19.2.1.1正比例函数(第1课时)
人教版《正比例函数》(上课)课件PPT1
课堂练习
1.下列关系中的两个量,成正比例函数关系的是( C ) A.从甲地到乙地,所用的时间和速度 B.正方形的面积与边长 C.买同样的作业本所要的钱数和作业本的数量 D.人的体重与身高
2.如果 y=x+2a-1 是正比例函数,那么 a 的值是( A )
A.12
B.0 C.-12
D.-2
3.下列函数中,哪些是正比例函数?并指出正比例函数的比例系数. (1)y=-4x;(2)y=3x-1;(3)y=56x ;(4)y=9x ;(5)y=-0.9x;(6)y=( 5 -1)x.
巩固新知
1.下列函数中,是正比例函数的是( D ).
A.①②
B.②③
C.③④
D.②⑤
③ y=3x+9 不符合 y=kx(k≠0) 的形式;
所以①③④不是正比例函数,②⑤符合正比例函 数的定义,是正比例函数.
2.判断下列式子是否为正比例函数,是正比例函数的请写 出正比例系数. (1)y=-3x 是正比例函数,其中正比例系数是 -3.
m=7.9V
(3)每个练习本的厚度为 0.5 cm,一些练习本摞在一起 的总厚度 h(单位:cm)随练习本的本数 n 的变化而变化.
h=0.5n
(4)冷冻一个 0℃ 的物体,使它每分下降 2℃ ,物体
的温度 T(单位:℃)随冷冻时间 t(数解析式有什么共同特点? 这样的函数解析式怎么定义?
以上四个函数解析式都是常数与自变量的 积的形式,这样的函数叫做正比例函数.
概念 : 一般地,形如 y=kx(k是常数,k≠0)的函数, 叫做正比例函数,其中k叫做比例系数.
(1)正比例函数必须满足两个条件:①比例系数k 是常数,且k≠0;②两个变量x、y的次数都是1. (2)一般情况下,正比例函数自变量的取值范围 是全体实数,但在实际问题中,还要使实际问题有 意义.
19.2.1正比例函数(第一课时正比例函数的概念)
19.2.1 正比例函数第1课时 正比例函数的概念一、知识回顾:1.函数的概念:在一个 过程中有 变量x 与y ,并且对于x 的 确定的值,y 都有 的值与其对应,那么我们就说x 是 ,y 是x 的 。
2. 表示函数的方法有:、 、3. 用描点法画函数图像的一般步骤为:、 、 、 。
二、新知探究:1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l 随半径r 的变化而变化.(2)铁的密度为7.8g/cm3,铁块的质量m (单位:g )随它的体积V (单位:cm3)的变化而变化.(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h (单位:cm )随练习本的本数n 的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体温度T (单位:℃)随冷冻时间t (单位:min )的变化而变化.2.思考:(1)认真观察以上出现的四个函数解析式,分别说出哪些是函数、常数和自变量.(2)这些函数解析式在结构上有什么共同特点?归纳:一般地,形如 ( )的函数,叫做正比例函数,其中 叫做比例系数.三、针对训练。
1.在下列函数中,哪些是正比例函数?并指出正比例系数分别是多少.①y=x, ②y=6x 2, ③ y=2x , ④y=x -4, ⑤ ⑥y=-x ⑦2. 判定正误:下列说法正确的打“√”,错误的打“×”(1)若y=kx ,则y 是x 的正比例函数( )(2)若y=4x2,则y 是x 的正比例函数( )(3)若y=4(x -1),则y 是x 的正比例函数( )(4)若y=4(x -1)+4,则y 是x 的正比例函数( )(5)若y=4(x -1) ,则y 是x -1的正比例函数( )3.2011年开始运营的京沪高速铁路全长1318千米,设列车的平均速度为300千米每小时。
考虑以下问题: x y 1-=x 2132)2(--=m x m y (1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时?(保留一位小数)(2)京沪高铁的行程ykm 与时间th 之间满足函数关系吗?若满足请写出解析式。
《19.2.1正比例函数》作业设计方案-初中数学人教版12八年级下册
《正比例函数》作业设计方案(第一课时)一、作业目标本作业设计旨在通过正比例函数的基础知识学习,使学生能够理解正比例函数的概念、图像及性质,掌握正比例函数的基本运算,为后续学习打下坚实基础。
二、作业内容1. 基础知识练习:(1)理解正比例函数的概念,掌握其定义及表达形式。
(2)能根据已知条件,判断一个函数是否为正比例函数。
(3)理解正比例函数的图像特征,并能根据函数表达式绘制其图像。
2. 运算技能训练:(1)掌握正比例函数的基本运算,包括加减、乘除等。
(2)通过实例练习,掌握正比例函数在实际问题中的应用。
3. 问题解决能力培养:(1)通过典型例题,提高学生运用正比例函数知识解决实际问题的能力。
(2)鼓励学生探索不同解题方法,培养其创新思维能力。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案。
2. 学生在完成作业过程中,应注重思考与总结,形成自己的解题思路。
3. 作业应字迹工整,答案准确,步骤完整。
4. 在解决问题时,学生应尝试多种方法,拓展思路,提高解题能力。
四、作业评价1. 教师将对每位学生的作业进行批改,评价其正确性、规范性及创新性。
2. 评价标准包括基础知识掌握、运算技能、问题解决能力等方面。
3. 对于优秀作业,将在课堂上进行展示,鼓励其他学生学习借鉴。
五、作业反馈1. 教师将根据学生作业情况,进行针对性的辅导和指导,帮助学生解决学习中遇到的问题。
2. 对于共性问题,教师将在课堂上进行讲解和示范,确保学生能够掌握相关知识。
3. 鼓励学生之间互相交流学习心得和解题方法,形成良好的学习氛围。
4. 定期组织学生进行阶段性测试,检验学生对正比例函数知识的掌握情况,及时调整教学策略。
通过以上作业设计,旨在通过系统性的练习和思考,让学生更加深入地理解和掌握正比例函数的知识,同时提高其运算能力和问题解决能力。
相信在教师与学生共同努力下,学生们将能够取得良好的学习效果,为后续的数学学习打下坚实的基础。
人教版初二数学下册19.2.1正比例函数(第一课时)
培养学生的概括能 力,使知识形成体 系。
基础
训练
1.如果y=(k-1)x,是y关于x的正比例函数,贝Uk满足
学生独立思考 总结规律。
及时巩固正比例函
数的定义。
2.如果y =kxk」,是y关于x的正比例函数,则
k=.3.如果y=3x+k4,是y关于x的正比例函数,贝U
k=.
4.右y关于x成正比例函数,当x=4时,y=-2.
出示教材86页思考。
学生独立思考
回答问题
由生活中的事例 引出本节课的内 容,吸引了学生的 注意力。
自主 探究
问题探究:
在L=2nr、m=7.8V、h=0.5n、T=-2t中,
(1)以上对应关系都是函数关系吗?其变量和常量分别
是什么?进一步指出谁是自变量,谁是函数?
(2) 这4个函数表达式与问题1的函数表达式y=300t有何共同特征?请你用语言加以描述。
19.2.1正比例函数(1)
1、 正比例函数的定义3、练习
2、正比例函数的特征
反 思 升 华
课题
1921正比例函数(1)
课型
新授
课时
1
主备
网户学校数学备课组
教师
刘丹
负责 领导
孙绍光
知识与技能:经历正比例函数概念的形成过程,理解正比例函数的概念;
教学
目标
能根据已知条件确定正比例函数的解析式,体会函数建模思想。
过程与方法:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题
抽象为函数模型,体会函数建模思想。
学生独立思 考,探究,给 出答案。
培养学生分析问题 和解决问题的能 力。
交流
完善 兀善
《正比例函数》课件优秀(完整版)1
呢? (4)冷冻一个0°C的物体,使它每
(3)每个练习本的厚度为, 小结 :
((52) )y认=真-4x观+察3;自变从量和函常量数运用关什么系运算看符号,连接关起来键的?是这些比常量例可以系取哪数些值k?,比例系数k一确定,
(3)一个长方体的长为2cm,宽为,高为xcm ,体积为ycm3.
(2) (单;位:cm)随练习本的本数n的
(3)y=2x2 ;
变化而变化. (1)正方形的边长为xcm,周长为ycm.
(3)每个练习本的厚度为, (4)y2=4x;
h0.5n 从方程角度看,如果三个量x、y、k中已知其中两个量,则一定可以求出第三个量.
函数关系式是常量与自变量的乘积. 如果y=kx+k-3,是y关于x的正比例函数,则k=__________. 如果y=(k-1)x,是y关于x的正比例函数,则k满足________________.
• 问题探究:在 l 2πr 、 m7.8V 、h0.5n 和 T2t 中 :
(1)以上对应关系都是函数关系吗?其变量和常量 分别是什么?进一步指出谁是自变量,谁是函数?
(2)认真观察自变量和常量运用什么运算符号连接 起来的?这些常量可以取哪些值?
(3)这几个函数表达式有何共同特征?请你用语言 加以描述.
随(冷3)冻每时个间练t(习单本位的:厚m度in为),的变化而变
列必(y=式须33)x表 知y是示道=2比正下两x2比列个例;例问变系函题量数数中x、yk与y一的x的一确函对定数对,关应系值正,即比并可例指确出定函它k数.是就不是确正定比;例函必数须.知道两个变量x、y的一对对应值即可确定k.
4.从方程角度看: 随冷冻时间t(单位:min)的变化而变
八年级数学下册19.2.1正比例函数(第1课时)教案新人教版
19.2。
1 正比例函数(第1课时)【教材分析】
【教学流程】
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
人教版八下数学19.2.1 课时1正比例函数的概念教案+学案
人教版八年级下册数学第19章一次函数19.2一次函数19.2.1正比例函数课时1正比例函数的概念教案【教学目标】知识与技能目标认识正比例函数的意义,掌握正比例函数解析式特点.过程与方法目标能利用正比例函数知识解决相关实际问题.情感、态度与价值观目标通过对实际问题的解决,亲身感受数学来源于生活,体会在学习中与同学合作交流获得成功的喜悦,增强学习的自信心.【教学重点】理解正比例函数意义及解析式特点.【教学难点】掌握正比例函数的解析式的求法.【教学过程设计】一、情境导入导入一:2011年开始运营的京沪高速铁路全长1318 km.设列车平均速度为300 km/h.考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站海虹桥站,约需多少小时(结果保留小数点后一位)?(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了距始发站1100 km的南京南站?学生先独立思考上面提出的问题,再以小组为单位进行交流.教师解析:(1)1318÷300≈4.4(h).(2)y=300t.(3)y=300×2.5=750(km), 故列车尚未到达距始发站1100 km的南京南站.y=300t中,变量和常量分别是什么?其对应关系是函数关系吗?谁是自变量,谁是函数?自变量与常量按什么运算符号连接起来的?由此引出今天学习的课题:正比例函数.[设计意图]通过这一环节,让学生体会到正比例函数来源于生活实际,通过实例引入,激发学生学习数学的兴趣.导入二:一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到1千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?学生在练习本上独立完成,有困难的小组讨论、交流.教师总结,全班讲评.一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈202(千米).若设这只燕鸥每天飞行的路程为202千米,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为y=202x(0≤x≤127).这只燕鸥飞行1个半月的行程,大约是x=45时函数y=202x的值.即:y=202×45=9090(千米).以上我们用y=202x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=202x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?今天学习的课题:正比例函数.[设计意图]通过这一环节,使学生认识到数学总是与现实问题密不可分的,人们的需要产生数学.二、新知构建1.正比例函数概念思路一下列问题中的变量对应规律可用怎样的函数表示?(1)圆的周长l随半径r的大小变化而变化;(2)铁的密度为7.8 g/cm3,铁块的质量m(单位:g)随它的体积V(单位: cm3)的大小变化而变化;(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数 n 的变化而变化;(4)冷冻一个0 ℃物体,使它每分下降2 ℃,物体的温度T (单位: ℃)随冷冻时间t (单位:分)的变化而变化.学生先独立思考上面提出的问题,再以小组为单位进行交流.教师解析: (1)l =2πr ;(2)m = 7.8V ;(3)h =0.5 n ;(4)T =-2t.引导学生认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数.函数解析式常数 自变量 函数 (1)l =2πr2π r l (2)m =7.8V7.8 V m (3)h =0.5n0.5 n h (4)T =-2t -2 t T提问:这些函数有什么共同点?学生观察这些函数关系式,发现这些函数都是常数与自变量乘积的形式,和y =300t ,y =200x 的形式一样.教师归纳:一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.[设计意图] 由实际问题入手,设置情境问题,激发学生的兴趣,体会数学来源于生活,又应用于生活,让学生初步感受正比例函数在实际生活中的应用.思路二前面我们学习了函数的概念,学会了用描点法来画函数的图象,观察下列函数的解析式,发现它们有什么特点?(1)y =3x ; (2)y =-6x ; (3)y =x ; (4)y =-x.师生共同分析:上述这些函数都是常数与自变量乘积的形式,我们把形如这样的函数叫做正比例函数.一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数. 教师强调:(1)常量:k ,变量:x ,y ,自变量取值范围:全体实数;(2)正比例函数的函数y 与自变量x 之间就是正比例关系的量.[设计意图] 通过观察所给函数的结构特点,让学生寻找这些函数具有的规律,让学生体会由特殊到一般来解决问题的方法.2.例题讲解例1 (补充)下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.① y =31x ;② y =x32;③ y =﹣x 6;④ y =2x ;⑤y =x 2+1;⑥ y =5x +2. 〔解析〕 观察所给的函数表达式,看是否满足正比例函数y =kx 的形式来求解.解:① y =31x 是正比例函数,正比例系数k =31. ④ y =2x 是正比例函数,正比例系数k =2.②,③,⑤,⑥ 都不是正比例函数.[设计意图] 通过设计一组函数,让学生利用正比例函数的定义进行判断求解,帮助学生及时复习所学的概念.例2 (补充)①若y =(k -1)x 是正比例函数,则 ;②若y =2x m 是正比例函数,则m = .③在函数y =(k -2)中,当k = 时,为正比例函数.〔解析〕 根据正比例函数定义,利用比例系数k ≠0,或者x 的指数为1列不等式或方程进行求解.①∵y =(k -1)x 是正比例函数,∴k -1≠0,∴k ≠1.②∵y =2x m 是正比例函数,∴m =1.③∵函数y =(k -2)为正比例函数,∴∴k =-2.答案:①k ≠1 ②1 ③-2[设计意图] 通过设计一组填空题,让学生根据正比例函数的比例系数和未知数的指数来列不等式或方程来求字母的取值.例3(补充)若y 与x -2成正比例关系,且x =4时,y =5.求y 关于x 的函数关系式. 〔解析〕 先根据y 与x -2成正比例关系可设y =k (x -2),再把x =4时,y =5代入求出k 的值即可.解:设y =k (x -2),则有k (4-2)=5,解得k =25. 所以y 关于x 的函数关系式为y =25x -5. [设计意图] 通过设计代数式之间成正比例关系,利用方程的思想进行求解,让学生更深刻理解正比例函数的定义.三、教学小结本节课学习了正比例函数的概念:形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数;会用正比例函数定义来判断函数是否为正比例函数;并且会用正比例函数定义来求一些字母的取值;解题时注意:判定一个函数是否为正比例函数,要化简后再判断.【板书设计】19.2 一次函数 19.2.1 正比例函数课时1正比例函数的概念1.正比例函数概念2.例题讲解例1 例2 例3【课堂检测】1.下面四个小题中两个变量成正比例的是( )A.儿童的身高和年龄B.等腰梯形的上底固定时,下底和面积C.圆柱的高和体积D.长方体的底面是边长为定值a 的正方形,它的体积和高解析:儿童的身高与年龄不成正比例关系;由等腰梯形的面积公式、圆柱的体积公式可知B,C 不正确;由题意知长方体的体积=a 2×高,且a 为定值,所以它的体积和高是成正比例的.故选D .2.若y =5x 3m -2是正比例函数,则m = .解析:根据正比例函数定义,得3m -2=1,解得m =1.故填1.3.y =(k -2)x 2+5x 是正比例函数,则k 的值为 .解析:根据正比例函数定义,得k -2=0,解得k =2.故填2.4.下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.(1)y =-0.1x ; (2)y =53x ; (3)y =2x 2; (4)y 2=4x ;(5)y =-4x +3; (6)y =2(x -2x 2)+2x 2.解:(1) 表示y 是x 的正比例函数;正比例系数k =-0.1.(2) 表示y 是x 的正比例函数;正比例系数k =53.(3),(4),(5),(6)都不是正比例函数. 5.如果y =kx (k ≠0),当x =4时,y =2;那么x =-3时,y 的值是多少?解:∵y =kx ,当x =4时,y =2,∴4k =2,∴k =21,∴y =21x ,∴当x =-3时,y =23.【教学反思】成功之处:在本节课通过实际问题的引入,激发学生的学习兴趣,再通过设计一组问题,让学生观察、对比、归纳出正比例函数定义,通过例题来巩固新知识,利用一组由浅入深、由易到难的题,逐题递进,落实本节课的教学重点.在教学形式上采用学生口述、互评等多种方法,激发学生思维,营造良好的课堂气氛.不足之处:由于课堂的容量较大,学生思考问题的时间显得相对不足,学困生就显得很吃力.再教设计:教学设计时可以进行分层设计,一组基础题让学困生完成,另一组难的让基础好的学生完成..人教版八年级下册数学第19章平行四边形19.2一次函数19.2.1正比例函数课时1正比例函数的概念学案【学习目标】1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.【学习重点】正比例函数的概念及其简单应用.【学习难点】会求正比例函数的解析式.【自主学习】一、知识链接1.若香蕉的单价为5元/千克,则其销售额m(元)与销售量n(千克)成比例,其比例系数为.2.举例说明什么是函数及自变量.二、新知预习1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l随半径r的变化而变化.(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化.(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h (单位:cm )随练习本的本数n 的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体问题T (单位:℃)随冷冻时间t (单位:min )的变化而变化.(5)以上出现的四个函数解析式都是常数与自变量 的形式.2.自主归纳:一般地,形如 (k 是常数,k≠0)的函数,叫做正比例函数,其中k 叫做比例系数.三、自学自测1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?2(1)3;(2)21;(3);(4);(5)π ;(6).2x y x y x y y y x y x ==+=-===2. 回答下列问题:(1)若y=(m-1)x 是正比例函数,m 取值范围是 ;(2)当n 时,y=2x n 是正比例函数; (3)当k 时,y=3x+k 是正比例函数. 四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:正比例函数的概念问题1:正比例函数的定义是什么?需要注意哪些问题?【典例探究】例 1 已知函数 y=(m-1)2m x 是正比例函数,求m 的值.方法总结:正比例函数满足的条件:(1)自变量的指数为1;(2)比例系数为常数,且不等于0.知识点2:求正比例函数的解析式例2若正比例函数当自变量x等于-4时,函数y的值等于2.(1)求正比例函数的解析式;(2)求当x=6时函数y的值.方法总结:求正比例函数解析式的步骤:(1)设:设函数解析式为y=kx;(2)代:将已知条件带入函数解析式;(3)求:求出比例系数k;(4)写:写出解析式.知识点3:正比例函数的简单应用问题2:2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?例3已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y (元)与行程 x (km )之间的函数关系式,并指出y 是x 的什么函数;(2)计算该汽车行驶220 km 所需油费是多少?方法总结:判断是否为正比例函数的依据是函数解析式能否化为y=kx (k 是常数,k≠0)的形式.【跟踪练习】1.(1)若y=(m-2)x |m|-1是正比例函数,则m= ;(2)若y=(m-1)x+m 2-1是正比例函数,则m= . 2.已知y 与x 成正比例,当x 等于3时,y 等于-1.则当x=6时,y 的值为____________.【学习检测】1.下列说法正确的打“√”,错误的打“✕”(1)若y =kx ,则y 是x 的正比例函数. ( )(2)若y =26x 2,则y 是x 的正比例函数. ( ) (3)若y =2(x -1)+2,则y 是x 的正比例函数. ( )(4)若y =2(x -1),则y 是x -1的正比例函数. ( )(1)✕ (2)✕ (3)√ (4)√(解析:先把所给的代数式化成最简形式,再根据正比例函数定义进行判断求解.)2.下列函数关系中,属于正比例函数关系的是( )A.圆的面积S 与它的半径rB.行驶速度不变时,行驶路程s与时间tC.正方形的面积S与边长aD.工作总量(看作“1” )一定,工作效率w与工作时间t3.下列说法正确的打“√”,错误的打“×”.(1)若y=kx,则y是x的正比例函数()(2)若y=2x2,则y是x的正比例函数()(3)若y=2(x-1)+2,则y是x的正比例函数()(4)若y=(2+k2)x,则y是x的正比例函数()4.填空(1)如果y=(k-1)x,是y关于x的正比例函数,则k满足_______.(2)如果y=kx k-1,是y关于x的正比例函数,则k=____.(3)如果y=3x+k-4,是y关于x的正比例函数,则k=_____.(4)若23=-是关于x的正比例函数,m=_____.(2)my m x-5.汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为, y是x的函数.y=40x正比例(解析:根据路程=速度×时间和正比例函数的定义进行判断.) 6.填空(1)若函数y=(a-3)x+a2-9是正比例函数,则a =;(2)若y=(k+3)是y关于x的正比例函数,则k=;(3)若y与x-2成正比例,当x=3时,y=-4.试求出y与x的函数关系式.解析:由正比例函数解析式为y=kx,根据题意列方程或不等式进行求解.解:(1)∵函数y=(a-3)x+a2-9是正比例函数,∴a=-3.(2)∵y=(k+3)x|k|-2是y关于x的正比例函数,∴k=3.(3)∵y与x-2成正比例,∴设y=k(x-2),∵当x =3时,y =-4,∴k =-4,∴y 与x 的函数关系式为y =-4x +8.7.已知函数y =2x 2a +3+a +2b 是正比例函数,则a = ,b = .﹣1 21 8.若x ,y 是变量,且函数y =(k +1)是正比例函数,则k = .1(解析:由正比例函数定义,可知故k =1.)9.若y =kx +2k -3是y 关于x 的正比例函数,则k = .(解析:由正比例函数定义可知2k -3=0,且k ≠0,故k =23.) 10.已知y-3与x 成正比例,并且x=4时,y=7,求y 与x 之间的函数关系式.11.已知y -6与x +3成正比例,且x =1时,y =26,试写出y 与x 的函数关系式. 解:∵y -6与x +3成正比例,∴设y -6=k (x +3).又∵x =1时,y =26,∴4k =20,∴k =5,∴y -6=5(x +3),∴y 与x 的函数关系式为y =5x +21.12.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割.(1)求收割的面积y (单位:公顷)与收割时间x (单位:时)之间的函数关系式;(2)求收割完这块麦田需用的时间.13.汽车由天津驶往相距120千米的北京,s (千米)表示汽车离开天津的距离,t (小时)表示汽车行驶的时间,如图所示.(1)汽车用几小时可到达北京?速度是多少?(2)汽车行驶1小时,离开天津有多远?(3)当汽车距北京20千米时,汽车出发了多长时间?解:(1)由图象可知:s与t成正比例,设s=kt,当t=4时,s=120.即120=k×4,∴k=30.∴s=30t.∴汽车用4小时可到达北京,速度是30千米/时.(2)当t=1时,s=30×1=30(千米).∴汽车行驶1小时,离开天津30千米.(3)当s=100时,100=30t,t=(小时).∴当汽车距北京20千米时,汽车出发了小时.。
人教版八年级下册19.2.1正比例函数(第一课时)课件(共17张PPT)
第十九章 一次函数
19.2.正比例函数(第1课时)
学习目标
(1)知道什么样的函数是正比例函数,掌握正比例函数 的解析式。
(2)能根据正比例函数的定义确定字母系数的值。
探究新知
下列问题中,变量之间的对应关系是函数关系吗?如果是, 请写出函数解析式:
(1)圆的周长l随半径r的变化而变化; l=2πr
2.若y关于x成正比例函数,当x=4时,y=-2. (1)求出y与x的关系式; y= -0.5x (2)当x=6时,求出对应的函数值y. y= -3
3.若y=kx+2k-3是y关于x的正比例函数,则 k=____3_/_2________.
4.若y=(k-2)x是y关于x的正比例函数,则k满足的条件
函数关系式是常量与自变量的乘积. 2.从外形特征看:
(1)一般情况下y=kx(常数k≠0); (2)在特定条件下自变量可能不单独是x了,要
注意问题中自变量的变化. 3.从结果形式看:
函数表达式要化简后才能确认为正比例函数
拓展提升
1.已知正比例函数y=kx,当x=3时,y=-15,求k
的值.
k= -5
(2)铁的密度为7.8g/cm3,铁的质量m随它的 体积V变化而变化;
m=7.8V
(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的 总厚度h随练习本的本数n的变化而变化;
h=0.5n
(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体 的温度T随冷冻时间t的变化而变化.
T=-2t
结论:这些函数都是常数与自变量的乘积的形式
_______k__≠_1______.
2.如果y=kxk-1,是y关于x的正比例函数,则k=____2______.
人教版八年级下册19.2.1.1正比例函数的概念课件
八年级下册
学习目标
01 理解正比例函数的概念. 02 会求正比例函数的解析式
03 能利用正比例函数解决简单的实际问题
学习重难点
重点:会求正比例函数的解析式 难点:能利用正比例函数解决简单的实际问题
思考
2011年开始运营的京沪高速铁路全长1 318km.设列车平均速度为 300km/h.考虑以下问题:
思考
(1)乘京沪高速列车,从始发站北京南站到终点站海虹桥站,约需要 多少小时(结果保留小数点后一位)?
1318÷300≈4.4(h)
(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之
间有何数量关系?
y=300t(0≤t≤4.4)
(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了距始发站1 100 km的南京站?
y= k
x
小结
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数, 其中k叫做比例系数.
正比例函数一般形式
y=kx(k≠0的常数)
自变量
注: 正比例函数y=kx(k≠0)
的结构特征
①k≠0 ②x的次数是1
为什么强调k是常数,k≠0呢?
思考
例题
例1 已知函数 y=(m-1)xm2 是正比例函数,求m的值.
课堂练习
1318÷300≈4.
3.填空
m2-1=0,
(2)求当x=6时函数y的值.
一会般求地 正,比形例如函y数=的kx解(析k(是式常1数),k≠如0)果的函y数,=叫(做k正-比1例)x函,数,是其中yk叫关做比于例系x数的. 正比例函数,则k满足_k_≠__1___.
形式:y=kx(k≠0)
2019年八年级数学下册一次函数19.2一次函数19.2.1正比例函数第1课时正比例函数的概念课件
(D)匀速运动中,速度固定时,路程和时间的关系
2.下列式子中,表示 y 是 x 的正比例函数的是( (A)y=x (C)y=
2
C
)
(B)y= (D)y=
2 x x 1 2
x 2
3.列式表示下列问题中的y与x的函数关系,并指出哪些是正比例函数.
(1)正方形的边长为x cm,周长为y cm;
(2)某人一年内的月平均收入为x元,他这年(12个月)的总收入为y元; (3)一个长方体的长为2 cm,宽为1.5 cm,高为x cm,体积为y cm3. 解:(1)y=4x,y是x的正比例函数.
n 1, 解得 m 1.
所以当 m=-1 且 n=1 时,y=(5m-3)x2-n+(m+n)是关于 x 的正比例函数.
(D)y=7x2
例2
若函数y=3m-6
B
)
(A)m=-1 (B)m=2 (C)m=1 (D)m=-2
知识点2:求正比例函数的解析式 例3 已知y与x成正比例,当x=4时,y=12,试求y与x之间的函数解析式.
解:设y与x之间的函数解析式为y=kx,
19.2 19.2.1 第1课时
一次函数 正比例函数
正比例函数的概念
一般地,形如y=kx(k为常数,k≠0)的函数,叫做 正比例函数 .其中k叫做 比例系数 .
知识点1:正比例函数的概念 例1 下列式子中,表示y是x的正比例函数的是(
(B)y=
x 3
B
)
(A)y=0.2x+1 (C)y=
x 1 4
把x=4时,y=12代入得, 12=4k,
解得k=3,
所以y与x之间的函数解析式为y=3x. 【方法技巧】 牢牢把握正比例函数的一般形式是一个不为0的常数与自变量的乘积, 且自变量的次数是1次.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活动五:判定正误
• 下列说法正确的打“√”,错误的打“×”
(1)若y=kx,则y是x的正比例函数( × ) (2)若y=2x2,则y是x的正比例函数( ×) (3)若y=2(x-1)+2,则y是x的正比例函数( √ ) (4)若y=2(x-1) ,则y是x-1的正比例函数( √ ) 在特定条件下自变量可能不单独就是x了, 要注意自变量的变化
• 5.已知y关于x成正比例函数,当x=3时,y=-9,则y与x的关
为_______.
作业 • 6.若y=kx+2k-3是y关于x的正比例函数,则 k=______________. • 7.若y=(k+3)x|k|-2是y关于x的正比例函数,试求k 的值,并指出正比例系数.
• 8.若y关于x-2成正比例函数,当x=3时,y=-4.试
1.已知正比例函数y=kx,当x=3时,y=-15,求k 的值. k=-5
2.若y关于x成正比例函数,当x=4时,y=-2. (1)求出y与x的关系式;y= -0.5x (2)当x=6时,求出对应的函数值y. y= -3
活动八:课堂小结与作业布置
• 你如何理解正比例函数的意义?能从哪几个方面去认识正比 例函数? 1.从语言描述看: 函数关系式是常量与自变量的乘积. 2.从外形特征看: (1)一般情况下y=kx(常数k≠0); (2)在特定条件下自变量可能不单独是x了,要注意问题中 自变量的变化. 3.从结果形式看: 函数表达式要化简后才能确认为正比例函数
活动三:形成概念
• 1.如果我们把这个常数记为k,你能用数学式子表达吗? y=kx • 2.对这个常数k有何要求呢?为什么? k≠0 • 3.请你尝试给这类特殊函数下个定义: 形如 y=kx(k≠0)的函数,叫做正比例函数,其中k叫比例系 数 • 4.这个函数表达式在形式上一个单项式还是多项式?你能 指出它的系数是什么?次数为多少? 形式上是一个一次单项式,单项式系数就是比例系数k
h 0.5 n
(4)冷冻一个0°C的物体,使它每 分钟下降2°C,物体问题T(单位:°C) 随冷冻时间t(单位:min)的变化而变 化.
T 2t
活动二:问题再现
• 问题探究:在 l 2 πr 、 m 7.8V 、 h 0.5n 和 T 2t 中 : (1)以上对应关系都是函数关系吗?其变量和常量 分别是什么?进一步指出谁是自变量,谁是函数? (2)认真观察自变量和常量运用什么运算符号连接 起来的?这些常量可以取哪些值? (3)这4个函数表达式与问题1的函数表达式 y=300t有何共同特征?请你用语言加以描述.
活动一:情境创设
• 思考下列问题:
1. y=300t中,变量和常量分别是什么?其对应关
系式是函数关系吗?谁是自变量,谁是函数?
2.自变量与常量按什么运算符号连接起来的?
3.(1)与(2)之间有何联系?(2)与(3)呢?
活动二:问题再现
• 下列问题中,变量之间的对应 关系是函数关系吗?如果是, 请写出函数解析式:
活动四:辨析概念
• 1.下列式子,哪些表示y是x的正比例函数?如果是,请你 指出正比例系数k的值. x y (1)y=-0.1x (2)
是正比例函数, 正比例系数为-0.1
2
是正比例函数, 正比例系数为0.5
(3)y=2x2
不是正比例函数
(4)y2=4x
不是正比例函数
(5)y=-4x+3
不是正比例函数
2- m
+ n + 4, 当m与3x+4成正比例,当x=1时,y=2。 (1)求y与x的函数关系式; (2)求当x=-1时的函数值; (3)如果y的取值范围是[0,5],求相应的x的取值 范围
k (2014苏州模拟)已知 y = y1 y2 , 其中 y1 = , (k x y2 与x 2成正比例, 求证y与x也成正比例. 0),
(6)y=2(x-x2 )+2x2
是正比例函数,正比例系数为2
判定一个函数是否是正比例函数,要从化简后来判断!
活动四:辨析概念
• 2.列式表示下列问题中y与x的函数关系,并指出哪些是正 比例函数. (1)正方形的边长为xcm,周长为ycm. y=4x 是正比例函数 (2)某人一年内的月平均收入为x元,他这年(12个月) 的总收入为y元. y=12x 是正比例函数 (3)一个长方体的长为2cm,宽为1.5cm,高为xcm ,体 积为ycm3. y=3x 是正比例函数
(1)圆的周长l 随半径r的变化而变 化.
l 2 πr
(2)铁的密度为7.8g/cm3,铁块的质量 m(单位:g)随它的体积V(单位: cm3)的变化而变化.
m 7.8V
活动二:问题再现
(3)每个练习本的厚度为0.5cm, 一些练习本摞在一起的总厚度h (单位:cm)随练习本的本数n的 变化而变化.
求出y与x的函数关系式.
体验中考
(2014陕西中考)若点 A(- 2,m)在正比例函数 1 y = - x的图像上,则m的值是________. 2
(2014重庆中考)已知正比例函数 y = kx(k 0)的图像 经过点(1,-2),则这个正比例函数的解析式是______.
已知y = (m+1) x
第十九章
一次函数
19.2 一次函数
19.2.1 正比例函数 第1课时
活动一:情境创设
• 2011年开始运营的京沪高速铁路全长1 318km.设列车平 均速度为300km/h.考虑以下问题:
(1)乘京沪高速列车,从始发站北京南站到终点站海虹桥 站,约需要多少小时(结果保留小数点后一位)? • 1318÷300≈4.4(h)
作业
x 3 • 3.关于y= 说法正确的是( ) 2 A.是y关于x的正比例函数,正比例系数为-2 1 B.是y关于x的正比例函数,正比例系数为 2 C.是y关于x+3的正比例函数,正比例系数为-2
1 D.是y关于x+3的正比例函数,正比例系数为 2 • 4.若y=(k-2)x是y关于x的正比例函数,则k满足的条件是___
活动八:课堂小结与作业布置
4.从函数关系看: 比例系数k一确定,正比例函数就确定;必须知道 两个变量x、y的一对对应值即可确定k. 5.从方程角度看: 如果三个量x、y、k中已知其中两个量,则一定可 以求出第三个量.
作业
1.下列函数是正比例函数的是( ) A.y=2x+1 B.y=8+2(x-4) C.y=2x2 D.y= 1 2x • 2.下列问题中的y与x成正比例函数关系的是( ) A.圆的半径为x,面积为y B.某地手机月租为10元,通话收费标准为0.1元/min, 若某月通话时间为x min,该月通话费用为y元 C. 把10本书全部随意放入两个抽屉内, 第一个抽屉 放入x本,第二个抽屉放入y本 D.长方形的一边长为4,另一边为x,面积为y
活动六:理解概念
1.如果y=(k-1)x,是y关于x的正比例函数, k≠1 则k满足________________. 2.如果y=kxk-1,是y关于x的正比例函数, 2 则k=__________. 3.如果y=3x+k-4,是y关于x的正比例函数, 4 则k=_________.
活动七: 运用概念
活动一:情境创设
(2)京沪高铁列车的行程y(单位:km)与运行时间t(单 位:h)之间有何数量关系? • y=300t(0≤t≤4.4)
活动一:情境创设
(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过 了距始发站1 100 km的南京站? • y=300×2.5=750(km), 这是列车尚未 到 达 距 始 发 站 1 100km的南京站.