2019年高考数学艺术生百日冲刺专题14概率测试题
艺考生文化课百日冲关答案
艺考生文化课百日冲关答案随着文化课在艺术类录取中所占的比重越来越高,很多艺术生在集训时也没有落下文化课。
但是由于艺术生的文化课底子薄,如何快速提分成为了摆在艺术生面前的一大难题。
并且,在集训时,很多专业课培训机构没有配备文化课老师,学生只能靠自学,学习效率和效果得不到保障。
针对该问题,长期从事艺术生文化课教学的刘老师给大家提出三点建议。
一、合理分配集训时间专业课、文化课同步学习以往的艺术生在集训时往往只学习专业课,完全放弃文化课的复习。
把文化课放在艺考后集中复习。
这样的考生,在艺考后复习文化课时才发现早已跟不上复习进度,知识点出现严重断层。
太多的经验和教训告诉我们,集训时一定要同步复习文化课。
整天抱怨说专业课太多,时间不够用的同学,只是给自己找的“为赋新词强说愁”的理由。
如果一个培训机构不给学生留出文化课的复习时间,这样的培训机构只能说还不懂艺考,或者说是以牺牲学生文化课的代价来提高机构的专业课过关率。
告诫各位考生,无论多忙,每天一定要挤出2-3个小时的文化课复习时间,平时的点滴积累往往比临时抱佛脚效果要好的多。
二、各科复习规划安排集训时,建议各科按以下原则复习:每天必看科目:政治、历史、地理、英语,政史地这三科大多以记忆性知识为主,所以,利用集训时的零散时间完全可以随时复习。
英语主要是背单词,把背单词养成一种习惯,可以使用口袋单词本,随时随地记单词。
数学由于解题时间较长,考生最好在安静的环境中复习,所以建议一周复习一次数学科目。
语文可以每天读读文言文,不需要做题,能把文言文的大概意思理解透就可以,毕竟在高考试卷中,文言文所占分值较大。
三、艺考后文化课复习安排艺考后的三个月是艺术生提分的黄金时期,这三个月的复习效果直接决定高考的成功与否。
建议考生们考完试以后,迅速调整状态,以最快的适应程度投入到文化课复习中来。
由于复习时间较短,大而全的复习模式已经不适应该阶段复习模式,考生们可以使用艺考生文化课百日学案,直抓重点复习,以达到快速提分的目的。
精选最新版2019年高中数学单元测试试题-概率专题完整考试题库(含答案)
2019年高中数学单元测试试题 概率专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.1 .(2013年高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )A .12B .13C .14D .162.在长为12cm 的线段AB 上任取一点 C . 现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为: ( ) A . 16B .13 C .23D .45(2012辽宁文)3.在区间[,]22ππ-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ) A.31 B.π2C.21D.32 (2009山东文)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4.从{}5,4,3,2,1中随机选取一个数为a ,从{}3,2,1中随机选取一个数为b ,则b a >的概率是 .5.在一个袋子中装有分别标注数字1,2,3,4,5 的五个小球,这些小球除标注的数字外完全相 同.现从中随机取出两个小球,则取出的小球上 标注的数字之和为5或7的概率是 .6. 设集合{,1},{,1,2},,,{1,2,3,,8}M a N b M N a b ==⊆∈,且在直角坐标平面内,从所有满足这些条件的有序实数对(,)a b 所表示的点中任取一个,其落在圆222x y r +=内的概率恰为13,则2r 的所有可能的整数值是________7.设集合A ={0,1,2},B ={0,1,2},分别从集合A 和B 中随机 取一个数a ,和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x+y=n 上”为事件C n (0≤n ≤4, n ∈N),若事件C n 的概率最大,则n 的可能值为 。
2010-2019十年高考数学真题分类汇编专题14 概率与统计 学生版+解析版
十年高考真题分类汇编(2010—2019)数学专题17复数1.(2019·全国1·文T1)设z=3-i1+2i,则|z|= ()A.2B.√3C.√2D.12.(2019·全国3·理T2文T2)若z(1+i)=2i,则z=( )A.-1-iB.-1+iC.1-iD.1+i3.(2019·北京·理T1文T2)已知复数z=2+i,则z·z=()A.√3B.√5C.3D.54.(2019·全国2·文T2)设z=i(2+i),则z=( )A.1+2iB.-1+2iC.1-2iD.-1-2i5.(2019·全国1·理T2)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则( )A.(x+1)2+y2=1B.(x-1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=16.(2019·全国2·理T2)设z=-3+2i,则在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限7.(2018·全国1·理T1文T2)设z=1-i1+i+2i,则|z|=()A.0B.12C.1D.√28.(2018·全国2·理T1)1+2i1-2i=()A.-45−35i B.-45+35iC.-35−45i D.-35+45i9.(2018·全国2·文T1)i(2+3i)=( )A.3-2iB.3+2i10.(2018·全国3·理T2文T2)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i的共轭复数对应的点位于( ) 11.(2018·北京·理T2文T2)在复平面内,复数11-iA.第一象限B.第二象限C.第三象限D.第四象限12.(2018·浙江·4)复数2(i为虚数单位)的共轭复数是( )1-iA.1+iB.1-iC.-1+iD.-1-i13.(2017·全国1·理T3)设有下面四个命题p1:若复数z满足1∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4=( )14.(2017·全国2·理T1)3+i1+iA.1+2iB.1-2iC.2+iD.2-i15.(2017·全国2·文T2)(1+i)(2+i)= ( )A.1-iB.1+3iC.3+iD.3+3i16.(2017·山东·文T2)已知i是虚数单位,若复数z满足zi=1+i,则z2=( )A.-2iB.2iC.-2D.217.(2017·全国3·理T2)设复数z满足(1+i)z=2i,则|z|=( )A.1B.√2C.√2D.218.(2017·全国1·文T3)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)19.(2017·山东·理T2)已知a∈R,i是虚数单位.若z=a+√3i,z·z=4,则a=()A.1或-1B.√7或-√7C.-√3D.√320.(2017·全国3·文T2)复平面内表示复数z=i(-2+i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限21.(2017·北京·理T2)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( )A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,+∞)22.(2016·全国2·理T1)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)=()23.(2016·全国3·理T2)若z=1+2i,则zz-1A.1B.-1C.iD.-I=()24.(2016·北京·文T2)复数1+2i2-iA.iB.1+iC.-iD.1-I25.(2016·全国1·理T2)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=( )A.1B.√2C.√3D.226.(2016·全国1·文T2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( )A.-3B.-2C.2D.327.(2016·全国2·文T2)设复数z满足z+i=3-i,则z=( )A.-1+2iB.1-2iC.3+2iD.3-2i28.(2016·全国3·文T2)若z=4+3i,则z|z|= ()A.1B.-1C.45+35i D.45−35i29.(2016·山东·理T1)若复数z满足2z+z=3-2i,其中i为虚数单位,则z=( )A.1+2iB.1-2iC.-1+2iD.-1-2i30.(2015·全国2·理T2)若a为实数,且(2+ai)·(a-2i)=-4i,则a=( )A.-1B.0C.1D.231.(2015·全国·文T3)已知复数z满足(z-1)i=1+i,则z=( )A.-2-iB.-2+iC.2-iD.2+i32.(2015·全国2·文T2)若a为实数,且2+ai1+i=3+i,则a=( )A.-4B.-3C.3D.433.(2015·安徽·文T1)设i是虚数单位,则复数(1-i)(1+2i)=( )A.3+3iB.-1+3iC.3+iD.-1+i34.(2015·湖南·文T1)已知(1-i)2z=1+i(i为虚数单位),则复数z=( ) A.1+i B.1-iC.-1+iD.-1-i35.(2015·全国1·理T1)设复数z满足1+z1-z=i,则|z|=()A.1B.√2C.√3D.236.(2015·湖北·理T1)i为虚数单位,i607的共轭复数....为( )A.iB.-iC.1D.-137.(2015·安徽·理T1)设i是虚数单位,则复数2i1-i在复平面内所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限38.(2014·全国2·理T2)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=( )A.-5B.5C.-4+iD.-4-i39.(2014·重庆·理T1)复平面内表示复数i(1-2i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限40.(2014·全国1·理T2)(1+i)3(1-i)2=()A.1+iB.1-iC.-1+iD.-1-I41.(2014·全国2·文T2)1+3i1-i=()A.1+2iB.-1+2iC.1-2iD.-1-2i42.(2014·全国1·文T3)设z=11+i+i,则|z|=()A.12B.√22C.√32D.243.(2013·全国1·理T2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( )A.-4B.-45C.4 D.4544.(2013·全国2·文T2)|2|=()A.2√2B.2C.√2D.145.(2013·全国2·理T2)设复数z 满足(1-i)z=2i,则z=( ) A.-1+i B.-1-i C.1+iD.1-i46.(2013·全国1·文T2)1+2i (1-i )2=()A.-1-12i B.-1+12i C.1+12iD.1-12i47.(2012·全国·理T3)下面是关于复数z=2-1+i的四个命题: p1:|z|=2, p2:z2=2i, p3:z 的共轭复数为1+i, p4:z 的虚部为-1, 其中的真命题为( ) A.p2,p3B.p1,p2C.p2,p4D.p3,p448.(2012·全国·文T2)复数z=-3+i2+i 的共轭复数是( ) A.2+i B.2-i C.-1+iD.-1-i49.(2011·全国·文T2)复数5i1-2i =( ) A.2-i B.1-2i C.-2+iD.-1+2i50.(2010·全国·理T2)已知复数z=√3+i(1-√3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C.1D.251.(2010·全国·文T3)已知复数z=√3+i(1-√3i )2,则|z|等于()A.14B.12C.1D.252.(2018·天津·理T9文T9)i 是虚数单位,复数6+7i1+2i =.53.(2019·天津·理T9文T9)i 是虚数单位,则|5-i1+i |的值为___________.54.(2019·江苏·T 2)已知复数(a+2i)(1+i)的实部为0,其中i 为虚数单位,则实数a 的值是____ . 55.(2018·上海·5)已知复数z 满足(1+i)z=1-7i(i 是虚数单位),则|z|= .56.(2017·浙江·12)已知a,b ∈R,(a+bi)2=3+4i(i 是虚数单位),则a2+b2=_____,ab=________.57.(2017·江苏·T 2)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.58.(2017·天津·理T9文T9)已知a∈R,i为虚数单位,若a-i为实数,则a的值为.2+i59.(2016·江苏·T 2)复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是.的值为.60.(2016·天津·理T9)已知a,b∈R,i是虚数单位,若(1+i)(1-bi)=a,则ab61.(2016·北京·理T9)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= .62.(2015·天津·理T9)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为.63.(2015·江苏·T 3)设复数z满足z2=3+4i(i是虚数单位),则z的模为.64.(2015·重庆·理T11)设复数a+bi(a,b∈R)的模为√3 ,则(a+bi)(a-bi)= .十年高考真题分类汇编(2010—2019)数学专题14概率与统计1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻 “”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116【答案】A【解析】由题可知,每一爻有2种情况,故一重卦的6个爻有26种情况.其中6个爻中恰有3个阳爻有C 63种情况,所以该重卦恰有3个阳爻的概率为C 6326=516,故选A .2.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15【答案】B【解析】设测量过该指标的3只兔子为a,b,c,剩余2只为A,B,则从这5只兔子中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{c,A,B},{b,A,B}共10种,其中恰有2只测量过该指标的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}共6种,所以恰有2 只测量过该指标的概率为610=35,故选B .3.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) 【答案】D【解析】两位男同学和两位女同学排成一列,共有24种排法.两位女同学相邻的排法有12种,故两位女同学相邻的概率是12.故选D.4.(2019·全国1·文T6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生 【答案】C【解析】由已知得将1 000名新生分为100个组,每组10名学生,用系统抽样46号学生被抽到,则第一组应为6号学生,所以每组抽取的学生号构成等差数列{an},所以an=10n-4,n ∈N*, 若10n-4=8,则n=1.2,不合题意; 若10n-4=200,则n=20.4,不合题意; 若10n-4=616,则n=62,符合题意; 若10n-4=815,则n=81.9,不合题意. 故选C.5.(2019·全国2·理T5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差【答案】A【解析】设9位评委的评分按从小到大排列为x1<x2<x3<x4<…<x8<x9.对于A,原始评分的中位数为x5,去掉最低分x1,最高分x9后,剩余评分的大小顺序为x2<x3<…<x8,中位数仍为x5,故A 正确;对于B,原 始评分的平均数x =19(x 1+x 2+…+x 9),有效评分的平均数x '=17(x 2+x 3+…+x 8),因为平均数受极端值影响较大,所以x 与x '不一定相同,故B 不正确;对于C,原始评分的方差s 2=19[(x 1-x )2+(x 2-x )2+…+(x 9-x )2],有效评分的方差s'2=17[(x 2-x ')2+(x 3-x ')2+…+(x 8-x ')2],由B 易知,C 不正确;对于D,原始评分的极差为x9-x1,有效评分的极差为x8-x2,显然极差变小,故D 不正确. 6.(2018·全国2·理T8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114C.115D.118【答案】C【解析】不超过30的素数有“2,3,5,7,11,13,17,19,23,29”共10个.其中和为30的有7+23,11+19,13+17共3种情况,故P=3C 102=115.7.(2018·全国2·文T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.3 【答案】D【解析】设2名男同学为男1,男2,3名女同学为女1,女2,女3,则任选两人共有(男1,女1),(男1,女2),(男1,女3),(男1,男2),(男2,女1),(男2,女2)(男2,女3)(女1,女2),(女1,女3),(女2,女3)共10种,其中选中两人都为女同学共(女1,女2),(女1,女3)、(女2,女3)3种,故P=310=0.3.8.(2018·全国1·理T10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( ) A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 【答案】A【解析】∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC,S Ⅲ=π8BC 2-12AB ·AC,S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=1AB ·AC ,S Ⅲ=πBC 2-1AB ·AC , S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.9.(2018·江苏·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .【答案】90【解析】由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+91=90.10.(2018·全国1·理T3文T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设建设前经济收入为1,则建设后经济收入为2,建设前种植收入为0.6,建设后种植收入为2×0.37=0.74,故A 不正确;建设前的其他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6,故B,C 正确;建设后养殖收入与第三产业收入的总和所占比例为58%,故D 正确,故选A. 11.(2018·浙江·T7)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( )A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小 【答案】D【解析】由题意可知,E(ξ)=0×(1-p 2)+1×12+2×p 2=12+p,D(ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2=12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D(ξ)先增大后减小.12.(2018·全国3·理T8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 【答案】B【解析】由题意,得DX=np(1-p)=10p(1-p)=2.4,∴p(1-p)=0.24,由p(X=4)<p(X=6)知C 104p 4·(1-p)6<C 106p 6(1-p)4,即p2>(1-p)2,∴p>0.5,∴p=0.6(其中p=0.4舍去).13.(2018·全国3·文T5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 【答案】B【解析】设不用现金支付的概率为P,则P=1-0.45-0.15=0.4.14.(2017·全国3·理T3文T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由题图可知2014年8月到9月的月接待游客量在减少,故A错误.15.(2017·山东·文T8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,7【答案】A【解析】甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.16.(2017·全国1·理T2文T4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为2,则圆半径为1,正方形的面积为2×2=4,圆的面积为π×12=π.由图形的对称性,可知图中黑色部分的面积为圆面积的一半,即12πr 2=12π,所以此点取自黑色部分的概率为π24=π8.17.(2017·全国2·文T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15C .310D .25【答案】D【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图所示.总共有25种情况,其中第一张卡片上的数大于第二张卡片上的数的情况有10种,故所求的概率为1025=25. 18.(2017·天津·文T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45 B.35C.25D.15【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,共有(红黄),(红蓝),(红绿),(红紫),(黄蓝),(黄绿),(黄紫),(蓝绿),(蓝紫),(绿紫)10种不同情况,记“取出的2支彩笔中含有红色彩笔”为事件A,则事件A 包含(红黄),(红蓝),(红绿),(红紫)4个基本事件,则P(A)=4=2.故选C.19.(2017·山东·理T5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归 直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4,该班某学生的脚长为24,据此估计其身高为( ) A.160B.163C.166D.170【答案】C【解析】由已知得x =110∑i=110x i =22.5,y =110·∑i=110y i =160,又b ^=4,所以a ^=y −b ^x =160-4×22.5=70,故当x=24时,y ^=4×24+70=166.故选C .20.(2016·全国1·文T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56【答案】C【解析】总的基本事件是红黄,白紫;红白,黄紫;红紫,黄白,共3种.满足条件的基本事件是红黄,白紫;红白,黄紫,共2种.故所求事件的概率为P=23.21.(2016·全国3·文T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130【答案】C【解析】密码的前两位共有15种可能,其中只有1种是正确的密码,因此所求概率为115.故选C.22.(2016·北京·文T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925【答案】B【解析】从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为410=25.23.(2016·全国1·理T4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【答案】B【解析】这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为P=2040=12,故选B.24.(2016·全国2·理T10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mnD.2mn【答案】C【解析】利用几何概型求解,由题意可知,14S圆S正方形=14π×1212=mn,所以π=4mn.25.(2016·山东·理T3文T3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.140【答案】D【解析】自习时间不少于22.5小时为后三组,其频率和为(0.16+0.08+0.04)×2.5=0.7,故人数为200×0.7=140,选D.26.(2016·全国2·文T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.7B.5C.38D.310【答案】B【解析】因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.27.(2016·全国3·理T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个【答案】D【解析】由题图可知,0 ℃在虚线圈内,所以各月的平均最低气温都在0 ℃以上,A正确;易知B,C正确;平均最高气温高于20 ℃的月份有3个,分别为六月、七月、八月,D错误.故选D.28.(2015·全国2·理T3文T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图知,2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.29.(2015·陕西·理T2文T2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167【答案】C【解析】由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).故选C.30.(2015·北京·理T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.31.(2015·湖北·理T2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1 365石【答案】B【解析】由条件知254粒内夹谷28粒,可估计米内夹谷的概率为28254=14127,所以1 534石米中夹谷约为14127×1 534≈169(石).32.(2015·陕西·理T11)设复数z=(x-1)+yi(x,y ∈R),若|z|≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12−1π D.14−12π【答案】D【解析】由|z|≤1,得(x-1)2+y2≤1.不等式表示以C(1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=14π×12-S △OAC=14π-12×1×1=π4−12.故所求事件的概率P=S 阴S圆=π4-12π×12=14−12π. 33.(2015·山东·文T7)在区间[0,2]上随机地取一个数x,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( ) A.34 B.23C.13D.14【答案】A【解析】由-1≤lo g 12(x +12)≤1,得lo g 122≤lo g 12(x +12)≤lo g 1212,所以12≤x+12≤2,所以0≤x ≤32.由几何概型可知,事件发生的概率为32-02-0=34.34.(2015·福建·文T8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f(x)={x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14C.38D.12【答案】B【解析】如图,设f(x)与y 轴的交点为E,则E(0,1). ∵B(1,0),∴yC=1+1=2.∴C(1,2). 又四边形ABCD 是矩形, ∴D(-2,2).∴S △DCE =12×[1-(-2)]×1=32.又S 矩形=3×2=6,∴由几何概型概率计算公式可得所求概率P=326=14.故选B .35.(2015·湖北·文T4)已知变量x 和y 满足关系y=-0.1x+1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关 【答案】A【解析】由y=-0.1x+1知y 与x 负相关,又因为y 与z 正相关,故z 与x 负相关.36.(2015·湖北·文T8)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12B.p 1<12<p 2 C.p 2<12<p 1 D.12<p 2<p 1【答案】B【解析】设点P 的坐标为(x,y),由题意x,y ∈[0,1], 所以点P 在正方形OABC 内,S 正方形OABC=1×1=1. 画出直线x+y=12与正方形交于D ,E 两点,画出曲线xy=12与正方形交于M,N两点.而Rt△OAC的面积S=12.由图可知:S△OED<S△OAC<S曲边形OCMNA,所以p1<12<p2.故选B.37.(2015·全国1·文T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120【答案】C【解析】从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为110.38.(2015·广东·文T7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.1【答案】B【解析】设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.39.(2015·湖南·文T2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3B.4C.5D.6【答案】B【解析】依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第3,4,5,6组,因此,成绩在该区间上的运动员人数是4.40.(2015·北京·文T4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100C.180D.300【答案】C【解析】由已知分层抽样中青年教师的抽样比为3201600=15, 由分层抽样的性质可得老年教师的抽样比也等于15, 所以样本中老年教师的人数为900×15=180.故选C.41.(2015·安徽·理T6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( ) A.8 B.15C.16D.32【答案】C【解析】设数据x 1,x 2,…,x 10的平均数为x ,标准差为s,则2x 1-1,2x 2-1,…,2x 10-1的平均数为2x -1,方差为[(2x 1-1)-(2x -1)]2+[(2x 2-1)-(2x -1)]2+…+[(2x 10-1)-(2x -1)]210=4(x 1-x )2+4(x 2-x )2+…+4(x 10-x )210=4s 2,因此标准差为2s=2×8=16.故选C.42.(2015·全国1·理T4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 【答案】A【解析】由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C 320.62(1-0.6)+C 330.63=0.648.43.(2015·湖北·理T4)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)【答案】C【解析】由曲线X的对称轴为x=μ1,曲线Y的对称轴为x=μ2,可知μ2>μ1.∴P(Y≥μ2)<P(Y≥μ1),故A错;由图象知σ1<σ2且均为正数,∴P(X≤σ2)>P(X≤σ1),故B错;对任意正数t,由题中图象知,P(X≤t)≥P(Y≤t),故C正确,D错.44.(2015·山东·理T8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%【答案】B【解析】由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ-2σ<ξ<μ+2σ)-P(μ-σ<ξ<μ+σ)2=13.59%.=95.44%-68.26%245.(2014·陕西·文T9)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2【答案】D【解析】由题意,得x=x1+x2+…+x1010,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.故选D.46.(2014·重庆·文T3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.250【答案】A【解析】由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.47.(2014·湖南·文T3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【答案】D【解析】由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3.48.(2014·广东·文T6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20【答案】C【解析】由题意知分段间隔为100040=25,故选C.49.(2014·全国1·理T5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78【答案】D【解析】4名同学各自在周六、周日两天中任选一天参加活动的情况有24=16(种),其中4名同学都在周六或周日参加活动各有1种情况.所以所求概率为P=16-216=78.50.(2014·陕西·文T6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45【答案】B【解析】设正方形的四个顶点为A,B,C,D,中心为O,从这5个点中任取2个点,一共有10种不同的取法:AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,其中这2个点的距离小于该正方形边长的取法共有4种:AO,BO,CO,DO.因此由古典概型概率计算公式,可得所求概率P=410=25,故选B.51.(2014·湖南·文T5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.15【答案】B【解析】由几何概型的概率公式可得P(X≤1)=35,故选B.52.(2014·辽宁·文T6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8【答案】B【解析】所求概率为S半圆S长方形=12π×122×1=π4,故选B.53.(2014·全国2·理T5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45【答案】A【解析】设某天空气质量为优良为事件A,随后一天空气质量为优良为事件B,由已知得P(A)=0.75,P(AB)=0.6,所求事件的概率为P(B|A)=P(AB)P(A)=0.60.75=0.8,故选A.54.(2013·陕西·理T5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是()。
2019年高考数学艺术生百日冲刺专题19考前模拟卷20190307379
专题19考前模拟卷一.选择题1.设集合M={x|x2﹣x>0},N={x|<1},则()A.M∩N=∅B.M∪N=∅C.M=N D.M∪N=R【答案】C【解析】:M={x|x2﹣x>0}={x|x>1或x<0},N={x|<1}={x|x>1或x<0},则M=N,故选:C.2.已知是虚数单位,,且,则( )A. B. C. D.【答案】A【解析】由,得,,即,故选A.3.在区间[0,2]上随机取一个数x,使的概率为()A.B.C.D.【答案】A【解析】:∵0≤x≤2,∴0≤≤π,∵sin≥,∴≤≤,即≤x≤,∴P==.故选:A.4.(2018•威海二模)已知命题p:“∀a>b,|a|>|b|”,命题q:“”,则下列为真命题的是()A.p∧q B.¬p∧¬q C.p∨q D.p∨¬q【答案】C【解析】:∵命题p:“∀a>b,|a|>|b|”是假命题,命题q:“”是真命题,∴p ∨q是真命题.故选:C.5.如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B. 2018年1~4月的业务量同比增长率均超过50%,在3月最高C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长【答案】D6.(2019•泉州期中)已知等差数列{a n}的前n项和为S n,则“S n的最大值是S8”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】:等差数列{a n}的前n项和为S n,则“S n的最大值是S8”⇔a8>0,a9<0.则“”⇔.∴S n的最大值是S8”是“”的充要条件.故选:C.7.已知点P(2,1)是抛物线C:x2=my上一点,A,B是抛物线C上异于P的两点,A,B在x轴上的射影分别为A1,B1,若直线PA与直线PB的斜率之差为1,D是圆(x﹣1)2+(y+4)2=1上一动点,则△A1B1D的面积的最大值为()(2)若b,a,c成等差数列,△ABC的面积为2,求a.【解析】:(1)∵asinB=bsin(A+).∴由正弦定理可得:sinAsinB=sinBsin(A+).∵sinB≠0,∴sinA=sin(A+).∵A∈(0,π),可得:A+A+=π,∴A=.…………6分(2)∵b,a,c成等差数列,∴b+c=,∵△ABC的面积为2,可得:S△ABC=bcsinA=2,∴=2,解得bc=8,∴由余弦定理可得:a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccos=(b+c)2﹣3bc=(a)2﹣24,∴解得:a=2.………………12分18.如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,点E在棱CS上,且CE=λCS.(1)若,证明:BE⊥CD;(2)若,求点E到平面SBD的距离.【解析】(1)因为,所以,在线段CD上取一点F使,连接EF,BF,则EF∥SD且DF =1.因为AB=1,AB∥CD,∠ADC=90°,所以四边形ABFD为矩形,所以CD⊥BF.又SA⊥平面ABCD,∠ADC=90°,所以SA⊥CD,AD⊥CD.因为AD∩SA=A,所以CD⊥平面SAD,所以CD⊥SD,从而CD⊥EF.因为BF∩EF=F,所以CD⊥平面BEF.又BE平面BEF,所以CD⊥BE.…………5分(2)解:由题设得,,又因为,,,所以,设点C到平面SBD的距离为h,则由V S—BCD=V C—SBD得,因为,所以点E到平面SBD的距离为.…………12分19..2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)(ⅰ)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.【解析】(1)平均数.前三组的频率之和为0.15+0.2+0.3=0.65,故中位数落在第3组,设中位数为x,则(x-30)×0.03+0.15+0.2=0.5,解得x=35,即中位数为35.…………5分(2)(ⅰ)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a,b,c,d,年龄在[60,70)的有2人,设为x,y.则从中任选2人共有如下15个基本事件:(a,b),(a,c),(a,d),(a,x),(a,y),(b,c),(b,d),(b,x),(b,y),(c,d),(c,x),(c,y),(d,x),(d,y),(x,y).至少有1人年龄不低于60岁的共有如下9个基本事件:(a,x),(a,y),(b,x),(b,y),(c,x),(c,y),(d,x),(d,y),(x,y).记“这2人中至少有1人年龄不低于60岁”为事件A,故所求概率.…………9分(ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88,故可以估计,该小区年龄不超过80岁的成年人人数约为2000×0.88=1760.……12分20.已知椭圆E:(a>b>0)过点P(),其上顶点B(0,b)与左右焦点F1,F2构成等腰三角形,且∠F1BF2=120°.(Ⅰ)求椭圆E的方程;(Ⅱ)以点B(0,b)为焦点的抛物线C:x2=2py(p>0)上的一动点P(m,y p),抛物线C在点P处的切线l与椭圆E交于P1P2两点,线段P1P2的中点为D,直线OD(O为坐标原点)与过点P且垂直于x轴的直线交于点M,问:当0<m≤b时,△POM面积是否存在最大值?若存在,求出最大值,若不存在说明理由.【解析】:(Ⅰ)由已知得:a=2b,+=1,解得b2=1,a2=4.故椭圆E的方程为:+y2=1.………………4分(Ⅱ)抛物线C的焦点B(0,1),则其方程为x2=4y.y′=x.于是抛物线上点P(m,),则在点P处的切线l的斜率为k=y′|x=m=,故切线l的方程为:y﹣=(x﹣m),即y=x﹣.…………6分由方程组,消去y,整理后得(m2+1)x2﹣m3x+﹣4=0.由已知直线l与椭圆交于两点,则△=m6﹣4(m2+1)(﹣4)>0.解得0≤m2<8+4,其中m=0是不合题意的.∴﹣<m<0,或0<m<.设P1(x1,y1),P2(x2,y2),则x D==.…………8分代入l的方程得y D=.故直线OD的方程为:x,即y=﹣x.当x=m时,y=﹣,即点M.△POM面积S=|PM|•m=m=+m.∵S′=m2+>0,故S关于m单调递增.∵0<m≤1,∴当m=1时,△POM面积最大值为.…………12分21已知函数.(1)若函数f(x)在[1,+∞)上是单调递减函数,求a的取值范围;(2)当-2<a<0时,证明:对任意x∈(0,+∞),.【解析】 (1)解:由题意得.即在上恒成立,所以.…………3分(2)证明:由(1)可知,所以在上单调递增,在上单调递减,因为,所以,所以,即,即,所以.…………12分22.(10分)以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.【分析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值.23. 设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.(Ⅰ)作出函数f(x)的图象;(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.【解析】:(Ⅰ)函数f(x)=|x﹣1|﹣|2x+1|=,画出图象如图,(Ⅱ)由(Ⅰ)知,当x=﹣时,函数f(x)取得最大值为m=.∵a2+2c2+3b2=m==(a2+b2)+2(c2+b2)≥2ab+4bc,∴ab+2bc≤,当且仅当a=b=c=1时,取等号,故ab+2bc的最大值为.。
精选2019年高中数学单元测试试题-概率专题完整考题库(含答案)
2019年高中数学单元测试试题 概率专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.某人随机地将标注为,,A B C 的三个小球放入编号为1,2,3的三个盒子中,每个盒子放入一个小球,全部放完.则标注为B 的小球放入编号为奇数的盒子中的概率为 ▲ .2.两位男生,两位女生排成一排,则两位女生恰好排在相邻位置的概率是 .3.在1,2,3,4,5五条线路的车停靠的同一个车站上,张老师等候1,3,4路车的到来,按汽车经过该站的平均次数来说,2,3,4,5路车的次数是相等的,而1路车的次数是汽车各路车次数的总和,则首先到站的汽车是张老师所等候的汽车的概率为 .344.从[0,1]之间选出两个数,这两个数的平方和小于0.25的概率是5.若2510ab==,则11a b+= .6.某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,以每人被抽取的概率为0.2向该中学抽取一个容量为n 的样本,则n= ___________ 〖解〗2007.从8名女生和4名男生中选出6名组成课外学习小组,如果按性别比例分层抽样,那么组成此刻外学习小组的概率是__________。 〖解〗115 8. 从集合{}2,1,1,2,3A =--中任取两个元素m 、n (m n ≠),则方程122=+ny m x 所对应的曲线表示焦点在y 轴上的双曲线的概率是 .9.袋中装有10个木质球,6个玻璃球,玻璃球中有2个为红色,4个为蓝色,木质球中有7个为红色,3个为蓝色,现从中任取一球,则恰好取到红色木质球的概率为 ▲ . 10.在0到1之间任取两个实数,则它们的平方和大于1的概率是 ▲ .11.已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆数为600颗,则可以估计出阴影部分的面积约为___12.已知射手甲射击一次,命中9环以上(含9环)的概率为0.5,命中8环的概率为0.2,命中7环的概率为0.1,则甲射击一次,命中6环以下(含6环) 的概率为 ▲ .13.甲、乙两人玩数学游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数学,把乙猜的数字记为b ,且,则称甲乙“心有灵犀”,现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为____14. 在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为 ▲ .15.已知Ω={(x ,y )|x +y <6,x >0,y >0},A ={(x ,y )|x <4,y >0,x -2y >0},若向区域Ω上随机投掷一点P ,则点P 落入区域A 的概率为 .16. 在区间[-4,4],内任取一个元素x O ,若抛物线y=x 2在x=x o 处的切线的倾角为α,则3,44ππα⎡⎤∈⎢⎥⎣⎦的概率为 ▲ 。
精选2019年高中数学单元测试试题-概率专题测试题库(含答案)
2019年高中数学单元测试试题 概率专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.(2007年湖北理)连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是( )A .512B .12C .712D .56答案 C第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题2.豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为Dd ,若第二子代的D ,d 的基因遗传是等可能的(只要有基因D 则其就是高茎,只有两个基因全是d 时,才显示矮茎),则第二子代为高茎的概率为 ▲ .3.某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,则一个乘客候车时间不超过7分钟的概率 .4.将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为 .(结果用最简分数表示)121 5.把一根匀均匀木棒随机地按任意点拆成两段,则“其中一段的长度大于另一段长度的2倍”的概率为 ▲6.在区间[5,5]-内随机地取出一个数a ,则恰好使1是关于x 的不等式2220x ax a +-<的一个解的概率大小为__▲_____.7.已知集合A={}⎭⎬⎫⎩⎨⎧>--=<<-042,51x x x B x x ,在集合A 中任取一个元素x ,则事件“B A x ∈”的概率是 。
8.一个总体分为A ,B 两层,用分层抽样方法从总体中抽取一个容量为10的样本。已知B 层中每个个体被抽到的概率都为112,则总体中的个体数为_____. 〖解〗9. 已知()(),4,2,3,2,=-=∈AC k BC Z k若10≤,则△ABC 为直角三角形的概率是 ★ .7310.一个骰子连续投2次,点数和为4的概率 ▲11.用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是____。
历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)
历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编考点01:统计案例及应用1.(2022高考北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25; 乙:9.78,9.56,9.51,9.36,9.32,9.23; 丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立. (1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X ); (3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)2.(2023年全国乙卷理科)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545 533 551 522 575 544 541 568 596 548 伸缩率i y536 527 543 530 560 533 522 550 576 536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果的z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)3.(2020年高考课标Ⅰ卷理科·)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.4.(2021年高考全国乙卷理科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S . (1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).5.(2021年新高考Ⅰ卷)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分期望最大,小明应选择先回答哪类问题?并说明理由.6.(2022新高考全国II 卷)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).2.(2019·全国Ⅲ·理)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:的记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C的估计值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).考点02 随机事件分布列1.(2022年高考全国甲卷数学(理))甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.2.(2021高考北京)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(i)如果感染新冠病毒的2人在同一组,求检测的总次数;(ii)已知感染新冠病毒的2人分在同一组的概率为111.设X是检测的总次数,求X的分布列与数学期望E(X).(II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)3.(2020江苏高考)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为n X ,恰有2个黑球的概率为n p ,恰有1个黑球的概率为n q . (1)求11p q 和22p q ;(2)求2n n p q +与112n n p q --+的递推关系式和n X 的数学期望()n E X (用n 表示).4.(2019·全国Ⅱ·理)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.()1求()2P X =;()2求事件“4X =且甲获胜”的概率.5.(2019·天津·理·)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.考点03 相关关系与回归分析1.(2022年高考全国乙卷数学(理))某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样12345678910总本号i 和根部横截面积i x0.04 0.06 0.04 0.08 0080.05 0.05 0.07 0.07 0.06 0.6材积量i y0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得10101022ii i i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数ii( 1.377)()nx x y y r --=≈∑.2.(2020年高考课标Ⅱ卷理科)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,.的202180i ix x =-=∑(,2021)9000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)niix y x y --∑((≈1.414.考点04 独立性检验1.(2023年全国甲卷理科·)一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).(1)设X 表示指定的两只小白鼠中分配到对照组的只数,求X 的分布列和数学期望; (2)实验结果如下:对照组的小白鼠体重的增加量从小到大排序为:15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1 32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2对照组的小白鼠体重的增加量从小到大排序为:7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2 19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(i )求40只小鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于的数据的个数,完成如下列联表:m <m ≥对照组 实验组(ii )根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.附:()()()()22(),n ad bc K a b c d a c b d -=++++ 0k0.100 0.050 0.010 ()20P k k ≥2.7063.8416.6352.(2021年高考全国甲卷理科)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8283.(2020年高考课标Ⅲ卷理科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天): 锻炼人次 空气质量等级[0,200](200,400](400,600]1(优) 2 16 25 2(良) 5 10 12 3(轻度污染) 6 7 8 4(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表); (3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400 人次>400 空气质量好 空气质量不好附:22()()()()()n ad bc K a b c d a c b d -=++++,P (K 2≥k ) 0.050 0.010 0.001 k 38416.63510.8284.(2020年新高考全国Ⅰ卷)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32184.(35,75]6 8 12 (75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.8285.(2020年新高考全国卷Ⅱ数学)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:的(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,考点05 概率统计综合应用1.(2023年新高考全国Ι卷)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .2(2023年新课标全国Ⅱ卷).某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率. (1)当漏诊率()0.5p c =%时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+,当[]95,105c ∈时,求()f c 的【解析】式,并求()f c 在区间[]95,105的最小值.3.(2021年新高考全国Ⅱ卷)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <; (3)根据你的理解说明(2)问结论的实际含义.4.(2019·全国Ⅰ·理·)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定,对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则08110,1,i i i i p p p ap bp cp -+===++(1,2,,7i = ),的其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. (i )证明:1{}(0,1,2,,7)i i p p i +-= 为等比数列; (ii )求4p ,并根据4p 的值解释这种试验方案的合理性.参考答案考点01:统计案例及应用1.(2022高考北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立. (1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】【答案解析】:(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A 1,乙获得优秀为事件A 2,丙获得优秀为事件A 31233(0)()0.60.50.520P X P A A A ===⨯⨯=, 123123123(1)()()()P X P A A A P A A A P A A A ==++80.40.50.50.60.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=, 123123123(2)()()()P X P A A A P A A A P A A A ==++70.40.50.50.40.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=, 1232(3)()0.40.50.520P X P A A A ===⨯⨯=.∴X 的分布列为∴38727()0123202020205E X =⨯+⨯+⨯+⨯= (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.2.(2023年全国乙卷理科)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率ix 545 533 551 522 575 544 541 568 596 548 伸缩率i y536 527 543 530 560 533 522 550 576 536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)【答案】(1)11z =,261s =;(2)认为甲工艺处理后橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 【答案解析】:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =-=-=,i i i z x y =- 的值分别为: 9,6,8,8,15,11,19,18,20,12-,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s -+-+-+--+-++-+-+-+-==的的(2)由(1)知:11z =,==z ≥所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.3.(2020年高考课标Ⅰ卷理科·)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 【答案】(1)116;(2)34;(3)716. 【答案解析】:”(1)记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭;(2)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=; (3)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪ ⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等, 所以丙赢的概率为()97123216P N =-⨯=.4.(2021年高考全国乙卷理科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有的无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S . (1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y SS ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高. 【答案解析】:(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==.(2)依题意,0.320.15y x -==⨯==,=y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高. 5.(2021年新高考Ⅰ卷)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分期望最大,小明应选择先回答哪类问题?并说明理由. 【答案】【答案解析】:(1)由题可知,X 的所有可能取值为0,20,100. ()010.80.2P X ==-=;的()()P X==-=;200.810.60.32()1000.80.60.48P X==⨯=.所以X的分布列为X020100P0.20.320.48E X=⨯+⨯+⨯=.(2)由(1)知,()00.2200.321000.4854.4若小明先回答B问题,记Y为小明的累计得分,则Y的所有可能取值为0,80,100.()010.60.4P Y==-=;()()P Y==-=;800.610.80.12()P X==⨯=.1000.80.60.48E Y=⨯+⨯+⨯=.所以()00.4800.121000.4857.6<,所以小明应选择先回答B类问题.因为54.457.66.(2022新高考全国II卷)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)47.9岁;(2)0.89;(3)0.0014.【答案解析】:(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病}, 则由条件概率公式可得 ()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.2.(2019·全国Ⅲ·理)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70. (1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)0.35a =,0.10b =;(2)4.05,6.00. 【官方【答案解析】】(1)由已知得0.70=0.200.15a ++,故0.35a =,b 10.050.150.700.10=---=. (2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.【点评】本题考查频率分布直方图的相关概念和频率分布直方图中平均数法人计算,属于基础题.考点02 随机事件分布列1.(2022年高考全国甲卷数学(理))甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.E X=.【答案】(1)0.6; (2)分布列见【答案解析】,()13A B C,所以甲学校获得冠军的概率为【【答案解析】】(1)设甲在三个项目中获胜的事件依次记为,,()()()()=+++P P ABC P ABC P ABC P ABC=⨯⨯+⨯⨯+⨯⨯+⨯⨯0.50.40.80.50.40.80.50.60.80.50.40.2=+++=.0.160.160.240.040.6(2)依题可知,X的可能取值为0,10,20,30,所以,()00.50.40.80.16P X==⨯⨯=,()100.50.40.80.50.60.80.50.40.20.44P X==⨯⨯+⨯⨯+⨯⨯=,()200.50.60.80.50.40.20.50.60.20.34P X==⨯⨯+⨯⨯+⨯⨯=,()300.50.60.20.06P X==⨯⨯=.即X的分布列为X 0 10 20 30P 0.16 0.44 0.34 0.06E X=⨯+⨯+⨯+⨯=.期望()00.16100.44200.34300.06132.(2021高考北京)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(i)如果感染新冠病毒的2人在同一组,求检测的总次数;。
2019年高考数学试题分类汇编概率附答案详解
2019年高考数学试题分类汇编概率一、选择题.1、(2019年高考全国I 卷文科6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生答案:C解析:组距为10,所以选出号码为等差数列,公差为10,故选C2、(2019年高考全国I 卷理科6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116答案:A解析:一共有6426=种可能,其中满足恰有3个阳爻的有2036=C 种,概率为1656420=故选A 3、(2019年高考全国II 卷文科4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35 C .25D .15答案:B解析:设5只兔子为A,B,C,D,E,其中A,B,C 为测量过指标的取出3只所有情况:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE 共10种满足条件的有6种:ABD 、ABE 、ACD 、ACE 、BCD 、BCE 故概率为53=p 故答案选B 4、(2019年高考全国II 卷理科5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差 答案:A解析:9个数的中位数与去掉两个数后的7个数的中位数相同.故答案选A5、(2019年高考全国III 卷文科3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12答案:D解析:两位男生和两位女生排成一列,共有44A 种站法,其中两位女生相邻的站法共有3322A A 种,所以两位女生相邻的概率是21123412312443322=⨯⨯⨯⨯⨯⨯⨯=A A A 。
历年(2019-2023)高考数学真题专项(概率与统计选择题及填空题)汇编(附答案)
历年(2019-2023)高考数学真题专项(概率与统计选择题及填空题)汇编考点01:排列组合与二项式定理一选择题:1.(2023年新课标全国Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答). 2.(2020年高考课标Ⅱ卷理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.二、填空题1.(2023年天津卷)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________. 2.(2021年高考浙江卷·)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________3.(2020年高考课标Ⅲ卷理科)262()x x+的展开式中常数项是__________(用数字作答).4.(2020年浙江省高考数学试卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.5.(2022新高考全国I 卷·)81()y x y x ⎛⎫-+ ⎪⎝⎭展开式中26x y 的系数为________________(用数字作答). 6.(2021高考天津)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.7.(2021高考北京)在341()x x-的展开式中,常数项为__________.8.(2020天津高考)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.9.(2019·浙江·)在二项式9)x +的展开式中,常数项是 ,系数为有理数的项的个数是 .10.(2019·天津·理·)83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为 ..的考点02 事件概率1.(2023年天津卷)甲乙丙三个盒子中装有一定数量黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.2.(2022年高考全国甲卷数学(理)·)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.3.(2022年高考全国乙卷数学(理))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.4.(2021高考天津·)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.5.(2020天津高考·)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.6.(2020江苏高考·)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.7.(2019·上海·)某三位数密码锁,每位数字在90-数字中选取,其中恰有两位数字相同的概率是_______.8.(2019·江苏·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .考点03 随机事件分布列1.(2020年浙江省高考数学试卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.的2.(2022年浙江省高考数学试题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________.3.(2019·全国Ⅰ·理·)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主” .设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .4.(2021年高考浙江卷)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.5.(2022新高考全国II 卷).已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.参考答案考点01:排列组合与二项式定理一选择题:1.(2023年新课标全国Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答). 【答案】64【答案解析】:(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种; (2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种; ②若体育类选修课2门,则不同的选课方案共有2144C C 24=种; 综上所述:不同的选课方案共有16242464++=种. 故答案为:64.2.(2020年高考课标Ⅱ卷理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】36【答案解析】: 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C = 现在可看成是3组同学分配到3个小区,分法有:336A = 根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36. 二、填空题1.(2023年天津卷)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________.【答案】60【答案解析】:展开式的通项公式()()6361841661C 212C kkk kk kk k T x x x ---+⎛⎫=-=-⨯⨯⨯ ⎪⎝⎭, 令1842k -=可得,4k =,则2x 项的系数为()4644612C 41560--⨯⨯=⨯=.故答案为:60.2.(2021年高考浙江卷·)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.【答案】(1). 5; (2). 10.【答案解析】:332(1)331x x x x -=-+-, 4432(1)4641x x x x x +=++++,所以12145,363a a =+==-+=,34347,110a a =+==-+=,所以23410a a a ++=故答案为5,10.3.(2020年高考课标Ⅲ卷理科)262()x x+的展开式中常数项是__________(用数字作答).【答案】240【答案解析】: 622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项: ()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r rr r xC x --⋅=⋅ 1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T ab -+=,考查了分析能力和计算能力,属于基础题.4.(2020年浙江省高考数学试卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.【答案】(1).80 (2).122【答案解析】:5(12)x +的通项为155(2)2rr r r r r T C x C x +==,令4r =,则444455280T C x x ==,580a ∴=;113355135555222122a a a C C C ∴++=++=5.(2022新高考全国I 卷·)81()y x y x ⎛⎫-+ ⎪⎝⎭展开式中26x y 的系数为________________(用数字作答). 【答案】‐28【答案解析】:因为()()()8881=y y x y x y x y x x⎛⎫-++-+ ⎪⎝⎭, 所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x-=-, ()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为‐28故答案为:‐28 6.(2021高考天津)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.【答案】160.的【答案解析】:6312x x ⎛⎫+ ⎪⎝⎭的展开式的通项为()636184166122rrrr r r r T C x C x x ---+⎛⎫=⋅=⋅ ⎪⎝⎭, 令1846r -=,解得3r =, 所以6x 的系数是3362160C =.故答案:160.7.(2021高考北京)在341()x x-的展开式中,常数项为__________.【答案】4- 【答案解析】:的展开式的通项令1240r -=,解得, 故常数项为.8.(2020天津高考)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【答案解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r rr r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.故答案为:10.9.(2019·浙江·)在二项式9)x +的展开式中,常数项是 ,系数为有理数的项的个数是 .【答案】,5【答案解析】9)x展开式的通项为919(0,1,2,,9)r r r r T C x r -+== ,当0r =时,可得二项式9)x +展开式的常数项是0919T C =.若系数为有理数,则(9)r -为偶数即可,故r 可取1,3,4,5,7,9,即246810,,,,T T T T T 共5项.10.(2019·天津·理·)83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为 .【答案】28【答案解析】:83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为2268311(2)286428864C x x ⎛⎫⋅⋅-=⨯⨯= ⎪⎝⎭. 考点02 事件概率1.(2023年天津卷)甲乙丙三个盒子中装有一定数量黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.为的【答案】①. 0.05 ②.35##0.6 【答案解析】:设甲、乙、丙三个盒子中的球的个数分别为5,4,6n n n ,所以总数为15n , 所以甲盒中黑球个数为40%52n n ⨯=,白球个数为3n ; 甲盒中黑球个数为25%4n n ⨯=,白球个数为3n ; 甲盒中黑球个数为50%63n n ⨯=,白球个数为3n ;记“从三个盒子中各取一个球,取到的球都是黑球”为事件A ,所以,()0.40.250.50.05P A =⨯⨯=;记“将三个盒子混合后取出一个球,是白球”为事件B , 黑球总共有236n n n n ++=个,白球共有9n 个, 所以,()93155n P B n ==.故答案为:0.05;35. 2.(2022年高考全国甲卷数学(理)·)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 【答案】635. 【答案解析】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635.3.(2022年高考全国乙卷数学(理))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310【答案解析】:从5名同学中随机选3名的方法数为35C 10= 甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P = 故答案为:3104.(2021高考天津·)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________. 【答案】①.23 ②. 2027【答案解析】:由题可得一次活动中,甲获胜的概率为564253⨯=; 则在3次活动中,甲至少获胜2次的概率为23232122033327C ⎛⎫⎛⎫⨯⨯+=⎪ ⎪⎝⎭⎝⎭.故答案为:23;2027.5.(2020天津高考·)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 【答案】 (1).16 (2). 23【答案解析】甲、乙两球落入盒子的概率分别为11,23,且两球是否落入盒子互不影响,所以甲、乙都落入盒子概率为111236⨯=,甲、乙两球都不落入盒子的概率为111(1(1)233-⨯-=,所以甲、乙两球至少有一个落入盒子的概率为23.故答案为:16;23.6.(2020江苏高考·)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【答案解析】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个. ∴出现向上的点数和为5的概率为41369P ==.故答案为:19.7.(2019·上海·)某三位数密码锁,每位数字在90-数字中选取,其中恰有两位数字相同的概率是_______.【答案】27100【答案解析】法一:100271031923110=⋅⋅=C C C P (分子含义:选相同数字×选位置×选第三个数字) 法二:100271013310110=+-=P C P (分子含义:三位数字都相同+三位数字都不同) 8.(2019·江苏·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 【答案】710的【答案解析】从5名学生中抽取2名学生,共有10种方法,其中不含女生的方法有3种,因此所求概率为371=1010-.考点03 随机事件分布列1.(2020年浙江省高考数学试卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______. 【答案】(1).13(2). 1 【答案解析】:因为0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球, 所以1111(0)4433P ξ==+⨯=, 随机变量0,1,2ξ=,212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=,111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=.2.(2022年浙江省高考数学试题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________. 【答案】 ①.1635, ②. 127##517【答案解析】:从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P ξ+===,由已知可得ξ的取值有1,2,3,4,2637C 15(1)C 35P ξ===,16(2)35P ξ==,,()()233377C 31134C 35C 35P P ξξ======所以15163112()1234353535357E ξ=⨯+⨯+⨯+⨯=,故答案为:1635,127.3.(2019·全国Ⅰ·理·)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主” .设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .【答案】0.18 【答案解析】:因为甲队以4:1获胜,故一共进行5场比赛,且第5场为甲胜,前面4场比赛甲输一场,若第1场或第2场输1场,则12120.60.40.50.60.072P C =⨯⨯⨯⨯=, 若第3场或第4场输1场,则21220.60.50.50.60.108P C =⨯⨯⨯⨯=,所以甲以4:1获胜的概率是120.18P P +=.4.(2021年高考浙江卷)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.【答案】 (1). 1 (2). 89【答案解析】:2244224461(2)366m n m n m n C P C C C ξ++++++====⇒=,所以49m n ++=, ()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=, 所以2n =, 则1m n -=. 由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯========== 155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为1;89.5.(2022新高考全国II 卷).已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.【答案】0.14 【答案解析】 因为()22,X N σ ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=. 故答案为:0.14.。
2019年高考数学艺术生百日冲刺专题全册合集(含答案)
专题1集合与常用逻辑测试题命题报告:1.高频考点:集合的运算以及集合的关系,集合新定义问题以及集合与其他知识的交汇,逻辑用语重点考查四种命题的关系,充要条件的判断以及全称命题存在命题等知识。
2.考情分析:高考主要以选择题填空题形式出现,考查集合的运算以及充要条件和其它知识的交汇,题目一般属于容易题。
3.重点推荐:9题,创新题,注意灵活利用所给新定义进行求解。
一.选择题(共12小题,每一题5分)1.集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则集合B的真子集的个数为()A.5 B.6 C.7 D.8【答案】C【解析】:B={(1,1),(1,2),(2,1)};-=:.故选:C.∴B的真子集个数为32172已知集合M=,则M∩N=()A.{x|﹣3≤x≤1} B.{x|1≤x<6} C.{x|﹣3≤x<6} D.{x|﹣2≤x≤6} 【答案】:B【解析】y=x2﹣2x﹣2的对称轴为x=1;∴y=x2﹣2x﹣2在x∈(2,4)上单调递增;∴﹣2<y<6;∴M={y|﹣2<y<6},N={x|x≥1};∴M∩N={x|1≤x<6}.故选:B.3已知集合A={x|ax﹣6=0},B={x∈N|1≤log2x<2},且A∪B=B,则实数a的所有值构成的集合是()A.{2} B.{3} C.{2,3} D.{0,2,3}【答案】:D【解析】B={x∈N|2≤x<4}={2,3};∵A∪B=B;∴A⊆B;∴①若A=∅,则a=0;②若A≠∅,则;∴,或;∴a=3,或2;∴实数a所有值构成的集合为{0,2,3}.故选:D.4(2018秋•重庆期中)已知命题p:∀x∈R,x2﹣x+1>0,命题q:若a<b,则>,下列命题为真命题的是()A.p∧q B.(¬p)∧q C.(¬p)∨q D.(¬p)∨(¬q)【答案】:D【解析】命题p:∀x∈R,x2﹣x+1>0,∵x2﹣x+1=+>0恒成立,∴p是真命题;命题q:若a<b,则>,当a<0<b时,不满足>,q是假命题;∴¬q是真命题,¬q是假命题,则(¬p)∨(¬q)是真命题,D正确.故选:D.5. (2018 •朝阳区期末)在△ABC中,“∠A=∠B“是“acosA=bcosB”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】:A6. (2018•抚州期末)下列有关命题的说法错误的有()个①若p∧q为假命题,则p、q均为假命题②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0A.0 B.1 C.2 D.3【答案】:B【解析】①若p∧q为假命题,则p、q均为假命题,不正确,因为两个命题中,由一个是假命题,则p∧q为假命题,所以说法错误.②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0,满足逆否命题的定义,正确;③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0,符号命题的否定形式,正确;所以说法错误的是1个.故选:B.7(2018•金安区校级模拟)若A={x∈Z|2≤22﹣x<8},B={x∈R|log2x<1},则A∩(∁R B)中的元素有()A.0个B.1个C.2个D.3个【答案】:B【解析】A={x∈Z|2≤22﹣x<8}={x∈Z|1≤2﹣x<3}={x∈Z|﹣1<x≤1}={0,1},B={x∈R|log2x<1}={x∈R|0<x<2},则∁R B={x∈R|x≤0或x≥2},∴A∩(∁R B)={0},其中元素有1个.故选:B.8(2018•大观区校级模拟)已知全集U=R,集合,N={x|x2﹣2|x|≤0},则如图中阴影部分所表示的集合为()A.[﹣2,1)B.[﹣2,1] C.[﹣2,0)∪(1,2] D.[﹣2,0]∪[1,2]【答案】:B【解析】∵全集U=R,集合={x|x>1},N={x|x2﹣2|x|≤0}={x|或}={x|﹣2≤x≤2},∴C U M={x|x≤1},∴图中阴影部分所表示的集合为N∩(C U M)={x|﹣2≤x≤1}=[﹣2,1].故选:B.9.设集合S n={1,2,3,…,n},X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量是奇(偶)数,则称X为S n的奇(偶)子集,若n=3,则S n的所有偶子集的容量之和为()A.6 B.8 C.12 D.16【答案】:D【解析】由题意可知:当n=3时,S3={1,2,3},所以所有的偶子集为:∅、{2}、{1,2}、{2,3}、{1,2,3}.所以S3的所有偶子集的容量之和为0+2+2+6+6=16.故选:D.10. (2018•商丘三模)下列有四种说法:①命题:“∃x∈R,x2﹣3x+1>0”的否定是“∀x∈R,x2﹣3x+1<0”;②已知p,q为两个命题,若(¬p)∧(¬q)为假命题,则p∨q为真命题;③命题“若xy=0,则x=0且y=0”的逆否命题为真命题;④数列{a n}为等差数列,则“m+n=p+q,m,n,p,q为正整数”是“a m+a n=a p+a q”的充要条件.其中正确的个数为()A.3个B.2个C.1个D.0个【答案】:C11.(2018•嘉兴模拟)已知函数f(x)=x2+ax+b,集合A={x|f(x)≤0},集合,若A=B≠∅,则实数a的取值范围是()A.B.[﹣1,5] C.D.[﹣1,3]【思路分析】由题意可得b=,集合B可化为(x2+ax+)(x2+ax+a+)≤0,运用判别式法,解不等式即可得到所求范围.【答案】:A【解析】设集合A={x∈R|f(x)≤0}={x|x2+ax+b≤0},由f(f(x))≤,即(x2+ax+b)2+a(x2+ax+b)+b﹣≤0,②A=B≠∅,可得b=,且②为(x2+ax+)(x2+ax+a+)≤0,可得a2﹣4×≥0且a2﹣4(a+)≤0,即为,解得≤a≤5,故选:A.12.( 2018•漳州二模)“a≤0”是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]:A【解析】∵方程sinx=0在[﹣3π,3π]上根有7个,则方程ax+axcosx﹣sinx=0也应该有7个根,由方程ax+axcosx﹣sinx=0得ax(1+cosx)﹣sinx=0,即ax•2cos2﹣2sin cos=2cos(axcos﹣sin)=0,则cos=0或axcos﹣sin=0,则x除了﹣3π,﹣π,π,3π还有三个根,由axcos﹣sin=0,得axcos=sin,即ax=tan,由图象知a≤0时满足条件,且a>0时,有部分a是满足条件的,故“a≤0”是“关于x 的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的充分不必要条件,故选:A.(2)设命题p:“函数y=2f(x)﹣t在(﹣∞,2)上有零点”,命题q:“函数g(x)=x2+t|x ﹣2|在(0,+∞)上单调递增”;若命题“p∨q”为真命题,求实数t的取值范围.【思路分析】(1)方程f(x)=2x有两等根,通过△=0,解得b;求出函数图象的对称轴.求解a,然后求解函数的解析式.(2)求出两个命题是真命题时,t的范围,利用p∨q真,转化求解即可.【解析】:(1)∵方程f(x)=2x有两等根,即ax2+(b﹣2)x=0有两等根,∴△=(b﹣2)2=0,解得b=2;∵f(x﹣1)=f(3﹣x),得,∴x=1是函数图象的对称轴.而此函数图象的对称轴是直线,∴,∴a=﹣1,故f(x)=﹣x2+2x……………………………………………(6分)(2),p真则0<t≤2;;若q真,则,∴﹣4≤t≤0;若p∨q真,则﹣4≤t≤2.……………………………………………(12分)21. (2018春•江阴市校级期中)已知集合A={x|≤0},B={x|x2﹣(m﹣1)x+m﹣2≤0}.(1)若A∪[a,b]=[﹣1,4],求实数a,b满足的条件;(2)若A∪B=A,求实数m的取值范围.【思路分析】本题涉及知识点:分式不等式和含参的一元二次不等式的解法,集合的并集运算.22. (2018•南京期末)已知命题p:指数函数f(x)=(a﹣1)x在定义域上单调递减,命题q:函数g(x)=lg(ax2﹣2x+)的定义域为R.(1)若q是真命题,求实数a的取值范围;(2)若“p∧q”为假命题“p∨q”为真命题,求实数a的取值范围.【思路分析】(1)若命题q是真命题,即函数g(x)=lg(ax2﹣2x+)的定义域为R,对a 分类讨论求解;(2)求出p为真命题的a的范围,再由“p∧q”为假命题“p∨q”为真命题,可得p与q 一真一假,然后利用交、并、补集的混合运算求解.【解析】:(1)若命题q是真命题,则有:①当a=0时,定义域为(﹣∞,0),不合题意.②当a≠0时,由已知可得,解得:a>,故所求实数a的取值范围为(,+∞);…………6分(2)若命题p为真命题,则0<a﹣1<1,即1<a<2,由“p∧q”为假命题“p∨q”为真命题,可得p与q一真一假.若p为真q为假,则,得到1<a≤,若p为假q为真,则,得到a≥2.综上所述,a的取值范围是1<a≤或a≥2.………………12分专题2函数测试题命题报告:3.高频考点:函数的性质(奇偶性单调性对称性周期性等),指数函数、对数函数、幂函数的图像和性质,函数的零点与方程根。
2019年高考必备必考-统计与概率大题汇总_(理科解答含答案)
一对一个性化辅导教学设计任课老师:关sir统计与概率解答题好比数学题中阅读理解,文字多,需要有一定的文字理解能力和结合实际进行数据分析的能力。
文档题目分三档,A 组是必须要掌握题目,因为这道题目在高考大题中是处于基础性的地位,所以要多做,争取拿满分。
A组1、(本小题满分12分)(F37,2017全国2卷理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(3)根据箱产量的频率分布直方图,对求新养殖法产量的中位数的估计值(精确到0.01). 附:(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.352、(本小题满分12分)(B06理)传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征. 教育部考试中心确定了2017年普通高考部分更注重传统文化考核. 某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为E D C B A ,,,,五个等级进行数据统计如下:根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B 的人数; (2)若等级E D C B A ,,,,分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?(3)为更深入了解教学情况,将成绩等级为B A ,的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A 的人数X 的分布列与数学期望.(1)150(2)59,未达标(3)9/7随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;4、(本小题满分12分)(F32,2015全国2卷理科)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,根据用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可)(1)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立。
新版精编2019年高中数学单元测试试题-概率专题完整版考核题库(含标准答案)
2019年高中数学单元测试试题 概率专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为 (A )4160 (B )3854 (C )3554 (D )1954(2006四川理) 2.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 A .1801 B .2881 C .3601 D .4801(2008江西理)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题3.从11,,2,332⎧⎫⎨⎬⎩⎭中随机抽取一个数记为a ,从{}1,1,2,2--中随机抽取一个数记为b ,则函数x y a b =+的图象经过第三象限的概率是 .4.集合{(,)||1|}A x y y x =≥-,集合{(,)|5}B x y y x =≤-+。
先后掷两颗骰子,设掷第—颗骰子得点数记作a ,掷第二颗骰子得点数记作b ,则()(,)a b AB ∈的概率等于 .5.在闭区间 [-1,1]上任取两个实数,则它们的和不大于1的概率是87 6.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P (A ⋃B )==726(结果用最简分数表示)7.如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,8.已知集合{}2,5A =,在A 中可重复的依次取出三个数,,a b c ,则“以,,a b c 为边恰好构成三角形”的概率是 ▲ . (江苏省苏州市2011年1月高三调研) 关键字:古典概型;列举589.连续两次掷一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),记出现向上的点数分别为,m n ,设向量(),m n =a ,()3,3=-b ,则a 与b 的夹角为锐角的概率是 ▲ 。
2019年高考数学(艺术生百日冲刺)专题14概率测试题
专题14概率测试题命题报告:1. 高频考点:互斥事件与对立事件、古典概型、几何概型等2. 考情分析:本单元在客观题中考查几何概型或古典概型,在解答题中,本单元一般是考查在统计的背景下解决概率,或与函数交汇。
3. 重点推荐:第11,19,20等题目新颖,情景熟悉。
能够公平考查学生的各方面的能力;一.选择题(共12小题,每一题5分)1.(2018•新课标Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3 B.0.4 C.0.6 D.0.7【答案】B【解析】:某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,所以不用现金支付的概率为:1﹣0.45﹣0.15=0.4.故选:B.2.(2018•惠州模拟)甲乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为( )A.B.C.D.【答案】A【解析】:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3×1=3种,故他们选择相同颜色运动服的概率为 P==,故选:A.14.(2018•山东青岛一模)甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负.则一次游戏中甲胜出的概率是 .【答案】【解析】:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为=,故答案为:.15.(2018•南通一模)某同学欲从数学建模、航模制作、程序设计和机器人制作4个社团中随机选择2个,则数学建模社团被选中的概率为 .【答案】【解析】:某同学欲从数学建模、航模制作、程序设计和机器人制作4个社团中随机选择2个,基本事件总数n=6,数学建模社团被选中包含的基本事件个数m=3,∴数学建模社团被选中的概率为p=.故答案为:.16.(2018•铜山区三模)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则向上的点数之差的绝对值是2的概率为 .【答案】三.解答题17.某大型商场目前正处于试营业阶段,某按摩椅经销商为调查顾客体验按摩椅的时间,随机调查了100名顾客,体验时间(单位:分钟)落在各个小组的频数分布如表:体验[0,5)[5,10)[10,15) [15,20) [20,25) [25,30)[30,35]时间(分钟)频数 10 15 10 25 20 15 5(1)估计体验在10分钟以下的概率;(2)若体验时间达到18分钟以上,则治疗效果有效,请根据以上数估计该按摩椅有效的概率.【解析】:(1)体验在10分钟以下概率约为;…………4分(2)因为体验时间到达分钟以上的分为18到20,和20到35两类.又因为第4组为[15,20),且频数为25,故大于或等于18小于20的频率大约为,所以体验时间达到18分钟以上的频率为0.10+0.20+0.15+0.05=0.50,以频率估计概率,该按摩椅的有效的概率为0.50.…………10分18.某车间20名工人年龄数据如表:年龄(岁)19 24 26 30 34 3540合计工人数(人) 1 3 3 5 4 3 1 20(Ⅰ)求这20名工人年龄的众数与平均数;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.【解析】 (Ⅰ)由题意可知,这20名工人年龄的众数是30,这20名工人年龄的平均数为=(19+3×28+3×29+5×30+4×31+3×32+40)=30,…………4分(Ⅱ)这20名工人年龄的茎叶图如图所示:…………8分(Ⅲ)记年龄为24岁的三个人为A1,A2,A3;年龄为26岁的三个人为B1,B2,B3,则从这6人中随机抽取2人的所有可能为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B,3},{A3,B1},{A3,B2},{A,3,B3},{B1,B2},{B1,B3},{B2,B3}共15种.满足题意的有{A1,A2},{A1,A3},{A2,A3}3种,故所求的概率为P=…………12分19.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现往袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和不大于4的概率.解析:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1蓝1,红1蓝2,红2蓝1,故所求的概率为310P=.…………6分(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,总共有15种情况,其中颜色不同且标号之和不大于4的有10种情况:红1蓝1,红1蓝2,红2蓝1,红2蓝2,红3蓝1,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0 ,共计10种,所以,要求的概率为102153P==.…………12分20.某公司的招聘考试有编号分别为1,2,3的三个不同的4类基本题和一道A类附加题:另有编号分别为4,5的两个不同的B类基本题和一道B类附加题.甲从这五个基本题中一次随机抽取两道题,每题做对做错及每题被抽到的概率是相等的.(I)用符号(x,y)表示事件“抽到的两题的编号分别为x、y,且x<y”共有多少个基本事件?请列举出来;(Ⅱ)求甲所抽取的两道基本题的编号之和小于8但不小于4的概率.解:(Ⅰ)用符号(x,y)表示事件“抽到的两题的编号分别为x、y,且x<y”共有10个基本事件,分别为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).…………6分(Ⅱ)设事件A表示“甲所抽取的两道基本题的编号之和小于8但不小于4”,则事件A共含有7个基本事件,列举如下:(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),∴甲所抽取的两道基本题的编号之和小于8但不小于4的概率P(A)=.…………12分21.某环保部门对A,B,C三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如表所示:A城B城C城优(个)28 x y良(个)32 30 z已知在这180个数据中随机抽取一个,恰好抽到记录B城市空气质量为优的数据的概率为0.2.(1)现用分层抽样的方法,从上述180个数据汇总抽取30个进行后续分析,求在C城中应抽取的数据的个数;(2)已知y≥23,z≥24,求在C城中空气质量为优的天数大于空气质量为良的天数的概率.【解析】:(1)由题意,解得x=36,∴y+z=180﹣28﹣32﹣36﹣30=54,∴在C城中应该抽取的数据个数为.…………6分(2)由(1)知y+z=54,且y,z∈N,∴数对(y,z)可能的结果有如下8种:(23,31),(24,30),(25,29),(26,28),(27,27),(28,26),(29,25),(30,24),其中,“C城中空气质量为优的天数大于空气质量为良的天数”对应的结果有如下3种:(28,26),(29,25),(30,24),∴在C城中空气质量为优的天数大于空气质量为良的天数的概率p=.…………12分22.(2018•天津二模)某区的区大代表中有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为A1,A2,乙校教师记为B1,B2,丙校教师记为C,丁校教师记为D.现从这6名教师代表中选出3名教师组成十九大报告宣讲团,要求甲、乙、丙、丁四个学校中,每校至多选出1名.(Ⅰ)请列出十九大报告宣讲团组成人员的全部可能结果;(Ⅱ)求教师A1被选中的概率;(Ⅲ)求宣讲团中没有乙校教师代表的概率.【分析】(Ⅰ)某区的区大代表中有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为A1,A2,乙校教师记为B1,B2,丙校教师记为C,丁校教师记为D.从这6名教师代表中选出3名教师组成十九大政策宣讲团,利用列举法能求出组成人员的全部可能结果.(II)组成人员的全部可能结果中,利用列举法求出A1被选中的结果有5种,由此能求出教师A1被选中的概率.(III)利用列举法求出宣讲团中没有乙校代表的结果有2种,由此能求出宣讲团中没有乙校教师代表的概率.【解析】:(Ⅰ)某区的区大代表中有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为A1,A2,乙校教师记为B1,B2,丙校教师记为C,丁校教师记为D.从这6名教师代表中选出3名教师组成十九大政策宣讲团,组成人员的全部可能结果有12种,分别为:{A1,B1,C},{A1,B1,D},{A1,B2,C},{A1,B2,D},{A1,C,D},{A2,B1,C},{A2,B1,D},{A2,B2,C},{A2,B2,D},{A2,C,D},{B1,C,D},{B2,C,D}.……………………6分)( II)组成人员的全部可能结果中,A1被选中的结果有{A1,B1,C},{A1,B1,D},{A1,B2,C},{A1,B2,D},{A1,C,D},共有5种,所以教师A1被选中的概率为p=.……………………(10分)( III)宣讲团中没有乙校代表的结果有 {A1,C,D},{A2,C,D},共2种结果,所以宣讲团中没有乙校教师代表的概率为p=. (12)。
2019年高考数学二轮复习解题思维提升专题14概率大题部分训练手册(含答案)
记“4 个人恰好在四个不同的公司”为事件 A,
事件 A 共包含 A44 24 个基本事件,所以
,
所以 4 名大学生恰好在四个不同公司的概率 3 . 32
(2)方法 1:X 的可能取值为 0,1,2,3,4,
,
,
,
,
.
所以 X 的分布列为:
X
0
1
2
3
4
P
81
27
27
3
1
256
64
128
64
256
所以 X 的数学期望为:
若有 套房源,则设置 个中奖签,客户抽到中奖签视为中签,中签家庭可以在指定小区提供的房源中随机抽 取一个房号,现共有 20 户家庭去抽取 6 套房源. (l)求每个家庭能中签的概率;
(2)已知甲、乙两个友好家庭均已中签,并共同前往某指定小区抽取房号,目前该小区剩余房源有某单元
27、28 两个楼层共 6 套房,其中,第 27 层有 2 套房,第 28 层有 4 套房.记甲、乙两个家庭抽取到第 28 层
【解析】
(1)
支持
年龄不大于 50 岁
20
不支持 60
合计 80
3
年龄大于 50 岁 合计
10
10
20
30
70
100
(2) 所以能在犯错误概率不超过 5%的前提下认为不同年龄与支持申办奥运无关. (3)设选出女教师人数为 x
则 p(x=0)=
,P(x=1)=
,
P(x=2)= x p
,故 X 的分布列是
150
X 可取 0,1,2,3.且
,
,
,
0
1
2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题14概率测试题命题报告:1.高频考点:互斥事件与对立事件、古典概型、几何概型等2.考情分析:本单元在客观题中考查几何概型或古典概型,在解答题中,本单元一般是考查在统计的背景下解决概率,或与函数交汇。
3.重点推荐:第11,19,20等题目新颖,情景熟悉。
能够公平考查学生的各方面的能力;一.选择题(共12小题,每一题5分)1.(2018•新课标Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.7【答案】B【解析】:某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,所以不用现金支付的概率为:1﹣0.45﹣0.15=0.4.故选:B.2.(2018•惠州模拟)甲乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为()A.B.C.D.【答案】A【解析】:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3×1=3种,故他们选择相同颜色运动服的概率为 P==,故选:A.14.(2018•山东青岛一模)甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负.则一次游戏中甲胜出的概率是.【答案】【解析】:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为=,故答案为:.15.(2018•南通一模)某同学欲从数学建模、航模制作、程序设计和机器人制作4个社团中随机选择2个,则数学建模社团被选中的概率为.【答案】【解析】:某同学欲从数学建模、航模制作、程序设计和机器人制作4个社团中随机选择2个,基本事件总数n=6,数学建模社团被选中包含的基本事件个数m=3,∴数学建模社团被选中的概率为p=.故答案为:.16.(2018•铜山区三模)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则向上的点数之差的绝对值是2的概率为.【答案】三.解答题17.某大型商场目前正处于试营业阶段,某按摩椅经销商为调查顾客体验按摩椅的时间,随机调查了100名顾客,体验时间(单位:分钟)落在各个小组的频数分布如表:(1)估计体验在10分钟以下的概率;(2)若体验时间达到18分钟以上,则治疗效果有效,请根据以上数估计该按摩椅有效的概率.【解析】:(1)体验在10分钟以下概率约为;…………4分(2)因为体验时间到达分钟以上的分为18到20,和20到35两类.又因为第4组为[15,20),且频数为25,故大于或等于18小于20的频率大约为,所以体验时间达到18分钟以上的频率为0.10+0.20+0.15+0.05=0.50,以频率估计概率,该按摩椅的有效的概率为0.50.…………10分18.某车间20名工人年龄数据如表:(Ⅰ)求这20名工人年龄的众数与平均数;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.【解析】(Ⅰ)由题意可知,这20名工人年龄的众数是30,这20名工人年龄的平均数为=(19+3×28+3×29+5×30+4×31+3×32+40)=30,…………4分(Ⅱ)这20名工人年龄的茎叶图如图所示:…………8分(Ⅲ)记年龄为24岁的三个人为A1,A2,A3;年龄为26岁的三个人为B1,B2,B3,则从这6人中随机抽取2人的所有可能为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B,3},{A3,B1},{A3,B2},{A,3,B3},{B1,B2},{B1,B3},{B2,B3}共15种.满足题意的有{A1,A2},{A1,A3},{A2,A3}3种,故所求的概率为P=…………12分19.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现往袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和不大于4的概率.解析:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1蓝1,红1蓝2,红2蓝1,故所求的概率为310P=.…………6分(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,总共有15种情况,其中颜色不同且标号之和不大于4的有10种情况:红1蓝1,红1蓝2,红2蓝1,红2蓝2,红3蓝1,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0 ,共计10种,所以,要求的概率为102153P==.…………12分20.某公司的招聘考试有编号分别为1,2,3的三个不同的4类基本题和一道A类附加题:另有编号分别为4,5的两个不同的B类基本题和一道B类附加题.甲从这五个基本题中一次随机抽取两道题,每题做对做错及每题被抽到的概率是相等的.(I)用符号(x,y)表示事件“抽到的两题的编号分别为x、y,且x<y”共有多少个基本事件?请列举出来;(Ⅱ)求甲所抽取的两道基本题的编号之和小于8但不小于4的概率.解:(Ⅰ)用符号(x,y)表示事件“抽到的两题的编号分别为x、y,且x<y”共有10个基本事件,分别为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).…………6分(Ⅱ)设事件A表示“甲所抽取的两道基本题的编号之和小于8但不小于4”,则事件A共含有7个基本事件,列举如下:(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),∴甲所抽取的两道基本题的编号之和小于8但不小于4的概率P(A)=.…………12分21.某环保部门对A,B,C三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如表所示:良(个)已知在这180个数据中随机抽取一个,恰好抽到记录B城市空气质量为优的数据的概率为0.2.(1)现用分层抽样的方法,从上述180个数据汇总抽取30个进行后续分析,求在C城中应抽取的数据的个数;(2)已知y≥23,z≥24,求在C城中空气质量为优的天数大于空气质量为良的天数的概率.【解析】:(1)由题意,解得x=36,∴y+z=180﹣28﹣32﹣36﹣30=54,∴在C城中应该抽取的数据个数为.…………6分(2)由(1)知y+z=54,且y,z∈N,∴数对(y,z)可能的结果有如下8种:(23,31),(24,30),(25,29),(26,28),(27,27),(28,26),(29,25),(30,24),其中,“C城中空气质量为优的天数大于空气质量为良的天数”对应的结果有如下3种:(28,26),(29,25),(30,24),∴在C城中空气质量为优的天数大于空气质量为良的天数的概率p=.…………12分22.(2018•天津二模)某区的区大代表中有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为A1,A2,乙校教师记为B1,B2,丙校教师记为C,丁校教师记为D.现从这6名教师代表中选出3名教师组成十九大报告宣讲团,要求甲、乙、丙、丁四个学校中,每校至多选出1名.(Ⅰ)请列出十九大报告宣讲团组成人员的全部可能结果;(Ⅱ)求教师A1被选中的概率;(Ⅲ)求宣讲团中没有乙校教师代表的概率.【分析】(Ⅰ)某区的区大代表中有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为A1,A2,乙校教师记为B1,B2,丙校教师记为C,丁校教师记为D.从这6名教师代表中选出3名教师组成十九大政策宣讲团,利用列举法能求出组成人员的全部可能结果.(II)组成人员的全部可能结果中,利用列举法求出A1被选中的结果有5种,由此能求出教师A1被选中的概率.(III)利用列举法求出宣讲团中没有乙校代表的结果有2种,由此能求出宣讲团中没有乙校教师代表的概率.【解析】:(Ⅰ)某区的区大代表中有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为A1,A2,乙校教师记为B1,B2,丙校教师记为C,丁校教师记为D.从这6名教师代表中选出3名教师组成十九大政策宣讲团,组成人员的全部可能结果有12种,分别为:{A1,B1,C},{A1,B1,D},{A1,B2,C},{A1,B2,D},{A1,C,D},{A2,B1,C},{A2,B1,D},{A2,B2,C},{A2,B2,D},{A2,C,D},{B1,C,D},{B2,C,D}.……………………6分)( II)组成人员的全部可能结果中,A1被选中的结果有{A1,B1,C},{A1,B1,D},{A1,B2,C},{A1,B2,D},{A1,C,D},共有5种,所以教师A1被选中的概率为p=.……………………(10分)( III)宣讲团中没有乙校代表的结果有 {A1,C,D},{A2,C,D},共2种结果,所以宣讲团中没有乙校教师代表的概率为p=. (12)。