第十九章一次函数练习题3
《常考题》初中八年级数学下册第十九章《一次函数》经典练习卷(含答案解析)
一、选择题1.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y(米)与出发时间x(分)之间的函数关系如图所示,则下列说法正确的是()A.小明到达球场时小华离球场3150米B.小华家距离球场3500米C.小华到家时小明已经在球场待了8分钟D.整个过程一共耗时30分钟2.一次函数y=-3x-2的图象和性质,表述正确的是()A.y 随x 的增大而增大B.函数图象不经过第一象限C.在y轴上的截距为2 D.与x轴交于点(-2,0)BC=,动点P沿折线BCD从点B开始运动到点3.如图,在矩形ABCD中,3AB=,4D,设点P运动的路程为x,ADP△的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D .4.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =5.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-6.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <7.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .38.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .9.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线的解析式为( )A .5182y x =+ B .2133y x =+ C .7162y x =+ D .3142y x =+ 10.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫- ⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-11.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-12.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .无法确定13.函数21y x x=+-的图象上的点()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限14.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( ) A .-6 B .6C .6或3D .6或-615.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量二、填空题16.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.17.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n =+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.18.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.19.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.20.如图,直线y =kx +1经过点A (-2,0)交y 轴于点B ,以线段AB 为一边,向上作等腰Rt ABC ,将ABC 向右平移,当点C 落在直线y =kx +1上的点F 处时,则平移的距离是_________.21.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.22.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.23.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.24.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.25.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.26.在学校,每一位同学都对应着一个学籍号,在数学中也有一些对应.现定义一种对应关系f ,使得数对(),x y 和数z 是对应的,此时把这种关系记作:(),f x y z =.对于任意的数m ,n (m n >),对应关系f 由如表给出:(),x y (),n n (),m n (),n m(),f x ynm n -m n +如:()1,2213f =+=,()2,1211f =-=,()1,11f --=-,则使等式()12,32f x x +=成立的x 的值是___________. 三、解答题27.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x 1 2 3 4 温度()y ℃5590125160(1)请直接写出y 与x 之间的关系式______. (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?28.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.29.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.30.如图,直线EF 与x 轴、y 轴分别交于点E (-8,0),F (0,6).(1)求直线EF的函数表达式;(2)若点A的坐标为(-6,0),点P(m,n )在线段EF上(不与点E重合)①求△OPA的面积S与m的函数表达式;②求当△OPA的面积为9时,点P的坐标;③求当△OPA的面积与△OPF的面积相等时,点P的坐标.参考答案。
人教版数学八年级下册第十九章一次函数考试题含答案
人教版数学八年级下册第十九章考试试题评卷人得分一、单选题1.在函数x的取值范围是()A.x≥﹣2且x≠1B.x≤2且x≠1C.x≠1D.x≤﹣22.已知y=(m﹣1)x+m+3的图象经过一二四象限,则m的范围()A.﹣3<m<1B.m>1C.m<﹣3D.m>﹣33.一次函数y=kx+b(k≠0)的图象经过一二四象限,则k和b的取值范围是()A.k>0,b>0B.k<0,b>0C.k>0,b<0D.k<0,b<0 4.小明在书上看到了一个实验:如图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象如图所示.小明选择的物体可能是()A.B.C.D.5.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的关系的图象如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米;②甲在中途停留了0.5小时;③乙比甲晚出发了0.5小时;④甲、乙两人同时到达目的地;⑤乙追上甲后甲的速度<乙的速度.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个6.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是()A.B.C.D.7.如图,函数y=ax+b和y=kx图象交于点P,则根据图象可知二元一次方程组y ax by kx=+⎧⎨=⎩的解是()A.23xy=-⎧⎨=-⎩B.32xy=-⎧⎨=-⎩C.3xy=⎧⎨=-⎩D.2xy=⎧⎨=-⎩8.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC 扫过的面积为()A.4B.8C.16D.829.某数学课外活动小组利用一个有进水管与出水管的容器模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出水,在随后的10分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的蓄水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则第12分钟容器内的蓄水量为()A.22B.25C.27D.2810.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.11.如图,直线AB:y=0.5x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是()A.(3,2.5)B.(8,5)C.(4,3)D.(0.5,1.25)12.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x 的图象上,从左向右依次记为A 1、A 2、A 3、…、A n ,已知第1个正方形中的一个顶点A 1的坐标为(1,1),则点A 2019的纵坐标为()A .2019B .2018C .22018D .22019评卷人得分二、填空题13.函数()0x y x 2x 3=---中,自变量x 的取值范围是.14.在一次函数y=(2﹣k )x+1中,y 随x 的增大而增大,则k 的取值范围为.15.已知点P(a,b)在一次函数y=2x-1的图像上,则2a-b+1=______.16.已知直线y=3x ﹣3向左平移4个单位后,则该直线解析式是______.17.如图,点Q 在直线y =-x 上运动,点A 的坐标为(1,0),当线段AQ 最短时,点Q 的坐标为__________________.18.如图,在平面直角坐标系中,直线l :y=3x+1交x 轴于点A ,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴的正半轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 6B 7A 7的周长是______.评卷人得分三、解答题19.已知动点P以每秒2cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6cm,试回答下列问题:(1)图(1)中的BC长是多少?(2)图(2)中的a是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b是多少?20.如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.21.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.22.某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?23.小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?24.如图1,在平面直角坐标系xOy 中,()A 3,0-,()B 2,0,C 为y 轴正半轴上一点,且BC 4=.()1求OBC ∠的度数;()2如图2,点P 从点A 出发,沿射线AB 方向运动,同时点Q 在边BC 上从点B 向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,是直角三角形,求t的值;已知PQB是等腰三角形时,求a与b满足的数量②若点P,Q的运动路程分别是a,b,已知PQB关系.参考答案1.A【解析】试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.由题意得,x+2≥0且x ﹣1≠0,解得x≥﹣2且x≠1.故选A .考点:函数自变量的取值范围.2.A【解析】【分析】根据一次函数的图像与性质列不等式组求解即可.【详解】由题意得1030m m -<⎧⎨+>⎩,解之得﹣3<m <1.故选A.【点睛】本题考查了一次函数图象与系数的关系:对于y =kx +b (k 为常数,k ≠0),当k >0,b >0,y =kx +b 的图象在一、二、三象限;当k >0,b <0,y =kx +b 的图象在一、三、四象限;当k <0,b >0,y =kx +b 的图象在一、二、四象限;当k <0,b <0,y =kx +b 的图象在二、三、四象限.3.B【解析】【分析】根据一次函数图象与系数的关系进行判断.【详解】解:∵一次函数y =kx +b (k ≠0)的图象经过一二四象限∴k<0,b>0故选:B【点睛】一次函数图象与系数的关系,解题的关键是由图形得出kb值的正负性.4.B【解析】【分析】根据图象可知,水面高度先不变,再下降,又不变,后以固定速度下降,可以确定问题的形状.【详解】由图象可知,水面高度先不变,再下降,又不变,后以固定速度下降,由开始和结尾可知A、C错误,由中间不变可知,D错误,故选B.5.C【解析】【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【详解】(1)两个图象纵坐标的最大值都是18,则他们都行驶18千米,正确;(2)甲在途中停留的时间是1-0.5=0.5(小时),正确;(3)乙比甲晚出发0.5小时,正确;(4)乙比甲早到0.5小时,错误;(5)乙追上甲后的速度是18÷(2−0.5)=12千米/时,相遇时,距离是12×0.5=6(千米),则甲的速度是(18−6)÷(2.5−1)=8(千米/时),故⑤正确.故选C.【点睛】此题考查了函数图象的认识,关键在于仔细读图,明白各部分表示的含义,从图中获取信息,解决问题.6.A【解析】函数→一次函数的图像及性质7.B【解析】∵函数y=ax+b和y=kx的图象交于点P(−3,−2),∴二元一次方程组y ax by kx=+⎧⎨=⎩的解是32xy=-⎧⎨=-⎩,故选B.8.C【解析】试题分析:∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3,BC=5,∵∠CAB=90°,∴AC=4,∴点C的坐标为(1,4),当点C落在直线y=2x﹣6上时,∴令y=4,得到4=2x ﹣6,解得x=5,∴平移的距离为5﹣1=4,∴线段BC扫过的面积为4×4=16,故选C.考点:1.一次函数综合题;2.一次函数图象上点的坐标特征;3.平行四边形的性质;4.平移的性质.9.C【解析】【分析】用待定系数法求出5≤x≤15对应的函数关系式,当x=12时,求出对应的值,即可解答.【详解】当5≤x≤15时,设y=kx+b,把(5,20),(15,30)代入得:5201530k b k b +=⎧⎨+=⎩,解之得115k b =⎧⎨=⎩,∴y =x +15,当x =12时,y =12+15=27,故选:C .【点睛】本题考查了一次函数的应用,解决本题的关键是用待定系数法求出函数解析式.10.D【解析】试题解析:动点P 运动过程中:①当0≤s≤时,动点P 在线段PD 上运动,此时y=2保持不变;②当<s≤时,动点P 在线段DC 上运动,此时y 由2到1逐渐减少;③当<s≤时,动点P 在线段CB 上运动,此时y=1保持不变;④当<s≤时,动点P 在线段BA 上运动,此时y 由1到2逐渐增大;⑤当<s≤4时,动点P 在线段AP 上运动,此时y=2保持不变.结合函数图象,只有D 选项符合要求.故选D .考点:动点问题的函数图象.11.B【解析】【分析】由直线y=0.5x+1分别与x轴、y轴交于点A、点B,即可求得点A与B的坐标,又由S△ABD=4,即可求得点D的坐标,由待定系数法即可求得直线CD的解析式,然后由直线AB与CD相交于点P,可得方程组:1123y xy x⎧=+⎪⎨⎪=-⎩,解此方程组即可求得答案.【详解】解:直线y=0.5x+1分别与x轴、y轴交于点A、点B,∴点A的坐标为(-2,0),点B的坐标为(0,1),∴OA=2,OB=1,∵S△ABD=4,∴1124 22BD OA BD⋅=⨯=,∴BD=4,∴OD=BD-OB=4-1=3,∴点D的坐标为(0,-3),∵点D在直线y=x+b上,∴b=-3,∴直线CD的解析式为:y=x-3,∵直线AB与CD相交于点P,联立可得:1123 y xy x⎧=+⎪⎨⎪=-⎩,解得:85 xy=⎧⎨=⎩,∴点P的坐标是:(8,5).故选B.【点睛】此题考查了待定系数法求一次函数的解析式、二元一次方程组的解与一次函数图像交点坐标的关系及三角形的面积问题.此题难度适中,注意掌握数形结合思想与方程思想的应用. 12.C【解析】【分析】根据直线解析式可知直线与x 轴的夹角为45°,从而得到直线、正方形的边与x 轴围成的三角形是等腰直角三角形,根据点A 1的坐标为(1,1),可依次求出正方形的边长,并得到点坐标的变化规律.【详解】由函数y =x 的图象的性质可得直线与x 轴的夹角为45°,∴直线、正方形的边与x 轴围成的三角形是等腰直角三角形,∵点A 1的坐标为(1,1),∴第一个正方形的边长为1,第二个正方形的边长为1+1=2,∴点A 2的坐标为(2,2),∵第二个正方形的边长为2,∴第三个正方形的边长为2+2=22,∴点A 3的坐标为(22,22),同理可求:点A 4的坐标为(23,23),…∴点A n 的坐标为(2n -1,2n -1),∴A 2019的坐标为(22018,22018),∴A 2019的纵坐标为22018.故选C.【点睛】本题考查了一次函数的图像与性质,正方形的性质,等腰直角三角形的判定及点坐标规律的探索.解题的关键是首先探索出个别点的坐标的变化规律,然后从特殊到一般去发现一般规律,进而利用规律去解决问题.13.x≥0且x≠2且x≠3【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数、分式分母不为0和0指数幂不为0的条件,要使()0x x 2x 3---在实数范围内有意义,必须x0x0{x30{x3x0x20x2≥≥-≠⇒≠⇒≥-≠≠且x≠2且x≠3.14.k<2。
人教版八年级下册数学第十九章一次函数测试题带答案
人教版八年级下册数学第十九章测试卷一、选择题 (每题 3分,共 30分)1.函数 y=错误!未找到引用源。
+x-2的自变量 x 的取值范围是 ()A. x≥2B. x> 2C.x≠2D.x≤22.某种正方形合金板材的成本 y(元)与它的面积成正比 ,设边长为 x 厘米. 当 x=3 时,y=18,那么当成本为 72 元时,边长为 ( )A.6 厘米B.12 厘米C.24 厘米D.36 厘米3.已知在一次函数 y=-1.5x+3 的图象上 ,有三点(-3,y1),(-1,y2),(2,y3),则 y1,y2,y3 的大小关系为 ( )A.y1>y2>y3B. y1>y3>y 2C.y2>y 1>y 3D.无法确定4.已知一次函数 y=kx+b (k,b是常数,且 k≠0中) x与 y 的部分对应值如下表所示 ,那么不等式 kx+b< 0 的解集是 ( )x -2 -1 0 1 2 3y 3 2 1 0 -1 -2A.x<0B.x>0C.x<1D.x>15.直线 l 1:y=k1x+b与直线 l2:y=k2x在同一平面直角坐标系中的位置如图 , 则关于 x 的不等式 k2x<k1x+b 的解集为 ( )6. 已知一次函数 y=kx+b ,y 随着 x 的增大而减小 ,且 kb>0,则这个函数的7. 如图,过 A 点的一次函数的图象与正比例函数 y= 2x 的图象相交于点B,则这个一次函数的解析式是 ( )A.y=2x+3B.y=x- 3C.y= 2x-3D.y=-x+ 38. 如图,点A 的坐标为(-1,0),点B 在直线 y=x 上运动,当线段 AB 最短时,A.(0,0)B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找 到引用源。
9. 一辆慢车与一辆快车分别从甲、 乙两地同时出发 ,匀速相向而行 ,两车 在途中相遇后分别按原速同时驶往甲地 ,两车A. x<-1B. x>-1C. x>2D. x<2大致图象是(之间的距离 s(km)与慢车行驶时间 t(h)之间的函数图象如图所示 ,下列说法 :①甲、乙两地之间的距离为 560 km;②快车速度是慢车速度的 1.5 倍;③快车到达甲地时 ,慢车距离甲地 60 km;④相遇时,快车距甲地 320 km.其中正确的个数是D.410.如图,在等腰三角形 ABC中,直线 l垂直于底边 BC,现将直线 l沿线段BC从B点匀速平移至 C点,直线 l与△ABC的边相交于 E,F两点,设线段 EF 的长度为 y, 平移时间为 t,则能较好地反映y 与 t 的函数关系的图二、填空题(每题 3分,共 30分)11.函数 y=(m-2)x+m2-4是正比例函数 ,则 m= .12.一次函数 y= 2x-6 的图象与 x轴的交点坐标为 .13.如果直线 y=错误!未找到引用源。
人教版八年级下册第十九章一次函数单元练习题(含答案)
第十九章一次函数一、选择题1.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()A.v=2m-2B.v=m2-1C.v=3m-3D.v=m+12.下列y关于x的函数中,是正比例函数的是()A.y=x2B.y=C.y=D.y=3.一次函数y=kx-6(k<0)的图象大致是()A.B.C.D.4.下列函数是一次函数的是()A.y=4x2-1B.y=-C.y=D.y=5.已知a是方程(x+2)(x-1)=0的解,则对于一次函数y=ax+a的判断错误的是() A.图象可能经过一、二、三象限B.图象一定经过二、三象限C.图象一定经过点(-1,0)D.y一定随着x的增大而增大6.若y=(a-2)+5是一次函数,则a的值是()A.-2B. 2C. ±2D. ±7.直角三角形中一个锐角的度数y与另一个锐角度数x的函数关系式为()A.y=180°-x(0°<x<90°)B.y=90°-x(0°<x<90°)C.y=180°-x(0°≤x≤90°)D.y=90°-x(0°≤x≤90°)8.已知函数y=,当x=2时,函数值y为()A. 5B. 6C. 7D. 8二、填空题9.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为________.10.购买某种练习本的数量x(本)与所需钱数y(元)之间的函数图象如图所示,则所需钱数y(元)与练习本的本数x(本)之间的函数关系式是________.11.函数y=(k+2)x+k2-4中,当k=________ 时,它是x的一个正比例函数.12.若一次函数的图象经过点(1,1)与(0,-1),则这个函数的解析式为________.13.已知一个正比例函数的图象经过点(-2,6),则这个正比例函数的表达式是________.14.函数y=-x2+4,当函数值为-4时,自变量x的取值为________,当函数值为4时,自变量x 的取值为________.15.已知y与2x成正比例,且当x=1时y=4,则y关于x的函数解析式是________.16.已知函数y=3x-6,当x=0时,y=________;当y=0时,x=________.三、解答题17.某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒每瓶的成本和利润如下表所示.设每天共获利y元,每天生产A种品牌的酒x瓶.(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25 000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?18.在同一坐标平面内画出下列各组函数的图象(不写画法):(1)y=x和y=2x;(2)y=x和y=x;19.已知某企业生产的产品每件出厂价为70元,其成本价为25元,同时在生产过程中,平均每生产一件产品有1 m3的污水排出,为达到排污标准,现有以下两种处理污水的方案可供选择.方案一:将污水先净化处理后再排出,每处理1 m3污水的费用为3元,并且每月排污设备损耗为24 000元.方案二:将污水排到污水厂统一处理,每处理1 m3污水的费用为15元,设该企业每月生产x件产品,每月利润为y元.(1)分别写出该企业一句方案一和方案二处理污水时,y与x的函数关系式;(2)已知该企业每月生产1 000件产品,如果你是该企业的负责人,那么在考虑企业的生产实际前提下,选择哪一种污水处理方案更划算?20.有甲、乙两家通讯公司,甲公司每月通话(不区分通话地点)的收费标准如图所示;乙公司每月通话的收费如表所示.(1)观察如图,写出甲公司用户月通话时间不超过400分钟时应付的话费金额;(2)求出甲公司的用户通话时间超过400分钟后,通话费用y(元)与通话时间t(分)之间的函数关系式;(写出计算过程)(3)王先生由于工作需要,从4月份开始经常去外市出差,估计每月各种通话时间的比例是本地接听时间:本地拨打时间:外地通话时间=2:1:1.设王先生每月的各种通话时间总和为t(分),通话费用为y(元).你认为t不少于多少时间时,入乙通讯公司比入甲公司更合算?请用计算方法说明理由.乙公司每月收费标准21.用你认为最简单的方法画出下列函数的图象.(1)y=x;(2)y=-3x.22.下列各题:①汽车以60千米/时的速度行驶,行驶路程y(千米)与行驶时间x(时)之间的关系;②圆的面积y(cm2)与它的半径x(cm)之间的关系;③一棵树现在高50 cm,每个月长高2 cm,x月后这个棵树的高度为y(cm);④某种大米的单价是2.2元/千克,花费y元与购买大米x千克之间的关系.其中y是x的一次函数的为________.(填序号).答案解析1.【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.当m=4时,A.v=2m-2=6;B.v=m2-1=15;C.v=3m-3=9;D.v=m+1=5.故选B.2.【答案】B【解析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.3.【答案】D【解析】∵一次函数y=kx-6中,k<0,∴直线从左往右下降,又∵常数项-6<0,∴直线与y轴交于负半轴,∴直线经过第二、三、四象限,故选D.4.【答案】B【解析】∵一次函数的一般形式为y=kx+b(k≠0),y=-=-x,∴y=-是一次函数.故选B.5.【答案】D【解析】∵根据题意,把x=a代入方程(x+2)(x-1)=0,得(a+2)(a-1)=0,∴a=-2或a=1.∴当a=-2或a=1时,一次函数y=ax+a的图象如下图所示:从图象上,可以看出,A,图象可能经过第一、二、三象限(当a=1时),故A正确;B,图象一定经过二、三象限(无论a=-2或a=1),故B正确;C,图象一定经过点(-1,0)(无论a=-2或a=1),故C正确;D,当a=-2时,y随着x的增大而减小,故D错误,故选D.6.【答案】A【解析】由题意得:a2-3=1,且a-2≠0,解得a=-2,故选A.7.【答案】B【解析】根据直角三角形两个锐角和为90°,即可写出y与x之间的关系式.∵x+y=90°,∴y=90°-x(0°<x<90°),故选B.8.【答案】A【解析】利用已知函数关系式结合x的取值范围,进而将x=2代入求出即可.∵x≥0时,y=2x+1,∴当x=2时,y=2×2+1=5,故选A.9.【答案】1【解析】设一次函数的解析式为y=kx+b(k≠0),再把x=-2,y=3;x=1时,y=0代入即可得出k、b的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值.一次函数的解析式为y=kx+b(k≠0),∵x=-2时y=3;x=1时,y=0,∴,解得,∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.10.【答案】y=0.5x【解析】通过图象可以发现,每本练习本0.5元,所以所需钱数y(元)与练习本的本数x(本)之间的函数关系式是y=0.5x.11.【答案】2【解析】根据正比例函数的定义得到:k2-4=0且k+2≠0,由此求得k的值.依题意得:k2-4=0且k+2≠0,解得k=2.故答案是2.12.【答案】y=2x-1【解析】设一次函数的解析式是y=kx+b,把A(1,1)、B(0,-1)代入解析式得到方程组,求出方程组的解即可.设一次函数的解析式是y=kx+b,把A(1,1)、B(0,-1)代入得解方程组得∴一次函数的解析式是y=2x-1.13.【答案】y=-3x【解析】设函数解析式为y=kx,将(-2,6)代入函数解析式,得-2k=6.解得k=-3,函数解析式为y=-3x,故答案为y=-3x.14.【答案】±20【解析】分别将函数值代入函数关系式,然后解方程即可求出自变量x的值.函数值为-4时,-x2+4=-4,x2=8,解得x=±2;函数值为4时,-x2+4=4,x2=0,解得x=0.故答案为±2;0.15.【答案】y=4x【解析】设所求的函数解析式为:y=k·2x(k≠0),将x=1,y=4代入,得:4=k·2,所以k=2.则y关于x的函数解析式是:y=4x.故答案为y=4x.16.【答案】-62【解析】把x=0代入函数y=3x-6得:y=-6;把y=0代入函数y=3x-6得:3x-6=0,解得x=2.17.【答案】解(1)由题意,每天生产A种品牌的酒x瓶,则每天生产B种品牌的酒(600-x)瓶,∴y=20x+15(600-x)=9 000+5x.(2)根据题意得解得266≤x≤270,∵x为整数,∴x=267,268,269,270,该酒厂共有4种生产方案:①生产A种品牌的酒267瓶,B种品牌的酒333瓶;②生产A种品牌的酒268瓶,B种品牌的酒332瓶;③生产A种品牌的酒269瓶,B种品牌的酒331瓶;④生产A种品牌的酒270瓶,B种品牌的酒330瓶;∵每天获利y=9 000+5x,y是关于x的一次函数,且随x的增大而增大,∴当x=267时,y有最小值,y最小=9 000+5×267=10 335元.【解析】(1)根据获利y=A种品牌的酒的获利+B种品牌的酒的获利,即可解答.(2)根据生产B种品牌的酒不少于全天产量的55%,A种品牌的酒的成本+B种品牌的酒的成本≥25 000,列出方程组,求出x的取值范围,根据x为正整数,即可得到生产方案;再根据一次函数的性质,即可求出每天至少获利多少元.18.【答案】解(1)如图所示:;(2)如图所示:.【解析】根据“两点确定一条直线”作出图象;(1)函数图象经过原点,则把x=1代入相应的函数解析式求得相应的y值,求得函数图象上的一个坐标,然后连接原点即可得到函数图象;(2)函数图象经过原点,则把x=6代入相应的函数解析式求得相应的y值,求得函数图象上的一个坐标,然后连接原点即可得到函数图象;19.【答案】解(1)因为工厂每月生产x件产品,每月利润为y万元,由题意得选择方案一时,月利润为y1=(70-25)x-(3x+24 000)=42x-24 000,选择方案二时,月利润为y2=(70-25)x-15x=30x;(2)当x=1 000时,y1=42x-24 000=18 000,y2=30x=30 000,∵y1<y2.∴选择方案一更划算.【解析】(1)方案一的等量关系是利润=产品的销售价-成本价-处理污水的费用-设备损耗的费用,方案二的等量关系是利润=产品的销售价-成本价-处理污水的费用.可根据这两个等量关系来列出关于利润和产品件数之间的函数关系式;(2)可将(1)中得出的关系式进行比较,判断出哪个方案最省钱.20.【答案】解(1)30元;(2)设y=kt+b,∵直线过点(400,30),(500,70),∴得∴甲公司的用户通话时间超过400分钟后,通话费用y(元)与通话时间t(分)之间的函数关系式为y =0.4t-130;(3)甲:y1=乙:y2=50+t=50+,∵y2>50>30,∴满足题意要求的t>400.即0.4t-130≥50+,得t≥1200,∴t不少于1200分钟时,入乙比甲合算.【解析】(1)观察图象,即可求得甲公司用户月通话时间不超过400分钟时应付的话费金额;(2)首先设通话费用y(元)与通话时间t(分)之间的函数关系式为y=kx+b,由直线过点(400,30),(500,70),利用待定系数法即可求得答案;(3)根据题意求得甲乙公司通话费用y(元)与通话时间t(分)之间的函数关系式,然后比较,利用不等式求解,即可求得答案.21.【答案】解(1)该函数是正比例函数,函数图象是过原点的一条直线.当x=0时,y=0.当x=2时,y=3,则该直线经过点(0,0),(2,3).其图象如下图所示;(2)该函数是正比例函数,函数图象是过原点的一条直线.当x=0时,y=0.当x=1时,y=-3,则该直线经过点(0,0),(1,-3).其图象如图所示.【解析】(1)该函数图象是经过第一、三象限,且过原点的一条直线;(2)该函数图象是经过第二、四象限,且过原点的一条直线.22.【答案】①③④【解析】根据题意列出函数表达式:①y=60x;②y=πx2;③y=2x+50;④y=2.2x;符合y=kx+b(k≠0)的有①③④,故答案为①③④.。
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线25y x =+沿x 轴向左平移3个单位得到直线L ,则直线L 的解析式是( )A .y =2x +2B .y =2x +8C .y =2x -1D .y =2x +112.一次函数的图像经过点(1,2)和(-3,-1),则它的表达式为( )A .y =34x -54B .y =43x -45C .y =34x +45D .y =34x +54 3.已知点()()()1232,,1,,1,y y y --都在直线y =﹣5x +b 上,则123,,y y y 的大小关系是( )A .321y y y <<B .123y y y <<C .213y y y <<D .312y y y <<4.如果函数2y x m =-+的图象经过第二、三、四象限,那么m 应满足的条件是( )A .0m >B .0m <C .0m ≥D .0m ≤5.某快递公司每天上午800900-::为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为( )A .810:B .815:C .820:D .825:6.如图,直线y x b =-+和3y kx =-交于点P ,根据图象可知3kx x b -<-+的解集为( )A .1x >B .1x <C .01x <<D .2<<1x -7.关于变量x ,y 有如下关系:①x ﹣y=5;①y 2=2x ;①:y=|x|;①y=3x -1.其中y 是x 函数的是( ) A .①①① B .①①①① C .①① D .①①①8.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( )A .(2,0)B .(2.5,0)C .(3,0)D .(4,0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是( )A .这一天中最高气温是26①B .这一天中最高气温与最低气温的差为16①C .这一天中2时至14时之间的气温在逐渐升高D .这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y kx b =+(k ,b 为常数,0k ≠)的图象如图所示,下列说法正确的是( )A .0k < 0b <B .y 随x 的增大而减小C .0x >时2024y <-D .方程0kx b +=的解是2024x =二、填空题(共8小题,满分32分)11.若y 是x 的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式 .12.李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是 .13.如图,直线y mx n =+与直线y kx b =+的交点为A ,则关于x ,y 的方程组,y mx n y kx b =+⎧⎨=+⎩的解是 .14.已知直线1:2l y x a =-+和2:l y x b =+图象上部分点的横坐标和纵坐标如下表所示,则关于x 的方程2x a x b -+=+的解是 . x 1- 0 1 22y x a =-+ 8 5 2 1-y x b =+ 0 1 2 315.一个弹簧秤不挂重物时长12cm ,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg 的物体后,弹簧伸长3cm ,则弹簧总长y (单位:cm )与所挂重物质量x (单位:kg )的函数解析式是 .16.一次函数5y x b =-+的图象经过15,2y ⎛⎫- ⎪⎝⎭和热()21,y ,则1y ,2y 的大小关系是 . 17.若直线2:43=+AB y x 与x 轴、y 轴分别交于点B 和点A ,直线1:22CD y x =-+与x 轴、y 轴分别交于点D 和点C ,线段AB 与CD 的中点分别是,M N ,点P 为x 轴上一动点.当PM PN +的值最小时,点P 的坐标为 .18.如图,直线44y x =+与坐标轴交于A 、B 两点,点C 为x 轴负半轴上一点45CAB ∠=︒.则点C 的坐标是 .三、解答题(共6小题,每题8分,满分48分)19.已知y 与2x +成正比例,当4x =时12y =.(1)求y 与x 之间的函数表达式.(2)当24y =时,求x 的值.20.明明、亮亮在学校操场上玩飞机模型,已知1号、2号两个飞机模型分别从距水平线起点5m 和距水平线起点15m 处同时出发,匀速上升.如图是1号、2号两个飞机模型所在位置的高度()m y 与飞机上升时间()min x 的函数图象.(1)求这两个飞机模型在上升过程中y 关于x 的函数表达式;(2)当这两个飞机模型的高度相差4m 时,求上升的时间.21.某水果超市想购进甲、乙两种水果进行销售,甲种水果每千克的价格为30元,如果一次性购买超过40千克,超过部分的价格打八折.设水果超市购进甲种水果x 千克,付款y 元.(1)求y 与x 之间的函数表达式;(2)已知乙种水果的价格为每千克26元,若超市计划一次性购进甲、乙两种水果共80千克,且甲种水果多于40千克,但又不超过50千克,问如何分配甲、乙两种水果的购进数量,才能使超市付款总金额W 最少?最少付款额是多少元?22.如图,直线AB 经过()0,4A ,B (−2,0)两点.(1)若点C 是线段AB 上的一个动点,当AOC △的面积为2时,求点C 的坐标;(2)在(1)的条件下,在y 轴上求一点P 使得COP 是等腰三角形,直接写出所有满足条件的点P 的坐标.23.已知,一次函数112y x =-+. (1)画出这个函数的图象;(2)若点()2,2Q a +在这个函数的图象上,求出a 的值,写出点Q 的坐标;(3)若直线l 与112y x =-+的图象交与y 轴上一点,且直线l 过()2,4-点,求直线l 的函数解析式. 24.黄陵翡翠梨因为黄土高坡独特的气候,有着独有的风味,并荣获国家地理标识证明商标,某天甲超市对翡翠梨进行优惠促销,翡翠梨销售金额y (元)与销售量x (千克)之间的关系如图所示.(1)当4x ≥时,求销售金额y (元)与销售量x (千克)之间的关系式.(2)乙超市翡翠梨的标价为32元/千克,当天也进行优惠促销活动,按标价的五折销售.若一顾客需要购买8千克翡翠梨,请通过计算说明去哪个超市购买更划算.参考答案1.D2.D3.A4.B5.C6.B7.D8.A9.A10.D11.2y x =-(答案不唯一)12.加油量13.13x y =⎧⎨=⎩14.1x =15.312y x =+16.12y y >/21y y <17.1,03⎛⎫ ⎪⎝⎭18.20,03⎛⎫- ⎪⎝⎭19.(1)24y x =+(2)10x =20.(1)354y x =+ 1154y x =+ (2)当这两个飞机模型的高度相差4m 时,上升的时间为12min 或28min21.(1)y 与x 之间的函数表达式为30,4024240,40x x y x x ≤⎧=⎨+>⎩ (2)当购进甲种水果50千克,乙种水果30千克时,才能使超市付款总金额W 最少,最少付款额是2220元22.(1)()1,2-(2)5)P 或(0,5)或(0,4)或5(0,)4.23.(1)略(2)a 的值为4-,点Q 的坐标为()2,2- (3)512y x =-+24.(1)1232y x =+(2)顾客去甲、乙超市购买一样划算。
人教版八年级下册数学基础训练题: 第十九章 一次函数(含答案)
第十九章一次函数一、选择题1.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)2.一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A. m<-1B. m>-1C. m>0D. m<03.一次函数的图象经过点A(﹣2,﹣1),且与直线y=2x﹣3平行,则此函数的解析式为()A. y=x+1B. y=2x+3C. y=2x﹣1D. y=﹣2x﹣54.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C. y=-2x D. y=2x5.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A. y=25x+15B. y=2.5x+1.5C. y=2.5x+15D. y=25x+1.56.一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是( )A. x>0B. x<0C. x>2D. x<27.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A. 1.1千米B. 2千米C. 15千米D. 37千米8.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A. B. C. D.9.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A. x>﹣2B. x<﹣2C. x>﹣4D. x<﹣410.小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A. B. C. D.11.一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()A. 9B. 16C. 25D. 3612.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A. x<2B. x<0C. x>0D. x>2二、填空题13.函数y=中,自变量x的取值范围为________ .14.已知,函数y=(k﹣1)x+k2﹣1,当k________ 时,它是一次函数.15.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .16.已知长方形的周长为30cm,一边长为ycm,另一边长为xcm,则y与x的关系式为________,其中变量是________,常量是________.17.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为- ,则输出的结果为 ________18.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系________.19.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A 地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h时,他们之间的距离为________km.20.如图,已知点A和点B是直线y=x上的两点,A点坐标是(2,).若AB=5,则点B的坐标是 ________.21.一次函数y=ax+b的图象如图,则关于x的不等式ax+b≥0的解集为________.22.某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为________ .三、解答题23.一次函数y=kx+b经过点(-4,-2)和点(2,4),求一次函数y=kx+b的解析式。
【3套试卷】人教版八年级下册数学基础训练题: 第十九章 一次函数(含答案)
人教版八年级下册数学基础训练题:第十九章一次函数(含答案)一、选择题1.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)2.一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A. m<-1B. m>-1C. m>0D. m<03.一次函数的图象经过点A(﹣2,﹣1),且与直线y=2x﹣3平行,则此函数的解析式为()A. y=x+1B. y=2x+3C. y=2x﹣1D. y=﹣2x﹣54.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C. y=-2x D. y=2x5.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A. y=25x+15B. y=2.5x+1.5C. y=2.5x+15D. y=25x+1.56.一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是( )A. x>0B. x<0C. x>2D. x<27.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A. 1.1千米B. 2千米C. 15千米D. 37千米8.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A. B. C. D.9.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A. x>﹣2B. x<﹣2C. x>﹣4D. x<﹣410.小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A. B. C. D.11.一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()A. 9B. 16C. 25D. 3612.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A. x<2B. x<0C. x>0D. x>2二、填空题13.函数y=中,自变量x的取值范围为________ .14.已知,函数y=(k﹣1)x+k2﹣1,当k________ 时,它是一次函数.15.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .16.已知长方形的周长为30cm,一边长为ycm,另一边长为xcm,则y与x的关系式为________,其中变量是________,常量是________.17.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为- ,则输出的结果为 ________18.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x(单位:本)之间的函数关系________.19.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为________km.20.如图,已知点A和点B是直线y=x上的两点,A点坐标是(2,).若AB=5,则点B的坐标是 ________.21.一次函数y=ax+b的图象如图,则关于x的不等式ax+b≥0的解集为________.22.某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为________ .三、解答题23.一次函数y=kx+b经过点(-4,-2)和点(2,4),求一次函数y=kx+b的解析式。
八年级数学下册《第十九章 一次函数》练习题附答案-人教版
八年级数学下册《第十九章一次函数》练习题附答案-人教版一、选择题1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=x-2x-3中自变量x的取值范围是()A.x>2B.x≥2C.x≥2且x≠3D.x≠33.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x与售价y如下表:长度x/m 1 2 3 4 …售价y/元8+0.3 16+0.6 24+0.9 32+1.2 …A.y=8x+0.3B.y=(8+0.3)xC.y=8+0.3xD.y=8+0.3+x4.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限5.下列关于正比例函数y=-5x的说法中,正确的是( )A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限6.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是( )A.y=x+9与y=23x+223B.y=﹣x+9与y=23x+223C.y=﹣x+9与y=﹣23x+223D.y=x+9与y=﹣23x+2238.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB →BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为( )A.3B.4C.5D.69.如图,已知长方形ABCD顶点坐标为A(1,1),B(3,1),C(3,4),D(1,4),一次函数y=2x+b的图象与长方形ABCD的边有公共点,则b的变化范围是( )A.b≤﹣2或b≥﹣1B.b≤﹣5或b≥2C.﹣2≤b≤﹣1D.﹣5≤b≤210.一次函数片y1=ax+b与y2=cx+d的图象如图所示,下列说法:①ab<0;②函数y=ax+d不经过第一象限;③函数y=cx+b中,y随x的增大而增大;④3a+b=3c+d,其中正确的个数有( )A.4个B.3个C.2个D.1个11.一辆汽车以45km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),则s与t 的关系式为,自变量是,因变量是.12.如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y与x之间的函数关系式为 .13.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=95x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.14.将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为________.15.已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式y1<y2的解集是.16.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1,S2,S3,…,Sn,则Sn的值为________(用含n的代数式表示,n为正整数).三、解答题17.有一天,龟、兔进行了600米赛跑,如图表示龟兔赛跑的路程s(米)与时间t(分钟)的关系(兔子睡觉前后速度保持不变),根据图象回答以下问题:(1)赛跑中,兔子共睡了多少时间?(2)赛跑开始后,乌龟在第几分钟时从睡觉的兔子旁经过?(3)兔子跑到终点时,乌龟已经到了多长时间?并求兔子赛跑的平均速度.18.已知y是关于x的一次函数,且当x=1时,y=﹣4;当x=2时,y=﹣6.(1)求y关于x的函数表达式;(2)若﹣2<x<4,求y的取值范围;(3)试判断点P(a,﹣2a+3)是否在函数的图象上,并说明理由.19.如图,直线y=﹣43x+8与x轴、y轴分别相交于点A,B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)直线AM所对应的函数关系式.20.如图直线y1=kx+b经过点A(﹣6,0),B(﹣1,5).(1)求直线AB的表达式;(2)若直线y=﹣2x﹣3与直线AB相交于点M,则点M的坐标为(_____,_____);2(3)根据图像,直接写出关于x的不等式kx+b﹤﹣2x﹣3的解集.21.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?22.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用(元) 15175…方式二的总费用(元) 90 135…(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.23.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16 460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?参考答案1.C2.C.3.B4.C5.B6.A7.C8.B9.D10.A11.答案为:s=45t;t;s.12.答案为:y=13﹣0.5x.13.答案为:7714.答案为:4.15.答案为:x<1.16.答案为:24n-5.17.解:(1)40分钟;(2)200÷(600÷60)=20(分),即赛跑开始后,乌龟在第20分钟从睡觉的兔子旁经过;(3)(600-200)÷(200÷10)=20(分),50+20-60=10(分),即乌龟已经到了10分钟;兔子赛跑的平均速度是600÷(50+20)=60/7(米/分)18.解:(1)设y与x的函数解析式是y=kx+b根据题意得:,解得:则函数解析式是:y=﹣2x﹣2;(2)当x=﹣2时,y=2,当x=4时,y=﹣10则y的范围是:﹣10<y<2;(2)当x=a是,y=﹣2a﹣2.则点P(a,﹣2a+3)不在函数的图象上.19.解:(1)y=﹣43x +8,令x=0,则y=8;令y=0,则x=6 ∴ A (6,0),B (0,8)∴ OA=6,OB=8,AB=10.∵ AB'=AB=10∴ OB'=10﹣6=4∴ B'的坐标为 (﹣4,0)(2)设OM=m ,则B'M=BM=8﹣m在Rt △OMB'中,m 2+42=(8﹣m)2,解得m=3∴ M 的坐标为 (0,3)设直线AM 的解析式为y=kx +b ,则6k +b=0,b=3解得k=﹣12,b=3 故直线AM 的解析式为y=﹣12x +3 20.解:(1)(1)∵直线1y kx b =+经过点A(﹣6,0)、B(﹣1,5)605k b k b -+=⎧∴⎨-+=⎩,解方程组得16k b =⎧⎨=⎩ ∴直线AB 的解析式为y =x +6;(2)(2)∵直线223y x =--与直线AB 相交于点M623y x y x =+⎧∴⎨=--⎩,解得33x y =-⎧⎨=⎩∴点C 的坐标为(﹣3,3)故答案为:﹣3,3;(3)(3)由图可知,关于x 的不等式23kx b x +<--的解集是3x <-.当0<x ≤6时,y =2x ;(2)根据题意可知:当x >6时,y =2×6+3×(x ﹣6)=3x ﹣6;(3)∵当0<x ≤6时,y =2xy 的最大值为2×6=12(元),12<27∴该户当月用水超过6吨.令y=3x﹣6中y=27则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.22.解: (1)200,5x+100,180,9x.(2)方式一:5x+100=270,解得x=34.方式二:9x=270,解得x=30.∵34>30,∴小明选择方式一游泳次数比较多.(3)设方式一与方式二的总费用的差为y元则y=(5x+100)﹣9x,即y=﹣4x+100.当y=0时,即﹣4x+100=0,得x=25.∴当x=25时,小明选择这两种方式一样合算.∵﹣4<0∴y随x的增大而减小.∴当20<x<25时,有y>0,小明选择方式二更合算;当x>25时,有y<0,小明选择方式一更合算.23.解:(1)W=250x+200(30-x)+150(34-x)+240(6+x)=140x+12 540(0≤x≤30).(2)根据题意得140x+12 540≥16 460,∴x≥28.∵0≤x≤30,∴28≤x≤30∴有3种不同的调运方案:方案一:从A城调往C乡28台,调往D乡2台,从B城调往C乡6台,调往D乡34台;方案二:从A城调往C乡29台,调往D乡1台,从B城调往C乡5台,调往D乡35台;方案三:从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台.(3)W=x(250-a)+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12 540=-60x+12 540∴当a=200时,W最小此时x=30时,W=10 740元最小此时的方案为从A城调往C乡30台,调往D乡0台,从B城调往C乡4台,调往D乡36台,使总费用最少.。
八年级数学(下)第十九章《一次函数》同步练习(含答案)
八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是A.B.C.D.【答案】A【解析】A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.2.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是A.B.C.D.【答案】A【解析】纵坐标表示的是速度、横坐标表示的是时间,由题意知:小明走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项,故选A.3.如图所示的是水滴入一个玻璃容器的示意图(滴水速度保持不变),下列图象能正确反映容器中水的高度(h)与时间(t)之间的关系的是A.B.C.D.【答案】C【解析】由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选C.4.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小【答案】D【解析】A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不超过4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是A.小明中途休息用了20分钟B.小明休息前爬山的速度为每分钟60米C.小明在上述过程中所走路程为7200米D.小明休息前后爬山的平均速度相等【答案】C【解析】A、小明中途休息的时间是:60-40=20分钟,故本选项正确;B、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确;C、小明在上述过程中所走路程为4800米,故本选项错误;D、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确,故选C.6.小明从家里出发到超市进行购物后返回,小明离开家的路程y(米)与所用时间x(分)之间的关系如图,则下列说法不正确的是A.小明家到超市的距离是1000米B.小明在超市的购物时间为30分钟C.小明离开家的时间共55分钟D.小明返回的速度比去时的速度快【答案】D【解析】A.观察图象发现:小明家距离超市1000米,故正确;B.小明在超市逗留了40−10=30分钟,故正确;C.小明离开家的时间共55分钟,故正确;D.小明去时用了10分钟,回时用了15分钟,所以小明从超市返回的速度慢,故错误,故选D.二、填空题:请将答案填在题中横线上.7.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升__________元.【答案】5.22【解析】单价=522÷100=5.22元,故答案为:5.22.8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是__________.【答案】-1<x<1或x>2【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2,故答案为:-1<x<1或x>2.9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A 地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为__________.【答案】8点40【解析】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40,故答案为:8点40.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【解析】如图,11.如图所示是某港口从8 h到20 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?【解析】(1)根据函数图象可得:13时港口的水最深,深度约是7.5 m.(2)根据函数图象可得:8时港口的水最浅,深度约是2 m.(3)根据函数图象可得:8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.12.一游泳池长90 m,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲游了多长时间?游泳的速度是多少?(3)在整个游泳过程中,甲、乙两人相遇了几次?【解析】(1)观察图形甲游了三个来回,乙游了两个来回.(2)观察图形可得甲游了180 s,游泳的速度是90×6÷180=3米/秒.(3)在整个游泳过程中,两个图象共有5个交点,所以甲、乙两人相遇了5次.13.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距__________千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为__________小时;(3)乙从出发起,经过__________小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【解析】(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为:10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为:1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为:3.(4)乙骑自行车出故障前的速度与修车后的速度不一样,理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
八年级数学(下)第十九章《一次函数》测试题含答案
八年级数学(下)第十九章《一次函数》测试题(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .76.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对8.已知正比例函数y=kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x =D .12y x =-9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 二、填空题(共10小题,每题3分,共30分)11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是.12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 .15.已知点A(-3,a),B(1,b)都在一次函数y=kx+2的图象上,则a与b的数量关系为16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是(填序号)A.①②③ B.仅有① C.仅有①③ D.仅有②③20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB 的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T (℃) (填“是”或“不是”)时间t (时)的函数. (2)温差是 ℃.(3)10时的气温是 ℃. (4) 时气温是4℃.(5) 时间内,气温不断上升. (6) 时间内,气温持续不变.22.(6分)已知水池中有800立方米的水,每小时抽50立方米. (1)写出剩余水的体积Q 立方米与时间t (时)之间的函数关系式. (2)写出自变量t 的取值范围.(3)10小时后,池中还有多少水? (4)几小时后,池中还有100立方米的水?23.(8分)如图,直线y = 2x + 3与x 轴相交于点A ,与y 轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 00.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.答案(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 【答案】D . 【解析】考点:1.函数自变量的取值范围;2.分式有意义的条件;3.二次根式有意义的条件.2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )【答案】C. 【解析】试题分析:函数图像中图形表示了自变量和函数之间的对应关系,由题,因瓶子下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越缓,分析四个图象只有C 符合要求,故选C .考点:函数图像.3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 【答案】【解析】试题分析:在圆的周长公式2C r =π中,C 是r 的函数,C ,r 是变量,2π是常量,将C=2πr 写成2Cr =π,则可看作C 是自变量,r 是C 的函数,故说法错误的是A . 故选A .考点:函数的概念.4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )【答案】C . 【解析】考点:函数的图象.5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】试题分析:∵函数y=ax+b 经过(1,3),(0,﹣2),∴a b 3b 2+=⎧⎨=-⎩,解得a 5b 2=⎧⎨=-⎩.∴a ﹣b=5+2=7.故选D .考点:1.直线上点的坐标与方程的关系;2.求代数式的值.6.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限C.第三象限D.第四象限 【答案】A 【解析】考点:一次函数的性质.7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对 【答案】A . 【解析】试题分析:∵k=-2<0,∴y 随x 的增大而减小,∵1<2,∴a >b . 故选A .考点:一次函数图象上点的坐标特征.8.已知正比例函数y =kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x = D .12y x =- 【答案】B. 【解析】试题分析:∵正比例函数y=kx (k ≠0)的图象经过点(1,-2),∴1×k=-2,解得:k=-2.则此正比例函数的关系式为y=-2x. 故选B.考点:待定系数法求正比例函数解析式.9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.【答案】A . 【解析】考点:一次函数的图象及性质.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 【答案】A . 【解析】试题分析:将点A (m ,3)代入y=2x 得,2m=3,解得,m=32,∴点A 的坐标为(32,3),∴由图可知,不等式2x ≥ax+4的解集为x ≥32. 故选A .考点:一次函数与一元一次不等式.二、填空题(共10小题,每题3分,共30分) 11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是 .【答案】t 【解析】试题分析:根据函数的定义即可判断出自变量是t ,因变量是v. 考点:函数的定义12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为【答案】12. 【解析】 试题分析:因为x=32,所以1<x ≤2,所以y=-32+2=12. 考点:函数值.13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数. 【答案】-2. 【解析】试题分析:由正比例函数的定义可得:4-m 2=0,且m-2≠0,解得,m=-2. 考点:正比例函数的定义.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 . 【答案】y=-x+4. 【解析】试题分析:∵一次函数y=-x+m 的图象经过(﹣1,5),∴5=-(-1)+m ,解得:m=4.则该一次函数解析式为y=-x+4.考点:待定系数法求一次函数解析式.15.已知点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,则a 与b 的数量关系为 【答案】a=8-3b . 【解析】试题分析:∵点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,∴322a k b k =-+=+⎧⎨⎩①②,①+②×3得,a+3b=8,即a=8-3b . 考点:一次函数图象上点的坐标特征.16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.【答案】x<1【解析】考点:一次函数与一元一次不等式.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 【答案】m>1.【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:324y x my x=-++=+⎧⎨⎩,解得:132103mxmy-⎧=⎪⎪⎨+⎪=⎪⎩,即交点坐标为(13m-,2103m+),∵交点在第一象限,∴132103mm-⎧⎪⎪⎨+⎪⎪⎩>>,解得:m>1.学¥科网考点:一次函数图象与几何变换.18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.【答案】y=﹣21x+23 【解析】考点:1、翻折变换(折叠问题);2、勾股定理;3、待定系数法19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是 (填序号)A .①②③B .仅有①C .仅有①③D .仅有②③【答案】①②③. 【解析】考点:一次函数的图象分析.20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB ∆的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3【答案】(0,2). 【解析】试题分析:∵线段AB 的长度是确定的,∴△PAB 的周长最小就是PA+PB 的值最小,∵3>5,∴点P 在y 轴上,作点A 关于y 轴的对称点A ′,连接A ′B 交y 轴于点P ,∵A (1,1),∴A ′(-1,1),设直线A ′B 的解析式为y=kx+b (k ≠0),∴351k b k b +=-+=⎧⎨⎩,解得12k b =⎧⎨=⎩,∴直线A ′B 的解析式为y=x+2,当x=0时,y=2,∴P (0,2). 学科#网考点:1.轴对称-最短路线问题;2.坐标与图形性质.三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T(℃)(填“是”或“不是”)时间t(时)的函数.(2)温差是℃.(3)10时的气温是℃.(4)时气温是4℃.(5)时间内,气温不断上升.(6)时间内,气温持续不变.【答案】(1)是;(2)12;(3)5;(4)9时和22时;(5)2时至12时;(6)14时到16时.【解析】;(3)5;(4)9时和22时;(5)2时至12时及14时到16时.故答案为:(1)是;(2)16,2,10,2考点:函数的图象.22.(6分)已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q立方米与时间t(时)之间的函数关系式.(2)写出自变量t的取值范围.(3)10小时后,池中还有多少水?(4)几小时后,池中还有100立方米的水?【答案】(1)Q=800-50t;(2)0≤t≤16;(3)300立方米;(4)14小时后学#科网【解析】考点:函数的应用.23.(8分)如图,直线y = 2x + 3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.【答案】(1)A(-32,0) B(0,3);(2)274.【解析】考点:一次函数图象上点的坐标特征.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.【答案】x≥34.【解析】试题分析:首先将已知点的坐标代入到直线y=kx-2中求得k值,然后代入不等式即可求得x的取值范围.试题解析:∵将点A(-2,0)代入直线y=kx-2,得:-2k-2=0,即k=-1,∴-4x+3≤0,解得x≥34.考点:一次函数与一元一次不等式.学@科网25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.【答案】(1)S=24-3x,(0<x<8);(2)(4,4).【解析】试题分析:(1)根据题意画出图形,根据三角形的面积公式即可得出结论;(2)把S=12代入(1)中的关系式即可.试题解析:(1)如图所示:考点:一次函数图象上点的坐标特征.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【答案】(1)60千米/小时,96千米/小时,C(19806,);(2))4619(38496≤≤+-=xxy;(3)613.【解析】试题分析:(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/考点:一次函数的应用.27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;【答案】(1)y=6x﹣100;(2)120吨;(3)100吨.【解析】试题分析:(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可.考点:1.一次函数、一元二次方程和一元一次方程的应用;2.待定系数法;3.分类思想.28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 0 0.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;学@科网(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.【答案】(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩;(2)作图见解析;(3)方案二.【解析】试题分析:(1)根据月话费=月租费+通话费分别列式. (2)根据(1)的函数关系式作图.(3)分别求出两种方案的月话费作出比较即可.试题解析:(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩.(2)作图如下:(实线部分)考点:1.一次函数的应用;2.由实际问题列函数关系式;3.分类思想的应用.21。
人教版八年级数学下册第十九章 一次函数练习(含答案)
第十九章 一次函数一、单选题1.函数21y x =+中自变量x 的取值范围是( ) A .x ≠﹣1B .x >﹣1C .x ≠1D .x ≠0 2.如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )A .B .C .D .3.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2) 4.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是( ) A .y x =- B .1y x =+ C .21y x =-+ D .1y x =- 5.下列命题的逆命题...为假命题的是 ( ) A .有两角互余的三角形是直角三角形B .如果0k >,那么直线y kx =经过一、三象限C .如果0a =,那么点(,)A a b 在坐标轴上D .三边分别相等的两个三角形全等 6.把直线y =-x +2向上平移a 个单位后,与直线y =2x +3的交点在第二象限,则a 的取值范围是( )A .a >1B .72-<a <0C .72-<a <1D .a <17.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x << 8.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定 9.甲、乙两人沿相同的路线由A 到B 匀速行进,A 、B 两地间的路程为16km ,他们行进的路程S (km )与甲出发后的时间t (h )之间的函数图象如图所示,则下列判断错误的是()A .乙比甲晚出发1hB .甲比乙晚到B 地2 hC .乙的速度是8km/hD .甲的速度是4km/h10.如图,在△ABC 中,点O 是∠ABC 和∠ACB 两个内角平分线的交点,过点O 作EF ∥BC 分别交AB ,AC 于点E ,F ,已知△ABC 的周长为8,BC =x ,△AEF 的周长为y ,则表示y 与x 的函数图象大致是( )A .B .C .D .二、填空题11.变量y 与x 之间的函数关系式是2112y x =-,则当自变量2x =-时,函数y =_____________.12.已知一次函数-3y x m =+的图形经过了A (x 1,1),B (x 2,-2),C (x 3,3),则x 1,x 2,x 3的大小关系为________.13.如图,直线l :y=1x +分别交x 轴、y 轴于点A 和点A 1,过点A 1作A 1B 1⊥l ,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴,交直线l 于点A 2;过点A 2作A 2B 2⊥l ,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线l 于点A 3;依此规律...若图中阴影△A 1OB 1的面积为S 1,阴影△A 2B 1B 2的面积S 2,阴影△A 3B 2B 3的面积S 3...,则S n =__________.14.如图,在平面直角坐标系xOy 中,(1,1)A ,(2,2)B ,直线32y x b =-+与线段AB 有公共点,则b 的取值范围是________.三、解答题15.已知动点P 以每秒2 cm 的速度沿图(1)的边框按从B ⇒C ⇒D ⇒E ⇒F ⇒A 的路径移动,相应的△ABP 的面积S 与时间t 之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:(1)图(1)中的BC 长是多少?(2)图(2)中的a 是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b 是多少?16.如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC V 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC V 的面积相等,请直接写出点P 的坐标.17.已知一次函数1(1)21y a x a =--+,其中1a ≠.(1)若点11,2⎛⎫- ⎪⎝⎭在y 1的图象上.求a 的值: (2)当23x -剟时.若函数有最大值2.求y 1的函数表达式; (3)对于一次函数2(1)(1)2y m x =+-+,其中1m ≠-,若对- -切实数x ,12y y < 都成立,求a ,m 需满足的数量关系及 a 的取值范围.18.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶.设慢车行驶的时间x(h),两车之的距离为y(km),图中的折线表示y与x之间的函数关系.(1)求慢车和快车的速度;(2)求线段BC所表示的y与x的函数关系式,并写出自变量x的取值范围;(3)第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地.请直接写出第二列快车出发后经过多少小时与慢车相遇,相遇时他们距甲地的距离.19.为了加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机,经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元(2)该市明年计划采购A型、B型一体机1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?答案1.A2.C3.A4.A5.C6.C7.D8.B9.C10.A11.112.312x x x <<13116()9n - 14.552b ≤≤ 15.(1)8cm(2)24cm 2(3)60cm 2(4) 17s16.(1)(10)D ∴,(2)362y x =-(3)193322ADC S ∴=⨯⨯-=V (4)P (6,3) 17.(1) 12a =;(2) 37y x =-或3142y x =-+;(3)2a m =+且2a >-且1a ≠.18.(1)150km h ,75km h;(2)225900y x =-(46x ≤≤ );(3)经过2小时与慢车相遇,相遇时他们距甲地的距离为300km19.(1)今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元;(2)该市明年至少需投入1800万元才能完成采购计划。
八年级数学(下)第十九章《一次函数》测试卷含答案
八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。
人教版数学八年级下册 第十九章 一次函数单元测试卷(含简单答案)
人教版数学八年级下册 第十九章 一次函数一、单选题1.下列函数中,是正比例函数的是( )A .y =7−xB .y =−4xC .y =2x−3D .y =2x 2+x−12.对于直线y =−12x−1的描述,正确的是( )A .y 随x 的增大而增大B .图象不经过第二象限C .经过点(−2,−2)D .与y 轴的交点是(0,−1)3.在平面直角坐标系中,将函数y =−2x +1的图象向下平移2个单位长度,所得函数图象的表达式是( )A .y =−2x +3B .y =−2x−3C .y =−2x +1D .y =−2x−14.如图,直线l 1:y =x +2与直线l 2:y =kx +b 相交于点P ,则方程组{y =x +2y =kx +b的解是( )A .{x =2y =0B .{x =1y =4C .{x =4y =2D .{x =2y =45.点A(2,y 1)和点B(−1,y 2)在直线y =−3x +b 上,则y 1,y 2的关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定6.一蓄水池中有50m 3的水,打开排水阀门开始放水后水池中的水量与放水时间有如下关系:放水时间/分1234…水池中的水量/m 348464442…下列说法不正确的是( )A .蓄水池每分钟放水2m 3B .放水18分钟后,水池中的水量为14m 3C .放水25分钟后,水池中的水量为0m 3D .放水12分钟后,水池中的水量为24m 37.如图,直线y =kx +b 与x 轴的交点的坐标是(﹣3,0),那么关于x 的不等式kx +b >0的解集是( )A .x >﹣3B .x <﹣3C .x >0D .x <08.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晩,乌龟还是先到达了终点.下图中与故事情节相吻合的是( )A .B .C .D .9.小丽和小明相约一起去体育公园锻炼身体.小丽从学校出发,小明从家里出发,学校、体育公园和小明家在同一直线步道上,两人同时出发,相向而行,同时到达体育公园,小明锻炼了半小时后,以原速度的23继续去学校,小丽锻炼了35分钟后,以原速度的56也返回学校,结果小明比小丽早7分钟到达学校.两人之间的距离s (m )与小丽出发的时间t (min )函数图象如图所示,则下列说法中错误的是( )A .小丽的原速度为60m/minB .小明的原速度是小丽的原速度的1.5倍C.点A的坐标是(52,0)D.当小明到达学校时,小丽距离小明家1150m 10.如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、…、A n B n C n C n−1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=x+1的图象上,点C1、C2、C3、…、C n均在x轴上,则点A2021的坐标为()A.(22021−1,22021)B.(22020−1,22020)C.(22021−1,22020)D.(22020−1,22021)二、填空题11.若函数y=(m−3)x|m−2|+3是一次函数,则m的值为.12.在平面直角坐标系xOy中,若正比例函数y=kx(k≠0)的图象经过A(1,3)和B(﹣1,m),则m的值为.13.若一次函数y=kx+b(k,b为常数,k≠0)的图像经过点A(−2,−1)和点B(1,2),则不等式kx+b≥2的解集为.14.已知点A(6,0)及在第一象限的动点P(x,y),且x+y=8.设△OPA的面积为S,则S关于x的函数解析式为.15.如图,在平面直角坐标系中,点P坐标(3,0),有一长度为2的线段AB在直线y=x+1的图象上滑动,则PA+PB的最小值为.16.如图1,已知长方形ABCD,动点P沿长方形ABCD的边以B→C→D的路径运动,记△ABP 的面积为y,动点P运动的路程为x,y与x的关系如图2所示,则图2中的m的值为.17.如图,在平面直角坐标系中,点A,B的坐标分别为(1,1),(1,4),直线y=2x+b与线段AB有公共点,则b的取值范围是.18.在某中学一次趣味运动会50米托盘乒乓球接力项目中(即乒乓球放入托盘内,参赛队员用手托住托盘运送乒乓球),初一(1)班和初一(2)班同台竞技,某时刻,1班的小敏和2班的小文分别位于50米赛道的起点A地和终点B地,他们同时出发,相向而行,分别以各自的速度匀速直线奔跑,过程中的某时刻,小敏不慎将乒乓球落在C地(A、B、C在同一直线上且乒乓球落在C地后不再移动),第6秒时小敏才发现并迅速掉头以原速去捡乒乓球,捡到球后,小敏将速度提升到小文速度的两倍迅速往B地匀速跑去,小敏掉头和捡球的时间忽略不计,如图是两人之间的距离y(米)与小敏出发的时间x(秒)之间的函数图象,则当小敏到达B地时,小文离A地还有米.三、解答题19.如图,在平面直角坐标系中,直线y=−x+8分别交x轴、y轴于A、B两点,点C(a,4)是直线上一点,点D在线段OA上,且AD=6.(1)求点D的坐标;(2)求CD所在直线的解析式;(3)在直线AB上是否存在一点P,使得S△ADP=18?若存在,求出点P的坐标;若不存在,请说明理由.20.如图,是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据函数图象,蓄电池剩余电量为35千瓦时汽车已经行驶的路程为____千米.当0≤x≤150时,消耗1千瓦时的电量,汽车能行驶的路程为_____千米.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶160千米时,蓄电池的剩余电量.21.上党腊驴肉是山西长治的传统名吃,其肉质肥而不腻、瘦而不柴,香味四溢、回味无穷.某特产专卖店购进一批袋装上党腊驴肉,进价为40元/袋.经市场调研发现,当销售单价为60元时,每天可售出300袋;销售单价每降低1元,每天可多售出20袋.设销售单价降低x元时,每天的销售量为y袋.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)该特产专卖店考虑房租、人工费等因素,计划销售这种腊驴肉的利润率不得低于40%,那么当销售单价定为多少元时,每天的销售量最大?最大销售量为多少袋?22.小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是米;小明在广场向行人讲解卫生防疫常识所用的时间是分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)23.描点画图是探究未知函数图象变化规律的一个重要方法,下面是通过描点画图感知函数y=−|x+2|+1图象的变化规律的过程:2(1)化简函数解析式,当x≥−2时,y=,x<−2时,y=;(2)根据表中的数据,完成如表,并画出该函数的图象:x…−301…y……(3)若另一个一次函数y=kx+b过点(−2,2),且与y=−|x+2|+1的图象有交点,则k的2范围是24.某公司为了计算游客游览,设置了观光接驳车,如图1所示,公园设计的其中一条观光路线上设有A,B,C,D四个站点,相邻两个站点的距离是相同的,游客只能在站点上下车,一两接驳车在A,D之间匀速往返行驶,某时刻这辆接驳车从点A站出发,当运行时间为t分钟时(游客上下车的时间忽略不计),这辆接驳车与A站的距离为y千米,y与t的函数图象如图2所示.综合上面信息,回答问题:(1)这辆接驳车的运行速度为千米/分钟,站点A,B之间的距离为千米;(2)当这辆接驳车运行到B站时,其对应的运行时间t为分钟;(3)小宇沿观光路线徒步游览,当他到达站点B,D之间的M处时,正好遇到开往D站的接驳车,此时他临时有事要赶回A站,于是他决定先返回走到B站,等待刚才那辆接驳车从D站开回,已知小宇步行的平均速度为0.1千米/分钟,若他能够不晚于这辆接驳车到达B 站,则M处离A站的最远距离为千米.参考答案1.B2.D3.D4.D5.B6.D7.A8.C9.C10.B11.112.-313.x ≥114.S =-3x +2415.3416.1217.−1≤b ≤218.1219.(1)点D 的坐标为(2,0)(2)y =2x−4(3)存在,点P 的坐标为(2,6)或(14,−6)20.(1)150,6;(2)y =−12x +110,3021.(1)y =300+20x (2)当销售单价定为4元时,每天的销售量最大,最大销售量为380袋22.(1)1280,6;(2)小华的速度为80米/分钟,小明从广场跑去学校的速度为120米/分钟;(3)7:51;(4)在保证不迟到的情况下,小明最多可以讲解1次23.(1)−x−32;x +52;(3)k <−1或k >1.24.(1)0.5;5;(2)10分钟和50分钟;(3)253。
人教版数学八年级下册:第十九章 一次函数 专题练习(附答案)
第十九章一次函数专题练习小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A B C D 4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A B C D 类型3动点问题中判断函数图象5.如图,在矩形ABCD 中,AB =3,BC =4,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,△ADP 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A B C D 6.如图,点P 是菱形ABCD 边上的动点,它从点A 出发沿A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A B C D类型4 从函数图象中获取信息7.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是( )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为 .小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( )A B C D5.如图,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A(1,-2),则k = ,b = .6.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为 .7.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 .8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y 随x 的增大而增大. 请你根据他们的叙述构造满足上述性质的一个函数: .9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为.11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.12.已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)y的值随x值的增大而;(3)求图象与x轴的交点A,与y轴的交点B的坐标;(4)在(3)的条件下,求出△AOB的面积.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b ――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ; ④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1 k 2,且b 1 b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为 ; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为 ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是 .2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为 ; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k = .思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.小专题(四)一次函数与坐标轴围成的三角形【教材母题】点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象;(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.小专题(五)一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg时需付行李费2元,行李质量为50 kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数关系式;(2)求旅客最多可免费携带行李的质量.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?参考答案:小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( B )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( C )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是(B)A B CD4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( C )A B CD类型3动点问题中判断函数图象5.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( D )A B CD6.如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( A )A B C D类型4从函数图象中获取信息7.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( D )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为7.小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( D ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( C )A .第一象限B .第二象限C .第三象限D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( C )A .第一象限B .第二象限C .第三象限D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( A )A B C D5.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,-2),则k=2,b=-4.6.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.7.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x 的增大而减小,则k所有可能取得的整数值为-1.8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y随x的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数:y=2x-1(答案不唯一).9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是m>n.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为(2n-1,2n-1).11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.解:(1)∵正比例函数y =kx 经过点(5,-10), ∴-10=5k ,解得k =-2. ∴这个函数的解析式为y =-2x.(2)将x =4代入y =-2x ,得y =-8≠-2, ∴点A(4,-2)不在这个函数图象上. (3)∵k =-2<0, ∴y 随x 的增大而减小. ∵x 1>x 2,∴y 1<y 2.12.已知一次函数y =2x +4.(1)在如图所示的平面直角坐标系中,画出函数的图象; (2)y 的值随x 值的增大而增大;(3)求图象与x 轴的交点A ,与y 轴的交点B 的坐标; (4)在(3)的条件下,求出△AOB 的面积.解:(1)函数图象如图所示. (3)A(-2,0),B(0,4). (4)由(3)可知,OA =2,OB =4, ∴S △AOB =12OA·OB=12×2×4=4.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ;④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1=k 2,且b 1≠b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为y =2x +2; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为y =-x ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是(0,4).2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为y =2x -9; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k =-34.思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.解:(1)直线y =-2x +4与x 轴的交点坐标为(2,0),与y 轴的交点坐标为(0,4). 设关于x 轴对称的直线解析式为y =mx +n ,则该直线经过点(2,0),(0,-4), ∴直线解析式为y =2x -4.设关于y 轴对称的直线解析式为y =sx +t ,则该直线经过点(-2,0),(0,4), ∴直线解析式为y =2x +4.(2)直线y =kx +b 关于x 轴对称的直线解析式为y =-kx -b ,关于y 轴对称的直线解析式为y =-kx +b.小专题(四) 一次函数与坐标轴围成的三角形【教材母题】 点P(x ,y)在第一象限,且x +y =8,点A 的坐标为(6,0).设△OPA 的面积为S.(1)用含x 的式子表示S ,写出x 的取值范围,画出函数S 的图象; (2)当点P 的横坐标为5时,△OPA 的面积为多少? (3)△OPA 的面积能大于24吗?为什么?解:(1)∵点A 和点P 的坐标分别是(6,0),(x ,y), ∴S =12×6×y =3y.∵x +y =8,∴y =8-x. ∴S =3(8-x)=24-3x. ∴S =-3x +24. ∵点P 在第一象限,∴x >0,y >0,即x >0,8-x >0.∴0<x <8. 图象如图所示.(2)当x =5时,S =-3×5+24=9. (3)不能.理由:令S >24,则-3x +24>24.解得x <0. ∵由(1),得0<x <8, ∴△OPA 的面积不能大于24.在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l 1在平面直角坐标系中,直线l 1与y 轴交于点A ,点B(-3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)已知直线l 2:y =x +b 经过点B ,与y 轴交于点E ,求△ABE 的面积.解:(1)由题意,得点C 的坐标为(-2,1). 设直线l 1的解析式为y =kx +c , ∵点B(-3,3),C(-2,1)在直线l 1上,∴⎩⎪⎨⎪⎧-3k +c =3,-2k +c =1.解得⎩⎪⎨⎪⎧k =-2,c =-3. ∴直线l 1的解析式为y =-2x -3.(2)把点B 的坐标代入y =x +b ,得3=-3+b , 解得b =6.∴y =x +6.∴点E 的坐标为(0,6). ∵直线y =-2x -3与y 轴交于点A , ∴A 的坐标为(0,-3).∴AE =6+3=9. ∵B(-3,3),∴S △ABE =12×9×|-3|=13.5.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.解:(1)当x =0时,y =-13x +1=1.∴点B 的坐标为(0,1). 当y =0时,-13x +1=0,解得x =3.∴点A 的坐标为(3,0). 过点C 作CE ⊥x 轴,垂足为E ,∵△ABC 为等腰直角三角形,∠BAC =90°, ∴∠BAO +∠CAE =90°,AB =CA. 又∵∠BAO +∠ABO =90°, ∴∠ABO =∠CAE.在△ABO 和△CAE 中,⎩⎨⎧∠AOB =∠CEA ,∠ABO =∠CAE ,AB =CA ,∴△ABO ≌△CAE(AAS). ∴AE =BO =1,CE =AO =3. ∴OE =AO +AE =4. ∴点C 的坐标为(4,3).(2)过点P 作PF ⊥x 轴,垂足为F , 设直线BC 的解析式为y =kx +b(k ≠0). 将B(0,1),C(4,3)代入y =kx +b ,得 ⎩⎨⎧b =1,4k +b =3,解得⎩⎪⎨⎪⎧k =12,b =1. ∴直线BC 的解析式为y =12x +1.∴S =12OA·PF =12×3×(12x +1)=34x +32(0<x <4).(3)不能.理由如下: 当S =92时,34x +32=92,解得x =4. ∵0<x <4,∴△OPA 的面积不能等于92.小专题(五) 一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg 时需付行李费2元,行李质量为50 kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数关系式;(2)求旅客最多可免费携带行李的质量.解:(1)设y 与x 的函数关系式为y =kx +b.将(20,2),(50,8)代入y =kx +b ,得⎩⎨⎧20k +b =2,50k +b =8,解得⎩⎪⎨⎪⎧k =15,b =-2.∴当行李的质量x 超过规定时,y 与x 之间的函数关系式为y =15x -2. (2)当y =0时,15x -2=0, 解得x =10.答:旅客最多可免费携带行李10 kg.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.解:(1)设销售甲种特产x 吨,则销售乙种特产(100-x)吨,根据题意,得10x +(100-x)×1=235,解得x =15.∴100-x =85.答:这个月该公司销售甲、乙两种特产分别为15吨、85吨.(2)设利润为w 元,销售甲种特产a 吨,根据题意,得w =(10.5-10)a +(1.2-1)×(100-a)=0.3a +20.∵0≤a ≤20,∴当a =20时,w 取得最大值,w 最大=26.答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意,得⎩⎨⎧x +y =100,4 000x +1 000y =160 000,解得⎩⎪⎨⎪⎧x =20,y =80. 答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨.由m ≤3(100-m),解得m ≤75,利润w =1 000m +400(100-m)=600m +40 000,∵600>0,∴w 随m 的增大而增大.∴m =75时,w 有最大值为85 000元.4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元.根据题意,得⎩⎨⎧20x +15y +7 000=24 000,10x -5y +1 000=2 000,解得⎩⎪⎨⎪⎧x =400,y =600.答:甲种办公桌每张400元,乙种办公桌每张600元.(2)设甲种办公桌购买a 张,则乙种办公桌购买(40-a)张,购买的总费用为M 元, 则M =400a +600(40-a)+2×40×100=-200a +32 000,∵a ≤3(40-a),∴a ≤30.∵-200<0,∴M 随a 的增大而减小.∴当a =30时,M 取得最小值,最小值为26 000元.答:购买甲、乙两种办公桌分别为30张、10张时,费用最少,为26 000元.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?解:(1)设每一个篮球的进价是x 元,则每一个排球的进价是90%x 元,依题意,得 3 600x +10=3 60090%x, 解得x =40.经检验,x =40是原方程的解.90%x =90%×40=36.答:每一个篮球的进价是40元,每一个排球的进价是36元.(2)设文体商店计划购进篮球m 个,总利润y 元,则y =(100-40)m +(90-36)(100-m)=6m +5 400.依题意,得⎩⎪⎨⎪⎧0<m <100,100-m ≥3m. 解得0<m ≤25且m 为整数.∵k =6>0,∴y 随m 的增大而增大.∴m =25时,y 最大,这时y =6×25+5 400=5 550.100-25=75(个).答:该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5 550元.6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?解:(1)y 甲=0.8x.y 乙=⎩⎪⎨⎪⎧x (0<x<2 000),0.7x +600(x ≥2 000). (2)当0<x<2 000时,0.8x<x ,到甲商店购买更省钱;当x ≥2 000时,若到甲商店购买更省钱,则0.8x<0.7x +600,解得x<6 000;若到乙商店购买更省钱,则0.8x>0.7x +600,解得x>6 000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6 000.故当购买金额按原价小于6 000元时,到甲商店购买更省钱;当购买金额按原价大于6 000元时,到乙商店购买更省钱;当购买金额按原价等于6 000元时,到甲、乙两商店购买一样.7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A 与终点B 之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y 与x 的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?解:(1)由图可得,起点A 与终点B 之间相距3 000米.(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点.(3)设甲龙舟队的y 与x 的函数关系式为y =kx.把(25,3 000)代入,可得3 000=25k ,解得k =120.∴甲龙舟队的y 与x 的函数关系式为y =120x(0≤x ≤25).设乙龙舟队的y 与x 函数关系式为y =ax +b.把(5,0),(20,3 000)代入,可得⎩⎨⎧0=5a +b ,3 000=20a +b ,解得⎩⎪⎨⎪⎧a =200,b =-1 000. ∴乙龙舟队的y 与x 的函数关系式为y =200x -1 000(5≤x ≤20).(4)令120x =200x -1 000,可得x =12.5.即当x =12.5时,两龙舟队相遇.当x <5时,令120x =200,则x =53(符合题意); 当5≤x <12.5时,令120x -(200x -1 000)=200,则x =10(符合题意);当12.5<x ≤20时,令200x -1 000-120x =200,则x =15(符合题意);当20<x ≤25时,令3 000-120x =200,则x =703(符合题意). 综上所述,甲龙舟队出发53分钟或10分钟或15分钟或703分钟时,两支龙舟队相距200米.。
人教版八年级下册数学第十九章 一次函数 含答案
人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是A. B. C. D.2、设正比例函数y=mx的图象经过点A(m,4),且y的值随x的增大而增大,则m=()A.2B.-2C.4D.-43、下列函数中,是一次函数的有()(1)y=πx (2)y=2x-1 (3)y= (4)y=2-3x (5)y=x2﹣1.A.4个B.3个C.2个D.1个4、如图,直线y=x+1分别与x轴、y轴交于点M,N,一组线段A1C1,A 2C2, A3C3,…AnCn的端点A1, A2, A3,…An依次是直线MN上的点,这组线段分别垂直平分线段OB1, B1B2, B2, B3,…,Bn﹣1Bn,若OB1=B1B2=B2B3=…=Bn﹣1Bn=4,则点An到x轴的距离为()A.4n﹣4B.4n﹣2C.2nD. 2n﹣25、某市体育馆将举办明星足球赛,为此体育馆推出两种团体购票方案(设购票张数为张,购票总价为元).方案一:购票总价由图中的折线所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.则两种方案购票总价相同时,的值为()A.80B.120C.160D.2006、一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),据此可知方程组的解为()A. B. C. D.7、把直线y=-x+3向上平移m个单位长度后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<48、如图直线l1:y=ax+b,与直线l2:y=mx+a交于点A(1,3),那么不等式ax+b<mx+n的解集是()A.x>3B.x<3C.x>1D.x<19、下列函数,y随x增大而减小的是()A.y=10xB.y=x﹣1C.y=﹣3+11xD.y=﹣2x+110、函数的自变量的取值范围是()A. x≥ 2B. x< 2C. x> 2D. x≤ 211、如图,两直线y1=kx+b和y2=bx+k在同一坐标系内图象的位置可能是()A. B. C. D.12、已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是8,则k 的值为()A. 或-4B.- 或4C. 或-2D.2或-213、如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm的速度运动(点P不与点A、点C重合),设点P运动时间为x 秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是()A. B. C. D.14、下列函数中,自变量的取值范围是的是( )A. B. C. D.15、将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x-1B.y=2x-2C.y=2x+1D.y=2x+2二、填空题(共10题,共计30分)16、将正比例函数y=﹣3x的图象向上平移5个单位,得到函数________的图象.17、函数y= 中自变量x的取值范围是________.18、若一次函数的图象如图所示,则此一次函数的解析式为________.19、如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组> > -2的解集是________20、已知函数y=(a+1)x+a2﹣1,当a________时,它是一次函数;当a________时,它是正比例函数.21、如图所示,购买一种苹果,所付款金额y(元)与购买量x(kg)之间的函数图象由线段OA和射线AB组成,则一次购买3kg这种苹果比分三次每次购买1kg这种苹果可节省________ 元.22、请写出一个一次函数的表达式,它的图象过点(0,﹣2),且y的值随x 值增大而减小,这表达式为:________.23、如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),不等式2x<kx+b<0的解集为________.24、一名老师带领x名学生到动物园参现,已知成人票每张30元,学生票每张10元,设门票的总费用为y元,则y与x的函数关系式为 ________ .25、若y与x的函数关系式为y=3x-2,当x=2时,y的值为________.三、解答题(共5题,共计25分)26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.28、某地教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?29、说出直线y=3x+2与;y=5x﹣1与y=5x﹣4的相同之处.30、某服装专卖店销售的甲品牌西服去年销售总额为50000元,今年每件西服售价比去年便宜400元,若售出的西服件数相同,则销售总额将比去年降低20%.(1)求今年甲品牌西服的每件售价.(2)若该服装店计划需要增进一批乙品牌西服,且甲、乙两种品牌西服共60件,而且乙品牌西服的进货件数不超过甲品牌件数的2倍,请设计出获利最多的进货方案.附:今年乙品牌和甲品牌西服的进货和售价如表:甲品牌乙品牌进价(元/件)1100 1400售价(元/件)﹣2000参考答案一、单选题(共15题,共计45分)1、C2、A3、B5、D6、A7、C8、D9、D10、A11、A12、A13、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
八年级数学下册《第十九章 一次函数》练习题及答案解析
八年级数学下册《第十九章 一次函数》练习题及答案解析学校:___________姓名:___________班级:____________一、单选题1.学习完“一次函数”,王老师出了一道题:已知0kb <,且0b >,则一次函数y kx b =+的图象大致是( )A .B .C .D .2.下列结论正确的个数是( )(1)直线y kx k =-一定经过点(1,0);(2)若直线y kx b =+不经过第四象限,则0,0k b >>;(3)若()()111222,,,P x y P x y 在直线(0)y kx b k =+<上,且12x x >,则12y y >;(4)若一次函数2(1)2y m x m =-++的图像交y 轴于点(0,3)A ,则1m =±.A .1B .2C .3D .43.下列问题中,两个变量之间成正比例关系的是( )A .圆的面积S (cm 2)与它的半径r (cm )之间的关系B .某水池有水15m 3,现打开进水管进水,进水速度为5m 3/h ,x h 后这个水池有水y m 3C .三角形面积一定时,它的底边a (cm )和底边上的高h (cm )之间的关系D .汽车以60km/h 的速度匀速行驶,行驶路程y 与行驶时间x 之间的关系4.如图,一次函数y =-3x +4的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合),过点P 分别作OA 和OB 的垂线,垂足为C ,D .若矩形OCPD 的面积为1时,则点P 的坐标为( )A .(13,3)B .(12,2)C .(12,2)和(1,1)D .(13,3)和(1,1) 5.下表中列出的是一个一次函数的自变量x 与函数y 的几组对应值:下列各选项中,正确的是( )A .y 随x 的增大而增大B .该函数的图象不经过第四象限C .该函数图象与坐标轴围成的三角形的面积为16D .该函数图象关于x 轴对称的函数的表达式为24y x =+6.一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)在同一平面直角坐标系中的图象可能是( )A .B .C .D . 二、填空题 7.若函数y =(k ﹣1)2k x +1是关于x 的一次函数,则k =______.8.如图,直线l 是一次函数y =kx +b 的图象,填空:(1)b =2,k =_____;(2)当x =30时,y =_____;(3)当y =30时,x =_____.9.一次函数y =k x +b 满足k b >0,且函数值y 随自变量x 的增大而增大,则此函数的图象不经过第______象限.10.直线y=2x-3与x轴的交点坐标是______,与y轴的交点坐标是______.11.将直线y=3x先向右平移3个单位,再向下平移2个单位得到的直线解析式是__.12.一次函数y=1-5x经过点(0,______)与点( ),0),y随x的增大而______.三、解答题13.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y.单位:L.与时间x.单位:分.之间的关系如图所示:(1)当0≤x≤4时,求y随x变化的函数关系式;(2)当4<x≤12时,求y与x的函数解析式;(3)每分钟进水、出水各是多少升?14.已知函数y=(2m-2)x+m+1的图象过一、二、四象限,求m的取值范围.15.已知三角形的周长为y(cm),三边长分别为9cm,5cm,x(cm).(1)求y关于x的函数表达式及其自变量x的取值范围.(2)当x=6时,求y的值.(3)当y=19.5时,求x的值.参考答案与解析:1.D【分析】先根据0kb <,且0b >判断出k 的正负,然后根据一次函数的性质判断即可.【详解】解:∵0kb <,且0b >,∵k <0,∵一次函数图象经过一二四象限.故先D .【点睛】本题考查了一次函数的图象与性质,对于一次函数y =kx +b (k 为常数,k ≠0),当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.当b >0,图象与y 轴的正半轴相交,当b <0,图象与y 轴的负半轴相交,当b =0,图象经过原点.2.A【分析】由直线与坐标轴的交点列方程求解来判断(1)(4)即可,根据一次函数的图像和性质判断(2),(3)即可.【详解】解:(1)把y =0代入y kx k =-,得x =1,所以直线y kx k =-一定经过点(1,0),故(1)正确; (2)根据一次函数的性质,若直线y kx b =+不经过第四象限,则k 0>,b 0≥,故(2)错误; (3) 若直线(0)y kx b k =+<,∴ y 随x 的增大而增减小,(x 1,y 1),(x 2,y 2)是直线y = k x + b 上的两点,x1>x 2,∴ y 1< y 2,故(3)错误;(4) 若一次函数2(1)2y m x m =-++的图像交y 轴于点(0,3)A ,223m ∴+=,∴ 1m =±(正值不合题意,舍去),1m ∴=-,故(4)错误,故选:A .【点睛】本题考查了一次函数的图像和性质,点和直线的位置关系,正确理解一次函数的图像和性质是解本题的关键.3.D【分析】分别列出每个选项的解析式,根据正比例函数的定义判断即可.【详解】解:A 选项,S =πr 2,故该选项不符合题意;B 选项,y =15+5x ,故该选项不符合题意;C 选项,∵12ah =S ,∵a =2S h,故该选项不符合题意; D 选项,y =60x ,故该选项符合题意;故选:D .【点睛】本题考查了正比例函数的定义,掌握形如y =k x (k ≠0)的函数是正比例函数是解题的关键.4.D【分析】由点P 在线段AB 上可设点P 的坐标为(m ,-3m +4)(0<m <43),进而可得出OC =m ,OD =-3m +4,结合矩形OCPD 的面积为1,即可得出关于m 的一元二次方程,解之即可得出m 的值,再将其代入点P 的坐标中即可求出结论.【详解】解:∵点P 在线段AB 上(不与点A ,B 重合),且直线AB 的解析式为y =-3x +4,∵设点P 的坐标为(m ,-3m +4)(0<m <43), ∵OC =m ,OD =-3m +4.∵矩形OCPD 的面积为1,∵m (-3m +4)=1,∵m 1=13,m 2=1, ∵点P 的坐标为(13,3)或(1,1). 故选:D .【点睛】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m 的一元二次方程是解题的关键.5.C【分析】利用待定系数法求出该一次函数的解析式为y =-2x -8,根据函数的增减性及经过的象限、与坐标轴的交点坐标求面积分别计算并判断.【详解】解:设该一次函数的解析式为y =k x +b ,将(-4,0),(-3,-2)代入,得4032k b k b -+=⎧⎨-+=-⎩,解得28k b =-⎧⎨=-⎩, ∵该一次函数的解析式为y =-2x -8;故D 错误;∵k =-2<0,∵y 随着x 的增大而减小,故A 错误;∵k =-2<0,b =-8<0,∵函数图象经过第二,三,四象限,故B 错误;当x =0时y =-8,当y =0时x =-4,∵图象与坐标轴的交点坐标分别为(-8,0),(0,-4),∵该函数图象与坐标轴围成的三角形的面积为184162⨯⨯=,故C 正确;故选:C .【点睛】此题考查了待定系数法求一次函数的解析式,一次函数的增减性,一次函数与图形面积,一次函数的性质,熟练掌握一次函数的知识并应用是解题的关键.6.B【分析】根据一次函数的图象与系数的关系,由一次函数y kx b =+图象分析可得k 、b 的符号,进而可得k b ⋅的符号,从而判断y kbx =的图象是否正确,进而比较可得答案.【详解】解:根据一次函数的图象分析可得:A 、由一次函数y kx b =+图象可知0k >,0b >,0kb >;正比例函数y kbx =的图象可知0kb <,矛盾,故此选项错误;B 、由一次函数y kx b =+图象可知0k >,0b <;即0kb <,与正比例函数y kbx =的图象可知0kb <,一致,故此选项正确;C 、正比例函数y kbx =的图象没有经过原点,故此选项错误;D 、由一次函数y kx b =+图象可知0k <,0b >;即0kb <,与正比例函数y kbx =的图象可知0kb >矛盾,故此选项错误;故选:B .【点睛】本题主要考查了一次函数图象,解题的关键是掌握一次函数y kx b =+的图象有四种情况:∵当0k >,0b >,函数y kx b =+的图象经过第一、二、三象限;∵当0k >,0b <,函数y kx b =+的图象经过第一、三、四象限;∵当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;∵当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象.7.-1【分析】根据形如y=k x+b (k≠0)是一次函数,可得答案.【详解】解:∵函数y=(k -1) 2k x +1是关于x 的一次函数,∵k-1≠0且k2=1,解得k=-1;故答案为:-1.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.8.23--18-42【解析】略9.四【分析】根据y随x的增大而增大得:k>0,又k b>0,则b>0.再根据k,b的符号判断直线所经过的象限.【详解】解:根据y随x的增大而减小得:k>0,又k b>0,则b>0,故此函数的图象经过第一、二、三象限,即不经过第四象限.故答案为:四.【点睛】本题考查了一次函数的性质,能够根据k,b的符号正确判断直线所经过的象限是解题的关键.10.(32,0)##(1.5,0)(0,﹣3)【分析】分别根据x、y轴上点的坐标特点进行解答即可.【详解】令y=0,则2x﹣3=0,解得:x32=,故直线与x轴的交点坐标为:(32,0);令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).故答案为(32,0),(0,﹣3).【点睛】本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.11.y=3x−11【分析】根据图象平移规律:左加右减,上加下减,即可解决问题.【详解】解:∵直线y=3x先向右平移3个单位,∵y=3(x−3),再向下平移2个单位得到y=3(x−3)−2,即y=3x−11.故答案为y=3x−11.【点睛】本题主要考查了一次函数图象的平移,熟记平移规律是解决问题的关键.12. 1, 15, 减小 【分析】先分别计算自变量为0时的函数值和函数值为0所对应的自变量的值,然后根据一次函数的性质回答增减性.【详解】当0x =时,151y x =-=;当0y =时,150x -=,解得15x =, 所以一次函数15y x =-经过点()0,1和点1,05⎛⎫ ⎪⎝⎭, 因为50k =-<,所以y 随x 的增大而减小.故答案为:1,15,减小. 【点睛】本题考查了一次函数的性质:0k >,y 随x 的增大而增大,函数从左到右上升;0k <,y 随x 的增大而减小,函数从左到右下降.由于y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴上,直线与y 轴交于负半轴.13.(1)y =5x (0≤x ≤4);(2)y =54x +15 (4≤x ≤12); (3)每分钟进水、出水各是5升、154升 【分析】(1)当0≤x ≤4时,设y 随x 变化的函数解析式为y =ax .将(4,20)代入,利用待定系数法即可求出对应的函数关系式;(2)当4<x ≤12时,设y 随x 变化的函数解析式为y =k x +b .将(4,20)、(12,30)代入,利用待定系数法即可求出对应的函数关系式;(3)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.(1)解:设y =ax .∵图象过(4,20),∵4a =20,∵a =5.∵y 随x 变化的函数关系式为y =5x (0≤x ≤4);(2)解:设y =k x +b .∵图象过(4,20)、(12,30),∵2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∵y 与x 的函数解析式为y =54x +15 (4≤x ≤12); (3)解:根据图象,每分钟进水20÷4=5升,设每分钟出水m 升,则 5×8﹣8m =30﹣20,解得:m =154, ∵每分钟进水、出水各是5升、154升. 【点睛】此题考查了一次函数的应用,正确理解题意,利用待定系数法求出函数的解析式是解题的关键.14.-1<m <1.【详解】试题分析:若函数y kx b =+的图象过一、二、四象限,则此函数的00k b ,,据此求解. 试题解析:∵函数()221y m x m =-++ 的图象过一、二、四象限,22010m m ∴-+<,>解得-1<m <1.15.(1)y =14+x (4<x <14)(2)y =20(3)x =5.5【分析】(1)根据三角形的周长公式,可得函数关系式,根据三角形三边的关系,可得自变量的取值范围;(2)根据自变量的值,代入函数关系式,可得函数值;(3)根据函数值,代入函数关系式,可得自变量的值.(1)解:由三角形的周长公式,得:y =9+5+x ,即y =14+x由三角形得三边的关系,得:9-5<x<9+5,即4<x<14.(2)解:当x=6时,y=14+6解得:y=20.(3)解:当y=19.5时,19.5=14+x解得:x=5.5.【点睛】本题考查了函数关系式,利用了三角形的周长公式,三角形三边的关系.。
期末备考 第十九章《一次函数》 实际应用选择专项(三)2020-2021学年 人教版八年级数学下册
八年级数学人教版下册期末备考:第十九章《一次函数》实际应用选择专项(三)1.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发后步行的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有()A.1个B.2个C.3个D.4个2.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm 3.2021年自贡环青龙湖半程马拉松的赛程是21.0975公里,甲乙两选手的行程y(千米)随时间x(时)变化的图象(全程)如图所示.有下列说法:①第1小时两人都跑了10千米;②起跑1小时过后,甲在乙的后面;③在起跑后的0.5至1.5小时,甲比乙跑得更慢;④乙比甲先到达终点.其中正确的说法有()A.1个B.2个C.3个D.4个4.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距km.其中正确的结论是()A.①③B.①④C.②③D.②③④5.在我国川西高原某山脉间有一河流,当河流中的水位上升到一定高度时因河堤承压有溃堤的危险.于是水利工程师在此河段的某处河堤上修了一个排水的预警水库联通另一支流.当河流的水位超过警戒位时就有河水流入预警的水库中,当水库有一定量的积水后,就会自动打开水库的排水系统流入另一支流.当河流的水位低于警戒位时水库的排水系统的排水速度则变慢.假设预警水库的积水时间为x分钟,水库中积水量为y吨,图中的折线表示某天y与x的函数关系,下列说法中:①这天预警水库排水时间持续了80分钟;②河流的水位超过警戒位时预警水库的排水速度比进水速度少25吨/分;③预警水库最高积水量为1500吨;④河流的水位低于警戒位时预警水库的排水速度为30吨/分.其中正确的信息判断是()A.①④B.①③C.②③D.②④6.杆秤是我国传统的计重工具.如图,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的质量.称重时,若秤砣到秤纽的水平距离为x(单位:cm)时,秤钩所挂物重为y(单位:kg),则y是x的一次函数.下表记录了四次称重的数据,其中只有一组数据记录错误,它是()组数 1 2 3 4x/cm 1 2 4 7y/kg0.80 1.05 1.65 2.30A.第1组B.第2组C.第3组D.第4组7.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度为()A.10米/秒B.11米/秒C.12米/秒D.13米/秒8.在一条公路上每隔100千米有一个仓库(如图),共有五个仓库.1号仓库存有10吨货物,2号仓库存有20吨货物,5号仓库存有40吨货物,其余两个仓库是空的.现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.5元的运费,那么最少要花()元运费才行.A.5000 B.5500 C.6000 D.6500 9.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为40米/分;②乙用9分钟追上甲;③整个过程中,有4个时刻甲乙两人的距离为90米;④乙到达终点时,甲离终点还有280米.其中正确的结论有()A.①③B.①②④C.①③④D.①②③④10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1 B.2 C.3 D.411.在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C站,乙车由B 地驶往A地,两车同时出发,匀速行驶甲、乙两车离C站的距离y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论:①A、B两地相距360千米;②甲车速度比乙车速度快15千米/时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇.其中正确的结论有()A.1 B.2个C.3个D.4个12.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地13.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地.设甲、乙两车距A地的路程为y千米,甲车行驶的时间为x小时,y与x之间的关系如图所示,对于以下说法:①甲车从A地到达B地的行驶时间为2小时;②甲车返回时,y与x之间的关系式是y=﹣100x+550;③甲车返回时用了3个小时;④乙车到达A地时,甲车距A地的路程是170千米.其中正确的结论是()A.①②B.②③C.③④D.②③④14.甲、乙两船沿直线航道AC匀速航行.甲船从起点A出发,同时乙船从航道AC中途的点B出发,向终点C航行.设t小时后甲、乙两船与B处的距离分别为d1,d2,则d,d2与t的函数关系如图.下列说法:1①乙船的速度是40千米/时;②甲船航行1小时到达B处;③甲、乙两船航行0.6小时相遇;④甲、乙两船的距离不小于10千米的时间段是0≤t≤2.5.其中正确的说法的是()A.①②B.①②③C.①②④D.①②③④15.甲、乙两辆摩托车同时从相距40km的A、B两地出发,相向而行、图中l1,l2、分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.6小时甲摩托车行驶到A、B两地的中点C.经过小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离B地km16.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①m=1;②a=40;③甲车从A地到B地共用了7小时;④当两车相距50km时,乙车用时为h.其中正确结论的个数是().A.4 B.3 C.2 D.117.一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则下列说法中错误的是()A.每分钟进水5LB.每分钟出水3.75LC.容器中水为25L的时间是8min或14minD.第2或min时容器内的水恰为10升18.有甲、乙两车从A地出发去B地,甲比乙车早出发,如图中m1、m2分别表示两车离开A地的距离y(km)与行驶时间t(h)之间的函数关系.现有以下四个结论:①m1表示甲车,m2表示乙车;②乙车出发4小时后追上甲车;③两车相距100km的时间只有甲车出发11小时的时候;④若两地相距260km,则乙车先到达B地,其中正确的是()A.①②③④B.②③④C.①②③D.①②④19.有一个进水管和一个出水管的容器,从某时刻开始5分钟内只进水不出水,在随后的20分钟内既进水又出水,在第25分钟开始只出水不进水,每分钟的进水量和出水量是两个常数,容器内水量(L)与时间(min)之间的函数关系如图所示,求在第33分钟时,容器内剩余水量为()A.8 B.10 C.12 D.1420.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,判断下列说法中错误的是()A.小明从家步行到学校共用了20分钟B.小明从家步行到学校的平均速度是90米/分C.当t<8时,s与t的函数解析式是s=120tD.小明从家出发去学校步行15分钟时,到学校还需步行360米参考答案1.解:由图可得,甲步行的速度为:180÷3=60米/分,故①正确,乙走完全程用的时间为:1800÷(12×60÷9)=22.5(分钟),故②正确,乙追上甲用的时间为:12﹣3=9(分钟),故③正确,乙到达终点时,甲离终点距离是:1800﹣(3+22.5)×60=270米,故④正确,故选:D.2.解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,∵该函数经过点(6,15),(20,22),∴,解得,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故选:A.3.解:由图象可得,第1小时两人相遇,都跑了10千米,故①正确;由纵坐标看出,起跑后1小时后,甲在乙的后面,故②正确;由纵坐标看出,起跑后0.5小时,甲在乙的前面,起跑后1小时,乙追上甲,起跑后1.5小时,乙在甲的前面,所以在起跑后的0.5至1.5小时,甲比乙跑得更慢,故③正确;④起跑后2小时,乙到达终点,2小时后,甲才到达终点,所以乙比甲先到达终点,故④正确;故选:D.4.解:由图可得,乙车出发1.5小时后甲已经出发一段时间,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是40÷3=(km/h),故③正确;当乙车出发2小时时,两车相距:[20+40×(2﹣1.5)]﹣×2=(km),故④正确;故选:D.5.解:由图象得:0~10分,水库开始积水,10~30分,水库有一定量的积水,水库的排水系统打开,30~80分时,水库停止进水,只排水,这天预警水库排水时间持续了80﹣10=70分钟,故①错误;=25(吨/分),也就是水位超过警戒位时预警水库的排水速度比进水速度少25吨/分,②正确;从图象看出预警水库积水量为1500吨时停止进水,并不能反映出预警水库的最高积水量,③错误;从图象看出河流的水位低于警戒位时预警水库的排水速度为1500÷(80﹣30)=30(吨/分),④正确.故选:D.6.解:设y=kx+b,把x=1,y=0.80,x=2,y=1.05代入可得:,解得,∴y=0.25x+0.55,当x=4时,y=0.25×4+0.55=1.55,∴第3组数据不在这条直线上,当x=7时,y=0.25×7+0.55=2.30,∴第4组数据在这条直线上,故选:C.7.解:设甲车的速度为v1m/s,乙车的速度为v2m/s,由图象可知:开始时,乙车与甲车相距300米,乙车用100秒追上了甲车,∴100v1+300=100v2,装完货物后,甲乙两车行驶了20秒后,两车相距500米,∴20v1+20v2=500,∴,解得:,故选:B.8.解:设把所有的货物集中存放在x号仓库里,需要的总运费为w元,当x≤2时,w=10×(x﹣1)×100×0.5+20×(2﹣x)×100×0.5+40×(5﹣x)×100×0.5=﹣2500x+11500,∵﹣2500<0,∴w随x的增大而减小,∴当x=2时,w取得最小值,最小值=﹣2500×2+11500=6500;当2<x≤5时,w=10×(x﹣1)×100×0.5+20×(x﹣2)×100×0.5+40×(5﹣x)×100×0.5=﹣500x+7500,∵﹣500<0,∴w随x的增大而减小,∴当x=5时,w取得最小值,最小值=﹣500×5+7500=5000.∵6500>5000,∴最少要花5000元运费才行.故选:A.9.解:由题意可得:甲步行的速度为=40(米/分);故①结论正确;由图可得,甲出发9分分钟时,乙追上甲,故乙用6分钟追上甲,故②结论错误;由函数图象可得:当y=90时,有4个时刻甲乙两人的距离为90米,故③结论正确;设乙的速度为x米/分,由题意可得:9×40=(9﹣3)x,解得x=60,∴乙的速度为60米/分;∴乙走完全程的时间==20(分),乙到达终点时,甲离终点距离是:1200﹣(3+20)×40=280(米),故④结论错误;故正确的结论有①③④共3个.故选:C.10.解:由图可得,甲乙两地的距离为150×3=450(千米),故①正确;∵两车相遇时轿车比货车多行驶了90千米,两车相遇时正好是3小时,∴轿车每小时比货车多行驶30千米,∴轿车的速度为:[450÷3﹣30]÷2+30=90(千米/小时),故②错误;货车的速度为:[450÷3﹣30]÷2=60(千米/小时),故③错误;轿车到达乙地用的时间为:450÷90=5(小时),此时两车间的距离为:60×5=300(千米),故④正确;由上可得,正确的是①④,故选:B.11.解:①A、B两地相距=360+80=440(千米),故①错误,②甲车的平均速度==60(千米/小时),乙车的平均速度==40(千米/小时),∴甲车速度比乙车速度快60﹣40=20(千米/小时),故②错误•,③440÷40=11(小时),∴乙车行驶11小时后到达A地,故③正确,④设t小时相遇,则有:(60+40)t=440,∴t=4.4(小时),∴两车行驶4.4小时后相遇,故④正确,故选:B.12.解:由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王浩月的速度为:24÷1﹣8=16(km/h),王浩月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.13.解:①300÷(180÷1.5)=2.5(小时),所以甲车从A地到达B地的行驶时间是2.5小时,故①错误;②设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴y与x之间的函数关系式是y=﹣100x+550,故②正确;③5.5﹣2.5=3,∴甲车返回时用了3个小时,故③正确;④乙车的速度为(300﹣180)÷1.5=80(千米/小时),300÷80=3.75,x=3.75时,y=﹣100×3.75+550=175千米,所以乙车到达A地时甲车距A地的路程是175千米,故④错误,所以②③正确,故选:B.14.解:乙船从B到C共用时3小时,走过路程为120千米,因此乙船的速度是40千米/时,①正确;乙船经过0.6小时走过0.6×40=24千米,甲船0.6小时走过60﹣24=36千米,所以甲船的速度是36÷0.6=60千米/时,开始甲船距B点60千米,因此经过1小时到达B点,②正确;航行0.6小时后,甲乙距B点都为24千米,但是乙船在B点前,甲船在B点后,二者相距48千米,因此③错误;开始后,甲乙两船之间的距离越来越小,甲船经过1小时到达B点,此时乙离B地40千米,航行2.5小时后,甲离B地:60×1.5=90千米,乙离B地:40×2.5=100千米,此时两船相距10千米,当2.5<t≤3时,甲乙的距离小于10,因此④正确;综上所述,正确的说法有①②④.故选:C.15.解:由图象可得,乙摩托车的速度较快,故选项A正确;经过0.6小时甲摩托车行驶到A、B两地的中点,故选项B正确;甲车的速度为40÷1.2=(km/h),乙车的速度为:40÷1=40(km/h),故甲乙两车相遇的时间为:=(小时),故选项C错误;当乙摩托车到达A地时,甲摩托车距离B地×(1.2﹣1)=km,故选项D正确;故选:C.16.解:由题意,得m=1.5﹣0.5=1,故①结论正确;120÷(3.5﹣0.5)=40(km/h),则a=40,故②结论正确;设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得:,解得,当y=260时,260=40x﹣20,解得:x=7,∴甲车从A地到B地共用了7小时,故③结论正确;当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得:,解得,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=,当40x﹣20+50=80x﹣160时,解得:x=,∴,,所以乙车行驶小时或小时,两车恰好相距50km,故④结论错误.∴正确结论的个数是3个.故选:B.17.解:A.每分进水的速度为:20÷4=5(L/min);B.出水管的出水速度是每分钟5﹣==3.75(L/min);C.设当4≤x≤12时,求y与x的函数解析式为y=kx+b,根据题意得,解得,∴y=x+15(4≤x≤12);设tmin时该容器内的水恰好为25升,根据题意得,t+15=25或30﹣3.75×(t﹣12)=25,解得t=8或.即容器中水为25L的时间是8min或min;D.设m分钟时该容器内的水恰好为10升,根据题意得,5m=10或30﹣3.75×(m﹣12)=10,解得m=2或,即第2或min时容器内的水恰为10升.故说法中错误的是C.故选:C.18.解:由题意可得,m表示甲车,m2表示乙车,故①正确;1甲的速度为160÷4=40(km/h),乙车的速度为120÷(4﹣2)=60(km/h),设乙车出发a小时后追上甲车,60a=40(a+2),解得,a=4,即乙车出发4小时后追上甲车,故②正确;当t=2时,甲乙两车相距40×2=80(km),故两车相距100km的时间只有在两车相遇之后,设甲车出发b小时时,两车相距100km,60(b﹣2)﹣40b=100,解得,b=11,即两车相距100km的时间只有甲车出发11小时的时候,而如果甲车出发不到11小时乙就到达B地,则此小题的说法错误,故③错误;260÷40=6.5(小时),260÷60=4(小时),∵6.5>4+2,∴若两地相距260km,则乙车先到达B地,故④正确;故选:D.19.解:当5≤x<25时,设y=kx+b,将(5,30),(15,40)代入得,解得:,故y=x+25,当x=25时,设y=25+25=50,当25≤x<35时,设y=k1x+b1,将(25,50),(35,0)代入,解得:,故y=﹣5x+175,当x=33时,设y=﹣5×33+175=10,故选:B.20.解:由图象可知,小明从家步行到学校共用了20分钟,故A正确;根据图象,小明从家步行到学校共用了20分钟,所以小明的平均速度为1800÷20=90(米/分),故B正确;当1<8时,小明走的路程为960米,速度为960÷8=120(米/分),s与t的函数解析式是s=120t,故C正确;当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∴s=70t+400;当t=15时,s=1450,1800﹣1450=350(米),∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故D错误.故选:D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数练习题 姓名: 2014.4.21用
一、选择题
1.下列函数(1)y =2πx ;(2)y =2x -7;(3)y =-1x
;(4)y =3x+1中,是一次函数的有( ) A .4个 B .3个 C .2个 D .1个
2.一次函数y=-x-7的图象不经过的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.函数y =
x 的取值范围是( ) A .2x >- B .2x -≥ C .2x ≠- D .2x -≤
4.若正比例函数的图像经过点(1,2),则这个图像必经过点( )
A .(1,2)
B .(-1,-2)
C .(2,-1)
D .(1,-2)
5.已知函数y=kx+b 的图象如图,则y=2kx+b 的图象可能是( )
6.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y= -x 图象上的两点,则下列判断正确的是( )
A .y 1>y 2
B .y 1<y 2
C .当x 1<x 2时,y 1>y 2
D .当x 1<x 2时,y 1<y 2
7.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )
A .12分钟
B .15分钟
C .25分钟
D .27分钟
二、填空题(每题5分,共25分)
8.已知函数y=(m-2)x+m 2-4是正比例函数,则m=_____________.
9.当x=___时,函数y=2x+4与y=x-3有相同的函数值是 .
10.把直线y=-3x+2沿y 轴向下平移1个单位,所得直线的函数关系式为_____________.
11.一次函数y=4-x 与y=2x-5的图像交点坐标是_______.
12.一次函数y=-2x+4的图象与x 轴交点坐标是___ ____,与y 轴交点坐标是_______,图象与坐标轴所围成的三角形面积是________.
三、计算题
13.根据右图求该函数解析式。
14.一次函数y=kx+4的图象经过点(-2,-2),则
(1)求这个函数表达式;
(2)画出该函数的图象.
15. 求直线y=x-2与直线y=2x+5的交点坐标?。