高中数学第1章解三角形1.3正弦定理余弦定理的应用素材苏教版必修5

合集下载

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。

高中数学第一章解三角形第一章小结与复习(教师版)导学案苏教版必修

高中数学第一章解三角形第一章小结与复习(教师版)导学案苏教版必修

必修5 第一章小结与复习 1 第 7 课时一、学习目标1.进一步熟悉正、余弦定理内容,能够应用正、余弦定理进行边角关系的相互转化,判断三角形的形状;2.能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题.二、课前预习(一) 三角形中的定理1.正弦定理: ,其中R 为 . 正弦定理的作用: ⑴ ⑵ 正弦定理的变形: ①2sin a R A =, , ;②sin 2a A R =, , ; ③::a b c = . 2.余弦定理:2222cos a b c bc A =+-,余弦定理的作用:⑴⑵⑶ .⑷ .余弦定理的变形:①cos A = 等;②222a b c +-= 等.3.三角形面积公式: 1sin 2S ab C ∆== = 4. 在已知两边a,b 及角A 解三角形时,需要讨论.(1)若A≥90°,则有①a>b 时有 解;②a ≤b 时 解.(2)若A<90°时,则有①若a <bsinA ,则 解; ②若a =bsinA ,则 解;③若bsinA <a <b ,则有 解;④若a ≥b ,则有 解.预习题:1.(2009年广东卷文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==+且75A ∠=,则b =_______000000026sin sin 75sin(3045)sin 30cos 45sin 45cos304A +==+=+= 62a c ==+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得261sin 2sin 226a b B A +=⋅=⨯=+2.(2008浙江)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos _________. 33.(2007湖南)在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b =7,3c =,则B = .答案 65π 4.(2009长郡中学第六次月考)△ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为_____3π三、数学运用例1.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b【随堂记录】:分析:此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)222a c b -=左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2) sin cos 3cos sin ,A C A C =过多的关注两角和与差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分. 解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍). 例2. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若).(R k k BC BA AC AB ∈=⋅=⋅(Ⅰ)判断△ABC 的形状; (Ⅱ)若k c 求,2=的值. 解:(I )B ca BC BA A cb AC AB cos ,cos =⋅=⋅Bac A bc BC BA AC AB cos cos =∴⋅=⋅又B A A B cos sin cos sin =∴ 即0cos sin cos sin =-A B B A 0)sin(=-∴B ABA B A =∴<-<-ππ ABC ∆∴为等腰三角形.(II ) 由(I )知b a =22cos 2222c bc a c b bc A bc AC AB =-+⋅==⋅∴2=c 1=∴k 例3.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos AC A的值等 于 ,AC 的取值范围为 .【随堂记录】:解析 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC AC θθθθ=∴=⇒= 由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos θθ<<⇒<<, 2cos 2,3).AC θ∴=∈四、巩固训练1.(2009北京理) 在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,35A b ==(Ⅰ)求sin C 的值;(Ⅱ)求ABC ∆的面积. 【解析】 本题主要考查三角形中的三角函数变换及求值、诱导公式、三角形的面积公式等基础知识,主要考查基本运算能力.解(Ⅰ)∵A 、B 、C 为△ABC 的内角,且4,cos 35B A π==, ∴23,sin 35C A A π=-=,∴213sin sin cos sin 32210C A A A π+⎛⎫=-=+= ⎪⎝⎭.(Ⅱ)由(Ⅰ)知33sin ,sin 510A C +==,又∵,3B b π==ABC 中,由正弦定理,得 ∴sin 6sin 5b A a B ==.∴△ABC 的面积116336sin 2251050S ab C ++==⨯=. 五、反思总结熟悉了正、余弦定理在进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断。

高中数学必修5之解三角形(教师版)

高中数学必修5之解三角形(教师版)

高中数学必修5第一单元 解三角形【第一部分】基础知识提要1.1 正弦定理和余弦定理1.1.1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin sin a b cA B C==.正弦定理推论:①2sin sin sin a b cR A B C===(R 为三角形外接圆的半径)②2sin ,2sin ,2sin a R A b R B c R C === ③sin sin sin ,,sin sin sin a A b B a Ab Bc C c C===④::sin :sin :sin a b c A B C = ⑤sin sin sin sin sin sin a b c a b cA B C A B C++===++2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。

任何一个三角形都有六个元素:三条边),,(c b a 和三个内角),,(C B A .在三角形中,已知三角形的几个元素求其他元素的过程叫做解三角形。

3、正弦定理确定三角形解的情况 A为 锐4、任意三角形面积公式为:2111sin sin sin 2224()()()()2sin sin sin 2ABC abcS bc A ac B ab C Rrp p a p b p c a b c R A B C =====---=++= 1.1.2 余弦定理 5、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222cos a b c bc A =+-,2222cos b a c ca B =+-,2222cos c a b ab C =+-.余弦定理推论:222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222cos 2a b c C ab+-=6、不常用的三角函数值αcos426+ 426- 426+- 426+-αtan32- 32+ 32-- 32+-1.2 应用举例(浏览即可)1、方位角:如图1,从正北方向顺时针转到目标方向线的水平角。

高中数学 第一章 解三角形课时训练 苏教版必修5

高中数学 第一章 解三角形课时训练 苏教版必修5

第一章 解三角形§1.1 正弦定理和余弦定理1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =bsin B, 得4sin 45°=bsin 60°,∴b =2 6.3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°答案 C 解析 由a sin A =bsin B得sin B =b sin Aa=2sin 60°3=22. ∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝ ⎛⎭⎪⎫32sin C +12cos C ,即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°.∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C , ∴AB =BC sin C sin A =1³sin 150°1010=102. 9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22³2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb=2³222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围. 解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a b的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题:1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4kc +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12³63³12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin B +C -sin C cos B sin A +C -sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12³2³107³45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+432-1322³7³43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( )A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ²a 2+b 2-c 22ab +c ²c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ²2a =34.5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c , ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45° . 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C =22+42-2³2³4³cos 60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-a 2+ab +b 222ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22²AB ²AC =92+82-722³9³8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2²AC 2²AB cos A =42+92-2³4³9³23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升13.(2010²潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22³BC ³AC =22,∴sin C =22. ∴AD =AC ²sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab,代入已知条件得 a ²b 2+c 2-a 22bc +b ²a 2+c 2-b 22ac +c ²c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc .(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722³3³5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3³2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ²AC ²sin A=12AB ²AC ²sin 60°=23, ∴AB ²AC =8,BC 2=AB 2+AC 2-2AB ²AC ²cos A=AB 2+AC 2-AB ²AC =(AB +AC )2-3AB ²AC ,∴(AB +AC )2=BC 2+3AB ²AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin A -B sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ²cos B -sin Bsin C²cos A=a c ²a 2+c 2-b 22ac -b c ²b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin A -B sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且²=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵ ²=-21,∴ ²=21. ∴² = ||²||²cosB = accosB = 21.∴ac=35,∵cosB =53,∴ sinB = 54. ∴S △ABC = 21acsinB = 21³35³54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542³45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆, 则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设² =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2B =sin A sinC .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin A +C sin 2B =sin B sin 2B =1sin B =477. (2)由BA ² =23得ca ²cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ²cos B ,得a 2+c 2=b 2+2ac ²cos B =5,∴(a +c )2=a 2+c 2+2ac=5+4=9,∴a +c =3.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°. 由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ²sin∠ACBsin ∠ABC =50³2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )²6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝ ⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BCsin ∠CAB=ABsin ∠ACB∴BC =1sin 60°²sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ²sin 75°=6-223²6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126³2232=24(n mile). (2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ²AC ²cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ²BC ²cos 45°=34+616-2³32³64³22=38, ∴AB =64(km). 答 河对岸A 、B 两点间距离为64km. 能力提升 13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得:(20t )2+402-2³20t ³40²cos 45°=302.化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1²t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302³2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1²A 1B 2²cos 45°=202+(102)2-2³20³102³22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220³60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解. 2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,2033 m解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△PAB 中,由正弦定理可得60sin 45°-30°=PBsin 30°,PB =60³12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600²sin 2θ=2003²sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003²sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =tv ,AC =3tv ,B =120°, 由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ²BC cos 120°=a 2+a 2-2a 2²⎝ ⎛⎭⎪⎫-12=3a 2,∴AC =3a .8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ²AC ²sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ²AC ²cos A=82+52-2³8³5³12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622³12³12=78,∴sin A =1-⎝ ⎛⎭⎪⎫782=158.由12(a +b +c )²r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2³10³9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin 90°-α=BCsin α-β,∴AC =BC cos αsin α-β=h cos αsin α-β. 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin α-β. 即山高CD 为h cos αsin βsin α-β.12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ²AD ²sin A +12BC ²CD ²sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ²AD +BC ²CD )²sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2³2³4cos A =20-16cos A ,在△CDB 中,BD 2=42+62-2³4³6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =BE -FC 2+BC 2=902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ²EF=1302+1502-102³2982³130³150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD =30°,∠ADB =30°,∠ACB =45° ∵AB =30, ∴BC =30,BD =30tan 30°=30 3. 在△BCD 中,CD 2=BC 2+BD 2-2BC ²BD ²cos 30°=900, ∴CD =30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章 解三角形 复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135°C .45°D .以上答案都不对 答案 C解析 sin B =b ²sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0) C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0), ∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m 2k +1>2mk 3mk >m k +1,∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin α-β B.a sin αsin βcos α-β C.a sin αcos βsin α-β D.a cos αcos βcos α-β 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin α-β=ADsin β.∴a sin α-β=h sin αsin β,∴h =a sin αsin βsin α-β. 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ²AB ²sin 60°=12³16³AB ³32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ²AC cos 60°=552+162-2³16³55³12=2 401.∴BC =49.6.(2010²天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b =6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ²23b=6b243b2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12³3³5³45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A =____________.答案2393 解析 由S =12bc sin A =12³1³c ³32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2。

高中数学必修5第一章:解三角形

高中数学必修5第一章:解三角形

外接圆法
A
BOb CFra bibliotekB`B a
c
O
C
b
A
C′
A
ObC B` B
A O bC
B
一.正弦定理: 在一个三角形中,各边和它所对角的正弦
的比相等,即
注意:
(1)正弦定理指出了任意三角形中三条边与对应角的正弦 之间的一个关系式.由正弦函数在区间上的单调性可知, 正弦定理非常好地描述了任意三角形中边与角的一种数 量关系.
2.在△ABC中,已知下列条件,解三角形(角度精确到1o, 边长精确到1cm): (1) a=20cm,b=11cm,B=30o; (2) c=54cm,b=39cm,C=115o.
3.判断满足下列条件的三角形的个数:
(1)b=11, a=20, B=30o 两解
(2)c=54, b=39, C=120o 一解
由此可知余弦定理是勾股定理的推广,勾股定理是余 弦定理的特例.
余弦定理及其推论的基本作用是什么? ①已知三角形的任意两边及它们的夹角可以求出第三边; ②已知三角形的三条边就可以求出其他角.
例1 在△ABC中,已知b=60 cm,c=34 cm,A=41° ,解三 角形(角度精确到1°,边长精确到1 cm). 解:方法一: 根据余弦定理,
用正弦定理试求,发现因A、B均
A
未知,所以较难求边c.
由于涉及边长问题,从而可以
考虑用向量来研究这个问题.
C
B
.

A

,
C
B
,
.
一、余弦定理: 三角形中任何一边的平方等于其他两边的平方的和减
去这两边与它们的夹角的余弦的积的两倍,即
注:利用余弦定理,可以从已知的两边及其夹角求出三角 形的第三条边.

新课标理念下高中数学必修5第一章解三角形

新课标理念下高中数学必修5第一章解三角形

新课标理念下高中数学必修5第一章解三角形教法学法的探究交流仙游一中福建省特级教师余启西本章概述:本章是在学习三角函数、平面向量的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并运用它们解决一些与测量和几何计算有关的实际问题。

本章的主要内容是两个重要定理,即正弦定理和余弦定理以及这两个定理在解斜三角形中的应用。

教材地位:本章是在学习了三角函数、平面向量等知识的基础上,进一步学习如何解三角形的。

正、余弦定理是我们学习有关三角形知识的继续和发展,它们进一步揭示了三角形边与角之间的关系,在生产、生活中有着广泛的应用,是我们求解三解形的重要工具。

本章内容与三角形定性研究的结论相联系,与三角函数相联系,同时也体现了向量及其运算的应用。

高考中常与三角函数和向量知识联系起来考查,是高考的一个热点内容。

课标要求:1、理解并掌握正弦定理和余弦定理,并能解决一些简单的三角形度量问题。

2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

学法指导:1、重视数学思想方法的运用。

解三角形作为几何度量问题,要突出几何背景,注意数形结合思想的运用,具体解题时,要注意函数与方程思想的运用。

2、加强新旧知识的联系。

本章知识与初中学习的三角形的边、角关系有着密切联系。

同时,要注意与三角函数、平面向量等知识的联系,将新知识融入已有的知识体系,从而提高综合运用知识的能力。

3、提高数学建模能力。

利用解三角形解决相关的实际问题,根据题意,找出量与量之间的关系,作出示意图,将实际问题抽象成解三角形模型。

学科实践:本章知识在现实生活中有着广泛的应用,如天文测量、航海测量、地理测量以及日常生活中的距离、高度、角度的测量等,解三角形的理论被用于解决许多测量问题。

因此,通过本章的学习,能提高学生解决关于测量和几何计算的实际问题的能力和数学建模能力。

ABCj图1-2图1-1知识点1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin == 正弦定理给出了任意三角形中,三条边及其对应角的正弦值之间的对应关系。

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5
第一章 §1.1 正弦定理和余弦定理
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理(2)课件新人教a必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理(2)课件新人教a必修5

梳理
一个了三角形的边与对角的正弦之间的联系.所以正弦定理主要功能就是把 边化为对角的正弦或者反过来.简称边角互化.
思考2
什么时候适合用正弦定理进行边角互化? 答案
尽管正弦定理给出了三角形的边与对角的正弦之间的联系, 但毕竟不是边等于对角正弦,这里还涉及到外接圆半径.故使 用时要么能消掉外接圆半径(如思考1),要么已知外接圆半径.
由正弦定理,得sin2
A=sin
660°,∴sin
A=
2 2.
∵BC=2< 6=AC,∴A 为锐角,
∴A=45°,∴C=75°.
123
2.在△ABC中,若
a cos
A=cobs
B=cocs
C, 则△ABC是
答案
解析
A.直角三角形
B.等边三√角形
C.钝角三角形
D.等腰直角三角形
由正弦定理,知csoins AA=csoins BB=csoins CC, ∴tan A=tan B=tan C, 又∵A,B,C∈(0,π),∴A=B=C,
故三角形为等边三角形.
知识点三 正弦定理在解决较为复杂的三角形问题中的作用
思考1
在△ABC中,已知acos B=bcos A.你能把其中的边a,b化为 用角表示吗(打算怎么用上述条件)? 答案
可借助正弦定理把边化成角:2Rsin Acos B=2Rsin Bcos A, 移项后就是一个三角恒等变换公式sin Acos B-cos Asin B=0.
1.sin A∶sin B∶sin C= a∶;b∶c
a 2.sin
A=sinb
B=sinc
C=sin
a+b+c A+sin B+sin
C=
2R

【数学】第一章《解三角形》测试1(苏教版必修5)

【数学】第一章《解三角形》测试1(苏教版必修5)

第1章 解三角形§1.1正弦定理、余弦定理重难点:理解正、余弦定理的证明,并能解决一些简单的三角形度量问题.考纲要求:①掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.经典例题:半径为R 的圆外接于△ABC ,且2R(sin 2A-sin 2C)=(3a-b)sinB .(1)求角C ;(2)求△ABC 面积的最大值.当堂练习:1.在△ABC 中,已知a=5 2 , c=10, A=30°, 则∠B= ( )(A) 105° (B) 60° (C) 15° (D) 105°或15° 2.在△ABC 中,若a=2, b=2 2 , c= 6 + 2 ,则∠A 的度数是 ( )(A) 30° (B) 45° (C) 60° (D) 75° 3.在△ABC 中,已知三边a 、b 、c 满足(a+b+c)·(a+b -c)=3ab, 则∠C=( )(A) 15° (B) 30° (C) 45° (D) 60° 4.边长为5、7、8的三角形的最大角与最小角之和为 ( )(A) 90° (B) 120° (C) 135° (D) 150° 5.在△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )(A) 有 一个解 (B) 有两个解 (C) 无解 (D)不能确定 6.在平行四边形ABCD 中,AC= 3 BD, 那么锐角A 的最大值为 ( )(A) 30° (B) 45° (C) 60° (D) 75° 7. 在△ABC 中,若cos2a A =cos2b B =cos2c C ,则△ABC 的形状是 ( )(A) 等腰三角形 (B) 等边三角形 (C) 直角三角形 (D) 等腰直角三角形 8.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 由增加的长度决定 9.在△ABC 中,若a=50,b=25 6 , A=45°则B= .10.若平行四边形两条邻边的长度分别是4 6 cm 和4 3 cm ,它们的夹角是45°,则这个平行四边形的两条对角线的长度分别为 .11.在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的周长是 。

必修5_第一章_正弦定理和余弦定理_知识点及典型例题全新

必修5_第一章_正弦定理和余弦定理_知识点及典型例题全新

正弦定理和余弦定理要点梳理1.正弦定理其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2Rsin A ,b =2Rsin B ,c =2Rsin C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题. 2.三角形面积公式S △ABC =12absin C =12bcsin A =12acsin B =abc 4R =12(a +b +c)·r(r 是三角形内切圆的半径),并可由此计算R 、r.3.余弦定理:222222222a b c 2bccos A b a c 2accos B c a b 2abcos C =+-,=+-,=+-.余弦定理可以变形为:cos A =222b c a2bc+-,cos B =222a c b 2ac +-,cos C =222a b c 2ab+-.4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角. 情况(2)中结果可能有一解、二解、无解,应注意区分. 余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.基础自测1.在△ABC 中,若b =1,c =3,C =2π3,则a = 1 .2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =________.3.在△AB =5,AC =5,且cos C =910,则BC = 4或5 . 4.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( C )A .2 2B .8 2 C. 2 D.222sin sin sin a b cR A B C===题型分类 深度剖析题型一 利用正弦定理求解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断. 解: 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32.∵a >b ,∴A =60°或A =120°. 当A =60°时,C =180°-45°-60°=75°,c =bsin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =bsin Csin B =6-22.探究提高 (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.变式训练1 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则A =6π解析 ∵A +C =2B ,∴B =π3. 由正弦定理知sin A =a sin B b =12.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =b2a c-+.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c, 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.变式训练2已知A 、B 、C 为△ABC 的三个内角,其所对的边分别为a 、b 、c ,且2A2cos+cos A=02. (1)求角A 的值; (2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2A 2cos+cos A=02,得1+cos A +cos A =0,即cos A =-12. ∵0<A <π,∴A =2π3.(2)由余弦定理得, a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4, 有12=42-bc ,则bc =4,故S △ABC =12bcsin A = 3.题型三 正、余弦定理的综合应用例3. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边22sin )()sin ,A C a b B -=-已知△ABC 外接圆半径为(1)求角C 的大小; (2)求△ABC 面积的最大值.解: (1)∵△ABC 22sin )()sin ,A C a b B -=-且22))(,A C a b B -=-即∴由正弦定理得:22(),a c a b b -=-即222,a b c ab +-=由余弦定理得:222cos 2a b c C ab +-=2ab ab =12=,(0,)C π∈Q ,.3C π∴=(2)max 2S =+探究提高 在已知关系式中,若既含有边又含有角.通常的思路是:将角都化成边或将边都化成角,再结合正、余弦定理即可求角.变式训练3在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c . (1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4.又∵△ABC 的面积为3,∴12ab sin C =3,ab =4. 联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2. (2)由sin C +sin(B -A )=sin 2A ,得sin(A +B )+sin(B -A )=2sin A cos A , 即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0,当cos A =0时,∵0<A <π,∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b ,即△ABC 为等腰三角形. ∴△ABC 为等腰三角形或直角三角形.思想方法 感悟提高方法与技巧1.正、余弦定理和三角形面积公式是本节课的重点,利用三角形内角和、边、角之间的关系,三角函数的变形公式去判断三角形的形状,求解三角形,以及利用它们解决一些实际问题.2.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.3.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明.4.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 失误与防范在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.过关精练一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( )A .45°或135°B .135°C .45°D .以上答案都不对 2.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( )A .60°B .45°或135°C .120°D .30°3.在ABC ∆中,ABC S bc ABC ∆∆,35,20==的外接圆半径为3,则=a ( )A .1B .2C .3D .234.在ABC ∆中,已知,45,1,2ο===B c b 则a 等于( )A .226- B .226+ C1 D .23-5.在ABC ∆中2,3,3,AB AC BA AC ==⋅=u u u r u u u r u u u r u u u r则A ∠等于( )A .120°B .60°C .30°D .150° 6.在ABC ∆中,7:5:3::=c b a , 则这个三角形的最大角为( )A .ο30 B .ο90 C .ο120 D .ο60 7.在△ABC 中,已知三边之比4:3:2::=cb a ,则=-CB A 2sin sin 2sin ( )A .1B .2C .2-D .21 8.ABC ∆中,边c b a ,,的对角分别为A 、B 、C ,且A=2B ,32a b =,cos B =( )A .21B .31C .32D .43二、填空题9.在△ABC 中,已知2sinAcosB=sinC,那么△ABC 的形状是 三角形10.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,则角C =________. 11.在△ABC 中,边a ,b ,c 的对角分别为A 、B 、C ,且B C A C A 222sin sin sin sin sin =⋅-+。

高中数学苏教版教材目录

高中数学苏教版教材目录

高中数学苏教版教材目录(必修+选修)(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--苏教版-----------------------------------必修-----------------------第1章集合集合的含义及其表示子集、全集、补集交集、并集第2章函数函数的概念函数的概念和图象函数的表示方法函数的简单性质函数的单调性函数的奇偶性映射的概念第3章指数函数、对数函数和幂函数指数函数分数指数幂指数函数对数函数对数对数函数幂函数函数的应用函数与方程函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系 1.平行直线2.异面直线直线与平面的位置关系1.直线与平面平行2.直线与平面垂直平面与平面的位置关系1.两平面平行2.平面垂直空间几何体的表面积和体积空间几何体的表面积空间几何体的体积第2章平面解析几何初步直线与方程直线的斜率直线的方程1.点斜式2.两点式3.一般式两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系空间直角坐标系空间直角坐标系空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步算法的意义流程图顺序结构选择结构循环结构基本算法语句赋值语句输入、输出语句条件语句循环语句算法案例第2章统计抽样方法简单随机抽样1.抽签法2.随机数表法系统抽样分层抽样总体分布的估计频率分布表频率分布直方图与折线图茎叶图总体特征数的估计平均数及其估计方差与标准差线性回归方程第3章概率随机事件及其概率随机现象随机事件的概率古典概型几何概型互斥事件-----------------------------------必修4-----------------------------------第1章三角函数任意角、弧度任意角弧度制任意角的三角函数任意角的三角函数同角三角函数关系三角函数的诱导公式三角函数的图象和性质三角函数的周期性三角函数的图象与性质函数y=Asin(ωx+ψ)的图象三角函数的应用第2章平面向量向量的概念及表示向量的线性运算向量的加法向量的减法向量的数乘向量的坐标表示平面向量基本定理平面向量的坐标运算向量的数量积向量的应用第3章三角恒等变换两角和与差的三角函数两角和与差的余弦两角和与差的正弦两角和与差的正切二倍角的三角函数几个三角恒等式-----------------------------------必修5-----------------------------------23第1章 解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列等差数列的概念等差数列的通项公式等差数列的前n 项和2.3等比数列等比数列的概念等比数列的通项公式等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题二元一次不等式表示的平面区域二元一次不等式组表示的平面区域 简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 基本不等式的证明基本不等式的应用-----------------------------------选修-------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念平均变化率瞬时变化率——导数3.2导数的运算常见函数的导数函数的和、差、积、商的导数 3.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修-------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏 2.2直接证明与间接证明直接证明间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程曲线与方程求曲线的方程曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算空间向量及其线性运算共面向量定理空间向量基本定理空间向量的坐标表示空间向量的数量积 3.2空间向量的应用直线的方向向量与平面的法向量空间线面关系的判定空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念平均变化率瞬时变化率——导数1.2导数的运算常见函数的导数函数的和、差、积、商的导数简单复合函数的导数1.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值1.4导数在实际生活中的应用1.5定积分曲边梯形的面积定积分微积分基本定理第二章推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏2.2直接证明与间接证明直接证明间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理二项式定理二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性条件概率事件的独立性2.4二项分布2.5随机变量的均值与方差离散型随机变量的均值离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4------------------------相似三角形的进一步认识平行线分线段成比例定理相似三角形圆的进一步认识圆周角定理圆的切线圆中比例线段圆内接四边形圆锥截线球的性质圆柱的截线圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------二阶矩阵与平面向量矩阵的概念二阶矩阵与平面列向量的乘法几种常见的平面变换恒等变换伸压变换反射变换旋转变换投影变换切变变换变换的复合与矩阵的乘法矩阵乘法的概念矩阵乘法的简单性质逆变换与逆矩阵逆矩阵的概念二阶矩阵与二元一次方程组特征值与特征向量矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------直角坐标系4直角坐标系极坐标系球坐标系与柱坐标系曲线的极坐标方程曲线的极坐标方程的意义常见曲线的极坐标方程平面坐标系中几种常见变换平面直角坐标系中的平移变换平面直角坐标系中的伸缩变换参数方程参数方程的意义参数方程与普通方程的互化参数方程的应用平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------不等式的基本性质含有绝对值的不等式含有绝对值的不等式的解法含有绝对值的不等式的证明不等式的证明比较法综合法和分析法反证法放缩法几个著名的不等式柯西不等式排序不等式算术-几何平均值不等式运用不等式求最大(小)值运用算术-几何平均值不等式求最大(小)值运用柯西不等式求最大(小)值运用数学归纳法证明不等式学习总结报告5。

高中数学必修五公式方法总结

高中数学必修五公式方法总结

高中数学必修五公式方法总结第一章 解三角形一、正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C = 二、余弦定理:变形:三、三角形面积公式:111sin sin sin .222===ABC S bc A ac B ab C △ 第二章 数列一、等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()n1n 1d a a =+-或()nmn m d a a =+-3.求和公式:()()1n n 1n n n 1n d22a a S a +-==+4.重要性质(1)a a a a qpnmq p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二、等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n11-∙=或q a a mn mn-∙=3.求和公式:1n n 11n na ,q 1S a (1q )a a q ,q 11q 1q =⎧⎪=--⎨=≠⎪--⎩2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab +-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)m,2m,32--m m m S S S S S 仍成等比数列三、数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和, 常见的拆项公式: 111(1)n(n 1)n n 1=-++第三章:不等式一、解一元二次不等式三步骤: 222(1)ax bx c 0ax bx c 0(a 0).(2)ax bx c 0.(3).⎧++>++<>⎪++=⎨⎪⎩化不等式为标准式或计算的值,确定方程的根根据图象写出不等式的解集∆ 特别地:若二次项系数a 为正且有两根时写解集用口诀:不等号大于0取两边,小于0取中间二、分式不等式的求解通法:(1)标准化:①右边化零,②系数化正.(2)转 换:化为一元二次不等式(依据:两数的商与积同号)三、二元一次不等式Ax+By+C >0(A ,B 不同时为0),确定其所表示的平面区域用口诀:同上异下(A与不等式的符号)(注意:包含边界直线用实线,否则用虚线)四、线性规划问题求解步骤:画(可行域),移(平行线),求(交点坐标,最优解,最值),答. 五、基本不等式:0,0)2a ba b +≥≥≥(当且仅当a=b 时,等号成立).1111(2)()n(n k)k nn k=-++1111(3)()(2n 1)(2n 1)22n 12n 1=--+-+1111(4[]n(n 1)(n 2)2n(n 1)(n 1)(n 2)=-+++++)=()10()()0()()(2)0()()0()0()()()30()()>⇔>≥⇔≥≠≥⇔-≥f x f x g x g x f x f x g x g x g x f x f x a a g x g x 常用的解分式不等式的同解变形法则为()且(),再通分2a b (1)a b (2)ab ().2++≥≤变形;变形(和定积最大) 利用基本不等式求最值应用条件:一正数 ; 二定值 ; 三相等。

高中数学第一章1.3第一课时正弦定理余弦定理的应用课件苏教必修5.ppt

高中数学第一章1.3第一课时正弦定理余弦定理的应用课件苏教必修5.ppt

基础知识梳理
1.解三角形应用题的基本思路 解三角形应用题的关键是将__实__际__问__题____转化为解三 角形问题来解决,所以首先将实际问题抽象转化为数 学问题(解三角形问题),然后利用正余弦定理对三角 形进行求解,最后再回到实际问题中作答.
2.解三角形应用问题的一般步骤 (1)准确理解题意,分清已知与所求; (2)根据题意画出示意图或准确地理解图形; (3)建立数学模型, 合 理 运 用 __正__余__弦__定__理__和__其__它__三__角__与__平__面__几__何__知__识____ 正确求解,并作答; (4)再根据实际问题的意义和精确度的要求给出答案.
变式训练
2.为测量建造中的上海东方明珠电视塔已到达的高度 ,李明在学校操场的某一直线上选择A、B、C三点, AB=BC=60米,且在A、B、C三点观察塔的最高点, 测得仰角分别为45°、54.2°、60°.已知李明身高1.5 米,试问建造中的电视塔已到达的高度.(结果保留一 位小数)
解:根据题意画出示意图,设DE=x,则h=x+1.5. 在Rt△AED、Rt△BED、 Rt△CED中, AE=DE·cot45°=x, BE=DE·cot54.2°=x·cot54.2°,
【解】 如图
设乙船速度为 v 海里/小时,在 C 处追上甲船, ∠BAC=45°+180°-105°=120°, 在△ABC 中,由余弦定理得,
BC2=AC2+AB2-2AC·AB·cos∠BAC, 即(23v)2=(23×9)2+102-2×23×9×10×cos120°,整理得 v =21, 又由正弦定理可知:sin∠BCBAC=sAinCB,
所以缉私船沿北偏东 60°方向,需 14.7 分钟才能最快追上
走私船.

5.新课程高中数学测试题组(必修5)(教师)

5.新课程高中数学测试题组(必修5)(教师)

必修5第一章 解三角形1.1 正弦定理和余弦定理探究与发现 解三角形的进一步讨论 1.2 应用举例阅读与思考 海伦和秦九韶 1.3 实习作业 第二章 数列2.1 数列的概念与简单表示法 阅读与思考 斐波那契数列阅读与思考 估计根号下2的值 2.2 等差数列2.3 等差数列的前n 项和 2.4 等比数列2.5 等比数列前n 项和 第三章 不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题 3.4 基本不等式第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

高中数学必修五 第一章余弦定理

高中数学必修五 第一章余弦定理

【例】在△ABC中,a、b、c分别为内角A、B、C的对边,
求证:a2 b2
c2
sin A B
. sin C
【规范解答】由余弦定理得a2=b2+c2-2bccosA,
b2=a2+c2-2accosB,
∴a2-b2=b2-a2-2bccosA+2accosB.
整理得:a2 b2
c2
a cos B bcos A, c
【解析】∵c4-2(a2+b2)c2+a4+a2b2+b4=0,
∴[c2-(a2+b2)]2-a2b2=0,∴c2-(a2+b2)=±ab,
cos C a2 b2 ∴cC2=1210°或60°.
2ab
2
角形中最大内角,
由余弦定理
∴C=120°. cos C a2 b2 c2 1,
2ab
2
正、余弦定理的综合应用 【名师指津】正、余弦定理的综合应用
正弦定理和余弦定理揭示的都是三角形的边角关系,要解 三角形,必须已知三角形的一边的长,对于两个定理,根据实 际情况可以选择性地运用,也可以综合运用,要注意以下关系 式的运用:
【例3】在△ABC中,若sinA-2sinBcosC=0,试判断△ABC的 形状.
【规范解答】方法一:∵sinA-2sinBcosC=0,∴由正弦定
理知a=2bcosC,再由余弦定理得 a a2 b2 c2 ,
2b
2ab
∴b2=c2,b=c,.故△ABC为等腰三角形.
方法二:由sinA=sin(B+C),∴有sinBcosC+cosBsinC2sinBcosC=0,即sinCcosB-cosCsinB=0,sin(CB)=0,∴C-B=0,即C=B.故△ABC为等腰三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 正弦定理、余弦定理的应用
正、余弦定理在实际生活中的应用
正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题.求解此类问题的大概步骤为:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等;(2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答.
1.测量中正、余弦定理的应用
例1 某观测站C 在目标A 南偏西25︒方向,从A 出发有一条南偏东35︒走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米?
分析:根据已知作出示意图,分析已知及所求,解CBD ∆,求角B .再解ABC ∆,求出AC ,再求出AB ,从而求出AD (即为所求).
解:由图知,60CAD ∠=︒. 22222231202123cos 22312031BD BC CD B BC BD +-+-===⋅⨯⨯,
sin 31B =. 在ABC ∆中,sin 24sin BC B AC A ⋅=
=. 由余弦定理,得2222cos BC AC AB AC AB A =+-⋅⋅.
即2223124224cos60AB AB =+-⋅⋅⋅︒.
整理,得2243850AB AB --=,解得35AB =或11AB =-(舍).
故15AD AB BD =-=(千米).
答:此人所在D 处距A 还有15千米.
评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,A C D 31
21 B 20 35︒
25︒ 东 北
因此,只有正确作出示意图,方能合理应用正、余弦定理.
2.航海中正、余弦定理的应用
例2 在海岸A 处,发现北偏东45︒方向,距A
1海里的B 处有一艘走私船,在A 处北偏西75︒方向,距A 为2海里的C
处的缉私船奉命以/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30︒方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间?
分析:注意到最快追上走私船,且两船所用时间
相等,可画出示意图,需求CD 的方位角及由C 到D
所需的航行时间.
解:设缉私船追上走私船所需时间为t 小时,
则有CD =,10BD t =. 在ABC △
中,∵1AB =,2AC =,
4575120BAC ∠=︒+︒=︒,
根据余弦定理可得BC ==.
根据正弦定理可得2sin120sin AC ABC BC ︒∠===. ∴45ABC ∠=︒,易知CB 方向与正北方向垂直,从而9030120CBD ∠=︒+︒=︒. 在BCD △
中,根据正弦定理可得:sin 1sin 2BD CBD BCD CD ∠∠===, ∴30BCD =︒△,30BDC ∠=︒
,∴BD BC ==
则有10t =
0.245t ==小时14.7=分钟. 所以缉私船沿北偏东060方向,需14.7分钟才能追上走私船.
评注:认真分析问题的构成,三角形中边角关系的分析,可为解题的方向提供依据.明确方位角是应用的前提,此题边角关系较复杂要注意正余弦定理的联用.
45︒
75︒ 30︒
A C
D B
3.航测中正、余弦定理的应用
例3 飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m ,速度为180km/h ,飞行员先看到山顶的俯角为'1830︒,经过120秒后又看到山顶的俯角为81︒,求山顶的海拔高度(精确到1m ).
分析:首先根据题意画出图形,如图,这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离,然后再根据航线的海拔高度求得山顶的海拔高度.
解:设飞行员的两次观测点依次为A 和B ,山顶为M ,山顶到直线的距离为MD .
如图,在ABM △中,由已知,得 1830'A ∠=︒,99ABM ∠=︒,6230'AMB ∠=︒. 又12018066060
AB =⨯
=⨯(km ), 根据正弦定理,可得6sin1830'sin 6230'
BM ︒=︒, 进而求得6sin1830'sin81sin 6230'MD ︒︒=︒,∴2120MD ≈(m ), 可得山顶的海拔高度为20250212018130-=(m ).
评注:解题中要认真分析与问题有关的三角形,正确运用正、余弦定理有序地解相关的三角形,从而得到问题的答案.
4.炮兵观测中正、余弦定理的应用
例4 我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知6000CD =米,45ACD ∠=︒,75ADC ∠=︒,目标出现于地面点B 处时,测得30BCD ∠=︒,15BDC ∠=︒(如图),求炮兵阵地到目标的距离(结果保留根号).
分析:根据题意画出图形,如图,题中的四点A 、B 、C 、D 可构成四个三角形.要求AB 的长,由于751590ADB ∠=︒+︒=︒,只需知道AD 和BD 的长,这样可选择在ACD ∆和BCD ∆中应用定理求解.
解:在ACD △中,18060CAD ACD ADC ∠=︒-∠-∠=︒,
A B D
M
6000CD =,45ACD ∠=︒,
根据正弦定理有sin 45sin 60CD AD ︒=
=︒, 同理,在BCD △中,180135CBD BCD BDC ∠=︒-∠-∠=︒,
6000CD =,30BCD ∠=︒,
根据正弦定理有sin 30sin135CD BD ︒==︒. 又在ABD ∆中,90ADB ADC BDC ∠=∠+∠=︒,
根据勾股定理有:6
AB ====
所以炮兵阵地到目标的距离为米.
评注:应用正、余弦定理求解问题时,要将实际问题转化为数学问题,而此类问题又可归结为解斜三角形问题,因此,解题的关键是正确寻求边、角关系,方能正确求解.
5.下料中正余弦定理的应用
例5 已知扇形铁板的半径为R ,圆心角为60︒,要从中截取一个面积最大的矩形,应怎样划线?
分析:要使截取矩形面积最大,必须使矩形的四个顶点都在扇形的边界上,即为扇形的内接矩形,如图所示.
解:在图(1)中,在AB 上取一点P ,过P 作PN OA ⊥于N ,过P 作PQ PN ⊥交OB A B Q P O x M N (1) A B Q P O x M N E D (2)
30︒ 45︒ 75︒ A C D 15︒
设AOP x ∠=,sin PN R x =.在POQ △中,由正弦定理,得
sin(18060)sin(60)OP PQ x =︒-︒︒-.∴sin(60)PQ R x =︒-.
于是[]22sin sin(60)cos(260)cos6033
S PN PQ R x x R x =⋅=⋅︒-=-︒-︒
221(1)326
R R ≤-=.
当cos(260)1x -︒=即30x =︒时,S 2R . 在图(2)中,取AB 中点C ,连结OC ,在AB 上取一点P ,过P 作//PQ OC 交OB 于Q ,过P 作PN PQ ⊥交AB 于N ,过Q 作QM PQ ⊥交CA 于M ,连结MN 得矩形MNPQ ,设POC x ∠=,则sin PD R x =.
在POQ △中,由正弦定理得:sin(18030)sin(30)
R R x =︒-︒︒-, ∴2sin(30)PQ R x =︒-.
∴[]22
24sin sin(30)2cos(230)cos30S PD PQ R x x R x =⋅=⋅︒-=-︒-︒
222(1cos30)(2R R ≤-︒=(当15x =︒时取“=”).
∴当15x =︒时,S 取得最大值2(2R .
22(2R R >, ∴作30AOP ∠=︒,按图(1)划线所截得的矩形面积最大.
评注:此题属于探索性问题,需要我们自己寻求参数,建立目标函数,这需要有扎实的基本功,在平时学习中要有意识训练这方面的能力.
综上,通过对以上例题的分析,要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地,灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.。

相关文档
最新文档