2019-2020高考数学二轮复习专题三平面向量三角函数三角形课时作业八三角变换与解三角形理
高考数学大二轮复习 课时作业8 三角变换与解三角形 理-人教版高三全册数学试题
课时作业8 三角变换与解三角形1.[2019·某某某某定位考试]已知cos ⎝ ⎛⎭⎪⎫π2+α=-13,则cos 2α的值为( ) A .-79 B.79C .-223 D.13解析:因为cos ⎝ ⎛⎭⎪⎫π2+α=-13,所以sin α=13,则cos 2α=1-2sin2α=1-2×⎝ ⎛⎭⎪⎫132=79.故选B. 答案:B2.[2019·某某省级示X 性高中联合体联考]已知tan α=2,且sin ⎝⎛⎭⎪⎫α+π4sin ⎝ ⎛⎭⎪⎫α-π4=m tan 2α,则m =( )A .-49B .-94C.49D.94解析:依题意,得sin ⎝⎛⎭⎪⎫α+π4sin ⎝⎛⎭⎪⎫α-π4=22(sin α+cos α)22(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=3,tan 2α=2tan α1-tan 2α=-43,所以3=-43m ,解得m =-94.故选B. 答案:B3.[2019·某某某某一中月考]在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解析:∵sin 2A +sin 2B <sin 2C ,∴a 2+b 2<c 2,∴cos C =a 2+b 2-c 22ab<0,又0°<C <180°,∴C 为钝角,∴△ABC 是钝角三角形,故选C.答案:C4.[2019·某某某某一中月考]满足条件a =4,b =32,A =45°的三角形的个数是( ) A .1 B .2C .无数个D .不存在 解析:由正弦定理得sin B =b sin A a =34,∵22<34<32,∴45°<B <60°或120°<B <135°,均满足A +B <180°,∴B 有两解,满足条件的三角形的个数是2,故选B.答案:B5.[2019·某某某某月考]已知锐角α,β满足cos α=255,sin(α-β)=-35,则sin β的值为( )A.255 B.55 C.2525 D.525解析:∵α是锐角,β是锐角,cos α=255,sin(α-β)=-35,∴sin α=55,cos(α-β)=45,∴sin β=sin[α-(α-β)]=55×45-255×⎝ ⎛⎭⎪⎫-35=255.故选A.答案:A6.[2019·某某两校第一次联考]已知sin(α+β)=12,sin(α-β)=13,则log5⎝ ⎛⎭⎪⎫tan βtan α12=( )A .-1B .-2 C.12D .2 解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,则sin αcos β=512,cos αsin β=112,所以tan βtan α=15,于是log 5⎝ ⎛⎭⎪⎫tan βtan α12=log 5⎝ ⎛⎭⎪⎫1512=log 55-1=-1.故选A.7.[2019·某某某某月考]一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处.在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里解析:画出示意图如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =102(海里).故选A.答案:A8.[2019·某某省级示X 性高中联合体联考]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3sin A =2sin C ,b =5,cos C =-13,则a =( )A .3B .4C .6D .8解析:因为3sin A =2sin C ,由正弦定理得3a =2c ,设a =2k (k >0),则c =3k .由余弦定理得cos C =a 2+b 2-c 22ab =25-5k 220k =-13,解得k =3或k =-53(舍去),从而a =6.故选C.答案:C9.[2019·某某仲元中学期中]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32 B.22C.12 D .-12解析:∵cos C =a 2+b 2-c 22ab ,a 2+b 2=2c 2,∴cos C =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时取等号,∴cos C 的最小值为12,故选C.10.[2019·某某五校第二次联考]已知tan 2α=34,α∈⎝ ⎛⎭⎪⎫-π2,π2,函数f (x )=sin(x +α)-sin(x -α)-2sin α,且对任意的实数x ,不等式f (x )≥0恒成立,则sin ⎝ ⎛⎭⎪⎫α-π4的值为( )A .-255B .-55C .-235D .-35解析:由tan 2α=34,即2tan α1-tan 2α=34,求得tan α=13或tan α=-3.又对任意的实数x ,f (x )=sin(x +α)-sin(x -α)-2sin α=2sin α·(cos x -1)≥0恒成立,所以sinα≤0,则α∈⎝⎛⎦⎥⎤-π2,0,所以tanα=-3,sin α=-310,cos α=110.于是sin ⎝ ⎛⎭⎪⎫α-π4=sin αcos π4-cos α sin π4=-310×22-110×22=-255.故选A.答案:A11.[2019·某某五校联盟第二次质检]若α是锐角,且cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝ ⎛⎭⎪⎫α+3π2=________.解析:因为0<α<π2,所以π6<α+π6<2π3,又cos ⎝ ⎛⎭⎪⎫α+π6=35,所以sin ⎝ ⎛⎭⎪⎫α+π6=45,则cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6cos π6-cos ⎝ ⎛⎭⎪⎫α+π6sin π6=45×32-35×12=43-310. 答案:43-31012.[2019·某某某某一中月考]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a =7,b =2,A =π3,则△ABC 的面积为________.解析:由正弦定理得sin B =b sin A a =2sinπ37=217,∵b <a ,∴B <A ,∴cos B =277,∴sin C =sin(A +B )=32114,∴△ABC 的面积为12ab sin C =332.答案:33213.[2019·某某某某五中综合卷]已知tan(α+β)=13,tan β=12,则tan ⎝ ⎛⎭⎪⎫α+π4=________.解析:∵tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)tan β=-17,∴tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=34.答案:3414.[2019·某某重点高中大联考]已知a ,b ,c 分别为锐角三角形ABC 内角A ,B ,C 的对边,ab sin C =c 2-(a -b )2,若锐角三角形ABC 的面积为4,则c 的最小值为________.解析:由已知条件及余弦定理,可得ab sin C =a 2+b 2-2ab cos C -(a 2-2ab +b 2)=2ab -2ab cos C ,即2cos C =2-sin C ,两边平方,得4(1-sin 2C )=4-4sin C +sin 2C ,因为0°<C <90°,所以可得sin C =45,则cos C =35.所以12ab ×45=4,得ab =10,所以c 2=a 2+b2-2ab cos C =a 2+b 2-2ab ×35≥2ab -65ab =45ab =8,当且仅当a =b 时取等号,所以c ≥22,即c 的最小值为2 2.答案:2 215.[2019·某某宜兴月考]已知sin ⎝ ⎛⎭⎪⎫α+π4=7210,α∈⎝ ⎛⎭⎪⎫π4,π2.(1)求cos α;(2)求f (x )=cos 2x +52sin αsin x 的最值.解析:(1)∵sin ⎝ ⎛⎭⎪⎫α+π4=7210,α∈⎝ ⎛⎭⎪⎫π4,π2. ∴cos ⎝⎛⎭⎪⎫α+π4=-210,∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π4-π4=-210×22+7210×22=35.(2)由(1)得cos α=35,∵α∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α=45, ∴f (x )=cos 2x +2sin x =-2sin2x +2sin x +1=-2⎝ ⎛⎭⎪⎫sin x -122+32,∴当sin x =12时,f (x )取得最大值32,当sin x =-1时,f (x )取得最小值-3.16.[2019·某某六校协作体期中]设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且c ·cos C 是a ·cos B 与b ·cos A 的等差中项.(1)求角C 的大小;(2)若c =2,求△ABC 的周长的最大值.解析:(1)由题意得a cos B +b cos A =2c cos C ,由正弦定理得sin A cos B +sin B cos A =2sin C cos C ,即sin(A +B )=sin C =2sin C cos C ,解得cos C =12,C 是三角形内角,所以C =60°.(2)方法一 由余弦定理得c 2=4=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab ≥(a +b )2-3⎝ ⎛⎭⎪⎫a +b 22=(a +b )24,得a +b ≤4,当且仅当a =b 时等号成立,故△ABC 周长的最大值为6.方法二 由正弦定理得asin A=bsin B=csin C =433,故△ABC 的周长为a +b +c =433(sin A +sin B )+2=433[sin A +sin(A +60°)]+2=433⎝ ⎛⎭⎪⎫32sin A +32cos A +2=4sin(A +30°)+2.∵A ∈(0,120°),∴当A =60°时,△ABC 周长的最大值为6.17.[2019·某某某某部分重点中学第二次联考]已知函数f (x )=cos 2x +23sin ⎝ ⎛⎭⎪⎫π2+x cos ⎝⎛⎭⎪⎫3π2+x -sin 2x .(1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的最大值和最小值;(2)若f (θ)=65,求tan 2⎝ ⎛⎭⎪⎫π6-θ的值.解析:(1)依题意,知f (x )=cos 2x +3sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以π6≤2x +π6≤7π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x +π6≤1, 则-1≤2sin ⎝⎛⎭⎪⎫2x +π6≤2, 于是当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )min =-1,f (x )max =2. (2)因为f (θ)=65,所以sin ⎝⎛⎭⎪⎫2θ+π6=35,所以cos ⎝ ⎛⎭⎪⎫π3-2θ=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-2θ =sin ⎝⎛⎭⎪⎫2θ+π6=35,于是tan 2⎝ ⎛⎭⎪⎫π6-θ=sin 2⎝ ⎛⎭⎪⎫π6-θcos 2⎝ ⎛⎭⎪⎫π6-θ=1-cos ⎝ ⎛⎭⎪⎫π3-2θ1+cos ⎝ ⎛⎭⎪⎫π3-2θ=1-351+35=14.18.[2019·某某市质量检测]在Rt△ABC 中,∠C =90°,点D ,E 分别在边AB ,BC 上,CD =5,CE =3,且△EDC 的面积为3 6.(1)求边DE 的长;(2)若AD =3,求sin A 的值.解析:(1)如图所示,在△ECD 中,S △ECD =12CE ·CD sin∠DCE =12×3×5×sin∠DCE =36,所以sin∠DCE =265,因为0°<∠DCE <90°, 所以cos∠DCE =1-⎝⎛⎭⎪⎫2652=15, 所以DE 2=CE 2+CD 2-2·CE ·CD ·cos∠DCE =9+25-2×3×5×15=28,所以DE =27.(2)因为∠ACB =90°,所以sin∠ACD =sin(90°-∠DCE )=cos∠DCE =15,在△ADC 中,AD sin∠ACD =CDsin A ,即315=5sin A , 所以sin A =13.。
高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-
专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。
高考数学二轮复习练习:第三部分3回顾3三角函数与平面向量含答案
[必练习题]1.已知数列{a n}为等差数列,其前n项和为S n,若a3=6,S3=12,则公差d=() A.1 B.2 C.3D.5 3解析:选B.在等差数列{a n}中,S3=3(a1+a3)2=3(a1+6)2=12,解得a1=2,又a3=a1+2d=2+2d=6,解得d=2,选B.2.设等差数列{a n}的前n项和为S n,a2+a4=6,则S5等于() A.10 B.12 C.15 D.30解析:选C.由等差数列的性质可得a2+a4=a1+a5,所以S5=5(a1+a5)2=15,故选C.3.已知等比数列{a n}的公比为正数,且a2·a6=9a4,a2=1,则a1的值为() A.3 B.-3 C.-13 D.13解析:选D.设数列{a n}的公比为q,由a2·a6=9a4,得a2·a2q4=9a2q2,解得q2=9,所以q=3或q=-3(舍),所以a1=a2q=13.故选D.4.已知数列{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=() A.7 B.5 C.-5D.-7解析:选D.设数列{a n}的公比为q.由题意,得?????a1q3+a1q6=2,a1q4×a1q5=a1q3×a1q6=-8,所以?????a1q3=-2,a1q6=4或?????a1q3=4,a1q6=-2,解得?????a1=1,q3=-2或?????a1=-8,q3=-12.当?????a1=1,q3=-2时,a1+a10=a1(1+q9)=1+(-2)3=-7;当?????a1=-8,q3=-12时,a1+a10=a1(1+q9)=(-8)×????1+????-123=-7.综上,a1+a10=-7.故选D.5.设x,y满足约束条件?????2x+y-6≥0,x+2y-6≤0,y≥0,则目标函数z=x+y的最大值是()A.3 B.4 C.6D.8解析:选C.法一:作出不等式组表示的平面区域如图中阴影部分所示,作直线x+y=0,平移该直线,当直线经过点A(6,0)时,z取得最大值,即z max=6,故选C.法二:目标函数z=x+y的最值在可行域的三个顶点处取得,易知三条直线的交点分别为(3,0),(6,0),(2,2).当x=3,y=0时,z=3;当x=6,y=0时,z=6;当x=2,y=2时,z=4.所以z max=6,故选C.6.若数列{a n}的首项为3,{b n}为等差数列,且b n=a n+1-a n(n∈N*),若b3=-2,b10=12,则a8=()A.0 B.3 C.8D.11解析:选B.依题意可设等差数列{b n}的公差为d,则b10=b3+7d=-2+7d=12,解得d=2,所以b n=b3+(n-3)d=2n-8,又b n=a n+1-a n,则b7=a8-a7,b6=a7-a6,…,b1=a2-a1,采用累加法可得,b7+b6+…+b1=(a8-a7)+(a7-a6)+…+(a2-a1)=a8-a1,又易知b1+b2+…+b7=0,则a8=a1=3,故选B. 7.在各项均不为零的数列{a n}中,若a1=1,a2=13,2a n a n+2=a n+1a n+2+a n a n+1(n ∈N*),则a2 018=()A.1 4 033B.1 4 034C.1 4 035D.1 4 037解析:选C.因为2a n a n+2=a n+1a n+2+a n a n+1(n∈N*),所以2a n+1=1a n+1a n ,所以??????1a n是等差数列,其公差d=1a2-1a1=2,所以1a n +2=1+(n-1)×2=2n-1,a n=12n-1,所以a2 018=1 4 035.8.已知函数f(x)=?????2x-1-2,x≥1,21-x-2,x<1,则不等式f(x-1)≤0的解集为________..解析:由题意,得f(x-1)=?????2x-2-2,x≥2,22-x-2,x<2,当x≥2时,由2x-2-2≤0,解得2≤x≤3;当x<2时,由22-x-2≤0,解得1≤x<2.综上所述,不等式f(x-1)≤0的解集为{x|1≤x≤3}..答案:[1,3]9.已知数列{a n}满足a1=32,a n=3na n-12a n-1+n-1(n≥2,n∈N*),则通项公式a n=________..解析:由a n=3na n-12a n-1+n-1?na n=13·n-1a n-1+23,令na n=b n,则b n=13·b n-1+23?b n-1=13·(b n-1-1),由a1=32,得b1-1=-13,所以{b n-1}是以-13为首项,13为公比的等比数列,所以b n-1=-13·????13n-1,得a n=nb n=n·3n3n- 1.答案:n·3n3n- 110.已知S n为数列{a n}的前n项和,且a1=1,a n a n+1=3n,则S2 017=________..解析:由a n a n+1=3n,得a n-1a n=3n-1(n≥2),所以a n+1a n-1=3(n≥2),则数列{a n}的所有奇数项和偶数项均构成以3为公比的等比数列,又a1=1,a1a2=3,所以a2=3,所以S2 017=1×(1-31 009)1-3+3×(1-31 008)1-3=31 009-2.答案:31 009-2。
高考数学二轮复习专题三平面向量三角函数三角形课时作业八三角变换与解三角形理86.doc
(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.
解析:(1)由已知可得tanA=- ,所以A= .
在△ABC中,由余弦定理得28=4+c2-4ccos ,即c2+2c-24=0,
解得c=-6(舍去),c=4.
(2)由题设可得∠CAD= ,
所以∠BAD=∠BAC-∠CAD= .
故△ABD面积与△ACD面积的比值为
C. D.0
解析:因为sin =cos ,所以 cosα- sinα= cosα- sinα,即 sinα=- cosα,所以tanα= =-1,所以cos2α=cos2α-sin2α= = =0.
答案:D
3.(2017·合肥市第一次教学质量检测)已知△ABC的内角A,B,C的对边分别为a,b,c,若cosC= ,bcosA+acosB=2,则△ABC的外接圆面积为()
课时作业(八)三角变换与解三角形
1.(2017·陕西省高三教学质量检测试题(一))设角θ的终边过点(2,3),则tan =()
A. B.-
C.5D.-5
解析:由于角θ的终边过点(2,3),因此tanθ= ,故tan = = = ,选A.
答案:A
2.已知sin =cos ,则cos2α=()
A.1B.-1
8.△ABC的内角A,B,C的对边分别为a,b,c,已知cos(A-C)+cosB=1,a=2c.则C=()
A. 或 B.
C. 或 D.
解析:cos(A-C)+cosB=1,故cos(A-C)-cos(A+C)=1,2sinAsinC=1.
又由已知a=2c,根据正弦定理得,sinA=2sinC,
∴sinC= ,∴C= 或 .∵a>c,∴A>C,∴C= .
2019高考数学二轮复习第二编专题三三角函数、解三角形与平面向量第3讲平面向量配套作业文
第3讲 平面向量配套作业一、选择题1.(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC →D. 14AB →+34AC → 答案 A解析 由题意(如图),根据向量的运算法则,可得EB →=AB →-AE →=AB →-12AD →=AB →-14(AB →+AC →)=34AB →-14AC →,故选A. 2.(2018·成都二诊)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79 D.⎝ ⎛⎭⎪⎫-79,-73答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2),a +b =(3,-1), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 联立①②,解得x =-79,y =-73.3.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A解析 由题意知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,易知x =23,y =13.4.(2018·洛阳质检)已知|a |=1,|b |=6,a ·(b -a )=2,则向量a 与b 的夹角为( ) A.π2 B.π3 C.π4D.π6答案 B解析 a ·(b -a )=a ·b -a 2=2,所以a ·b =3,所以cos 〈a ,b 〉=a ·b |a ||b |=31×6=12,所以〈a ,b 〉=π3.5.已知AB →=(2,1),点C (-1,0),D (4,5),则向量AB →在CD →方向上的投影为( ) A .-3 5 B .-355C.322D .3 5答案 C解析 ∵点C (-1,0),D (4,5),∴CD →=(5,5).又AB →=(2,1),∴向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322.6.(2018·海口一模)在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 由(BC →+BA →)·AC →=|AC →|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,∴AC →·2BA →=0,∴AC →⊥BA →.∴∠A =90°,选C.7.(2018·开封质检)如图,平行四边形ABCD 中,AB =2,AD =1,∠A =60°,点M 在AB 边上,且AM =13AB ,则DM →·DB →等于( )A .-32B.32C .-1D .1答案 D解析 因为DM →=DA →+AM →=DA →+13AB →,DB →=DA →+AB →,所以DM →·DB →=⎝ ⎛⎭⎪⎫DA →+13AB →·(DA →+AB →)=|DA →|2+13|AB →|2+43DA →·AB →=1+43-43AD →·AB →=73-43|AD →|·|AB →|·cos60°=73-43×1×2×12=1.8.(2018·黑龙江省哈尔滨六中一模)平面向量a ,b 满足|a |=4,|b |=2,a +b 在a 上的投影为5,则|a -2b |为( )A .2B .4C .8D .16答案 B解析 根据条件,|a +b |cos 〈(a +b ),a 〉=|a +b |·a +b a |a +b ||a |=a 2+a ·b |a |=16+a ·b4=5,所以a ·b =4,所以(a -2b )2=a 2-4a ·b +4b 2=16-16+16=16, 所以|a -2b |=4.故选B. 二、填空题9.已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.答案 -3解析 建立如图所示的平面直角坐标系xAy ,则AC →=(2,-2),AB →=(1,2),AD →=(1,0),由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.10.(2018·济南二模)向量a ,b 满足|a |=2,|b |=1,且|a -2b |∈(2,23],则a ,b 的夹角θ的取值范围是________.答案 ⎝ ⎛⎦⎥⎤π3,2π3解析 ∵|a -2b |∈(2,23],∴(a -2b )2∈(4,12],即a 2+4b 2-4a ·b =4+4-8cos θ∈(4,12],∴cos θ∈⎣⎢⎡⎭⎪⎫-12,12,故θ∈⎝ ⎛⎦⎥⎤π3,2π3.11.已知函数y =tan ⎝ ⎛⎭⎪⎫π4x -π2的部分图象如图所示,则(OA →+OB →)·AB →=________.答案 6解析 结合题中图象,令y =tan ⎝ ⎛⎭⎪⎫π4x -π2=0,得π4x -π2=k π(k ∈Z ).当k =0时,解得x =2.故A (2,0).由y =tan ⎝ ⎛⎭⎪⎫π4x -π2=1⇒π4x -π2=k π+π4⇒x =4k +3(k ∈Z ),结合题中图象可得x =3,故B (3,1),所以OA →+OB →=(5,1),AB →=(1,1).故(OA →+OB →)·AB →=5×1+1×1=6.三、解答题12.已知向量a =(sin x ,cos x ),b =⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫x +π6+sin x ,cos x ,函数f (x )=a ·b .(1)求f (x )的单调递增区间;(2)若α∈⎝ ⎛⎭⎪⎫0,π2,且cos ⎝⎛⎭⎪⎫α+π12=13,求f (α).解 (1)f (x )=sin x cos ⎝ ⎛⎭⎪⎫x +π6+1=32sin x cos x -12sin 2x +1=34sin2x +14cos2x +34=12sin ⎝⎛⎭⎪⎫2x +π6+34.令2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,解得k π-π3≤x ≤k π+π6,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)f (α)=12sin ⎝ ⎛⎭⎪⎫2α+π6+34=sin ⎝ ⎛⎭⎪⎫α+π12cos ⎝ ⎛⎭⎪⎫α+π12+34,又∵cos ⎝ ⎛⎭⎪⎫α+π12=13,且α∈⎝ ⎛⎭⎪⎫0,π2, ∴sin ⎝ ⎛⎭⎪⎫α+π12=223,∴f (α)=229+34. 13.已知△ABC 的面积为S ,且BA →·BC →=S . (1)求tan2B 的值;(2)若cos A =35,且|CA →-CB →|=2,求BC 边中线AD 的长.解 (1)由已知BA →·BC →=S 有ac cos B =12ac sin B ,可得tan B =2,所以tan2B =2tan B 1-tan 2B =-43. (2)由|CA →-CB →|=2可得|BA →|=2,由(1)知tan B =2, 解得sin B =255,cos B =55,又cos A =35,所以sin A =45,sin C =sin(A +B )=sin A cos B +cos A sin B =255.因为sin B =sin C ,所以B =C ,所以AB =AC =2, 所以中线AD 也为BC 边上的高, 所以AD =AB sin B =2×255=455.14.已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4. (1)若m ·n =1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解 m ·n =3sin x 4cos x4+cos 2x4=32sin x 2+12c os x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12.(1)∵m ·n =1,∴sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)由(2a -c )cos B =b cos C 及正弦定理得 (2sin A -sin C )cos B =sin B co s C , 2sin A cos B =sin C cos B +sin B cos C , 2sin A cos B =sin (B +C ).∵A +B +C =π,∴sin(B +C )=sin A ,且sin A ≠0, ∴cos B =12,B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1. 又∵f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故1<f (A )<32.故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32. 15.已知向量a =⎝ ⎛⎭⎪⎫2cos ωx 2,3,b =⎝ ⎛⎭⎪⎫3cos ωx 2,sin ωx ,ω>0,设函数f (x )=a ·b -3的部分图象如图所示,A 为图象的最低点,B ,C 为图象与x 轴的交点,且△ABC 为等边三角形,其高为2 3.(1)求ω的值及函数f (x )的值域; (2)若f (x 0)=835,且x 0∈⎝ ⎛⎭⎪⎫-103,23,求f (x 0+1)的值. 解 (1)由已知可得f (x )=a ·b -3=6cos 2ωx2+3sin ωx -3 =23sin ⎝⎛⎭⎪⎫ωx +π3, 由正△ABC 的高为23,可得BC =4, 所以函数f (x )的最小正周期T =4×2=8, 即2πω=8,得ω=π4, 故f (x )=23sin ⎝⎛⎭⎪⎫πx 4+π3,所以函数f (x )的值域为[-23,23]. (2)由(1)有f (x 0)=23sin ⎝⎛⎭⎪⎫πx 04+π3,又f (x 0)=835,故sin ⎝ ⎛⎭⎪⎫πx 04+π3=45,由x 0∈⎝ ⎛⎭⎪⎫-103,23,得πx 04+π3∈⎝ ⎛⎭⎪⎫-π2,π2,所以cos ⎝⎛⎭⎪⎫πx 04+π3=1-⎝ ⎛⎭⎪⎫452=35, 故f (x 0+1)=23sin ⎝ ⎛⎭⎪⎫πx 04+π4+π3=23sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫πx 04+π3+π4=23×22⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫πx 04+π3+cos ⎝ ⎛⎭⎪⎫πx 04+π3 =6×⎝ ⎛⎭⎪⎫45+35=765.。
精品-2019高考数学二轮复习第二编专题三三角函数解三角形与平面向量第2讲三角恒等变换与解三角形配套作业文
第2讲 三角恒等变换与解三角形配套作业一、选择题1.在平面直角坐标系xOy 中,已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边上一点M 的坐标为(3,1),则cos ⎝⎛⎭⎪⎫α+π3的值是( )A .-12B .0C .12D .1答案 B解析 由已知得sin α=12,cos α=32,所以cos ⎝⎛⎭⎪⎫α+π3=12cos α-32sin α=0. 2.已知α是第三象限角,且tan α=2,则sin ⎝⎛⎭⎪⎫α+π4=( )A .-31010B .31010 C .-1010D .1010答案 A解析 由tan α=sin αcos α=2,sin 2α+cos 2α=1,且α是第三象限角,得sin α=-255,cos α=-55,所以sin ⎝⎛⎭⎪⎫α+π4=22(sin α+cos α)=-31010,故选A.3.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若a =52b ,A =2B ,则cos B =( )A.53B.54C.55D.56答案 B解析 ∵a =52b ,由正弦定理,得sin A =52sin B .①又∵A =2B ,∴sin A =sin2B ,sin A =2sin B cos B .②由①②且角B 为△ABC 的内角得cos B =54.4.设a =12cos2°-32sin2°,b =2tan14°1-tan214°,c =1-cos50°2,则有( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案 D解析 由题意可知,a =sin28°,b =tan28°,c =sin25°,易知c <a <b .5.(2018·杭州模拟)在△ABC 中,若tan A tan B >1,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .无法确定 答案 A解析 因为tan A tan B >1,所以A ,B 都为锐角,又tan C =-tan(A +B )=tanA +tanBtanAtanB -1>0,所以角C 为锐角,则△ABC 为锐角三角形,选A.6.(2018·南昌二模)如图,在△ABC 中,B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =( )A.562 B.563 C.732D.833答案 A解析 在△ACD 中,由余弦定理可得cos C =49+9-252×7×3=1114,则sin C =5314.在△ABC 中,由正弦定理可得AB sinC =AC sinB ,则AB =562,选A.7.(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( )A.π4B.π2C.3π4D.π答案 C解析 ∵f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,∴由2k π≤x +π4≤π+2k π(k ∈Z ),得-π4+2k π≤x ≤3π4+2k π(k ∈Z ),因此[0,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,∴a >0且a ≤3π4,即a 的最大值为3π4.故选C.二、填空题8.已知cos ⎝ ⎛⎭⎪⎫α+π6+sin α=35,则cos ⎝ ⎛⎭⎪⎫π3-2α的值是________.答案 -725解析 ∵cos ⎝ ⎛⎭⎪⎫α+π6+sin α=cos ⎝ ⎛⎭⎪⎫π6-α=35,∴cos ⎝ ⎛⎭⎪⎫π3-2α=2cos 2⎝ ⎛⎭⎪⎫π6-α-1=-725.9.(2018·福州质检)2cos10°-sin20°sin70°的值是________.答案 3解析 原式=--sin20°cos20°=3cos20°cos20°= 3.10.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若sin 2A -sin 2B =3sin B sinC ,sin C =23sin B ,则A =________.答案 30°解析 根据正弦定理可得a 2-b 2=3bc ,c =23b ,解得a =7b .根据余弦定理cos A =b2+c2-a22bc =b2+12b2-7b22×b×23b=32,得A =30°.11.(2018·青岛模拟)已知不等式32sin x 4cos x 4+6cos 2x4-62-m ≤0对任意的-5π6≤x ≤π6恒成立,则实数m 的取值范围是________.答案 [3,+∞)解析 依题意得,32sin x 4cos x 4+6cos 2x4-62-m =322sin x 2+62cos x 2-m =6sin ⎝ ⎛⎭⎪⎫x 2+π6-m ≤0在⎣⎢⎡⎦⎥⎤-5π6,π6上恒成立,∴m ≥6sin ⎝ ⎛⎭⎪⎫x 2+π6在⎣⎢⎡⎦⎥⎤-5π6,π6上恒成立,由于-π4≤x 2+π6≤π4,∴-3≤ 6sin ⎝ ⎛⎭⎪⎫x 2+π6≤ 3,故m ≥ 3.三、解答题12.(2018·全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .解 (1)在△ABD 中,由正弦定理,得BD sinA =AB sin∠ADB.由题设知,5sin45°=2sin∠ADB ,所以sin ∠ADB =25.由题设知,∠ADB <90°,所以cos ∠ADB =1-225=235.(2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25. 在△BCD 中,由余弦定理,得BC 2=BD 2+DC 2-2BD ×DC ×cos∠BDC =25+8-2×5×22×25=25.所以BC =5.13.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2-ab -2b 2=0.(1)若B =π6,求C ;(2)若C =2π3,c =14,求S △ABC .解 (1)由已知B =π6,a 2-ab -2b 2=0,结合正弦定理得2sin 2A -sin A -1=0,于是sin A=1或sin A =-12(舍).因为0<A <π,所以A =π2,C =π3.(2)由题意及余弦定理可知a 2+b 2+ab =196,由a 2-ab -2b 2=0得(a +b )(a -2b )=0,即a =2b ,联立解得b =27,a =47.所以S △ABC =12ab sin C =14 3.14.(2018·郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos2B -C2-sin B sin C =2-24.(1)求角A ;(2)若a =4,求△ABC 面积的最大值.解 (1)由cos2B -C 2-sin B sin C =2-24,得-2-sin B sin C =-24,∴cos(B +C )=-22,∴cos A =22(0<A <π),∴A =π4.(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得16=b 2+c 2-2bc ≥(2-2)bc ,当且仅当b =c 时取等号,即bc ≤8(2+2).∴S △ABC =12bc sin A =24bc ≤4(2+1),即△ABC 面积的最大值为4(2+1).15.在四边形ABCD 中,AD ∥BC ,AB =2,AD =1,A =2π3.(1)求sin ∠ADB ;(2)若∠BDC =2π3,求四边形ABCD 的面积.解 (1)如图,在△ABD 中,AB =2,AD =1,A =2π3,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD ·cos A ,即BD 2=4+1-2×2×1×cos2π3,解得BD =7.在△ABD 中,由正弦定理,得BD sinA =AB sin∠ADB,即7sin2π3=2sin∠ADB ,解得sin ∠ADB =217.(2)设∠CBD =α,因为AD ∥BC ,所以∠ADB =∠CBD =α,所以sin α=217.因为0<α<π2,所以cos α=277,因为∠BDC =2π3,所以sin C =sin ⎝⎛⎭⎪⎫π3-α=sin π3cos α-cos π3sin α=2114.在△BCD 中,由正弦定理得BD sinC =BCsin∠BDC,即72114=BC sin2π3,解得BC =7.所以S △BCD =12BD ·BC ·sin α=12×7×7×217=732, S △ABD =12AB ·AD ·sin∠BAD=12×2×1×sin 2π3=32.所以四边形ABCD 的面积S =S △BCD +S △ABD =732+32=4 3.16.(2018·沈阳模拟)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若AD 为BC 边上的中线,cos B =17,AD =1292,求△ABC 的面积.解 (1)a cos C +3a sin C -b -c =0,由正弦定理得sin A cos C +3sin A sin C =sin B +sin C ,即sin A cos C +3sin A sin C =sin(A +C )+sin C , 又sin C ≠0,所以化简得3sin A -cos A =1,所以sin(A -30°)=12.在△ABC 中,0°<A <180°,所以A -30°=30°,得A =60°.(2)在△ABC 中,因为cos B =17,所以sin B =437.所以sin C =sin(A +B )=32×17+12×437=5314.由正弦定理得,a c =sinA sinC =75.设a =7x ,c =5x (x >0),则在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B ,即1294=25x 2+14×49x 2-2×5x ×12×7x ×17,解得x =1,所以a =7,c =5,1 2ac sin B=10 3.故S△ABC=。
高考数学(理)二轮专题练习:三角函数、解三角形、平面向量(含答案)
三角函数、解三角形、平面向量1.α终边与 θ终边同样 (α的终边在 θ终边所在的射线上 )? α= θ+ 2k π(k ∈ Z ),注意: 相等的角的终边必定同样,终边同样的角不必定相等.随意角的三角函数的定义:设α是随意一个角, P(x , y)是 α的终边上的随意一点 (异于原点 ) ,它与原点的距离是 r = x 2+y 2>0,那么 sin α= y ,cos α= x ,tan α= y(x ≠ 0),三角函数值只与角r r x 的大小相关,而与终边上点P 的地点没关.[问题 1] 已知角 α的终边经过点 P(3,- 4),则 sin α+ cos α的值为 ________.答案 -152.同角三角函数的基本关系式及引诱公式 (1) 平方关系: sin 2α+ cos 2α= 1.sin α (2) 商数关系: tan α=.cos α(3) 引诱公式记忆口诀:奇变偶不变、符号看象限- απ- απ+ α2π- απ- α2sin -sin α sin α -sin α - sin α cos α cos cos α - cos α- cos αcos αsin α9π 7π [问题 2] cos + tan - + sin 21 π的值为 ___________________________ .46答案22-333.三角函数的图象与性质 (1) 五点法作图;π(2) 对称轴: y =sin x , x = k π+ 2, k ∈Z ;y = cos x , x = k π,k ∈ Z ;π k π 对称中心: y = sin x ,( k π,0) ,k ∈ Z ;y = cos x , k π+ , 0 ,k ∈ Z ; y =tan x ,,0 ,k ∈ Z .22(3) 单一区间:y = sin x 的增区间: π π- +2k π, + 2k π ( k ∈Z ),2 2 π 3π+ 2k π,+ 2k π(k ∈ Z );减区间: 22y = cos x 的增区间: [- π+ 2k π,2k π] (k ∈ Z ), 减区间: [2k π, π+ 2k π] k(∈ Z );π πy = tan x 的增区间: - + k π, + k π (k ∈ Z ).22(4) 周期性与奇偶性:y = sin x 的最小正周期为 2π,为奇函数; y = cos x 的最小正周期为 2π,为偶函数; y = tan x 的 最小正周期为 π,为奇函数.易错警告: 求 y = Asin( ωx+ φ)的单一区间时,简单出现以下错误:(1) 不注意 ω的符号,把单一性弄反,或把区间左右的值弄反;(2) 忘记写+ 2k π,或+ k π等,忘记写 k ∈ Z ;π (3) 书写单一区间时,错把弧度和角度混在一同.如[0,90 ]°应写为0,2 .[问题 3]函数 y = sin - 2x + π的递减区间是 ________.3π 5 答案k π- 12, k π+ 12π(k ∈ Z )4.两角和与差的正弦、余弦、正切公式及倍角公式令α=βsin(α±β)= sin αcos β±cos αsin β――→sin 2α=2sin αcos α.令 α=βcos(α±β)= cos αcos β?sin αsin β――→ cos 2α= cos 2α- sin 2α= 2cos 2α- 1= 1-2sin 2α.tan(α±β)= tan α±tan β1?tan .αtan β21+ cos 2α21- cos 2α2tan αcos α=2, sin α=, tan 2α=2 .21- tan α在三角的恒等变形中,注意常有的拆角、拼角技巧,如:α= (α+ β)-β, 2α= (α+ β)+ (α-β),1α= 2[( α+ β)+ (α- β)] .π π π πα+ = (α+ β)- β- , α= α+ - .44443π3 π 12 π[问题 4] 已知 α,β∈ 4 ,π, sin( α+ β)=- 5, sin β- 4 =13,则 cos α+4 = ________.答案- 56655.解三角形(1) 正弦定理: a = b = c= 2R( R 为三角形外接圆的半径 ).注意: ①正弦定理的一些变 sin A sinB sin C式: (ⅰ )a ∶ b ∶ c = sin A ∶ sin B ∶sin C ;(ⅱ )sin A = a ,sin B = b ,sin C = c;(ⅲ )a = 2Rsin A ,2R 2R 2Rb = 2Rsin B ,c = 2Rsin C ;②已知三角形两边及一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解,要联合详细状况进行弃取.在△ABC 中 A>B? sin A>sin B.222(2) 余弦定理: a 2= b 2+c 2-2bccos A ,cos A = b + c - a 等,常采用余弦定理判定三角形的形状.2bc[问题 5]在△ ABC 中, a = 3, b = 2, A = 60°,则 B = ________.答案45°6.向量的平行与垂直设 a = (x 1, y 1), b = (x 2, y 2),且 b ≠0,则 a ∥ b ? b = λa ? x 1y 2-x 2y 1= 0.a ⊥b (a ≠ 0)? a ·b = 0? x 1x 2+ y 1y 2= 0.0 当作与随意愿量平行,特别在书写时要注意,不然有质的不一样.[问题 6]以下四个命题:①若 |a |=0,则 a = 0;②若 |a |= |b |,则 a = b 或 a =- b ;③若 a ∥b ,则 |a |= |b |;④若 a = 0,则- a = 0.此中正确命题是 ________.答案 ④7.向量的数目积 |a |2= a 2= a ·a ,a ·b = |a||b |cos θ= x 1x 2+ y 1 y 2,cos θ= a ·b =x 1x 2 +y 1 y 2 ,|a||b |x 12+ y 12 x 22+ y 22a ·b = x 1x 2+ y1y 2a 在b 上的投影= |a |cos 〈 a , b 〉= |b|x 22+ y 22 .注意 :〈a , b 〉为锐角 ? a ·b >0 且 a 、 b 不一样向;〈 a , b 〉为直角 ? a ·b = 0 且 a 、 b ≠0;〈 a , b 〉为钝角 ? a ·b <0 且 a 、 b 不反向.易错警告: 投影不是 “影 ”,投影是一个实数,能够是正数、负数或零.[问题 7]已知 |a |= 3, |b |= 5,且 a ·b = 12,则向量 a 在向量 b 上的投影为 ________.12答案58.当 a ·b = 0 时,不必定获得 a ⊥ b ,当 a ⊥ b 时, a ·b = 0;a ·b = c ·b ,不可以获得 a =c ,消去律不建立; ( a ·b )c 与 a ( b ·c )不必定相等, (a ·b )c 与 c 平行,而 a ( b ·c )与 a 平行.[问题 8]以下各命题:①若 a ·b = 0,则 a 、b 中起码有一个为= c ;③对随意愿量 a 、 b 、 c ,有 (a ·b ) c ≠a (b ·c );④对任一直量0;②若 a ≠0, a ·b =a ·c ,则22a ,有 a = |a | .此中正确命题是b________.答案④9.几个向量常用结论:→ → →① PA + PB + PC = 0? P 为 △ ABC 的重心;→→ → → →→② PA ·PB =PB ·PC = PC ·PA? P 为 △ABC 的垂心;→→ABAC③向量 λ( → + → ) ( λ≠ 0)所在直线过 △ ABC 的心里;|AB| |AC|→ → →④ |PA|= |PB|= |PC|? P 为 △ ABC 的外心.易错点 1 图象变换方向或变换量掌握禁止致误例 1 要获得 y = sin(- 3x)的图象, 需将 y = 22(cos 3x -sin 3x)的图象向 ______平移 ______ 个单位 (写出此中的一种特例即可 ).错解 右π π或右1242π 找准失分点 y = 2 (cos 3x - sin 3x)= sin 4- 3x= sin - 3 x - π .12π题目要求是由 y = sin - 3x + 4 → y = sin(- 3x).ππ右移 平移方向和平移量都错了;右移平移方向错了.412正解y =2π- 3x2 (cos 3x -sin 3x)=sin 4π= sin - 3 x - 12 ,ππ 2要由 y = sin - 3 x - 12 获得 y = sin( -3x)只要对 x 加上 12即可,因此是对 y=2 (cos 3x - sin 3x)π 向左平移 12个单位.答案左π12易错点 2忽略隐含条件的发掘致误例 2ππ已知 cos α= 1, sin(α+ β)= 5 3, 0< α< , 0<β<,求 cos β.71422错解由ππ0<α<, 0<β< ,得 0<α+β<π,2 211则 cos(α+β)= ± .141 π4 3由 cos α= 7,0< α<2,得 sin α= 7.71 1 故 cos β= cos[(α+ β)- α]= cos(α+β)cos α+sin( α+ β)·sin α=或 .98 2找准失分点由 0<α+ β<π,且 sin( α+ β)= 5 33,14<2 π 2π 1 1∴ 0<α+ β< 或<α+ β<π,又 cos α= < ,337 2π π 2π 11∴ <α< ,即 α+ β∈,π, ∴ cos(α+ β)=-14.323正解π 1 <cosπ 1,∵ 0< α< 且 cos α==273 2π π π∴ <α< ,又 0<β< ,322π< 3,∴ <α+ β<π,又 sin( α+ β)=5 3314 22π∴ 3 <α+ β<π. ∴ cos(α+ β)=-1- sin 2α+ β =-1114,24 3sin α= 1- cos α= 7 .∴ cos β= cos[(α+ β)- α]1= cos(α+ β)cos α+ sin( α+ β)sin α=2.易错点 3 忽略向量共线致误例 3已知 a =(2,1) , b = (λ, 1), λ∈ R ,a 与 b 的夹角为 θ.若 θ为锐角,则 λ的取值范围是__________.错解∵ cos θ=a ·b=2λ+ 1.2|a| |b ·| 5· λ+ 1因 θ为锐角,有 cos θ>0 ,2λ+ 1∴2 >0? 2λ+ 1>0,5· λ+ 1得 λ>-1, λ的取值范围是 -1,+∞ .22找准失分点 θ为锐角,故 0<cos θ<1,错解中没有清除 cos θ= 1 即共线且同向的状况.正解由 θ为锐角,有 0<cos θ<1.又 ∵ cos θ= a ·b = 2λ+ 1 ,|a| |b ·| 25· λ+ 1∴ 0<2λ+ 12≠1,5· λ+ 12λ+1>0 ,λ>- 1,∴2+ 1 ,解得22λ+ 1≠5· λλ≠ 2.∴ λ的取值范围是 λ|λ>- 12且 λ≠2.1答案λ|λ>- 且λ≠21. (2014 ·纲领全国 )已知角 α的终边经过点 (- 4,3),则 cos α= ()4 3 A. 5B. 534C .- 5D .-5答案 D分析 由于角 α的终边经过点x 4 (-4,3),所以 x =- 4, y = 3, r = 5,所以 cos α==- .r52. (2014 ·纲领全国 )设 a =sin 33 ,°b = cos 55 ,°c = tan 35 ,°则 ( )A .a>b>cB . b>c>aC . c>b>aD . c>a>b答案 C分析∵ a = sin 33 ,°b = cos 55 °= sin 35 ,°c = tan 35 °=sin 35 °cos 35 ,°又 0<cos 35 °<1, ∴ c>b>a.4π3.已知 sin θ+ cos θ= 3 (0< θ< 4),则 sin θ- cos θ的值为 ()2 2 1 1A. 3B .- 3C.3 D .- 3答案B分析∵ sin θ+ cos θ= 4, ∴ (sin θ+ cos θ)2= 1+ sin 2θ= 16, ∴ sin 2θ= 7,3 9 9π 又 0<θ< , ∴ sin θ<cos θ.4∴ sin θ- cos θ=-θ- cos θ 22=- 1- sin 2θ=- 3 .4.已知 a , b 是单位向量, a ·b = 0,若向量 c 知足 |c - a - b |= 1,则 |c |的取值范围是( )A .[ 2-1, 2+1]B .[ 2-1, 2+2]C.[1,2+ 1]D.[1,2+2]答案A分析∵ a·b=0,且a, b 是单位向量,∴ |a|= |b|= 1.又∵ |c-a-b|2=c2- 2c·(a+b)+ 2a·b+a2+b2=1,∴2c·(a+b)=c2+ 1.∵ |a|= |b|= 1 且a·b= 0,∴|a+b|=2,∴c2+1=2 2|c|cosθ(θ是 c 与 a+ b 的夹角).又- 1≤cos θ≤1,∴ 0<c2+ 1≤2 2|c|,∴c2-2 2|c|+1≤0,∴2- 1≤|c|≤ 2+ 1.5.函数 f(x)= Asin(2x+φ)(A,φ∈R)的部分图象如下图,那么f(0) 等于 ()A .-1B.- 1 2C.-3D.- 3 2答案B分析由题图可知,函数的最大值为2,所以 A= 2.又由于函数经过点ππ, 2 ,则 2sin2×+φ= 2,33ππ即 2×+φ=+ 2kπ, k∈Z,32π得φ=-+2kπ,k∈ Z.6f(0) = 2sin φ= 2sin π-+ 2kπ=- 1. 66.在△ ABC 中,角 A, B, C 所对边的长分别为a,b, c,若 a2+ b2= 2c2,则 cos C 的最小值为 ()3211A. 2B. 2C.2D.-2答案Ca2+ b2- c2c2分析∵ cos C=2ab=2ab,又∵ a2+ b2≥2ab,∴2ab≤2c2.11∴ cos C≥ .∴ cos C 的最小值为 .22→ →π7. (2014 ·山东 )在△ ABC 中,已知 AB·AC= tan A,当 A=6时,△ ABC 的面积为 ________.1 答案6π分析已知 A = 6,→ → π π 由题意得 |AB||AC|cos= tan,66→ →2|AB||AC|= 3,所以 △ABC 的面积1 → → π 12 1 1S = |AB||AC |sin=××=.26 2 3 2 68. (2014 ·江苏 )已知函数 y = cos x 与 y = sin(2x + φ)(0 ≤φ<π),它们的图象有一个横坐标为点,则 φ的值是 ________.答案π6分析由题意,得π π sin 2×+ φ =cos,33由于π0≤φ<π,所以 φ= .6π π9.已知函数 f(x)=Asin( ω+ φ),x ∈ R (此中 A>0,ω>0,- 2<φ<2), 其部分图象如下图.若横坐标分别为-1,1,5 的三点 M ,N , P 都在函数 f(x)的图象上,记∠ MNP = θ,则 cos 2θ的值是 ________ .π3的交答案 -725分析由图可知, A = 1, f(x)的最小正周期 T = 8,2ππ所以 T = ω = 8,即 ω= .4πππ又 f(1) =sin( + φ)= 1,且- <φ< ,4 2 2 π π 3π所以- <φ+ < ,4 4 4 π π π即 φ+ = ,所以 φ= .424π所以 f(x)=sin(x + 1).4由于 f(- 1)= 0, f(1) = 1, f(5)=- 1,所以 M(- 1,0),N(1,1), P(5,- 1).→ → → →所以 NM = (- 2,- 1),NP = (4,- 2), NM ·NP =- 6,→ →5,|NM |= 5, |NP|= 2→ →则 cos ∠ MNP =NM·NP=- 3, →→ 5|NM| ·|NP|3即 cos θ=- 5.于是 cos 2θ= 2cos2θ- 1=- 257.π23, x ∈ R . 10. (2014 天·津 )已知函数 f(x)= cos x ·sin(x + 3)- 3cos x + 4 (1) 求 f(x)的最小正周期;(2) 求 f(x)在闭区间 [- π π, 4 ]上的最大值和最小值.41sin x +3 23 解 (1)由已知,有 f(x)=cos x ·(2cos x)-3cos x +421 3 23= sin x ·cos x -2cos x +421 3 (1+ cos 2x)+ 3= sin 2x -4441 3 cos 2x= sin 2x -441π= sin(2x - ).23所以 f(x)的最小正周期T = 2π= π.2(2) 由于 f(x)在区间 [- π π[- π π,- ] 上是减函数,在区间12 , ] 上是增函数, 4 124 π 1 π 1 , f( π 1 f(- ) =- , f(- 12)=- 2 )= ,4 4 4 4所以,函数 f(x)在闭区间 π π1 ,最小值为- 1 [- , ] 上的最大值为 4.4 42。
2019届高考数学二轮复习 专题三 平面向量、三角函数、三角形 课时作业(六)平面向量 理.doc
6.在△ABC中,AB=AC=3,∠BAC=30°,CD是边AB上的高,则 · =()
A.- B.
C. D.-
解析:依题意得| |= , · =0, · = ·( + )= · + · = · =| |·| |·cos60°=3× × = ,故选B.
答案:B
7.(2017·成都市第二次诊断性检测)已知平面向量a,b的夹角为 ,则|a|=1,|b|= ,则a+2b与b的夹角是()
A. B.
C. D.
解析:法一 + 是以OA,OB为邻边作平行四边形OADB的对角线向量 , - 是对角线向量 ,由已知可得,对角线相等,则平行四边形OADB为矩形.故OA⊥OB.因此 · =0,所以sinθ-cosθ=0,所以锐角θ= .
法二 + =(sinθ-1,cosθ+1), - =(-sinθ-1,cosθ-1),由| + |=| - |可得(sinθ-1)2+(cosθ+1)2= 2+(cosθ-1)2,整理得sinθ=cosθ,于是锐角θ= .
答案:A
8.(2017·惠州市第三次调研考试)若O为△ABC所在平面内任一点,且满足( - )·( + -2 )=0,则△ABC的形状为()
A.等腰三角形B.直角三角形
C.正三角形D.等腰直角三角形
解析:( - )·( + -2 )=0,即 ·( + )=0,∵ - = ,∴( - )·( + )=0,即| |=| |,∴△ABC是等腰三角形,故选A.
答案:A
2.在梯形ABCD中,AD∥BC,已知AD=4,BC=6,若 =m +n (m,n∈R),则 =()
A.-3B.-
C. D.3
解析:过点A作AE∥CD,交BC于点E,则BE=2,CE=4,所以m +n = = = + =- + =- + ,所以 = =-3.
高三数学二轮复习三角函数与平面向量专题
专题一三角函数、解三角形与平面向量一知识要点整合·三角函数的图像与性质··解三角形··三角恒等变换··平面向量·二典型例题(3)例5例6.例7..例8.例9. 例10. 三精编试题3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18(本题满分12分).19.(本题满分12分)20. (本题满分12分)21. (本题满分12分)22. (本题满分12分)23. (本题满分12分)已知⎪⎪⎭⎫ ⎝⎛-=23,23a,)4cos ,4(sin xx b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)若函数)(x g y =与)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。24. (本题满分12分)已知ABC ∆的内角A . B .C 所对边分别为a 、b 、c ,设向量)2cos),cos(1(BA B A m -+-=, )2cos ,85(B A n -=,且89=⋅n m .(Ⅰ)求B A tan tan ⋅的值;(Ⅱ)求222sin c b a Cab -+的最大值.25. (本题满分12分)甲船由A 岛出发向北偏东45°的方向作匀速直线航行,速度为152海里/小时,在甲船从A 岛出发的同时,乙船从A 岛正南40海里的B 岛出发,朝北偏东)21tan (,=θθ其中的方向作匀速直线航行,速度为105海里/小时.(如图所示)(Ⅰ)求出发后3小时两船相距多少海里?(Ⅱ)求两船出发后多长时间相距最近?最近距离为多少海里?【解析】:以A 为原点,BA 所在直线为y 轴建立如图所示的平面直角坐标系.设在t 时刻甲、乙两船分别在P(x 1, y 1) Q (x 2,y 2). ,55sin ,552cos ,212151545cos 215111===⎩⎨⎧====θθθ可得由分则arctg t x y t t x 分5402040cos 51010sin 51022 -=-===t t y tt x θθ(I)令3=t ,P 、Q 两点的坐标分别为(45,45),(30,20)345850)2045()3045(||22==-+-=PQ .即两船出发后3小时时,相距345锂 (II)由(I)的解法过程易知:220800)4(5016004005010)154020()1510()()(||2222212212≥+-=+-=--+-=-+-=t t t t t t t y y x x PQ 分∴当且仅当t=4时,|PQ|的最小值为20 2即两船出发4小时时,相距202海里为两船最近距离.26. (本题满分12分)在锐角ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,且(tanA -tanB)=1+tanA·tan B .(1)若a 2-ab =c 2-b 2,求A . B .C 的大小;(2)已知向量m =(sinA ,cosA),n=(cosB ,sinB),求|3m -2n|的取值范围.【解析】27. (本题满分12分)如图,某住宅小区的平面图呈扇形AO C .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).【解析】解法一:设该扇形的半径为r 米. 由题意,得CD =500(米),DA =300(米),∠CDO=060在CDO ∆中,2222cos 60,CD OD CD OD OC +-⋅⋅⋅= 即()()22215003002500300,2r r r +--⨯⨯-⨯= 解得490044511r =≈(米) 解法二:连接AC ,作OH ⊥AC ,交A C 于H由题意,得CD =500(米),AD =300(米),0120CDA ∠=2220222,2cos12015003002500300700,2ACD AC CD AD CD AD ∆=+-⋅⋅⋅=++⨯⨯⨯=在中 ∴ AC =700(米)22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅在直角11,350,cos 0,14HAO AH HA ∆=∠=中(米) ∴ 4900445cos 11AH OA HAO ==≈∠(米)28. (本题满分12分)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点(3)P -.(1)求tan α的值; (2)定义行列式运算a bc d ad bc =-,求行列式sin tan 1cos ααα的值; (3)若函数cos()sin ()sin()cos x f x x αααα+-=+(x ∈R ),求函数23(2)2()2y x f x π-+的最大值,并指出取到最大值时x 的值【解析】:(1)∵ 角α终边经过点(3)P -,∴3tan α=. (2)1sin 2α=,3cos 2α=.1200CADsin tan 333sin cos tan 1cos 4312αααααα=-=-+= . (3)()cos()cos sin()sin cos f x x x x αααα=+++= (x ∈R ), ∴函数23cos(2)2cos 2y x x π=-+3sin 21cos2x x =++2sin(2)16x π=++(x ∈R ),∴max 3y =, 此时()6x k k ππ=+∈Z .29. (本题满分12分)已知函数2π()2sin 3cos 24f x x x ⎛⎫=+- ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,.(1)求)(x f 的最大值和最小值;(2)2)(<-m x f 在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.【解析】(Ⅰ)π()1cos 23cos 21sin 23cos 22f x x x x x⎡⎤⎛⎫=-+-=+- ⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤, 即π212sin 233x ⎛⎫+-⎪⎝⎭≤≤, max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 30. (本题满分12分)如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C 三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求∠DEF 的余弦值。【解析】:作//DM AC 交BE 于N ,交CF 于M .22223017010198DF MF DM =+=+=, 222250120130DE DN EN =+=+=,2222()90120150EF BE FC BC =-+=+=在DEF ∆中,由余弦定理,2222221301501029816cos 2213015065DE EF DF DEF DE EF +-+-⨯∠===⨯⨯⨯31(本题满分12分)在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,3m B =-,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。【解析】:(1) //m n ⇒ 2sinB(2cos 2B2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得:4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△ABC 的面积S △ABC =12 acsinB=34ac ≤ 3∴△ABC 的面积最大值为 3②当B=5π6时,已知b=2,由余弦定理,得:4=a 2+c 2+3ac≥2ac +3ac=(2+3)ac (当且仅当a=c =6-2时等号成立) ∴ac≤4(2-3)∵△ABC 的面积S △ABC =12 acsinB=14ac≤ 2- 3∴△ABC 的面积最大值为2- 332. (本题满分12分)设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭13cos cos 22A A A =++33A π⎛⎫=+ ⎪⎝⎭.33(本题满分12分)在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcosC .(Ⅰ)求角B 的大小;(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . 即2sin A cos B =sin B cos C +sin C cos B=sin(B +C )∵A +B +C =π,∴2sin A cos B =sinA . ∵0<A <π,∴sin A ≠0. ∴cos B =21. ∵0<B <π,∴B =3π.(II)m n ⋅=4k sin A +cos2A . =-2sin 2A +4k sin A +1,A ∈(0,32π) 设sin A =t ,则t ∈]1,0(.则m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(. ∵k >1,∴t =1时,m n ⋅取最大值. 依题意得,-2+4k +1=5,∴k =23. 34 (本题满分12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin =++CB A .I.试判断△ABC 的形状;II.若△ABC 的周长为16,求面积的最大值.【解析】:I.)42sin(22sin 2cos 2sin2sinππ+=+=+-C C C C C2242πππ==+∴C C 即,所以此三角形为直角三角形. II.abab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等号,此时面积的最大值为()24632-. 35. (本题满分12分)在ABC △中,已知内角A π=3,边BC =设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求函数()y f x =的最大值. 解析:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x xA ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪2⎝⎭5x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 36. (本题满分12分)已知ABC △的面积为3,且满足0≤•≤6,设AB 和AC 的夹角为θ.(I )求θ的取值范围; (II)求函数2()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π的最大值与最小值.解析:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,,则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤. 即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 37. (本题满分12分)如图,甲船以每小时线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B处,此时两船相距海里,问乙船每小时航行多少海里?解析:如图,连结12A B,22A B =,122060A A =⨯=122A A B ∆是等边三角形,1121056045B A B ∠=︒-︒=︒,在121A B B ∆中,由余弦定理得2221211121112222cos 4520220200B B A B A B A B A B =+-⋅︒=+-⨯⨯=,12B B =60=答:乙船每小时航行海里.1A2A120 105。
2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)
专题三三角函数、解三角形与平面向量第1讲三角函数的图象与性质题型一三角函数的图象1.(1)要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象( C ) A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(2) (2017·山西朔州模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为__-1__.突破点拨(1)先利用诱导公式将两函数化为同名三角函数,再利用平移法则求解. (2)先求函数f (x )的解析式,再利用解析式求最值. 解析 (1)因为f (x )=cos ⎝⎛⎭⎫2x +π2-π6 =sin ⎝⎛⎭⎫π6-2x =sin ⎝⎛⎭⎫2x +5π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, 所以要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象向左平移π4个单位长度.故选C. (2)由函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象,可得A =2,14·2πω=5π6-7π12,解得ω=2.再根据图象经过点⎝⎛⎭⎫7π12,0, 可得2·7π12+φ=π+2k π,k ∈Z .因为|φ|<π2,所以φ=-π6,故函数f (x )=2sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6, 故函数f (x )的最小值为2×⎝⎛⎭⎫-12=-1. 2. 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.突破点拨(1)由表中数据先写出A ,ω,φ的值,再由ωx +φ=0,π,2π,求出其余值. (2)写出函数y =g (x )的解析式,由y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表.且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0中心对称, 令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.(1)三角函数图象平移问题需注意三点:一是函数名称是否一致;二是弄清由谁平移得到谁;三是左右的平移是自变量本身的变化.(2)对于由三角函数的图象确定函数解析式的问题,一般由函数的最值可确定A ,由函数的周期可确定ω,由对称轴或对称中心和φ的范围确定φ.题型二 三角函数的性质1. 已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 突破点拨(1)先将已知解析式化简,然后求解.(2)根据y =A sin(ωx +φ)+k (A >0,ω>0)与y =sin x 的关系求解. 解析 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32. 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增; 当π2<2x -π3≤π,即5π12<x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎝⎛⎦⎤5π12,2π3上单调递减. 2. 设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.突破点拨(1)先用公式化简,再利用三角函数的性质求解. (2)将x =π8代入,求ω,则周期可求.解析 由已知得f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4. 又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,所以f (x )max =2,此时12x -π4=2k π+π2,k ∈Z ,即f (x )取最大值时,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z . 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,其最小正周期为π.求解函数y =A sin(ωx +φ)的性质的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式. (2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入的方法求解.(3)讨论意识:当A 为参数时,求最值应分情况讨论.三角函数的综合应用【预测】 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度,得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. 思维导航(1)解题导引:①先化简函数f (x )的解析式,再利用图象与x 轴相邻两个交点的距离是半个周期求解析式;②先求函数g (x )的解析式,再求在⎣⎡⎦⎤-π6,7π12上的单调递增区间. (2)方法指导:三角函数的综合应用主要是将三角函数的图象和性质与三角变换相结合,通过变换将函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意整体思想的应用.规范解答(1)函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3(ω>0). 根据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1. 故函数f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数 g (x )=3sin ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象.根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0, 即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ).因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎡⎦⎤k π-7π12,k π-π12,k ∈Z . 结合x ∈⎣⎡⎦⎤-π6,7π12,可得g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12,7π12. 【变式考法】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ (0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解析 (1)由题意,知 f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即y =g (x )的图象上到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )并整理得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z ,得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .1.(教材回归)下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意,故选A. 2.(2017·广西南宁质检)将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度后,得到f (x )的图象,则( B )A .f (x )=-sin 2xB .f (x )的图象关于直线x =-π3对称C .f ⎝⎛⎭⎫7π3=12D .f (x )的图象关于点⎝⎛⎭⎫π12,0对称 解析 将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度,得到的图象对应的解析式为f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=cos ⎝⎛⎭⎫2x +2π3.函数f (x )的图象的对称轴满足2x +2π3=k π(k ∈Z ),即对称轴方程为x =k π2-π3(k ∈Z ),所以f (x )的图象关于直线x =-π3对称;令2x +2π3=k π+π2,得x =k π2-π12(k ∈Z ),即f (x )的图象关于点⎝⎛⎭⎫-π12,0对称;f ⎝⎛⎭⎫7π3=-12.故选B. 3.(2017·湖北襄阳模拟)同时具有性质“①最小正周期是4π;②直线x =π3是图象的一条对称轴;③在区间⎝⎛⎭⎫2π3,5π6上是减函数”的一个函数是( D )A .y =sin ⎝⎛⎭⎫2x -π6B .y =cos ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫x 2+π3D .y =sin ⎝⎛⎭⎫x 2+π3解析 对于A 项,B 项,∵T =2π2=π,故A 项,B 项不正确.对于C 项,若直线x =π3为其图象的一条对称轴,则π3×12+π3=k π,k ∈Z ,得π2=k π,k ∈Z ,k 不存在,不满足题意,故C 项不正确.对于D 项,因为T =2π12=4π,且由x 2+π3=k π+π2,k ∈Z ,解得图象的对称轴方程为x =2k π+π3,k ∈Z ;当k =0时,x =π3为图象的一条对称轴.由2k π+π2≤x 2+π3≤2k π+3π2,k ∈Z ,解得单调递减区间为⎣⎡⎦⎤4k π+π3,4k π+7π3,k ∈Z ,所以函数在区间⎝⎛⎭⎫2π3,5π6上是减函数,故D 项正确.故选D.4.(2017·山西晋中考前测试)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在区间⎣⎡⎦⎤π2,5π2上的最大值为( C )A .3B .332C.322D .22解析 由图象可知函数y =f (x )的周期为2⎝⎛⎭⎫7π3-π3=4π, ∴ω=12.又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数y =f (x )的图象上, ∴⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,且|φ|<π2.∴φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6, ∴g (x )=3sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +4π3-π6=3cos 12x . 由x ∈⎣⎡⎦⎤π2,5π2,可得12x ∈⎣⎡⎦⎤π4,5π4,则3cos 12x ∈⎣⎡⎦⎤-3,322,即g (x )的最大值为322.5.(书中淘金)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温为__20.5__℃.解析 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. 答案 20.56.(高考改编)把函数y =sin 2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6;②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数;④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中,正确判断的序号是__②④__.解析 将函数y =sin 2x 的图象向左平移π6个单位得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,所以①不正确.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝⎛⎭⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,∴函数的单调增区间为⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z ,而⎣⎡⎦⎤0,π6⃘⎣⎡⎦⎤-512π+k π,π12+k π(k ∈Z ),所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin 4π3+a =-3+a ,令-3+a =3,得a =23,所以④正确.所以正确的判断为②④.7.(考点聚焦)设函数f (x )=32-3sin 2ωx -sin ωx ·cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解析 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3=sin ⎝⎛⎭⎫2ωx +2π3. 因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 因此-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. 8.(2018·山东青岛调考)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解析 (1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1, 可得函数f (x )的值域为⎣⎡⎦⎤0,1+32. 9.(母题营养)已知函数f (x )=sin x cos x +12cos 2x .(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解析 (1)因为tan θ=2,所以sin θ=2cos θ. 代入sin 2θ+cos 2θ=1,得cos 2θ=15.所以f (θ)=sin θcos θ+12cos 2θ=2cos 2θ+12(2cos 2θ-1)=3cos 2θ-12=110.(2)由已知得f (x )=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. 依题意,得g (x )=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4, 即g (x )=22sin ⎝⎛⎭⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎫-π4,2m -π4. 又因为g (x )在区间(0,m )内是单调函数,所以-π4<2m -π4≤π2,即0<m ≤3π8,故实数m的最大值为3π8.10.(母题营养)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在x ∈⎣⎡⎦⎤0,π2上的值域. 解析 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,从而ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, ∵x ∈⎣⎡⎦⎤0,π2,∴53x -π6∈⎣⎡⎦⎤-π6,2π3, ∴函数f (x )的值域为[-1-2,2-2].1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+2B .32C .62D .-2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 018=8×252+2,∴f (1)+f (2)+…+f (2 018)=f (1)+f (2)=2+ 2.故选A.第2讲 三角变换与解三角形题型一三角恒等变换1.(1)(2018·河南郑州模拟)若tan α=13,tan(α+β)=12,则tan β=( A )A.17 B .16C .57D .56(2) (2017·河北唐山中学模拟)已知α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫5π12-α=( D )A.210B .-210C .-7210D .7210突破点拨(1)注意到β=(α+β)-α,再结合已知条件求tan β的值. (2)注意到cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4,再实施运算. 解析 (1)tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.故选A.(2)∵α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45<32, ∴α+π3是钝角,∴cos ⎝⎛⎭⎫α+π3=-35,cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π12-α=-cos ⎝⎛⎭⎫712π+α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4=-cos ⎝⎛⎭⎫α+π3·cos π4+sin ⎝⎛⎭⎫α+π3sin π4=7210.故选D. 2. 已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 突破点拨(1)利用诱导公式转化为二倍角公式,再利用同角三角函数基本关系式求解. (2)切化弦,转化为二倍角公式,再利用(1)的结论求解. 解析 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin α cos α=-2cos 2αsin 2α=-2×-3212=2 3.利用三角恒等变换公式解题的常用技巧(1)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (2)降幂与升幂:通过二倍角公式得到. (3)弦、切互化:一般是切化弦. 题型二 解三角形1. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 突破点拨(1)根据正弦定理把已知条件转化为边的关系,然后利用余弦定理求解.(2)利用勾股定理得到边的一个方程,结合已知条件解方程组求得边长,然后求面积.解析 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2,故a 2+c 2=2ac ,进而可得c =a = 2. 所以△ABC 的面积为12×2×2=1.【变式考法】 (1)在本例条件下,求角B 的范围. (2)在本例条件下,若B =60°,b =2,求a 的值. 解析 (1)因为b 2=2ac ,所以cos B =a 2+c 2-b 22ac ≥2ac -2ac2ac =0,又因为0<B <π,所以0<B ≤π2.(2)因为b 2=2ac ,b =2,所以ac =1, 又因为b 2=a 2+c 2-2ac cos B ,所以a 2+c 2=3, 所以a +c =5, 所以a =5+12或5-12. 2. △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 突破点拨(1)利用面积关系得边的关系,再利用正弦定理求解. (2)先利用面积比求BD ,再利用余弦定理求解. 解析 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.利用正、余弦定理解三角形的技巧解三角形问题一般要利用正、余弦定理和三角形内角和定理,正弦定理可以将角转化为边,也可以将边转化成角,当涉及边的平方关系时,一般利用余弦定理,要根据题目特点和正、余弦定理的结构形式,灵活选用.有关解三角形的综合问题(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .思维导航(1)由已知条件选择余弦定理求得AP .(2)由三角形的面积和(1)结论解得PB ,再由余弦定理及正弦定理求得AB 和sin ∠BAP . 规范解答(1)在△APC 中,因为∠P AC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2AP ·AC ·cos ∠P AC ,所以22=AP 2+(4-AP )2-2AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0,解得AP =2,所以AC =2.所以△APC 是等边三角形,所以∠ACP =60°.(2)因为∠APB 是△APC 的外角,所以∠APB =120°.因为△APB 的面积是332,所以12AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19,所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.【变式考法】 (2017·广州模拟)如图,在△ABC 中,∠ABC =30°,AB =3,AC =1,AC <BC ,P 为BC 右上方一点,满足∠BPC =90°.(1)若BP =2,求AP 的长; (2)求△BPC 周长的最大值.解析 由题意知1=AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =3+BC 2-3BC ,解得BC =2(BC =1舍去,则∠CAB =90°.又∠BPC =90°,且BP =2,所以∠PBC =45°,从而∠ABP =75°.连接AP ,由余弦定理得AP =3+2-2×3×2×6-24=6+22. (2)由(1)可知BC =2或BC =1,又因为求△BPC 周长的最大值,所以BC =2,设BP =m ,PC =n ,则m 2+n 2=4.由于BC 长为定值,因此求△BPC 周长的最大值只需求BP +PC =m +n 的最大值即可. 又4=m 2+n 2≥(m +n )22,则m +n ≤22, 当且仅当m =n =2时取等号,此时△BPC 的周长取得最大值,为2+2 2.1.(教材回归)sin 20°cos 10°-cos 160°sin 10°=( D ) A .-32B .32C .-12D .12解析 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.(2017·“江南十校”模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若C=2B ,则sin Bsin A=( D )A.c 2a 2+b 2-c 2 B .b 2a 2+b 2-c 2C.a 2a 2+b 2-c2 D .c 2a 2+c 2-b2解析 由已知,得sin C =sin 2B =2sin B cos B , 所以sin C sin B =2cos B .由正弦定理及余弦定理,得c b =2×a 2+c 2-b 22ac ,则b a =c 2a 2+c 2-b2. 再由正弦定理,得sin B sin A =c 2a 2+c 2-b 2,故选D.3.已知tan α=-2,tan(α+β)=17,则tan β的值为__3__.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.4.(2017·河南郑州调考)已知△ABC 中,角C 为直角,D 是边BC 上一点,M 是AD 上一点,且CD =1,∠DBM =∠DMB =∠CAB ,则MA =__2__.解析 如图,设∠DMB =θ,则∠ADC =2θ,∠DAC =π2-2θ,∠AMB =π-θ,∠ABM =π2-2θ,在Rt △ABC 中,cos θ=cos ∠CAB =ACAB ;在△CDA 中,由正弦定理得CD sin ⎝⎛⎭⎫π2-2θ=ACsin 2θ; 在△AMB 中,由正弦定理得MA sin ⎝⎛⎭⎫π2-2θ=ABsin (π-θ), ∴CD MA =AC ·sin θAB ·sin 2θ=AC ·sin θ2AB ·sin θcos θ=12,从而MA =2. 5.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=__1__.解析 在△ABC 中,由余弦定理的推论可得cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,由正弦定理可知sin 2A sin C =2sin A cos A sin C =2a ·cos Ac =2×4×346=1.6.(书中淘金)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB ,得600sin 45°=CBsin 30°, 有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m.7.(考点聚焦)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝⎛⎭⎫θ2=65,θ∈⎝⎛⎭⎫π4,3π4,求f ⎝⎛⎭⎫θ+π8的值. 解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫θ2=2sin ⎝⎛⎭⎫θ+π4=65, ∴sin ⎝⎛⎭⎫θ+π4=35, ∵θ∈⎝⎛⎭⎫π4,3π4,∴θ+π4∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫θ+π4=-1-sin 2⎝⎛⎭⎫θ+π4=-45, ∴f ⎝⎛⎭⎫θ+π8=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π8+π4=2sin ⎝⎛⎭⎫2θ+π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π4=4sin ⎝⎛⎭⎫θ+π4cos ⎝⎛⎭⎫θ+π4 =4×35×⎝⎛⎭⎫-45=-4825. 8.(教材回归)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C <A ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 9.(2017·河北唐山二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=λab . (1)若λ=6,B =5π6,求sin A ;(2)若λ=4,AB 边上的高为3c6,求C . 解析 (1)已知B =5π6,a 2+b 2=6ab ,结合正弦定理得4sin 2A -26sin A +1=0,解得sin A =6±24. 因为0<A <π6,所以sin A <12,所以sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ). 从而有3sin C +cos C =2,即sin ⎝⎛⎭⎫C +π6=1. 又π6<C +π6<7π6,所以C =π3.10.(2017·山东淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,求△ABC 面积的最大值.解析 (1)由a cos C +3a sin C -b -c =0及正弦定理, 得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,所以A =π3. (2)方法一 由(1)得B +C =2π3⇒C =2π3-B ⎝⎛⎭⎫0<B <2π3,因为a sin A =2sin π3=43, 所以由正弦定理得b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33.易知-π6<2B -π6<7π6, 故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.方法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c=2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22= 1,即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B .(2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1, 又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B ,∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B , 即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0, ∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.第3讲 平面向量题型一 向量的概念及线性运算高考中常从以下角度命题:1. (1)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).若(a+k c)∥(2b-a),则k=-1613.(2)如图,E为平行四边形ABCD的边DC的中点,F为△ABD的重心,且AB→=a,AD→=b,则FE→=23b+16a.突破点拨(1)利用向量的坐标运算和向量共线定理求解.(2)利用向量加、减法的几何意义和重心公式求解.解析(1)因为(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2),所以2×(3+4k)-(-5)×(2+k)=0,所以k=-1613.(2)由F为△ABD的重心,得AF→=23×12AC→=13(a+b).又AE→=AD→+DE→=b+12a,所以FE→=AE→-AF→=23b+16a.2.(1)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=12,y=-16.(2)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为__-3__.突破点拨(1)画出图形,利用向量加减法则求解.(2)利用向量的坐标运算求解.。
高考数学二轮复习专题三平面向量三角函数三角形课时作业八三角变换与解三角形理86(1).doc
=( -cosx,1-sinx),
所以f(x)= ( -cosx)+1-sinx=4-2sin ,
所以f(x)的最小正周期为2π.
(2)因为f(A)=4,所以sin =0,则x+ =kπ,k∈Z,即x=- +kπ,k∈Z,因为0<A<π,所以A= ,
因为△ABC的面积S= bcsinA= ,所以bc=3.
解析:在Rt△ABM中,AM= = = = =20 .
易知∠MAC=30°+15°=45°,又∠AMC=180°-15°-60°=105°,从而∠ACM=30°.
在△AMC中,由正弦定理得 = ,解得MC=40 .
在Rt△CMD中,CD=MC×sin60°=60,故通信塔CD的高为60m.
答案:60
答案:B
9.在△ABC中角A,B,C的对边分别是a,b,c,已知4sin2 -cos2C= ,且a+b=5,c= ,则△ABC的面积为()
A. B.
C. D.
解析:因为4sin2 -cos2C= ,所以2[1-cos(A+B)]-2cos2C+1= ,2+2cosC-2cos2C+1= ,cos2C-cosC+ =0,解得cosC= ,由于0<C<π,故sinC= .根据余弦定理有cosC= = ,ab=a2+b2-7,
解析:由正弦定理,得 = ,
∴sinB= .
又∵c>b,∴ B=45°,
∴ A=180°-60°-45°=75°.
答案:75°
14.如图,一栋建筑物的高为(30-10 )m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别为15°和60°,在楼顶A处测得塔顶C的仰角为30°,则通信塔CD的高为________m.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易知∠MAC=30°+15°=45°,又∠AMC=180°-15°-60°=105°,从而∠ACM=30°.
在△AMC中,由正弦定理得 = ,解得MC=40 .
在Rt△CMD中,CD=MC×sin60°=60,故通信塔CD的高为60m.
答案:60
解析:(1)由题易知, =( ,1),
=( -cosx,1-sinx),
所以f(x)= ( -cosx)+1-sinx=4-2sin ,
所以f(x)的最小正周期为2π.
(2)因为f(A)=4,所以sin =0,则x+ =kπ,k∈Z,即x=- +kπ,k∈Z,因为0<A<π,所以A= ,
因为△ABC的面积S= bcsinA= ,所以bc=3.
由a2=b2+c2-2bccosA,可得b2+c2=6,所以(b+c)2=b2+c2+2bc=12,即b+c=2 .
所以△ABC的周长为3+2 .
所以- ≤2x+ ≤ ,
所以sin ≥sin =- ,
所以当x∈ 时,f(x)≥- .
16.在△ABC中,角A,B,C的对边分别为a,b,c,已知 =2sin .
(1)求B;
(2)若b=2 ,△ABC的面积S=3 ,求a+c的值.
解析:(1)由已知得a+c=2bsin ,
由正弦定理知
sinA+sinC=2sinB ,
答案:D
3.(20xx·××市第一次教学质量检测)已知△ABC的内角A,B,C的对边分别为a,b,c,若cosC= ,bcosA+acosB=2,则△ABC的外接圆面积为( )
A.4πB.8π
C.9πD.36π
解析:c=bcosA+acosB=2,由cosC= 得sinC= ,再由正弦定理可得2R= =6,所以△ABC的外接圆面积为πR2=9π,故选C.
答案:A
8.△ABC的内角A,B,C的对边分别为a,b,c,已知cos(A-C)+cosB=1,a=2c.则C=( )
A. 或 B.
C. 或 D.
解析:cos(A-C)+cosB=1,故cos(A-C)-cos(A+C)=1,2sinAsinC=1.
又由已知a=2c,根据正弦定理得,sinA=2sinC,
15.(20xx·北京卷)已知函数f(x)= cos -2sinxcosx.
(1)求f(x)的最小正周期;
(2)求证:当x∈ 时,f(x)≥- .
解析:(1)f(x)= cos2x+ sin2x-sin2x
= sin2x+ cos2x=sin ,
所以f(x)的最小正周期T= =π.
(2)b-7=(a+b)2-7=25-7=18,ab=6.
所以S= absinC= ×6× = .
答案:A
10.(20xx·咸阳二模)已知△ABC的三个内角A,B,C的对边分别为a,b,c,且 + =2c2,sinA(1-cosC)=sinBsinC,b=6,AB边上的点M满足 =2 ,过点M的直线与射线CA,CB分别交于P,Q两点,则MP2+MQ2的最小值是( )
2019-2020高考数学二轮复习专题三平面向量三角函数三角形课时作业八三角变换与解三角形理
编 辑:__________________
时 间:__________________
课时作业(八) 三角变换与解三角形
1.(20xx·陕西省高三教学质量检测试题(一))设角θ的终边过点(2,3),则tan =( )
解析:由正弦定理,得 = ,
∴sinB= .
又∵c>b,∴ B=45°,
∴ A=180°-60°-45°=75°.
答案:75°
14.如图,一栋建筑物的高为(30-10 )m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别为15°和60°,在楼顶A处测得塔顶C的仰角为30°,则通信塔CD的高为________m.
答案:C
4.△ABC中,a= ,b= ,sinB= ,则符合条件的三角形有( )
A.1个B.2个
C.3个D.0个
解析:∵asinB= ,∴sinB<b= <a= ,∴符合条件的三角形有2个.
答案:B
5.已知cos +sinθ= ,则sin 的值是( )
A. B.
C.- D.-
解析:因为cos +sinθ= ,
=1.
又△ABC的面积为 ×4×2sin∠BAC=2 ,
所以△ABD的面积为 .
18.(20xx·东北四市高考模拟)已知点P( ,1),Q(cosx,sinx),O为坐标原点,函数f(x)= · .
(1)求函数f(x)的最小正周期;
(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为 ,求△ABC的周长.
即sin(B+C)+sinC=sinB( sinC+cosC),
整理得 sinBsinC-cosBsinC=sinC,
因为sinC>0,
所以 sinB-cosB=1,
即sin = ,
因为B∈(0,π),所以B= .
(2)由(1)知B= ,
从而S= acsinB= acsin = ac=3 ,所以ac=12.
A. B.-
C.5D.-5
解析:由于角θ的终边过点(2,3),因此tanθ= ,故tan = = = ,选A.
答案:A
2.已知sin =cos ,则cos2α=( )
A.1B.-1
C. D.0
解析:因为sin =cos ,所以 cosα- sinα= cosα- sinα,即 sinα=- cosα,所以tanα= =-1,所以cos2α=cos2α-sin2α= = =0.
答案:A
7.(20xx·××市第一次诊断考试)在△ABC中,内角A,B,C的对边分别是a,b,c,若c=2a,bsinB-asinA= asinC,则sinB为( )
A. B.
C. D.
解析:由bsinB-asinA= asinC,且c=2a,得b= a,∵cosB= = = ,
∴sinB= = .
所以 cosθ+ sinθ= ,
即 = ,
即 sin = ,所以sin = ,
所以sin =-sin =- .故选C.
答案:C
6.若sin2α= ,sin(β-α)= ,且α∈ ,β∈ ,则α+β的值是( )
A. B.
C. 或 D. 或
解析:因为α∈ ,所以2α∈ ,又sin2α= ,故2α∈ ,α∈ ,所以cos2α=- .又β∈ ,故β-α∈ ,于是cos(β-α)=- ,所以cos(α+β)=cos[2α+(β-α)]=cos2αcos(β-α)-sin2αsin(β-α)=- × - × = ,且α+β∈ ,故α+β= .
∴sinC= ,∴C= 或 .∵a>c,∴A>C,∴C= .
答案:B
9.在△ABC中角A,B,C的对边分别是a,b,c,已知4sin2 -cos2C= ,且a+b=5,c= ,则△ABC的面积为( )
A. B.
C. D.
解析:因为4sin2 -cos2C= ,所以2[1-cos(A+B)]-2cos2C+1= ,2+2cosC-2cos2C+1= ,cos2C-cosC+ =0,解得cosC= ,由于0<C<π,故sinC= .根据余弦定理有cosC= = ,ab=a2+b2-7,
由余弦定理可得b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac=(a+c)2-3×12=(a+c)2-36,
故(a+c)2=b2+36=(2 )2+36=64,
所以a+c=8.
17.(20xx·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.已知sinA+ cosA=0,a=2 ,b=2.
(1)求c;
(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.
解析:(1)由已知可得tanA=- ,所以A= .
在△ABC中,由余弦定理得28=4+c2-4ccos ,即c2+2c-24=0,
解得c=-6(舍去),c=4.
(2)由题设可得∠CAD= ,
所以∠BAD=∠BAC-∠CAD= .
故△ABD面积与△ACD面积的比值为
A.36B.37
C.38D.39
解析:
由正弦定理,知 + =2c2,即2=2sin2C,
∴sinC=1,C= ,∴sinA(1-cosC)=sinBsinC,即sinA=sinB,∴A=B= .以C为坐标原点建立如图所示的平面直角坐标系,则M(2,4),设∠MPC=θ,θ∈ ,则MP2+MQ2= + =(sin2θ+cos2θ) =20+4tan2θ+ ≥36,当且仅当tanθ= 时等号成立,即MP2+MQ2的最小值为36.
答案:A
11.(20xx·××市统一模拟考试)化简: =________.
解析: = = =4sinα.
答案:4sinα
12.(20xx·新疆第二次适应性检测) 的值是________.
解析:依题意得 = = = =2.
答案:2
13.(20xx·课标全国Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b= ,c=3,则A=________.