六年级奥数

合集下载

小学六年级奥数应用题及答案五篇

小学六年级奥数应用题及答案五篇

小学六年级奥数应用题及答案五篇一、应用题一某小学六年级有200名学生,其中男生占总人数的2/5,女生占总人数的3/10,男生中参加奥数的人数是女生中参加奥数的人数的3倍。

请问参加奥数的男生和女生各有多少人?解答:设男生总数为2x,女生总数为3x。

根据题意得到以下两个等式:2/5 * 200 = 2x3/10 * 200 = 3x计算可得:2/5 * 200 = 2x80 = 2xx = 40所以男生总数为2x = 2 * 40 = 80人,女生总数为3x = 3 * 40 = 120人。

参加奥数的男生人数为3 * 40 = 120人,女生人数为40人。

答案:参加奥数的男生有120人,女生有40人。

二、应用题二Peter和Tom一起参加了一场有100道选择题的奥数竞赛,Peter做对了70道题,Tom做对了60道题。

两人中有10道题他们的答案完全相同,求这场竞赛中两人的总分。

解答:两人中有10道题答案完全相同,则这10道题两人均得分。

Peter实际得分为70 - 10 = 60分,Tom实际得分为60 - 10 = 50分。

除去答案相同的10道题,两人各自得分60 + 50 = 110分。

答案:Peter和Tom的总分为110分。

三、应用题三一台机器每小时能生产1000个产品,现在需要生产8000个产品,请问需要多少小时?解答:机器每小时生产1000个产品,需要生产8000个产品。

所以生产8000个产品所需的小时数为8000 / 1000 = 8小时。

答案:需要8小时才能生产8000个产品。

四、应用题四某商品原价为500元,商家为了促销将商品价格降低了30%。

现在这个商品的售价是多少?解答:商品原价为500元,降价30%。

所以商品的售价是500 * (100% - 30%) = 500 * 70% = 350元。

答案:这个商品的售价是350元。

五、应用题五某工厂计划生产A型产品和B型产品,A型产品生产一件需要2小时,B型产品生产一件需要3小时。

小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】

小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】

小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】【第一篇:桥长】一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?求解:火车过桥所用的时间就是2分后5秒=125秒,共行的路程就是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)请问:大桥的长度就是800米。

【第二篇:列车长】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开到桥至车尾返回桥共须要3分钟。

这列于火车短多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。

(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)highcut综合算式900×3-2400=300(米)答:这列火车长300米。

【第三篇:街道长度】甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。

甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?答案与解析:甲、乙碰面后4分钟乙、丙碰面,表明甲、乙碰面时乙、丙还差4分钟的路程,即为还差4×(75+60)=540米;而这540米也就是甲、乙碰面时间里甲、丙的路程高,所以甲、乙碰面=540÷(90-60)=18分钟,所以长街短=18×(90+75)=2970米。

【第四篇:相遇次数】甲,乙两人在一条长100米的直路上往复跑步,甲的速度3米/秒,乙的速度2米/秒。

如果他们同时分别从直路的两端启程,当他们走了10分钟后,共碰面多少次?答案与解析:10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。

我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。

六年级奥数题及答案.

六年级奥数题及答案.

六年级奥数题及答案.题目一:数字问题小明在计算一个数加上5,再减去3,最后乘以4的结果时,得到了48。

请问这个数是多少?解答:设这个数为x。

根据题意,我们有:4x = 48x = 48 ÷ 4x = 12所以这个数是12。

题目二:几何问题一个长方形的长是宽的两倍,如果将这个长方形的长和宽都增加5厘米,那么面积增加了85平方厘米。

求原来长方形的长和宽。

解答:设原来长方形的宽为w,那么长为2w。

根据题意,我们有:(2w + 5)(w + 5) - 2w * w = 852w^2 + 5w + 10w + 25 - 2w^2 = 8515w + 25 = 8515w = 60w = 4所以原来的宽是4厘米,长是2 * 4 = 8厘米。

题目三:逻辑问题有5个盒子,每个盒子里分别装有1个、2个、3个、8个和13个乒乓球。

现在需要将这些盒子重新组合,使得每个盒子里的乒乓球数都是奇数,且每个盒子里的乒乓球数都不相同。

请问如何组合?解答:首先,我们知道奇数加奇数等于偶数,奇数加偶数等于奇数。

由于1、3、8、13都是奇数,2是偶数,我们需要将2个乒乓球与另一个奇数组合,以保持总数为奇数。

我们可以尝试以下组合:- 第一个盒子:1个乒乓球(奇数)- 第二个盒子:2 + 3 = 5个乒乓球(奇数)- 第三个盒子:8个乒乓球(奇数)- 第四个盒子:13个乒乓球(奇数)这样每个盒子里的乒乓球数都是奇数,并且各不相同。

题目四:时间问题小华从家到学校需要30分钟,如果他加快速度,每分钟走的距离增加25%,那么他需要多少时间到达学校?解答:设原来每分钟走的距离为d,那么30分钟内走的总距离为30d。

加快速度后,每分钟走的距离为1.25d。

由于总距离不变,我们有:30d = 时间 * 1.25d解这个方程,我们得到:时间 = 30 / 1.25时间 = 24分钟所以,加快速度后,小华需要24分钟到达学校。

题目五:比例问题一个班级有男生和女生,男生人数是女生人数的1.5倍。

小学六年级奥数题(六篇)

小学六年级奥数题(六篇)

小学六年级奥数题(六篇)整理的《小学六年级奥数题(六篇)》相关资料,希望帮助到您。

【篇一】小学六年级奥数题 1、哥哥今年18岁,弟弟今年12岁。

当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。

甲、乙、丙原来各有多少本故事书?3、有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。

最少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。

第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的’足球中拿出与这时甲校个数相同的足球并入甲校。

经过这样的变动后,三校足球的个数正好相等。

已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。

后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。

问售货员从两个油桶里各卖了多少千克油?【篇二】小学六年级奥数题 1、求下列时刻的时针与分针所形成的角的度数。

(1)9点整(2) 2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。

【篇三】小学六年级奥数题 1、小明和小英各自在公路上往返于甲、乙两地。

小学六年级奥数题50道及答案

小学六年级奥数题50道及答案

小学六年级奥数题50道及答案1. 三个袋子里放着相同数量的红球,黄球和蓝球,共有 10 粒球。

每袋子里各有几粒?答案:每袋子 3 粒2. 某人有 8 支铅笔,4 支钢笔,用它们排成一排,问最多可以排成几排?答案:两排3. 小明有 12 元钱,用它买了 6 个橘子,每个 1 元,还剩几块钱?答案:还剩 6 元4. 大卫有 3 个朋友,他们共分了 20 个苹果,大卫得到几个?答案:大卫得到 6 个苹果5. 一个游乐场有 5 个火车,每辆火车上有 8 个座位,共有多少个座位?答案:共有 40 个座位6. 一个餐厅共有 6 个桌子,每个桌子可以坐 4 人,共可以容纳多少人?答案:共可以容纳 24 人7. 一共有 10 块砖,每堆 3 块,共有几堆?答案:共有 4 堆8. 一共有 8 支铅笔,4 支钢笔,每支铅笔的价格是钢笔的 2 倍,大卫花了 48 元,买了几支钢笔?答案:买了 4 支钢笔9. 请问把12 个正方形拼成一个大正方形,大正方形有几条边?答案:大正方形有 4 条边10. 一共有 12 个苹果,每袋只能装 4 个,共需要几袋?答案:共需要 3 袋11. 一共有 18 个橘子,每篮可以装 6 个,需要几篮?答案:需要 3 篮12. 一共有 10 块砖头,每袋装 2 块,需要几袋?答案:需要 5 袋13. 一共有 9 张书,每盒可以装 3 张,需要几盒?答案:需要 3 盒14. 一共有 5 个小朋友,一共分了 15 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖15. 一共有 10 支铅笔,每盒装 3 支,需要几盒?答案:需要 4 盒16. 一共有 10 个小球,每篮可以装 4 个,需要几篮?答案:需要 3 篮17. 大卫有 6 元钱,用它买了 4 个橘子,每个 1.5 元,还剩几块钱?答案:还剩 0 元18. 一共有 12 支钢笔,每盒可以装 4 支,需要几盒?答案:需要 3 盒19. 一共有 24 个正方形,每排 6 个,一共有几排?答案:一共有 4 排20. 一共有 12 张牌,每人可以得到 3 张,共有几个人?答案:共有 4 个人21. 一共有 9 块蛋糕,每人可以分得 3 块,共有几个人?答案:共有 3 个人22. 一共有 10 瓶饮料,每袋可以装 5 瓶,需要几袋?答案:需要 2 袋23. 一共有 18 个书,每箱可以装 6 个,需要几箱?答案:需要 3 箱答案:一共有 12 粒食物,每袋装 4 粒,需要几袋?答案:需要 3 袋25. 一共有 5 个孩子,一共分了 15 个糖果,每个孩子可以得到几个糖果?答案:每个孩子可以得到 3 个糖果26. 一共有 8 块砖头,每袋装 2 块,需要几袋?答案:需要 4 袋27. 一共有 6 条链子,每盒可以装 3 条,需要几盒?答案:需要 2 盒28. 一共有 10 把伞,每把伞包一个盒子,一共需要几个盒子?答案:一共需要 10 个盒子29. 一共有 7 个苹果,每篮可以装 3 个,需要几篮?答案:需要 3 篮30. 一共有 14 支钢笔,每筒装 4 支,需要几筒?答案:需要 4 筒31. 一共有 12 块橡皮,每盒装 4 块,需要几盒?答案:需要 3 盒32. 一共有 10 个棋子,每盒可以装 2 个,需要几盒?答案:需要 5 盒33. 一共有 9 块布,每袋装 3 块,需要几袋?答案:需要 3 袋34. 一共有 16 小球,每份可以分 4 个,共有几份?答案:共有 4 份35. 一共有 11 个小朋友,一共分了 33 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖36. 一共有 8 支铅笔,每盒装 2 支,需要几盒?答案:需要 4 盒37. 一共有 12 条鱼,每箱可以装 4 条,需要几箱?答案:需要 3 箱38. 一共有 6 块橡皮,每袋装 2 块,需要几袋?答案:需要 3 袋39. 一共有 9 个正方形,每排 3 个,一共有几排?答案:一共有 3 排40. 一共有 12 张牌,每人可以得到 4 张,共有几个人?答案:共有 3 个人41. 一共有 10 瓶苹果汁,每箱可以装 5 瓶,需要几箱?答案:需要 2 箱42. 一共有 11 条狗,每把笼子可以关住 3 条,需要几个笼子?答案:需要 4 个笼子43. 一共有 6 只鸟,每把笼子可以装 2 只,需要几把笼子?答案:需要 3 把笼子44. 一共有 14 颗橘子,每篮可以装 4 颗,需要几篮?答案:需要 4 篮45. 一共有 8 支毛笔,每筒装 4 支,需要几筒?答案:需要 2 筒46. 一共有 9 条鱼,每盒可以装 3 条,需要几盒?答案:需要 3 盒47. 一共有 10 个姑娘,一共分了 20 个糖果,每个姑娘可以得到几个糖果?答案:每个姑娘可以得到 2 个糖果48. 一共有 12 个龙虾,每袋装 4 个,需要几袋?答案:需要 3 袋49. 一共有 7 个箱子,每排可以放下 3 个,一共有几排?答案:一共有 3 排50. 一共有 5 个孩子,一共分了 15 块巧克力,每个孩子可以得到几块巧克力?答案:每个孩子可以得到 3 块巧克力。

小学六年级奥数题及解答(五篇)

小学六年级奥数题及解答(五篇)

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

以下是⽆忧考整理的《⼩学六年级奥数题及解答(五篇)》相关资料,希望帮助到您。

⼩学六年级奥数题及解答篇⼀ 3箱苹果重45千克.⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 考点:整数、⼩数复合应⽤题。

专题:简单应⽤题和⼀般复合应⽤题。

分析:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答 解答:解:45+5×3 =45+15 =60(千克) 答:3箱梨重60千克。

点评:本题的关键是先求出3箱梨⽐3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。

⼩学六年级奥数题及解答篇⼆ 题⽬: ⼀块牧场长满了草,每天均匀⽣长。

这块牧场的草可供10头⽜吃40天,供15头⽜吃20天。

可供25头⽜吃多少天? 答案与解析: 假设1头⽜1天吃草的量为1份 (1)每天新⽣的草量为:(10×40-15×20)÷(40-20)=5(份); (2)原来的草量为:10×40-40×5=200(份); (3)安排5头⽜专门吃每天新长出来的草,这块牧场可供25头⽜吃:200÷(25-5)=10(天)。

⼩学六年级奥数题及解答篇三 我⼈民解放军追击⼀股逃窜的敌⼈,敌⼈在下午16点开始从甲地以每⼩时10千⽶的速度逃跑,解放军在晚上22点接到命令,以每⼩时30千⽶的速度开始从⼄地追击。

已知甲⼄两地相距60千⽶,问解放军⼏个⼩时可以追上敌⼈? 解答案与解析:是[10×(22-6)]千⽶,甲⼄两地相距60千⽶。

由此推知 追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(⼩时) 答:解放军在11⼩时后可以追上敌⼈。

六年级奥数题和答案解析_20道题

六年级奥数题和答案解析_20道题

小升初六年级奥数题及答案 20道题(中等难度)【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

小学六年级奥数题【6篇】

小学六年级奥数题【6篇】

小学六年级奥数题【6篇】1.小学六年级奥数题1、有鸡兔共20只,脚44只,鸡兔各几只?2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?4、有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同。

这两桶油各有多少千克?5、瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268。

6元,求打破了几只花瓶?6、学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?7、蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶。

现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付 1.8元。

该校每学期买两种墨水各多少瓶?8、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。

小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?9、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。

问小毛做对几道题?10、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张。

他兑换了两种面额的人民币各多少张?2.小学六年级奥数题1、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379。

6元,问这次搬运中玻璃损坏了几只?2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?3、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?4、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?5、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?6、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?7、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?8、大油瓶一瓶装4千克,小油瓶2瓶装1千克。

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。

六年级奥数题100道及答案

六年级奥数题100道及答案

六年级奥数题100道及答案题目1计算 2+3 的结果。

答案:5题目2计算 6-2 的结果。

答案:4题目3计算 4*5 的结果。

答案:20题目4计算 10/2 的结果。

答案:5题目5计算 8+2*4 的结果。

答案:16题目6计算 (6+2)*3 的结果。

答案:24题目7计算 12/3-2 的结果。

答案:2题目8计算 4*5+6 的结果。

答案:26题目9计算 18/3/2 的结果。

答案:3题目10计算 10-3+5 的结果。

答案:12计算 2^3 的结果。

答案:8题目12计算 5^2 的结果。

答案:25题目13计算 4^0 的结果。

答案:1题目14计算 16^(1/2) 的结果。

答案:4题目15将 3/8 化成小数。

答案:0.375题目16将 0.75 化成分数。

答案:3/4题目17计算 1/4+2/3 的结果。

答案:11/12题目18计算 2/3-1/6 的结果。

答案:1/2题目19计算 1/3*2/5 的结果。

答案:2/15题目20计算 3/4÷1/2 的结果。

答案:3/2题目21计算 \(\sqrt{9} - \sqrt{4}\) 的结果。

答案:1计算 \(\sqrt{16} + \sqrt{25}\) 的结果。

答案:9题目23计算 \(\sqrt{144}\) 的结果。

答案:12题目24计算 \(\sqrt{81} \times \sqrt{49}\) 的结果。

答案:63题目25已知一个正方形的面积为64平方厘米,求其边长。

答案:8厘米题目26已知一个长方形的长为10厘米,宽为5厘米,求其面积。

答案:50平方厘米题目27已知一个长方体的底面积为20平方厘米,高为5厘米,求其体积。

答案:100立方厘米题目28已知一个圆的半径为6厘米,求其周长。

答案:12π厘米题目29已知三角形的底边长为8厘米,高为4厘米,求其面积。

答案:16平方厘米题目30已知一个正方体的边长为5厘米,求其表面积。

六年级奥数试题及解析(精选12篇)

六年级奥数试题及解析(精选12篇)

六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。

2. 一个圆的半径扩大3 倍,它的面积扩大()倍。

A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。

3. 甲数的2/3 等于乙数的3/4,甲数()乙数。

A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。

4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。

6. 要反映某地气温变化情况,应绘制()统计图。

A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。

7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。

(完整版)小学六年级奥数题附答案

(完整版)小学六年级奥数题附答案

小学六年级奥数题1。

某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3。

甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%.再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5。

小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!"小亮说:“你要是能给我你的1/6,我就比你多2个了。

"小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时。

有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7。

一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2。

8元出售,很快售完。

第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。

小学六年级奥数题【5篇】

小学六年级奥数题【5篇】

小学六年级奥数题【5篇】1.小学六年级奥数题1、一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。

解答:用除以3的余数乘以70,用除以5的余数乘以21,用除以7的余数乘以15,再把三个乘积相加。

如果这三个数的和大于105,那么就减去105,直至小于105为止。

这样就可以得到满足条件的解。

其解法如下:方法1:270+321+215=233;233-1052=23符合条件的最小自然数是23。

2、李叔叔下午要到工厂上3点的班,他估计快到上班的时间了,就到屋里去看钟,可是钟停在了12点10分。

他赶快给钟上足发条,匆忙中忘了对表就上班去了,到工厂一看离上班时间还有10分钟。

夜里11点下班,李叔叔回到家一看,钟才9点钟。

如果李叔叔上、下班路上用的时间相同,那么他家的钟停了多长时间?解答:这道题看起来很乱,但我们透过钟面显示的时刻,计算出实际经过的时间,问题就清楚了。

钟从12点10分到9点共经过8时50分,这期间李叔叔上了8时的班,再减去早到的10分钟,李叔叔上、下班路上共用8时50分-8时-10分=40(分)。

李叔叔到工厂时是2点50分,上班路上用了20分钟,所以出发时间是2点30分。

因为出发时钟停在12点10分,所以钟停了2时20分。

2.小学六年级奥数题1、有3个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除。

那么这样的3个自然数的和的最小值是多少?答案与解析:设这三个自然数为A,B,C,且A=×,B=×,C=×,当、、c均是质数时显然满足题意,为了使A,B,C的和最小,则质数、、应尽可能的取较小值,显然当、、为2、3、5时最小,有A=2×3=6,B=3×5=15,C=5×2=10。

于是,满足这样的3个自然数的和的最小值是6+15+10=31。

2、甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米。

小学六年级奥数题及答案[6篇]

小学六年级奥数题及答案[6篇]

小学六年级奥数题及答案[6篇]1.小学六年级奥数题及答案篇一1、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?答案:25%解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/ 5)÷1/5=25%需要多少分钟?2、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。

甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?答案:432分钟解析:甲行驶2.5小时的路程,乙用了3.5小时。

所以甲乙的速度比为7:5,走相同路程的时间比是5:7。

那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。

2.小学六年级奥数题及答案篇二1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?答案与解析:人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183答:陕西省至少有183人的头发根数一样多。

2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?答案与解析:①做正方形的另一条对角线。

得到四个完全相同的等腰直角三角形。

②一个等腰直角三角形的面积是:8÷2=4(直角边)4×4÷2=8(平方米)③四个等腰直角三角形的面积,即正方形的面积。

8×4=32(平方米)3.小学六年级奥数题及答案篇三1、125×(17×8)×4=125×8×4×17=1000×68=680002、375×480+6250×48=480×(375+625)=4800003、25×16×125=25×2×8×125=500004、13×99=13×(100-1)=1300-13=12875、75000÷125÷15=75×1000÷125÷15=75÷15×1000÷125=5×8=406、7900÷4÷25=7900÷(4×25)=797、150×40÷50=150÷50×40=3×40=1208、5600÷(25×7)=56×100÷25÷7=56÷7×100÷25=329、210÷42×6=210÷7÷6×6=3010、39600÷25=396×100÷25=396×4=15844.小学六年级奥数题及答案篇四有三块草地,面积分别是5,15,24亩。

小学六年级经典奥数题十道,附答案

小学六年级经典奥数题十道,附答案

小学六年级经典奥数题十道,附答案1. 一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行 75 千米,慢车每小时行 65 千米,相遇时快车比慢车多行了 40 千米,甲乙两地相距多少千米?2. 学校买来 6 张桌子和 5 把椅子共付 455 元,已知每张桌子比每把椅子贵 30 元,桌子和椅子的单价各是多少元?3. 3 箱苹果重 45 千克。

一箱梨比一箱苹果多 5 千克,3 箱梨重多少千克?4. 甲乙二人从两地同时相对而行,经过 4 小时,在距离中点 4 千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?5. 李军和张强付同样多的钱买了同一种铅笔,李军要了13 支,张强要了 7 支,李军又给张强 0.6 元钱。

每支铅笔多少钱?6. 甲乙两辆客车上午 8 时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午 2 点。

甲车每小时行 40 千米,乙车每小时行 45 千米,两地相距多少千米?(交换乘客的时间略去不计)7. 学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走 4.5 千米,第二小组每小时行 3.5 千米。

两组同时出发 1 小时后,第一小组停下来参观一个果园,用了1 小时,再去追第二小组。

多长时间能追上第二小组?8. 有甲乙两个仓库,每个仓库平均储存粮食 32.5 吨。

甲仓的存粮吨数比乙仓的 4 倍少 5 吨,甲、乙两仓各储存粮食多少吨?9. 甲、乙两队共同修一条长 400 米的公路,甲队从东往西修 4 天,乙队从西往东修 5 天,正好修完,甲队比乙队每天多修 10 米。

甲、乙两队每天共修多少米?10. 已知一张桌子的价钱是一把椅子的 10 倍,又知一张桌子比一把椅子多 288 元,一张桌子和一把椅子各多少元?答案如下:1. 思考:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数---行程问题
【专题导引】
在行程问题中,与环形有关的行程问题的解决方法与一般行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行一个全程。

【典型例题】
【例1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。

甲按顺序针方向行走,乙与丙按逆时针方向行走。

甲第一次遇到乙后4
11分遇到丙,再过433分钟第二次遇到乙。

已知乙的速度是甲的3
2,湖的周长为600米,求丙的速度。

【试一试】
1、甲、乙、丙三人环湖跑步,同时从湖边一固定点出发。

乙、丙两人同向,甲与乙、丙反向。

在甲第一次遇到乙后4
11分钟第一次遇到丙;再过433分钟第二次遇到乙。

已知甲的速度与乙的速度比是3:2,湖的周长为2000米,求三人的速度。

2、兄、妹二人在周长为30米的圆形小池边玩。

从同一地点同时背向绕水池而行。

兄每秒走1.3米,妹每秒走1.2米。

他们第10次相遇时,妹还要走多少米才能回到出发点?
【例2】甲、乙两人在同一条椭圆形跑道上做特殊训练。

他们同时从同一地点出发,沿相反方向跑。

每人跑完第一圈到达出发点后,立即回头加速跑第二圈。

跑第一圈时,乙的速度是甲的32。

甲跑第二圈时速度比第一圈提高了3
1,乙跑第二
圈时速度提高了5
1。

已知甲、乙两人第二次相遇点距第一次相遇点190米。

这条椭圆形跑道长多少米?
【试一试】:
1、小明绕一个圆形长廊游玩。

顺时针走,从A 处到C 处要12分钟,从B 处到A 处要15分钟,从C 处到B 处要11分钟。

从A 处到B 处需要多少分钟(如下图所示)?
2、摩托车与小汽车同时从A 地出发,沿长方形的边行驶,结果在B 地相遇。


知B 地与C 地的距离是4千米,且小汽车的速度为摩托车速度的3
2。

这条长方形路的周长是多少千米(如图)?
【例3】绕湖的一周是24千米,小张和小王在湖边某一地点同时出发反向而行。

小王以每小时4千米速度走1小时后休息5分钟,小张以每小时6千米速度每走50分钟后休息10分钟。

两人出发多少时间第一次相遇?
【试一试】
1、在400米环行跑道上,A 、B 两点相距100米。

甲、乙两人分别从A 、B 两点A B C A B C
同时出发,按逆时针方向跑步,甲每秒行5米,乙每秒行4米,每人跑100米都要停留10秒钟。

那么,甲追上乙需要多少秒?
2、一辆汽车在甲、乙两站之间行驶。

往、返一次共用去4小时。

汽车去时每小时行45千米,返回时每小时行驶30千米,那么甲、乙两站相距多少千米?
【例4】一个游泳池长90米。

甲、乙二人分别从游泳池的两端同时出发,游到另一端立即返回。

照这样往、返游,两人游10分钟。

已知甲每秒游3米,乙每秒游2米。

在出发后的两分钟内,两人相遇了几次?
【试一试】
1、甲、乙两个运动员同时从游泳池的两端相向出发做往、返游泳训练。

从池的一端到另一端甲要3分钟,乙要3.2分钟。

两人下水后连续游了48分钟,一共相遇了多少次?
2、一游泳池泳道长100米,甲、乙两个运动员从泳道的两端同时下水,做往、返训练15分钟,甲每分钟游81米,乙每分钟游89米。

甲运动员一共从乙运动员身边经过了多少次?
【﹡例5】甲、乙两地相距60千米。

张明8点从甲地出发去乙地,前一半时间平均速度为每分钟1千米,后一半时间平均速度为每分钟0.8千米。

张明经过多少时间到达乙地?
【﹡试一试】
1、A、B两地相距90千米。

一辆汽车从A地出发到B地,前一半时间平均每小时行60千米,后一半时间平均每小时行40千米。

经过多少时间可以到达B地?
2、甲、乙两人同时从A地背向出发,沿400米环行跑道行走。

甲每分钟走80米,乙每分钟走50米。

两人至少经过多少分钟才能在A点相遇?
课外作业
家长签名:
1、如图所示,A、B是圆的直径的两端,小张在A点,小王在B点,同时出发反向而行,他们在C点第一次相遇,C点离A点80米;在D点第二次相遇,D点离B点60米。

求这个圆的周长。

C
A B
D
2、甲、乙两人在圆形跑道上,同时从某地出发沿相反方向跑步。

甲速是乙速的3倍,他们第一次与第二次相遇地点之间的路程是100米。

环行跑道有多少米?
3、龟、兔进行10000米跑步比赛。

兔每分钟跑400米,龟每分钟跑80米,兔每跑5分钟歇25分钟,龟不休息。

谁先到达终点?
4、马路上有一辆身长为15米的公共汽车,由东向西行驶,车速为每小时18千米。

马路一旁人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。

某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲,半分钟后,汽车遇到迎面跑来的乙,又过了2秒钟,汽车离开乙。

再过几秒钟后,甲、乙两人相遇?
﹡5、在300米的环行跑道上,甲、乙两人同时并排起跑。

甲平均每秒行5米,乙平均每秒行4.4米。

两人起跑后的第一次相遇在起跑线前面多少米?。

相关文档
最新文档