2 或 a=-5,b=2,∴当a=5,b=-2,c=-2时,a-3b-2c=5-3×(-2)-2×(-2)=15, 当 a=-5,b=2,c=-2时,a-3b-2c=-5-3×2-2×(-2)=-7, ∴a-3b-2c=15 或-7.21. 解:根据题意知64÷8=8(cm 3),=2(cm),6×22=24(cm 2)或=4(cm),4÷2=2(cm),22×6=24(cm 2)答:每个小立方体木块的表面积是24cm 222. 解:(1)人教版七年级数学下册 第六章 实数 单元综合检测卷一、选择题(每小题3分,共30分)1、若的算术平方根有意义,则a 的取值范围是( ) A 、一切数 B 、正数 C 、非负数 D 、非零数2、下列各组数中,互为相反数的组是( )A 、-2与B 、-2和C 、-与2 D 、︱-2︱和2 3、下列说法不正确的是( ) A 、的平方根是 B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 4、下列运算中,错误的是 ( ) ①,②,③ ④A 、 1个B 、 2个C 、 3个D 、 4个 5、下列说法正确的是( ) A 、 有理数都是有限小数 B 、 无限小数都是无理数a 2)2(-38-2125115±1251144251=4)4(2±=-3311-=-2095141251161=+=+C 、 无理数都是无限小数D 、有限小数是无理数6、 若m 是169的算术平方根,n 是121的负的平方根,则(+)2的平方根为( )A 、 2B 、 4C 、±2D 、 ±4 7、若 (k 是整数),则k =( )A 、 6B 、7C 、8D 、9 8、下列各式成立的是( ) A 、B 、C 、D 、9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )A 、2B 、8C 、3D 、210、若均为正整数,且,,则的最小值是( )A 、3B 、4C 、5D 、6 二、填空题(每小题3分,共24分)11、 4的平方根是_________;4的算术平方根是__________. 12、比较大小:________.(填“>”,“<”或“=”)13、已知5-a+3+b ,那么.14、在中,________是无理数.16、 若5+的小数部分是,5-的小数部分是b ,则+5b = . 17、 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= . 18、若、互为相反数,、互为负倒数,则=_______.三、解答题(共46分)1k k <<+a b c d19.(6分)计算:231(2)2⎛⎫-- ⎪⎝⎭20. (8分)求下列各式中的x.(1)(x-2)2-4=0; (2)(x+3)3+27=0.21.(6分)求出符合下列条件的数: (1)绝对值小于的所有整数之和; (2)绝对值小于的所有整数.22.把下列各数填入相应的大括号内.32,-32,3-8,0.5,2π,3.141 592 65,-|-25|,1.103 030 030 003…(两个3之间依次多一个0). ①有理数集合{ …}; ②无理数集合{ …}; ③正实数集合{ …}; ④负实数集合{ …}.23.(6分)已知m 是的整数部分,n 是的小数部分,求m -n 的值。

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)(1)

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)(1)

一、选择题1.给出下列各数①0.32,②227,③π,⑤0.2060060006(每两个6之间依次多个0), ) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数, ②227是分数,是有理数, ③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D .【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键. 2.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.3.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D .【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.4.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; )A .1B .2C .3D .4A 解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.下列实数中,是无理数的为( )A .3.14B .13CD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.,则571.34的平方根约为( )A .239.03B .±75.587C .23.903D .±23.903D 解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵,∴,故选:D .【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.7.下列实数中,属于无理数的是( )A .3.14B .227CD .πD 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A .4B .3C .2D .1D 解析:D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得. 【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;④497=的算术平方根是7,此命题是假命题;⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题; 综上,真命题的个数是1个,故选:D .【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.9.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68C 解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.【详解】当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.10.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - B解析:B【分析】 观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n ﹣1)行的数据的个数为2+4+6+…+2(n ﹣1)=n (n ﹣1),所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2个数的被开方数是n (n ﹣1)+n ﹣2=n 2﹣2,所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣222n -.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.二、填空题11.(1)小明解方程2x 1x a 332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少? (2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-x-y 的值.(1)x =−13;(2)(2)x-y 的值为9或-1【分析】(1)将错就错把x =2代入计算求出a 的值即可确定出正确的解;(2)根据题意可以求得xy 的值从而可以求得x−y 的值【详解】(1)把x =2代入2解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 12.求满足条件的x 值:(1)()23112x -=(2)235x -=(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.13.解方程:(1)2810x -=;(2)38(1)27x +=.(1);(2)【分析】(1)移项利用平方根的性质解方程;(2)方程两边同时除以8然后利用立方根的性质解方程【详解】(1)移项得:解得:;(2)方程两边同时除以8得:∴解得:【点睛】本题考查了平方根和解析:(1)9x =±;(2)12x =. 【分析】(1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 14.请你写出一个比3大且比4小的无理数,该无理数可以是:____.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.15.若|2|0a -=,则a b +=_________.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若|2|0x -=,则12xy -=_____.2【分析】根据非负数的性质进行解答即可【详解】解:故答案为:2【点睛】本题考查了非负数的性质掌握几个非负数的和为0这几个数都为0是解题的关键解析:2【分析】根据非负数的性质进行解答即可.【详解】解:|2|0x -=,20x ∴-=,0x y +=,2x ∴=,2y =-, ∴112(2)222xy -=-⨯⨯-=,故答案为:2.【点睛】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键. 17.我们知道,同底数幂的乘法法则为:•m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算填空:若()213h =,则(2)h =_____;若()()10h k k =≠,那么()(2020)h n h ⋅=______(用含n 和k 的代数式表示,其中n 位正整数)【分析】通过对所求式子变形然后根据同底数幂的乘法计算即可解答本题【详解】解:∵∴∵∴故答案是:【点睛】本题考查整式的混合运算化简求值新定义解答本题的关键是明确题意利用新运算求出所求的式子的值 解析:492012n k + 【分析】 通过对所求式子变形,()()()h m n h m h n +=⋅然后根据同底数幂的乘法计算即可解答本题.【详解】解:∵()213h = ∴224(2)(11)(1)(1)339h h h h =+=⨯=⨯= ∵()()10h k k =≠∴()(2020)h n h ⋅=20202020n n k k k +⨯=. 故答案是:49,2020n k + 【点睛】本题考查整式的混合运算化简求值、新定义,解答本题的关键是明确题意,利用新运算求出所求的式子的值.18.比较大小:-2.(填“>”“=”或“<”)>【分析】两个负数比较绝对值大的反而小由此得到答案【详解】∵∴故答案为:>【点睛】此题考查实数的大小比较:负实数都比0小正实数都比0大两个负实数比较大小绝对值大的反而小解析:>【分析】两个负数比较绝对值大的反而小,由此得到答案.【详解】 ∵2<,∴2>-,故答案为:>.【点睛】此题考查实数的大小比较:负实数都比0小,正实数都比0大,两个负实数比较大小,绝对值大的反而小.19.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.20.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<a<5,a为整数,∴16<a<25,∴整数a有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.三、解答题21.计算下列各题-+16﹣3﹣2;(1)38(2)23+5﹣100.04(结果保留2位有效数字).2-;(2)2.6解析:(1)3【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】-+16-3-2(1)38=-2+4-2-3=-3;-100.04(2)23+525=+-⨯23100.22≈⨯+÷-2 1.732 2.236222.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小. 解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:30.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732,=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .解析:(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵=2.154=4.642, ∴=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.24.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根.解析:【分析】先根据算术平方根的定义求得2x的值,再根据算术平方根的定义求出y,根据立方根的定义求z,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x+1的算术平方根是0,∴2x+1=0,∴2x=﹣1,∵=4,∴y=16,∵z是﹣27的立方根,∴z=﹣3,∴2x+y+z=﹣1+16﹣3=12,∴2x+y+z的平方根是=【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.25.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值;(2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值.故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键.26.计算:3011(2)(200422-+-- 解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.27.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭ (4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】 (1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭=33231(8)()()()44343-⨯-+-⨯+-⨯-=11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(3163⎫-⎪⎪⎭=115+()633-+-=5+0-6=-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯-=9. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.28.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.解析:(1)3 3-;(2)25;(3)()8x y --=.【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论. 【详解】解:(1)∵9<13<16∴34,∴3;故答案为:3.(2)∵4<7<9,∴2<3∴12<<13∴a=12,b=13∴a+b=12+13=25,故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.。

人教版初中七年级数学下册第六单元《实数》测试卷(含答案解析)

人教版初中七年级数学下册第六单元《实数》测试卷(含答案解析)

一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5 C .6 D .7 2.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个 3.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个 4.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b5.下列说法中,正确的是( )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数6.下列命题中,①81的平方根是9;16±2;③−0.003没有立方根;④−64的立方根为±4;5 )A .1B .2C .3D .47.下列命题是真命题的是( )A .两个无理数的和仍是无理数B .有理数与数轴上的点一一对应C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等8.下列实数3223640.010*******;;; (相邻两个1之依次多一个0);52,其中无理数有( )A .2个B .3个C .4个D .5个 9.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ 10.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .1011.下列选项中,属于无理数的是( )A .πB .227-C 4D .012. 5.713457.134,则571.34的平方根约为( ) A .239.03 B .±75.587 C .23.903 D .±23.903 13.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3±14.下列有关叙述错误的是( )A 2B 2是2的平方根C .122<<D .22是分数 15.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π3二、填空题16.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|121232⎛⎫-+-⨯- ⎪⎝⎭ 17.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.19.(223228432--20.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.21.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 22.若|2|30a b -+-=,则a b +=_________. 23.实数2-,2,227,π-,327-中属于无理数的是________. 24.计算: (1)()2325273-+-.(2)()2411893⎡⎤⎛⎫--⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 25.定义运算“@”的运算法则为:x@y=xy 4+,则2@6 =____.26.观察下面一列数:-1,2,-3,4,-5,6,-7……,将这列数排成下图形式.按照此规律排下去,那么第_________行从坐标数第_________个数是-2019.三、解答题27.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:2π、等,而常用的“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如253<<,是因为459<<;根据上述信息,回答下列问题:(1)13的整数部分是___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______; (3)103+也是夹在相邻两个整数之间的,可以表示为103a b <+<则a b +=______;(4)若303x y -=+,其中x 是整数,且01y <<,请求x y -的相反数. 28.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------29.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭ 30.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯。

新初中数学七年级下册第六章《实数》单元测试题(含答案)(1)

新初中数学七年级下册第六章《实数》单元测试题(含答案)(1)

人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-4 2.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版数学 七年级下册期末复习 第6章《实数》 同步测试卷一.选择题(共10小题,3*10=30) 1.3的相反数是( ) A .- 3 B . 3 C .12D .2 2.81的平方根是( ) A .3 B .-3 C .±3D .±93.下列实数中,无理数是( ) A .-2 B .0 C .πD . 44.下列各式中正确的是( )A .16=±4B .3-27=-9 C .-32=-3 D .214=1125.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的相反数.正确的有( )A .0个B .1个C .2个D .3个6.若一个数的算术平方根和立方根都等于它本身,则这个数一定是( ) A .0或1 B .1或-1 C .0或±1D .07.如图,数轴上点P 表示的数可能是( )A . 2B . 5C .10D .158.一个正方形的面积为2,则它的边长是( ) A .4B .±2C .- 2D . 29.在实数 -13, -2, 0, 3 中,最小的实数是( )A .-2B .0C .-13D . 310.已知35.28=1.738,3a =0.173 8,则a 的值为( ) A .0.528B .0.052 8C .0.005 28D .0.000 528 二.填空题(共6小题,3*6=18) 11.化简:|3—2|=________. 12.比较大小:-6 ________-35.13.在数轴上到原点的距离是5的点表示的数是________.14.一个正数x 的两个平方根分别是a +2和a -4,则a =________. 15.已知a 、b 为两个连续的整数,且a <11<b ,则a +b = ________. 16.已知x -1+|2y -2|=0,则x -y =________. 三.解答题(共9小题,72分)17.(7分)计算:(-3)2+||3-2-2(3-1).18.(7分)解方程:3(x -2)2=27.19.(8分)解方程:2(x -1)3+16=0.20.(8分)20.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?21.(8分)实数a ,b ,c 在数轴上的对应点如图所示,化简:3a 3+||a +b -c 2-||b -c .22.(8分)已知实数2a-1的平方根是±3,2b+3人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-123.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想一想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=20 D.3x=±20x=2 C.±206.下列选项中正确的是()A.27的立方根是±3B的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是()A.B.3 C D.-1.481-的相反数是()A.1-B1+-D1-C.19a,小数部分为b,则a-b的值为()A.- 13 B.6-C.8-D6-10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( ) A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是 (M 、N 、P 、R 中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= . 三.解答题(共7小题) 17.求出下列x 的值 (1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,。

新人教版七年级数学下册第六章实数测试题及答案

新人教版七年级数学下册第六章实数测试题及答案

第六章实数一、选择题1.下列各式中无意义的是( )A. 61- B. 21-)( C.12+a D.222-+-x x 2.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③94的平方根是32 ④0.01的算术平方根是0.1;⑤ 24a a ±=,其中正确的有( )A.1个B.2个C.3个D.4个2.下列说法中正确的是( )A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.641的立方根是( ) A.21± B.41± C.41 D.21 5.已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( )A.24.72B.53.25C.11.47D.114.76.已知x 是169的平方根,且232x y x =+,则y 的值是( )A.11 B .±11 C. ±15 D.65或3143 7.大于52-且小于23的整数有( )A.9个B.8个 C .7个 D.5个二、填空题 1.3-绝对值是 ,3- 的相反数是 . 2.81的平方根是 ,364 的平方根是 ,-343的立方根是 ,256的平方根是 .3.比较大小:(1)10 π;(2) 33 2;(3)101 101;(4)2 2. 4.当 时,3345223+-+++-x x x 有意义。

5.已知212+++b a =0,则 ab = . 6.最大的负整数是 ,最小的正整数是 ,绝对值最小的实数是 ,不超过380-的最大整数是 .7.已知一个正数x 的两个平方根是1+a 和3-a ,则a = ,x = .三、解答题1.计算:(1))(25.08-⨯-; (2)4002254-+ ;(3)32333111)()(-+-+- ; (4)33332734312512581---+-- ;2.求下列各式中的x 的值:(1) ()9-242=x ; (2)()25122=-x ;(3)()375433-=-x ; (4)()08123=+-x ;3.已知实数a 、b 、c 在数轴上的对应点如图所示,化简:c b a c b a a -+-+--0c b a4.若a 、b 、c 是有理数,且满足等式332232+-=++c b a ,试计算 ()20112010b c a +- 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学第六章《实数》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩
_______
一、选择题(每小题3分,共30分)
1、若x是9的算术平方根,则x是()
A、3
B、-3
C、9
D、81
2、下列说法不正确的是()
A、的平方根是
B、-9是81的一个平方根
C、0.2的算术平方根是0.04
D、-27的立方根是-3
3、若的算术平方根有意义,则a的取值范围是()
A、一切数
B、正数
C、非负数
D、非零数
4、在下列各式中正确的是()
A、=-2
B、=3
C、=8
D、=2
5、估计的值在哪两个整数之间()
A、75和77
B、6和7
C、7和8
D、8和9
6、下列各组数中,互为相反数的组是()
A、-2与
B、-2和
C、-与2
D、︱-2︱和2
7、在-2,,,3.14,,,这6个数中,无理数共有( )
A、4个
B、3个
C、2个
D、1个
8、下列说法正确的是()
A、数轴上的点与有理数一一对应
B、数轴上的点与无理数一一对应
C、数轴上的点与整数一一对应
D、数轴上的点与实数一一对应
9、以下不能构成三角形边长的数组是()
A、1,,2
B、,,
C、3,4,5
D、32,42,52
10、若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则-︱a-b︱等于()
A、a
B、-a
C、2b+a
D、2b-a
二、填空题(每小题3分,共18分)
11、81的平方根是__________,1.44的算术平方根是__________。

12、一个数的算术平方根等于它本身,则这个数应是__________。

13、的绝对值是__________。

14、比较大小:2____4。

15、若=5.036,=15.906,则=__________。

16、若的整数部分为a,小数部分为b,则a=________,b=_______。

三、解答题(每题5分,共20分)
17、+- 18、
求下列各式中的x
19、4x2-16=0 20、27(x-3)3=-64
四、(每题6分,共18分)
21、若5a+1和a-19是数m的平方根,求m的值。

22、已知和︱8b-3︱互为相反数,求(ab)-2-27 的值。

23、已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值。

五、(第23题6分,第24题8分,共14分)
24、已知m是的整数部分,n是的小数部分,求m-n的值。

25、平面内有三点A(2,2),B(5,2),C(5,)
(1)请确定一个点D,使四边形ABCD为长方形,写出点D的坐标。

(2)求这个四边形的面积(精确到0.01)。

(3)将这个四边形向右平移2个单位,再向下平移个单位,求平移后四个顶点的坐标。

人教版七年级数学第十章《实数》测试卷
参考答案
一、1、A;2、C;3、C;4、D;5、D;6、B;7、C;8、D;9、D;
10、B
二、11、9,1、2 ;12、1,0;13、2;14、<;15、503、6;16、a=3,b=-3
三、17、1;18、-;19、x=±2;20、;
四、21、256;22、37 23、9
五、24、5-;25、(1)、D(2;),(2)、s=3≈4、24;(3)、A '(4;-)B'(7;-)C'(7;-2)D'(4;-2)。

相关文档
最新文档