浙江省金华市第十六中学七年级数学下册7.1分式教案1浙教版【教案】
七年级数学下册全册教案浙教版
七年级数学下册全册教案浙教版【教案】一、教学内容1. 第一章《数据的收集与整理》数据的收集:问卷调查、实验方法、调查方法。
数据的整理:制作表格、图表、数据处理。
2. 第二章《平行线与相交线》平行线的性质与判定:同位角、内错角、同旁内角。
相交线:垂直、斜交、交点。
3. 第三章《三角形》三角形的性质:三边关系、三角和、角度关系。
三角形的分类:按边分、按角分。
4. 第四章《变量之间的关系》函数的概念:定义、表示方法。
线性函数:图像、性质、解析式。
二、教学目标1. 理解并掌握数据收集、整理的方法,能运用图表、表格等形式进行数据展示。
2. 掌握平行线与相交线的性质及判定方法,能够运用到实际问题中。
3. 掌握三角形的性质、分类及计算方法,能够解决与三角形相关的问题。
4. 理解变量之间的关系,认识函数的概念,掌握线性函数的性质和解题方法。
三、教学难点与重点1. 教学难点:数据的整理与展示、平行线的判定、三角形的计算、函数的概念。
2. 教学重点:数据收集、整理、展示的方法;平行线与相交线的性质;三角形的性质、分类及计算;函数的定义、性质、解析式。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT、三角板、量角器。
2. 学具:直尺、圆规、三角板、量角器、练习本。
五、教学过程1. 实践情景引入以生活中的实例引入数据收集与整理的概念,让学生了解数据收集的重要性。
通过实际操作,让学生感受平行线与相交线在生活中的应用。
通过观察实物,让学生了解三角形的性质和分类。
2. 例题讲解以具体例题讲解数据整理、平行线判定、三角形计算、函数解析式等知识点。
在讲解过程中,引导学生运用所学知识解决问题。
3. 随堂练习设计与教学内容相关的练习题,巩固所学知识。
及时解答学生疑问,提高课堂效果。
通过问答、练习等形式,检查学生对知识的掌握情况。
六、板书设计1. 板书内容:章节、知识点、公式、例题、练习题。
2. 板书要求:条理清晰、重点突出、字体规范、布局合理。
浙教版数学七年级下册分式知识点复习(教案)
.
☆典型题:分式的值为整数:(分母为分子的约数)
15、若分式 3 的值为正整数,则 x= x2
16、若分式 5 的值为整数,则 x= x 1
17、若 x 取整数,则使分式 6x 3 的值为整数的 x 值有( )
2x 1
A.3 个
B.4 个 C.6 个 D.8 个
分式的基本性质及有关题型
分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
4、若分式 x2 4 的值为零,则 x 的值是 x2 x 2
5、若分式 x 2 4 的值为 0,那么 x
。
x2
6、若分式 x 3 的值为零,则 x x3
7、如果分式 | x | 5 的值为 0,那么 x 的值是( ) x2 5x
A.0
B. 5
C.-5
D.±5
版本编号 :YIMIK12-JX03-2016
B BM
B BM
(C) A A2 B B2
(D)
A B
A( x 2 B( x 2
1) 1)
5、下列各式中,正确的是( )
A. a m a bm b
B. a b =0 ab
C. ab 1 b 1 ac 1 c 1
D. x y 1 x2 y2 x y
题型一:化分数系数、小数系数为整数系数 【例 1】不改变分式的值,把分子、分母的系数化为整数.
1x2 y
(1) 2 3
1x1 y 34
(2) 0.2a 0.03b
0.04a b
练习: 1.不改变分式的值,把下列分式的分子、分母的系数化为整数.
(1) 0.03x 0.2y
初中数学精品教案:《分式的基本性质》
课题:分式的基本性质 教材:浙江版七年级下册教学目标: 知识技能目标:1. 让学生理解分式的基本性质及其内涵要点;2. 让学生灵活运用分式的基本性质进行分式的恒等变形;3. 让学生了解类比、归纳、分类等思维方法; 过程性目标:4. 让学生体会学习分式基本性质的必要性及其意义;5. 让学生经历观察、实验、推理等活动,类比、归纳得到分式基本性质及运用其进行恒等变形时的注意要点,并且在这一过程中获得一些探索数学性质的初步经验。
教学重点:组织学生探索发现并掌握(运用)分式的基本性质。
教学难点:从“形”的角度解释分式的变形;分式的负号变化特征和分子、分母是多项式的分式的约分。
教学方法和手段:发现探究 小组合作 主体性讲解 教学过程:一、 创设情景,引入主题(让学生了解学习分式基本性质的必要性)由欣赏“利郎男装的广告”“简约美”过渡到数学的美;齐声朗读“数学因简约、对称、和谐而美”。
引入分式32201R R ,由学生根据“简约、对称、和谐”这一“审美”标准来审视以上分式的和谐性,从而引出用来“美化”这些分式的必需的知识——分式的基本性质。
(设计说明:“追求分式的简约、和谐美”是整节课的主线) 二、 探究发现分式的基本性质1.复习分数的基本性质(为通过“类比”得到分式的基本性质及其运用作铺垫)引出三个等分数41、82、164,通过以下问题组来复习分数的基本性质及其运用:(1) 根据我们的“审美标准”,哪个分数最具“简约美”?(2) 从164、82到41,我们是通过怎样的变形实现的?(3) 请问约分的依据是什么?(分数的基本性质的内容是什么?) 2.探究分式的变形(为通过“归纳”得到分式的基本性质及其运用作铺垫)问题探究:以下分式的变形是否成立?请简要说明理由。
m m 221= mm 122=让学生从“欣赏”的角度来看“矩形模型”:(1)m m 221=(在原来的矩形上拼上(宽重合)相同的矩形,所得面积为2的矩形与原矩形的宽相等)(1)mm 122=(面积为2的矩形沿长的中间部位分开,所得面积为1的小矩形与原矩形宽相等) 注:抽象出矩形,在矩形上分割进行(设计说明:在浙江版的教材中多处(例如:合并同类项、多项式的乘法、乘法公式等)出现了用几何图形的面积来解释代数恒等式,因此这里用图形的面积来解释分式的变形,这是一种学生易于接受的方式,也是对“数形结合”思想的进一步渗透。
七年级数学下册7.1分式教学设计浙教版
课题: 分式教学目标●知识与技能目标1.理解分式的基本性质及分式符号法则.2.能运用分式的基本性质和符号法则进行简单的恒等变形.●过程与方法目标:1.经历对分式基本性质及符号法则的探究过程,在探究中获得一些探索定理性质的初步经验.2.通过分数与分式的比较,培养学生良好的类比联想思维习惯和思想方法.3.通过对分式基本性质的探究,在探究中培养学生的观察能力、以及语言表达能力.●情感与态度目标:1.在探究过程中,培养学生善于观察、勇于探索和勤于思考的精神.2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.教学重点:分式的基本性质教学难点:准确灵活运用分式基本性质及符号法则进行分式变形..教学方法与教学手段:采用学生自主探索和合作学习的教学方法;采用多媒体辅助教学。
教师活动学生活动设计意图Flash动画展示由《阿里巴巴和四十大盗》故事引入,并让学生通过寻找开门钥匙的游戏,找到今天的课题,从而唤起学生对分数基本性质的回忆。
实验活动(一):——探究分式的基本性质学生欣赏、观察、动脑筋,并找到三把钥匙通过富有童话般的情境引入,活跃课堂气氛,激发学生的学习兴趣1⋅(a+1)x ⋅(a+1)1⋅a x ⋅a 1×3x ⋅31x 值分式a=100a=12a=-6a=2x=3(2)你发现 . .反思:1、分式(数)的符号放置有 个地方。
2、分式符号怎样变化时,分式的值不变? 知识梳理:分式的符号法则:分式的分子、分母和分式本身的符号,同时改变其中的任何两个,分式的值不变。
试一试 类比分数约分,将下列各式进行约分把一个分式的分子与分母的公因式约去,叫做分式的约分.幸运擂台规则:1、组长代表各小组抽题,题目中含有各自的 值。
2、抽题小组主答,其他小组若有不同的见解或做法,可适当增加 值A 组题:小医生 诊断下列分式变形是否有“病”学生观察讨论,组长做结论展示,与其他小组进行交流教师引导学生,得到分式的符号法则。
数学:第七章《分式》复习教案(浙教版七年级下)
第七章分式复习教学设计【教学内容】本章的主要内容有分式及其运算和分式方程.在生活和生产实际中有许多量与量之间的关系是整式所无法表示的,分式也是描述客观世界的一个重要首先模型.作为代数工具之一的分式及其运算和分式方程是今后继续学习代数运算、统计、概率等的重要基础.公式变形等知识对其他学科的学习也有密切的联系.【教学目标】知识目标:(1)通过与分数的类比,了解分式的概念,理解分式的基本性质.(2)鼓励学生通过与分数乘除法则、加减法则的类比,大胆探索分式乘除及其加减运算的法则,并理解其合理性.(3)了解分式方程的概念,掌握解分式方程的一般步骤,了解验根的必要性.能力目标:(1)能用分式表示现实情境中的数量关系,体会分式的建模.(2)使学生掌握分式乘除及其加减运算的法则,并会应用到具体的运算之中,培养学生的转化思想与化归能力.(3)引导学生把实际问题转化为数学模型,学会列分式方程解决实际分式方程.情感目标:(1) 促进学生养成自主探索与交流合作的学习习惯,发展学生有条理地思考的能力.(2)培养学生分析问题、解决问题的能力.【教学分析】教学重点:分式的基本性质和分式的四则运算.教学难点:分式的异分母相加减,解简单的分式方程和列分式方程解应用题.【教学方法与手段】以学生为主体,教师为主导,通过双基练习,让学生归纳小结,进一步拓展、探究、提升,最后达到巩固知识的目的.【课堂教学设计】一、双基落实 巩固提高练一练:1.当x 时,分式x1有意义.2. 当x 时,分式841--x x 无意义 3.当x 时,分式293--x x 的值为零. 设计说明:通过练习,由学生归纳小结:在什么情况下,分式有意义、无意义、分式的值为零.4.相等的是下列各式的结果与ab -( ) A .a b - B .a b -- C .a b -- D .a b --5.将公式v =v 0+a t 变形成已知v ,v 0,t ,求a 的代数式,得a = .设计说明:目的是应用和巩固分式的基本性质及符号法则.6.化简:①()ax x a ⨯3 ②5854-÷-+a a a ③m m 231-7.解分式方程 421=--x x 设计说明:给学生展现身手的机会,进一步掌握分式的四则运算及解简单分式方程的方法.二、综合探究 发展能力【例1】若分式()()42122---x x x 的值等于0,则x 的值为设计说明:通过例题,使学生进一步明确:要使分式的值为零,必须满足两个条件:分子的值为零,且分母的值不为零.后一个条件容易疏忽,应特别注意.【例2】 化简: ① 21211a a --- ② xx x x x x 12111422÷-+•+- 设计说明:通过例题,使学生进一步明确:异分母分式的加减,关键是要找到公分母,然后进行通分.通常将各分母分解因式,以寻求公分母.分式运算的结果一般要化到最简;分式的乘除运算的实质为约分,约分的关键是找出分式中分子、分母的公因式.通常需对每个分式的分子、分母分解因式.【例3】 解分式方程 (1)23462-=-x x (2)x x x +=+-1112设计说明:分式方程去分母后可能会产生增根,因此解分式方程必须验根;用去分母法解分式方程时,不含分母的项不要漏乘公分母.【例4】一些学生准备外出秋游,预计共需费用120元,临出发时有2人因故不能参加,但总费用不变,这样外出秋游的学生人均费用增加41,问原计划每人付费多少元? 设计说明:由学生归纳列分式方程解应用题的一般步骤为:为1.审:分析题意,找出数量关系和相等关系.2.设:选择恰当的未知数,注意单位和语言完整.3.列:根据数量和相等关系,正确列出代数式和方程.4.解:求出所列方程的解.5.验:有二次检验.(①是不是所列方程的解 ②是否满足实际意义)6.答:注意单位和语言完整.且答案要生活化.【探究一】 a 是否存在这样的值,使分式方程04422=-+-x x a 有增根.若存在,求出a 的值;若不存在,请说明理由.设计说明:针对本题引导学生观察,反思,理解产生增根的内涵,并组织同学之间相互讨论,交流,培养学生良好的与人合作的精神.【探究二】 请同学们联系生活实际,编写一道应用题,使其中的未知数x 满足下面的分式方程510250=-xx .设计说明:此开放性问题的设置,为学生提供更大的发展空间,培养学生的创新意识和思维的广阔性,调动每位同学的积极性,做到人人参与,培养学生的应用和表达能力,体现了数学既来源于生活又应用于生活的理念.三、自我归纳 感悟提升1.这节课你有那些收获?2.你还有什么疑难问题或不懂的地方?设计说明:以培养学生归纳小结能力为目的,给学生一个自我展示的机会,体现了每位学生都要学会如何学习的新课标理念.四、分层作业作业题分A 组11题,B 组4题.要求:独立完成A 组基础题;B 组结合自己学习水平独立完成,也可与同学交流后完成.A 组1.下列各式中51,4,21,2--a ab xy x ,属于分式的有 个.2.当x 时,分式22-x x 无意义.3.分式x x 1+的值为0,则x 的值为 .4.化简:4422+--a a a = .5.分式222332xyy y x x 与的最简公分母是 .6.计算:ab b b a a -+-= . 7.不改变分式的值,使分式的首项分子与分式本身都不含“-”号:b a b a ---2=________; ()ba b a ----22=________.8 .小明参加打靶比赛,有a 次打了m 环,b 次打了n 环, 则此次打靶的平均成绩是_____环. 9.化简:969392222++-+++x x x x x x x10.解方程:x x -=-2342111.李某承包了40亩菜地和15亩水田,根据市场信息,冬季瓜菜需求量大,他准备把水田改造为菜地,使改完后水田占菜地的10%,问应把多少水田改为菜地?B 组1.将ba a -3中的a 、b 都扩大到3倍,则分式的值( ) A .不变 B .扩大3倍 C .扩大9倍 D .扩大6倍2.在分式中2121111f f f f F ≠+=中,则F =_________.3.当k =_____时,分式方程0111=+--+-x x x k x x 有增根.4.若15+a 表示一个整数,则整数a 可取哪些数?设计说明:分层作业,将因人施教落到实处,实现了面向全体学生这一目标,更有利于每个学生在各自“最近发展区”得到充分发展.。
新浙教版七年级数学下册《分式方程(1)》教案
5.5 分式方程(1)教学设计一、背景介绍本节的安排与老教材不一样,老教材是把分式方程与一元二次方程安排在一起,而新教材是在学生学习了分式及运算后马上学习分式方程,充分体现了分式方程与分式的联系及分式方程与整式方程的区别,让学生体会方式方程也是解决实际问题的重要手段。
二、教学设计【教材内容分析】本节的主要内容是分式方程及其解法,分式方程与整式方程在概念上是不同的,但他们在解法上却有着一定的联系和区别,即分式方程最终要转化为整式方程来解,但最后要验根这是学生最容易忘记的,所以教学中要强调。
【教学目标】1、会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。
2、掌握可化为一元二次方程或一元二次方程的分式方程的解法。
3、渗透转化思想。
【教学重点】分式方程的去分母及根的检验【教学难点】方程根的检验及产生增根的原因【教学过程】(一)创设情景,引入新课情景:(出示节前图片)某地电话公司调低了长途电话的话费标准,每分费用降低了25%,因此按原收费标准6元话费的通话时间,在新收费标准下可多通话5分时间,问前后两种收费标准每分收费各是多少?(1)本题中的主要等量关系是什么?(2)如果设原来的收费标准是x元/分,可列怎样的方程?(3)该方程与我们学过的一元一次方程有什么不同?与学生讨论后得到题中的等量关系,并列出方程:8x - 6x =5 ,再举例:如12x 213x -= , 2233x x +=+,12x x+=等,让学生观察这些方程与以前学过的方程有什么不同之处?待学生说出后,师生共同归纳得出分式方程的概念:板书:像这样只含分式或整式,并且分母中含有未知数的方程叫做分式方程。
〖设计说明:通过创设情景,让学生了解分式方程来源于实际,学习解分式方程是为了解决生活中的实际问题,体会到解分式方程的重要性〗(二)理解应用,体验成功练一练:你能否根据分式方程的概念举一些分式方程的例子呢?(学生举例)如:12x - 23x =1 , x +3x +2= 23 , x +1x =2等。
2019-2020年七年级数学下册 7.1分式(1)教案 浙教版
2019-2020年七年级数学下册 7.1分式(1)教案 浙教版〖教学目标〗◆1.了解分式的概念.◆2.了解分式有意义的条件.◆3.会用分式表示简单实际问题中的数量关系.〖教学重点与难点〗◆教学重点:本节教学的重点是分式的概念.◆教学难点:例2的问题情境较为复杂,并涉及列分式、求分式的值等多方面的问题,是本节教学的难点.〖教学过程〗(一)发现新知1.创设情境:“代数式”庄园的果树上挂满了“整式”的果子:t ,300,s ,n ,a -x ,0,180(n -2),请你任选其中的两个,运用整式的除法运算,合成一个代数式;并与同组的伙伴交流你的成果.2.探索交流:(1)议一议:你们所构造的这一些代数式:s t ,n a -t,…它们有什么共同特征?它们与整式有什么不同?(得出分式的概念)(2)类比分数,概括分式的概念及表达形式:(3)练习:课本做一做第1题.练习采用小组内互相提问、口答完成,通过列举具体例子,互说判别过程,鼓励学生积极参与活动.在活动的过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析分式与整式的本质区别,强调分式的分母中必须含有字母.(二)再探新知1.提出问题(课本做一做第2题):分式b a的分母中的字母能取任何实数吗?为什么?分 式2x -3x +2中的字母x 呢? 2.自主概括:引导学生通过类比分数得出:当分母的值为零时,分式就没有意义.对一般表达式A B,分母B 不能等于零. 3.例题与练习例1 对于分式2x +13x -5(1)当x 取什么数时,分式有意义?(2)当x 取什么数时,分式的值是零?(3)当x =1时,分式的值是多少?例1由学生在自主完成的基础上同桌交流,然后师生评述.其中第(1)题的讲解要突出从反面考虑问题以及排除法的思想方法,即先考虑问题的反面何时2x +13x -5无意义,当3x -5=0,即x =53 时,分母为零,分式无意义.排除x =53 的情况,即x ≠53时,分式就有意义.强调分式有意义是求分式的值的大前提,也是今后进行分式其他运算的前提.并指出分式无意义与分式的值为零的区别,以防学生混淆.练习:完成课本课内练习第1题.练习采用组内合作、组间抢答的形式开展活动,激发兴趣,并加深学生对新知识的理解,强调分数线的括号作用及分式求值必须在有意义的前提下进行,强化分子、分母的整体意识.(三)应用新知例2 甲、乙两人从一条公路上某处出发,同向而行.已知甲每时行a 千米,乙每时行b 千米,a >b .如果乙提前1时出发,那么甲追上乙需要多少时间?当a =6,b=5时,求甲迫上乙所需的时间.并想一想:若取a =5,b =5,你所得到的分式有意义吗?它所表示的实际意义是什么?讲解例2时,可先复习同时出发追及问题的基本等量关系:追上所需的时间=追距÷甲、乙的速度差.解释题意,指出关键是确定追距.然后由学生自主分步列出表示以下数量关系的代数式:追距、甲与乙的速度差、甲追上乙所需的时间.第2问由学生独立完成,第3问在小组内合作完成.练习:课本课内练习第2题.(四)小结巩固1.小结(1)请学生谈一谈:你这一节课有什么收获(知识、方法、情感)?(2)教师板书整理学生的回答.2.布置作业(1)课本作业题(分层布置).(2)请你联想:尽可能多地找出你学过的与分式有关的知识内容(例如,已知三角形的面积为s ,底边长为a ,那么底边上的高长为2s a),并将它写进你今天的数学小日记.2019-2020年七年级数学下册 7.1分式(2)教学设计 浙教版【教材内容分析】本节的主要内容是:分式的基本性质。
浙教版数学七年级下《分式的基本性质》精品教案
教学目标:1.理解分数的定义和性质。
2.掌握分数的四则运算规则。
3.运用分数的性质解决实际问题。
教学重点:1.分数的定义和性质。
2.分数的四则运算规则。
教学难点:1.理解分数在实际问题中的运用。
2.运用分数的四则运算规则解决实际问题。
教学准备:教材《浙教版数学七年级下册》、课件、黑板、书籍、练习册。
教学过程:Step 1: 引入课题(5分钟)教师可以通过一个小游戏开始课程,如:“我有一张蛋糕,被分成了8份,每份都是一样大的,请问每份蛋糕是原来的几分之一?”学生可以尝试回答问题,探讨出分数的含义。
Step 2: 导入新知(10分钟)通过让学生观察分数的定义和性质,学生可以总结出以下几点:1.分数由分子和分母组成,分子表示被分的份数,分母表示总份数。
2.分母不能为0,分子和分母应为整数。
3.分子和分母互质时,分数为最简形式。
4.相同数被相同数分割,分数相等。
Step 3: 分数的四则运算规则(15分钟)教师可以用具体的分数例子演示四则运算规则:1.加法:分母相同,直接相加;分母不同,通分后相加。
2.减法:分母相同,直接相减;分母不同,通分后相减。
3.乘法:分子相乘,分母相乘。
4.除法:反乘倒数。
Step 4: 训练与实践(30分钟)教师可以设计一些练习题来让学生进行训练和实践:1.对照例题,完成相应的课后练习。
2.完成教材上的分式练习题。
3.解决实际问题,如:小明有一块长方形巧克力,被分成5份,小明吃了其中的3/5,还剩下多少?请学生用分数运算解答。
Step 5: 检验与总结(10分钟)教师可以用一些练习题来检验学生的掌握情况,并为学生总结本节课的重点和难点。
Step 6: 作业布置(5分钟)布置相关的练习题,让学生进行巩固练习,以及预习下一节课内容。
教学反思:通过本节课的讲解和练习,学生应该对分数的定义和性质有了较为全面的了解,并能够熟练运用分数的四则运算规则解决实际问题。
同时,本节课也强调了实际问题的运用,让学生明确分数在生活中的作用,提高了学习的实践性和可操作性。
七年级数学下册 7.3分式的加减(1)教案 浙教版 教案
7.3 分式的加减(1)〖教学目标〗◆1、掌握同分母的分式加减法法则。
◆2、能运用法则进行同分母分式的加减运算。
◆3、能将分母绝对值相等的分式转化为同分母分式,并进行运算。
◆4、培养学生的观察能力,运算能力,理解能力。
〖教学重点与难点〗◆教学重点:同分母分式加减运算。
◆教学难点:例2涉及两个分式的分母要作适当转化后,才能运用同分母分式的加减法则,过程较为复杂。
〖教学过程〗一.创设情景,引入新课(1) (口答) 下列分数中,哪几个分数是同分母分数?23,110 ,-1712 ,-323,510, 512(2)(口答)计算下列各式,并说出所根据的法则:310+510, 712 –1712, 323+13这一法则能否推广到分式运算中呢?(3)(试一试)计算:①1a +3a ②x-1x+1–x x+1并分别取a=3,x=4检验你的计算方法是否正确?板书课题 分式的加减(1)二.新课教学1.同分母分式加减法则:a c +bc = a+b c a c – b c = a-b c(小黑板)下面进行基础题组练习:计算①3a + 12a – 15a ②a x 2 + b x 2 – c x 2 ③1m – –3m ④y x –y – x x –y2.例1 计算:⑴a+3b a+b + a –b a+b ⑵2xy 2+1(x –y)2 – 1+2x 2y (y –x)2 对题组及例题的训练,指出注意问题:(1)用法则时找“同分母”,如有绝对值相等的分母如何化为同分母?x –y 与 y –x 一样吗?那(x –y )2与(y –x)2一样吗?(2)“分式相加减”是指分子的“整体”相加减,分子是多项式时,要充分发挥分数线的括号功能,尤其对减式的分子要加上括号再去括号计算,(3)计算的结果必须化简。
巩固练习课本P 177 作业题A 组 1 2 33.例2 先化简,再求值: x 2–1x 2–2x + x –12x –x 2 ,其中x=3. 问题:①先观察算式,判断两个分式是否同分母?②怎样将它们化成同分母呢?③回顾前面学过的分式的符号法则。
浙教版数学七年级下册分式知识点复习教案
例 2.计算: x 3y x 2 y 2x 3y . x2 y2 x2 y2 x2 y2
1、把下列各式分解因式
(1)ab+b 2
(2)2a 2 -2ab (3)-x 2 +9
2、 约分
(4)2a 3 -8a 2 +8a
(1) 12xy 9x2
3 、 约分
2.(探究题)下列等式:① (a b) a b ;② x y x y ;③ a b a b ;
c
c
x
x
c
c
④ m n m n 中,成立的是( )
m
m
A.①②
B.③④
C.①③
D.②④
3.(探究题)不改变分式 2 3x2 x 的值,使分子、分母最高次项的系数为正数,正确的是(• )
D.90
4.不改变分式 0.5x 0.2 的值,使分式的分子分母各项系数都化为整数,结果是 0.3y 1
1、不改变分式的值,使分式的分子、分母中各项系数都为整数, 0.2x 0.1 x 0.5
2x 5 y
2、不改变分式
2 的值,把分子、分母中各项系数化为整数,结果是
2x y
3
题型二:分式的符号变化:
②分式无意义:分母为 0( B 0 )
③分式值为
0:分子为
0
且分母不为
0(
A B
0 0
)
④分式值为正或大于
0:分子分母同号(
A B
0 0
或
A B
0 0
)
⑤分式值为负或小于
0:分子分母异号(
A B
0 0
或
A B
0 0
)
⑥分式值为 1:分子分母值相等(A=B)
浙教版七年级数学下册 分式的基本性质教案
《分式的基本性质》教案教学目标:知识与能力通过类比的方法,是学生熟练的掌握分式的定义以及基本性质,并能够运用它来进行分式的约分和通分.过程与方法1.通过简单的应用题,引导学生列式,由分数的式子自然转到分式的式子,从而引出分式的概念,导入新课.2.通过相应的习题使学生准确的理解分式的概念.教学重、难点重点:分式的意义及基本性质难点:分式基本性质的灵活运用.教学环节新课导入:一个长方形的面积为s 2m ,如果它的长为a m ,那么它的宽为_____m . 上面的问题中出现了s a,与整式有什么不同? 一般的,如果a ,b 表示两个整式,并且b 中含有字母,那么式子b a 叫做分式,其中a 叫做分式的分子,b 叫做分式的分母.整式和分式统称为有理数.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示是: MB M A B A M B M A B A ÷÷=⨯⨯=, ( 其中M 是不等于零的整式). 与分数类似,根据分式的基本性质,可以对分式进行约分.先思考约分的方法,再解题,并总结如何约分:若分子和分母都是多项式,则往往需要先把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式.引导学生用多种方法解题.(1)赋值法(2)增值代入作商法1.取各分式的分母中系数最小公倍数;2.各分式的分母中所有字母或因式都要取到;3.相同字母(或因式)的幂取指数最大的;4.所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.例:约分44422+--x x x 解: 44422+--x x x =2)2()2)(2(--+x x x =22-+x x . 说明:在进行分式约分时,若分子和分母都是多项式,则往往需要先把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式.分式的的变号法则1.不改变分式的值,使下列分式的分子和分母都不含“—”号:(1)a b 65--; (2)y x 3-; (3)nm -2. 2.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)21x x -; (2)322+--x x . 注意:(1)根据分式的意义,分数线代表除号,又起括号的作用.(2)当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号.。
七年级数学下册 7.1分式课件 浙教版
注意:
分式中字母的取值不能使分母为零.当分母 的值为零时分式没意义.
根据下列y的值填表:
… -1 y2 … -1
2 y 1 y2 1 2y y 1
y
y
0
没意义
1
3 1/2 1
… … …
… -3/2 -1
…
没意义 0
…
分式中的字母取值不能使分母为零,当分 母的值为零时,分式就没有意义。
x 4 例1. 已知分式 , (1) 当x为何值时,分式无意义? x2
3x 9 3.当___时,分式 的值为零. x2
2 | x | 4.当___时,分式 x( x 2) 的值为零.
x2 5.要使分式 ( x 1)( x 2)
( A) x 1 (C ) x 1且x 2
有意义,x的取值满足( ( B) x 2 ( D) x 1或x 2
3 (1) 2
பைடு நூலகம்
1 ( 2) x
b (3) a 1
x2 1 (6) 2x 3
ab 3x 2 y (5) (4) ab 5
2.从”1,2,a,b,c“中选取若干个数或字母,组成 两个代数式,其中一个是代数式,一个是分式.
1、当x为任意实数时,下列分式一定有意义的
是(
(A)
B
2 x2
)
(B)
②当m=30, n=10时,船往返一次需要的时间是:
50 50 50 50 15 + + m-n = = (时) m+n 30+10 30-10 4 50 50 答:船从河边两地往返一次需要 m+n + m-n 时, 15 当m=30, n=10时,船往返一次需要 时。 4
七年级数学下册《分式》教案、教学设计
(二)过程与方法
1.通过引导学生观察、分析、归纳分式的特点,培养学生自主探究和合作学习的能力。
2.通过讲解与练习相结合的方法,使学生掌握分式的运算方法,提高运算速度和准确性。
3.设计丰富的教学活动,如小组讨论、问题解决等,让学生在实践中掌握分式的应用。
4.利用多媒体教学手段,形象直观地展示分式的运算过程,增强学生的学习兴趣。
-设想:运用小组合作学习,让学生在讨论中加深对分式性质的理解,培养团队协作能力。
3.分层教学,因材施教:针对学生的不同层次,设计难易适度的练习题,使每个学生都能在原有基础上得到提高。
-设想:为学有余力的学生提供拓展题,激发他们的学习潜能;对基础薄弱的学生,则进行个别辅导,帮助他们弥补知识短板。
4.实践应用,巩固提高:设计丰富的实际应用题,让学生运用分式知识解决具体问题,提高学生的应用能力。
在导入新课的环节,我将通过一个与学生生活密切相关的实例来引出分式的概念。我会向学生提问:“同学们,你们在购物时有没有遇到过打折的情况?如果一件商品原价是100元,打八折后的价格是多少?”通过这个问题,让学生回顾百分比的计算方法,进而引出分式的概念。
接着,我会展示一些涉及分式的实际例子,如分数奖励、分配比例等,让学生感受到分式在实际生活中的广泛应用。这样既能激发学生的学习兴趣,又能让学生意识到数学知识在解决实际问题中的重要性。
在讨论过程中,我会鼓励学生积极发表自己的观点,倾听他人的意见。同时,引导学生通过画图、列式等方法,将问题分解为若干小问题,逐步求解。在此过程中,培养学生合作、交流、解决问题的能力。
(四)课堂练习,500字
课堂练习环节,我设计了难易程度不同的练习题,旨在巩固学生对分式知识的掌握。练习题包括基础题、提高题和应用题三个层次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章分式
背景介绍及教学资料:《分式》是浙教版《义务教育课程标准实验教科书》·数学·七年级(下)第七章。
本章内容包括了传统教材中的《分式》和《分式方程》两个内容,从知识衔接的角度来看,比较符合教学实际。
§7.1 分式
一、背景介绍及教学资料:分式是代数式中的重要组成部分。
学生在学习了整式及运算、一元一次方程及解法之后编排了本节内容,符合学生的认知规律。
课前的实际情景既可让学生体验到学习分式的有关知识是实际生活的需要,又可激发学生的学习兴趣。
§7.1分式(1)
二、教学设计
【教材内容分析】
本节的主要内容是分式的概念和分式的意义。
分式是与整式完全不同的两种代数式,为了突显分式与整式的区别,教材中给出了一些代数式让学生观察找特征,得出分式的概念;又根据分数的意义得出分式的意义;最后例题中的实际问题可让学生深刻的体会出分式的意义。
【教学目标】
1、能根据分式的概念,辨别出分式,理解当分母为零时,分式无意义。
2、能确定分式中字母的取值范围,使分式有意义,或使分式的值为零。
3、会用分式表示实际问题中的数量关系,并会求分式的值,体验分式在实际中的价值。
【教学重点】
分式的有关概念
【教学难点】
理解并能确定分式何时有意义,何时无意义。
【教学过程】
(一)创设情景,引出课题。
情景:让学生观察章书图中的灰熊:提问:
为了调整珍稀动物资源,动物专家在p平方千米的保护区内找到7只灰熊,你能用代数式表示平均每平方千米保护区内有多少只灰熊吗?______
答案为:7÷P=7 p
设计说明:通过创设情景,让学生感受到分式来源于实际,激发学生学习兴趣。
教师再出示一些如:b
a
,
23
2
x
x
-
+
,
a b
c
-
让学生比较说出这些代数式与过去学过的整式有什么不同?(可能学生只讲出有分母,教师应适当的引导。
)
设计说明:让学生自己感悟分式与整式的不同,培养学生归纳和表达能力。
(板书)分式:把这些分子、分母都是整式且分母中含有字母的代数式叫做分式。
(二)合作讨论,探求新知
做一做:
1、下列代数式中,哪些是整式?哪些是分式?
32 ,1x ,b a+1 ,3x+2y 5 ,a+b ab
2、议一议:分式a b
的分母中的字母能取任何实数吗?为什么? 分式2x-3x+2
中的字母x 呢? 总结得出分式的意义:分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义。
设计说明:通过与整式比较突出对分式概念的理解。
通过讨论,加深学生对分式意义的认识。
(三)应用巩固,掌握新知
例1:对分式2x+13x-5
(1)当x 取什么数时,分式有意义?
(2)当x 取什么值时,分式的值为零?
(3)当x=1时,分式的值是多少?
解:略。
解后反思:(最好由学生主讲)
(1)因为当分母等于零时,分式无意义,所以只有当分母不等于零时,分式有意义。
(2)强调当分子等于零且分母不等于0时分式的值为零。
(3)求分式的值的格式。
设计说明:这是课本中的例题,一则是应用新知,二则是经历解题过程,三则让学生体会解本题的关键。
练一练:(课内练习1)填空:
(1)当______时,分式1x
无意义。
(2)当______时,分式1-x 4x-8
有意义。
(3)当______时,分式3x-9x-2
值是零。
设计说明:给学生展现身手的机会,加强学生对什么情况下分式有意义,无意义,值为零的理解。
做一做:
例2:甲、乙两人从一条公路上某处出发,同向而行,已知甲每时行a 千米,乙每时行b 千米,a >b ,如果乙提前1时出发,那么甲追上乙需要多少时间?当a =b ,b =5时,求甲追上乙所需的时间。
分析:此题是行程问题中的追及问题,小学里学过
追及时间=路程差(追及路程)速度差
,本题中把字母代入即可。
第二问题是求分式的值,注意解题格式。
想一想:若取a =5,b =5,分式b a-b
有意义吗?它们表示的实际意义是什么? (当a =5,b =5时,分式b a-b
无意义,它表示甲永远也追不上乙)。
解后反思:在用分式表示实际问题时,字母的取值一定要符合实际。
练一练:(课内练习2)甲、乙两人分别从A 、B 两地出发,相向而行,已知甲的速度为V 1千米/时,乙的速度为V 2千米/时,A 、B 两地相距20千米,若甲先出发1时,问乙出发后几时与甲相遇? (四)合作探究,延伸提高
探究题:(课内练习)口袋里装有若干个白球和黑球,这些球除颜色外均相同,设黑球的个数为n ,白球的个数为(18-m )个,p 表示从口袋中摸出一个球,是白球的概率。
(1)你能用关于m 、n 的代数式来表示p 吗?它是哪一类的代数式。
(2)这个代数式在在什么条件下有意义?
(3)p 有可能为0吗?有可能为1吗?如果有可能,请解释它的实际意义。
设计说明:通过合作探究,让学生体会到(1)分式的应用很广,(2)在用分式表示实际问题时,字母的取值一定要符合实际。
(五)、清点收获
由教师开出清单,学生进行清点
1、 分式的概念;
2、 什么情况下分式有意义、无意义,分式的值为零。
3、 在实际问题中应注意什么? 设计说明:为了避免学生毫无目的、流于形式的随意讲,由教师根据本节课的教学目标开出清单,可使学生有的放矢。
(六)作业:课后作业题。
备选练习或作业:目标与评定中的 1、2两题。
设计思路:
以实际问题情境引出,再通过学生观察比较分式与整式的区别,从而得到分式的概念,让学生体会到分式来源于实际,并通过合作讨论得出分式何时有意义、没意义、何时值为零,符合学生的认知规律,同时把分式中字母的取值与实际联系起来,体现数学既来源于实际又服务于实际。
整个教学过程力求以学生为主体。