求面积最值

合集下载

最新中考数学专题复习——二次函数的实际应用(面积最值问题11页)及答案

最新中考数学专题复习——二次函数的实际应用(面积最值问题11页)及答案

第 1 页二次函数的实际应用——面积最大(小)值问题知识要点:在生活理论中,人们经常面对带有“最〞字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用根本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度挪动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度挪动,假如P 、Q 两点同时出发,分别到达B 、C 两点后就停顿挪动.〔1〕运动第t 秒时,△PBQ 的面积y(cm²)是多少?〔2〕此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.〔3〕t 为何值时s 最小,最小值时多少?答案:[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门〔木质〕.花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米那么长为:x x 4342432-=+-(米)那么:)434(x x S -= ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大. [例3]:边长为4的正方形截去一个角后成为五边形ABCDE 〔如图〕,其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,那么矩形PNDM 的面积S=xy 〔2≤x≤4〕易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H那么有△AFB ∽△BHP∴PH BH BF AF =,即3412--=y x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】此题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考察学生的综合应用才能.同时,也给学生探究解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖〔如图(1)所示〕是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,假设将此种地砖按图(2)所示的形式铺设,且能使中间的阴影局部组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 那么BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10]当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2021浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2021庆阳市)兰州市“安居工程〞新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);点(x ,y )都在一个二次函数的图像上,(如下图),那么6楼房子的价格为 元/平方米.提示:利用对称性,答案:2080.3.如下图,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2 ∵AD ∥BC ∴△MAD ∽△MBN第 3 页 ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值. 4.(2021湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大〔 C 〕A .7B .6C .5D .45.如图,铅球运发动掷铅球的高度y (m)与程度间隔 x (m)之间的函数关系式是:35321212++-=x x y ,那么该运发动此次掷铅球的成绩是( D ) A .6 m B .12 m C .8 m D .10m解:令0=y ,那么:02082=--x x 0)10)(2(=-+x x〔图5〕 〔图6〕 〔图7〕6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,假如抛物线的最高点M 离墙1 m ,离地面340m ,那么水流落地点B 离墙的间隔 OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2021乌兰察布)小明在某次投篮中,球的运动道路是抛物线21 3.55y x =-+的一局部,如图7所示,假设命中篮圈中心,那么他与篮底的间隔 L 是〔 B 〕A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.假设设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;〔2〕根据〔1〕中求得的函数关系式,描绘其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,假如用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)假如中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比拟(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,那么宽为350x -米,设面积为S 平方米. ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,那么宽为250+-n x 米,设面积为S 平方米. 那么:)50(212502x x n n x x S -+-=+-⋅= ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式. 解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ.11.(2021年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?解:∵矩形MFGN ∽矩形ABCD∴MF=2MN =2x ∴ EM=10-2x∴S=x 〔10-2x 〕=-2x 2+10x=-2(x-2.5)2+12.5当x=2.5时,S 有最大值12.512.(2021四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,那么绳子的最低点距地面的间隔 为 0.5 米.答案:如下图建立直角坐标系那么:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,第 5 页⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2021黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.〔1〕求S 与x 之间的函数关系式,并写出自变量x 的取值范围;〔2〕当x 是多少时,矩形场地面积S 最大?最大面积是多少?解:〔1〕根据题意,得x x x x S 3022602+-=⋅-= 自变量的取值范围是〔2〕∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2021年南宁市)随着绿城南宁近几年城市建立的快速开展,对花木的需求量逐年进步.某园林专业户方案投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)〔1〕分别求出利润与关于投资量的函数关系式; 〔2〕假如这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解:〔1〕设=,由图12-①所示,函数=的图像过〔1,2〕,所以2=, 故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过〔2,2〕,所以,故利润2y 关于投资量的函数关系式是2221x y =; 〔2〕设这位专业户投入种植花卉万元〔〕,那么投入种植树木(x -8)万元, 他获得的利润是万元,根据题意,得∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧,z 随x 的增大而增大所以,当8 x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子〔纸板的厚度忽略不计〕.〔1〕要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?〔2〕你感到折合而成的长方体盒子的侧面积会不会有更大的情况?假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由;〔3〕假如把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由.解:〔1〕设正方形的边长为cm , 那么. 即. 解得〔不合题意,舍去〕,. 剪去的正方形的边长为1cm .〔2〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 那么与的函数关系式为: 即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.〔3〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2.假设按图1所示的方法剪折, 那么与的函数关系式为: 即. 当时,.假设按图2所示的方法剪折, 那么与的函数关系式为:即.当时,.比拟以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的间隔均为5m.〔1〕将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;〔2〕求支柱的长度;〔3〕拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:〔1〕根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.〔2〕可设,于是从而支柱的长度是米.〔3〕设是隔离带的宽,是三辆车的宽度和,那么点坐标是.过点作垂直交抛物线于,那么.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.第 7 页。

如何求解三角函数中的面积最值问题

如何求解三角函数中的面积最值问题

如何求解三角函数中的面积最值问题
三角函数中的面积最值问题是数学中的一个经典问题,可以通过求解函数的导数来找到最值点。

以下是一个简单的步骤来解决这个问题:
1. 确定函数表达式:首先确定你要研究的三角函数,比如正弦函数、余弦函数或者其他函数。

2. 求导:对函数进行求导,得到函数的导数。

3. 解方程:将导数等于零,然后解方程来找到导数的零点或者驻点。

4. 求最值:对于找到的驻点,将其带入原函数,计算得到对应的面积值。

5. 比较结果:比较所有驻点对应的面积值,找到最大值或最小值。

举个例子,假设我们要求解正弦函数sin(x)在区间[0, π]上的面积最大值。

按照上述步骤进行:
1. 函数表达式:该问题中,函数表达式为sin(x)。

2. 求导:对sin(x)求导得到cos(x),即函数的导数。

3. 解方程:将cos(x)等于零,得到x=π/2,在区间[0, π]上找到导数为零的点。

4. 求最值:将x=π/2带入原函数sin(x),计算得到面积值为1。

5. 比较结果:该区间上面积最大值为1,没有更大的值。

通过以上步骤,我们可以求解三角函数中的面积最值问题。

需要注意的是,这个方法只适用于简单的三角函数,对于复杂的函数或更复杂的问题,可能需要使用更高级的数学工具和技巧来求解。

三角函数求三角形面积最大值

三角函数求三角形面积最大值

三角函数求三角形面积最大值标题:三角函数与三角形面积最大值的探讨在数学的世界里,三角函数是一个重要的概念。

它不仅仅是数学教学中的基础内容,更是在实际生活和工程领域中有着深远影响的数学工具。

而三角形作为几何形状中的重要一环,其面积的求解更是涉及到了三角函数。

在这篇文章中,我们将深入探讨三角函数对于求解三角形面积最大值的影响,希望通过深度的研究和广度的拓展,能够更好地理解这一问题。

一、三角形面积的求解在我们探讨三角函数对于三角形面积最大值的影响之前,首先让我们来回顾一下三角形面积的求解公式。

根据几何学的知识,我们知道三角形的面积可以通过底和高之间的关系来求解。

具体地而言,如果我们知道了三角形的底和高,那么三角形的面积就可以通过底乘以高再除以2来计算得出。

这个基本的公式在解决三角形面积问题时是非常有用的,但是在实际问题中,我们往往需要求解最大面积,这时候三角函数的知识就显得尤为重要了。

二、三角函数在求三角形面积最大值中的运用在数学中,最大值问题是一个经典的优化问题。

对于三角形的最大面积问题,我们可以通过三角函数来优化求解。

以正弦函数为例,我们知道正弦函数的图像是一个周期性的曲线,其在0到π之间的取值范围是[0,1]。

当我们在求解三角形面积最大值时,可以通过选择合适的角度来使得正弦函数的值最大化,从而求解出最大的三角形面积。

三、三角函数求解三角形面积最大值的案例分析下面,我们通过一个具体的案例来具体说明三角函数在求解三角形面积最大值中的运用。

假设我们需要求解一个固定底边长的等腰三角形的最大面积。

我们设定这个等腰三角形的底边长为a,那么根据等腰三角形的性质,上底也是a。

接下来,我们引入一个角度θ,使得等腰三角形的高为h = a * sinθ。

我们利用三角形面积公式S = 1/2 * a * h,将高h代入,则S = 1/2 * a * a * sinθ,进而得到S = 1/2 * a^2 * sinθ。

通过对sinθ的取值进行优化,我们可以求解出使得三角形面积最大的角度θ,并结合底边长a就可以求出最大面积。

第21章 21.4.1 求面积中的最值

第21章 21.4.1 求面积中的最值

11.(绍兴中考)课本中有一个例题: 有一个窗户形状如图 1,上部是一个半圆,下部是一个矩形,如果制作窗框 的材料总长为 6m,如何设计这个窗户,使透光面积最大? 这个例题的答案是:当窗户半圆的半径约为 0.35m 时,透光面积最大,最 大值约为 1.05m2. 我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图 2, 材料总长仍为 6m,利用图 3,解答下列问题:
为( C )
A.110m2
B.128m2
C.144m2
D.200m2
8.已知等腰三角形的面积 S 与底边 x 有如下关系:S=-5x2+10x+14,要
使 S 有最大值,则 x= 1 .
9.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够 长),用 28m 长的篱笆围成一个矩形花园 ABCD(篱笆只围 AB、BC 两边), 设 AB=xm. (1)若花园的面积为 192m2,求 x 的值; (2)若在 P 处有一棵树与墙 CD、AD 的距离分别是 15m 和 6m,要将这棵树 围在花园内(含边界,不考虑树的粗细),求花园面积 S 的最大值.
解:(1)∵AB=xm,∴BC=(28-x)m,则 x(28-x)=192,解得 x1=12,x2 =16; (2)由题意可得出:S=x(28-x)=-x2+28x=-(x-14)2+196.∵在 P 处有一 棵树与墙 CD、AD 的距离分别是 15m 和 6m,∴x28≥-6x≥15 ,∴6≤x≤13. ∴x=13 时,S 取到最大值为:S=-(13-14)2+196=195(m2). 答:花园面积 S 的最大值为 195 平方米.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/12021/9/1Wednesday, September 01, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/12021/9/12021/9/19/1/2021 7:40:39 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/12021/9/12021/9/1Sep-211-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/12021/9/12021/9/1Wednesday, September 01, 2021

面积最值问题典例

面积最值问题典例

面积最值问题典例
面积最值问题通常涉及到在给定条件下,求图形面积的最大值或最小值。

以下是一个关于面积最值问题的典例:
题目:在矩形ABCD中,AB=4,BC=2,点E是BC的中点,点F 在AB上,且BF=1。

现将△BCF沿直线BF对折,得到△BGD。

请解答以下问题:
(1)求证:四边形BMDG是矩形;
(2)求△BCF沿直线BF对折后的面积的最小值。

解题思路:
(1)根据题意可以得出矩形ABCD的边长和面积。

然后,根据中点的性质,可以得到BE=EC=1,再结合翻折的性质,可以得到四边形BMDG是矩形。

(2)要求三角形△BCF沿直线BF对折后的面积的最小值,可以先设动点P的坐标,然后用代数式表达各线段的长。

通过公式计算,得出二次函数顶点式,则坐标和最值即可得出。

此外,还可以运用铅锤定理或切线法来求解面积的最值问题。

需要注意的是,在求解面积最值问题时,需要将所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形,这样可以使问题更加容易解决。

初中数学专题复习-二次函数的实际应用面积最值问题

初中数学专题复习-二次函数的实际应用面积最值问题

二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=Θ[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=2 x x 3442+-= 4289)417(42+--=x ∵104340≤-<x∴2176<≤x ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴PHBH BF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10] )24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12 m AB CD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )。

二次函数背景下三角形面积最值问题的几种解法

二次函数背景下三角形面积最值问题的几种解法

数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。

二次函数的实际应用(面积最值问题)

二次函数的实际应用(面积最值问题)
易知CN=4-x,EM=4-y. 过点B作BH⊥PN于点H 则有△AFB∽△BHP ∴,即, ∴, , 此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值随的增大而增大, 对于来说,当x=4时,. 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识
有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生 探索解题思路留下了思维空间.
解:∵矩形MFGN∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x
∴S=x(10-2x)=-2x2+10x=-2(x-2.5)2+12.5 ∵,∴
当x=2.5时,S有最大值12.5
12.(2008四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳 子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳 子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部 刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米.
,则该运动员此次掷铅球的成绩是( D )
A.6 m 解:令,则:
B.12 m C.8 m
D.10m
(图5)
(图6)
(图7)
6.某幢建筑物,从10 m高的窗口A,用水管向外喷水,喷出的水流呈抛 物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m,离地面m,则水流落地点B离墙的距离OB是( B )
解:设花圃的宽为米,面积为平方米 则长为:(米) 则:
∵ ∴ ∵,∴与的二次函数的顶点不在自变量的范围内, 而当内,随的增大而减小, ∴当时,(平方米) 答:可设计成宽米,长10米的矩形花圃,这样的花圃面积最大. [例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE(如 图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面 积. 解:设矩形PNDM的边DN=x,NP=y, 则矩形PNDM的面积S=xy(2≤x≤4)

10.二次函数的应用题(面积最值问题

10.二次函数的应用题(面积最值问题

二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为米,面积为平方米x S则长为:(米)x x 4342432-=+-则:)434(x x S -=x x 3442+-= 4289417(42+--=x ∵104340≤-<x ∴ 2176<≤x ∵,∴与的二次函数的顶点不在自变量的范围内, 6417<S x x 而当内,随的增大而减小, 2176<≤x S x ∴当时,(平方米) 6=x 6042894176(42max =+--=S 答:可设计成宽米,长10米的矩形花圃,这样的花圃面积最大. 6[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴,即, PHBH BF AF =3412--=y x ∴, 521+-=x y , x x xy S 5212+-==)42(≤≤x 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值随的增大而增大,y x 对于来说,当x=4时,. 42≤≤x 12454212=⨯+⨯-=最大S 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x 当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度(单位:米)与小球运动时间h t (单位:秒)的函数关系式是,那么小球运动中的最大高度 4.9米 .=最大h 2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .mB .6 mC .15 mD .m 42425解:AB =x m ,AD=,长方形的面积为y m 2b ∵AD ∥BC ∴△MAD ∽△MBN ∴,即, MB MA BN AD =5512x b -=)5(512x b -=, 当时,有最大值. )5(512)5(5122x x x x xb y --=-⋅==5.2=x y 4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C )A .7B .6C .5D .4 5.如图,铅球运动员掷铅球的高度(m)与水平距离(m)之间的函数关系式是:y x ,则该运动员此次掷铅球的成绩是( D ) 35321212++-=x x y A .6 mB .12 mC .8 mD .10m 解:令,则:0=y 02082=--x x 0)10)(2(=-+x x(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面m ,则水流落地点B 340离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为,设,将点代入, )340,1(340)1(2+-=x a y )10,0(310-=a 令,得:,所以OB=3 0340)1(3102=+--=x y 4)1(2=-x7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解: )240(x x y -=)20(22x x --=200)10(22+--=x ∵152400≤-<x ∴205.12<≤x ∵二次函数的顶点不在自变量的范围内,x 而当内,随的增大而减小,205.12<≤x y x ∴当时,5.12=x (平方米)5.187200)105.12(22max =+--=y 答:当米时花园的面积最大,最大面积是187.5平方米.5.12=x9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为米,设面积为平方米. 350x -S )50(313502x x x x S --=-⋅=。

高中数学大题难题专题26 图形面积求最值

高中数学大题难题专题26 图形面积求最值

【题型综述】1、面积问题的解决策略:(1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高)(2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形2、多个图形面积的关系的转化:关键词“求同存异”,寻找这些图形的底和高中是否存在“同底”或“等高”的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算。

这样可以使函数解析式较为简单,便于分析【典例指引】例1已知椭圆错误!未找到引用源。

错误!未找到引用源。

(错误!未找到引用源。

)的一个顶点为错误!未找到引用源。

,离心率为错误!未找到引用源。

,直线错误!未找到引用源。

错误!未找到引用源。

(错误!未找到引用源。

)与椭圆错误!未找到引用源。

交于错误!未找到引用源。

,错误!未找到引用源。

两点,若存在关于过点错误!未找到引用源。

的直线,使得点错误!未找到引用源。

与点错误!未找到引用源。

关于该直线对称.(I)求椭圆错误!未找到引用源。

的方程;(II)求实数错误!未找到引用源。

的取值范围;(III)用错误!未找到引用源。

表示错误!未找到引用源。

的面积错误!未找到引用源。

,并判断错误!未找到引用源。

是否存在最大值.若存在,求出最大值;若不存在,说明理由.错误!未找到引用源。

,可得:错误!未找到引用源。

,则有:错误!未找到引用源。

(错误!未找到引用源。

),故错误!未找到引用源。

(III)法一(面积转化为弦长):错误!未找到引用源。

,错误!未找到引用源。

到错误!未找到引用源。

错误!未找到引用源。

的距离错误!未找到引用源。

,错误!未找到引用源。

,所以错误!未找到引用源。

,设错误!未找到引用源。

,错误!未找到引用源。

二次函数面积最值问题的4种解法

二次函数面积最值问题的4种解法

微信公众号
从小学数学-------------------------------------------------
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。 设动点 P 的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的 计算公式,得出二次函数,必有最大值。
微信公众号
从小学数学-------------------------------------------------
原 题 :在( 1)中 的 抛 物 线 上 的 第 二 象 限 是 否 存 在 一 点 P,使 △PBC 的 面 积 最 大 ? 若 存 在 , 求出 P 点的坐标及△PBC 的面积最大值,若没有,请说明理由。 考试题型,大多类似于此。求面积最大值的动点坐标,并求出面积最大值。 一般解题思路和步骤是,设动点 P 的坐标,然后用代数式表达各线段的长。通过公式计 算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。方法要点是,把所求图像的面积适当的割补,转化成有利于面 积表达的常规几何图形。请看解题步骤。
微信众号
从小学数学-------------------------------------------------
解 法 二 : 铅 锤 定 理 , 面 积 =铅 锤 高 度 ×水 平 宽 度 ÷2。 这 是 三 角 形 面 积 表 达 方 法 的 一 种 非 常 重要的定理。 铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。因为, 铅 锤 定 理 ,在 很 多 地 方 都 用 的 到 。这 里 ,也 有 铅 锤 定 理 的 简 单 推 导 ,建 议 大 家 认 真 体 会 。
解法四:三角函数法。请大家认真看上面的解题步骤。 总之,从以上的四种解法可以得出一个规律。过点 P 做辅助线,然后利用相关性质,找 出各元素之间的关系。 设动点 P 的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点 式,求出三角形面积的最大值。 对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题 中,求三角形面积最大值问题,就非常简单了。

[详细讲解]利用二次函数求几何图形面积的最值问题

[详细讲解]利用二次函数求几何图形面积的最值问题

利用二次函数求几何图形面积的最值问题构造二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如,勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质即可求解.现举例说明.方法:1、用含有自变量的代数式分别表示出与所求几何图形相关的量(如周长、长、宽、半径等)。

2、根据几何图形的特征,列出其面积的计算公式,用函数表示这个面积。

3、根据函数关系式求出最大值及取得最大值的自变量的值,当 的值不在自变量的取值范围内时,应根据取值范围来确定最大值。

例1(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.简析 设矩形PNDM 的边DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4), 易知CN =4-x ,EM =4-y .且有NP BC CN-=BFAF(作辅助线构造相似三角形),即34y x --=12,所以y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4),此二次函数的图象开口向下,对称轴为x =5,所以当x ≤5时,函数的值是随x 的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12.说明 本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给同学们探索解题思路留下了思维空间.例2(2006年南京市中考试题)如图2,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?简析 因为矩形MFGN ∽矩形ABCD ,所以MNAD=MF AB,因为AB =2AD ,MN =x ,所以MF =2x ,所以EM =EF -MF =10-2x ,所以S =x (10-2x )=-2x 2+10x =-2(x -52)2+252,所以当x =52时,S 有最大值为252.说明 本题是利用相似多边形的性质,求出矩形的边之间的关系,再运用矩形的面积构造出二次函数的表达式,使问题求解.例3(2006年泉州市中考试题)一条隧道的截面如图3所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S (米)关于半径r (米)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米)简析(1)当AD =4米时,S半圆=12π×22AD ⎛⎫ ⎪⎝⎭=12π×22=2π(米2).(2)①因为AD =2r ,AD +CD =8,所以CD =8-AD =8-2r ,所以S =12πr 2+AD ·CD =12πr 2+2r (8-2r )=(12π-4)r 2+16r ;②由①知CD =8-2r ,又因为2米≤CD ≤3米,所以2≤8-2r ≤3,图 2 图1所以 2.5≤r ≤3,由①知S =(12π-4)r 2+16r =(12×3.14-4)r 2+16r =-2.43r 2+16r =-2.43(r -82.43)2+642.43,因为-2.43<0,所以函数图象为开口向下的抛物线,因为函数图象对称轴r =82.43≈3.3.又2.5≤r ≤3<3.3,由函数图象的性质可知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).即隧道截面面积S 的最大值约为26.1米2.说明 本题是一道典型的代数与几何的综合题,集图形的面积、不等式与二次函数的知识有机的结合在一起,有助于培养同学们的综合应用能力.例4(2006年陕西中考课改试题)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图4),王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图5),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点.(1)求FC 的长;(2)利用如图5求出矩形顶点B 所对的顶点到BC 边的距离x (cm)为多少时,矩形的面积最大?最大面积时多少?图3(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.简析(1)由题意,得△DEF ∽△CGF ,FC DF =CGDE,即603060=-FC FC , 所以FC =40(cm).(2)如图5,设矩形顶点B 所对顶点为P ,则①当顶点P 在AE 上时,x =60,y 的最大值为60×30=1800(cm 2);②当顶点P 在EF 上时,过点P 分别作PN ⊥BG 于点N ,PM ⊥AB 于点M .根据题意,得△GFC ∽△GPN ,所以CGFG NG DF =,所以NG =23x ,所以BN =120-23x ,所以y =x (120-23x )=-23(x -40)2+2400,所以当x =40时,y 的最大值为2400(cm 2);③当顶点P 在FC 上时,y 的最大值为60×40=2400(cm 2).综合①②③,得x =40cm 时,矩形的面积最大,最大面积为2400cm 2.(3)根据题意,正方形的面积y (cm 2)与边长x (cm)满足的函数表达式为: y =-23x 2+120x .当y =x 2时,正方形的面积最大,所以x 2=-23x 2+120x .解之,得 x 1=0(舍去),x 2=48(cm).图4图5所以面积最大得正方形得边长为48 cm.说明本题是一道典型的二次函数与几何综合应用的问题,在解第(2)小题时,一定不要忽视分类讨论来求出每一种情况的最大值后,再进行比较得出结论,第(3)小题只需根据题意列出方程就能解决.。

如何求解正弦函数中的面积最值问题

如何求解正弦函数中的面积最值问题

如何求解正弦函数中的面积最值问题
引言
正弦函数在数学中起着重要的作用,求解正弦函数中的面积最
值问题可以帮助我们理解函数图像以及最大值与最小值的概念。


文将介绍如何求解这一类型的问题。

步骤
步骤一:确定函数及其定义域
首先,我们需要确定要求解的正弦函数以及它的定义域。

通常,正弦函数的形式为y = A*sin(Bx+C)+D,其中A、B、C、D为常数。

定义域可以根据具体问题进行设定。

步骤二:绘制函数图像
利用计算工具或手绘图形,绘制出正弦函数的图像。

这样可以
更直观地理解函数的变化趋势和波动特性,以及确定函数的最大值
和最小值点的大致位置。

步骤三:确定面积范围
根据问题要求,确定面积的范围。

例如,可以指定函数图像和x轴之间的区域,或者特定的两个点之间的区域。

步骤四:求解面积最值
根据确定的面积范围,使用数学方法求解。

对于正弦函数的面积计算,可以采用定积分的方法。

根据函数的特点,将面积转化为定积分的形式,并利用积分计算技巧求解。

步骤五:验证结果
最后,验证所得的面积最值是否合理。

可以通过比较其他方法求得的结果或利用计算工具进行数值计算,以确保所得结果的正确性和准确性。

结论
通过以上步骤,我们可以求解正弦函数中的面积最值问题。

这种方法不仅可以加深对函数图像和最值的理解,还可以培养数学建模和问题求解的能力。

面积最值问题 初中数学

面积最值问题 初中数学

面积最值问题初中数学面积最值问题是初中数学中一个常见的应用题类型,主要涉及到几何图形的面积,并要求寻找出图形面积的最大值或最小值。

通过解决这类问题,学生们可以加强对图形面积计算的理解,并培养数学建模和解决实际问题的能力。

一、矩形面积最值问题矩形是最为简单的几何图形之一,其面积公式为“面积=长×宽”。

当矩形的周长一定时,如何确定矩形的面积最大或最小值成为了问题的关键。

在解决这类问题时,我们可以利用变量法。

假设矩形的长为x,宽为y,则有以下两个约束条件:1. 2x + 2y = 周长(常数)2. 长和宽都不能为负数,即x ≥ 0, y ≥ 0根据矩形的面积公式,在限定条件下,可以得到矩形的面积S和变量x、y之间的关系式:S = xy。

由此可得,在常数周长和约束条件下,我们需要求解的就是面积函数S = xy 的最值。

二、三角形面积最值问题三角形是常见的几何图形之一,其面积公式为“面积=底边×高/2”。

在解决三角形面积最值问题时,我们通常需要考虑两种情况。

情况一:确定一个边长,求解此边长对应的最大面积。

假设等腰三角形的底边长为x,两腰边长为y,则有以下两个约束条件:1. 2y + x = 周长(常数)2. 边长不能为负数,即x ≥ 0, y ≥ 0根据三角形的面积公式,在限定条件下,可以得到三角形的面积S和变量x、y之间的关系式:S = xy/2。

由此可得,在常数周长和约束条件下,我们需要求解的就是面积函数S = xy/2 的最值。

情况二:确定一个角度,求解此角度对应的最大面积。

假设三角形的底边长为x,底边两边夹角为θ,则有以下约束条件:1. θ为常数,0°≤θ≤180°2. 底边不能为负数,即x ≥ 0根据三角形的面积公式,在限定条件下,可以得到三角形的面积S和变量x之间的关系式:S = x^2 sin(θ)/2。

由此可得,在限定角度和约束条件下,我们需要求解的就是面积函数S = x^2 sin(θ)/2 的最值。

椭圆中三角形面积最大值问题

椭圆中三角形面积最大值问题

椭圆中三角形面积最大值问题
我们有一个椭圆,现在要在椭圆上找三个点,使得这三个点构成的三角形的面积最大。

假设椭圆的长轴为 a,短轴为 b。

三角形的面积公式为:面积 = (底× 高) / 2
对于椭圆上的任意三个点,假设它们的坐标分别为 (x1, y1), (x2, y2) 和 (x3, y3)。

为了使三角形的面积最大,底和高都应该尽可能大。

底的最大值是 a(长轴的长度),高的最大值是 b(短轴的长度)。

因此,三角形的最大面积是(a × b) / 2。

现在我们要来证明这一点。

三角形的最大面积是 ab/2
面积的导数为 b/2
面积的二阶导数为 0
因此,三角形的最大面积不一定是 ab/2,这取决于具体的椭圆形状。

二次函数求面积最大值

二次函数求面积最大值

二次函数求面积最大值二次函数是高中数学中比较重要的一章内容,它在数学和物理中都有广泛的应用。

其中,求二次函数的最值是一个常见的问题,而二次函数求面积最大值也是其中一个重要的应用。

一、二次函数的基本概念二次函数是形如y=ax+bx+c的函数,其中a、b、c是实数且a≠0。

二次函数的图像是一条开口向上或向下的抛物线,其顶点坐标为(-b/2a, c-b/4a)。

二、二次函数求面积最大值的问题对于给定的二次函数y=ax+bx+c,我们要求其在区间[a, b]上的面积最大值。

这个问题可以转化为求y=ax+bx+c在区间[a, b]上的最大值和最小值,然后再利用定积分求解。

三、求二次函数的最值我们知道,二次函数的最值只可能出现在其顶点处,因此我们可以先求出二次函数的顶点坐标,然后再判断其是否在区间[a, b]内。

对于y=ax+bx+c,其顶点坐标为(-b/2a, c-b/4a)。

如果顶点坐标不在区间[a, b]内,则最值出现在区间端点处,即y(a)和y(b)中的较大值。

四、利用定积分求解面积最大值已知y=ax+bx+c在区间[a, b]上的最大值和最小值,我们可以利用定积分求解其面积最大值。

设y=ax+bx+c在区间[a, b]上的最大值和最小值分别为y1和y2,则其面积最大值为∫[a, b] (y1-y2)dx。

五、例题解析下面通过一个例题来说明如何利用二次函数求面积最大值。

例1:求函数y=-x+4x+5在区间[0, 4]上的面积最大值。

首先,求出该函数的顶点坐标:x0 = -b/2a = -4/(-2) = 2y0 = -x0+4x0+5 = -4+8+5 = 9因为顶点坐标(2, 9)在区间[0, 4]内,所以函数的最值为y(2)=9。

然后,利用定积分求解面积最大值:∫[0, 4] (y(2)-y)dx = ∫[0, 4] (9+x-4x)dx = 20/3因此,函数y=-x+4x+5在区间[0, 4]上的面积最大值为20/3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图,在平面直角坐标系中,直线交x轴于A点,交y轴于B 点,过A、B两点的抛物线交轴于另一点C,点D是抛物线的顶点.
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作轴的垂线交轴于点H,交直线AB于点F,作PG⊥AB于点G,若△PFG的周长最大,求P点的坐标
(3)在抛物线上是否存在除点D以外的点M,使得△ABM 与△ABD的面积相等?若存在,请求出此时点M的坐标,若不存在,请说明理由.
答案详解
解:
(1)∵直线AB:与坐标轴交于A(﹣3,0)、B(0,3),
代入抛物线解析式中,
得:,解得:,
∴抛物线解析式为:;
(2)∵由题意可知△PFG是等腰直角三角形,
设P(,),
∴F(,),
∴PF=,
△PFG周长为:=,∴当时,△PFG周长有最大值,
而当时,,
∴P(,);
(3)点M有三个位置,
如图所示的M1、M2、M3,都能使△ABM的面积等于△ABD的面积.此时DM1∥AB,M3M2∥AB,且与AB距离相等,
∵D(﹣1,4),
∴E(﹣1,2)、则N(﹣1,0)
∵中,k=1,
∴直线DM1解析式为:,直线M3M2解析式为:,
∴或,
∴,,,,
∴M1(﹣2,3),
M2(,),
M3(,).
解析:
(1)将已知点的坐标代入二次函数的解析式利用待定系数法确定二次函数的解析式即可;
(2)首先根据△PFG是等腰直角三角形,设P(,)得到F (,),进而得到PF=,从而得到△P FG周长为:,配方后即可确定点P的坐标;(3)当DM1∥AB,M3M2∥AB,且与AB距离相等时,根据同底等高可以确定△ABM与△ABD的面积相等,分别求得直线DM1解析式为:
和直线M3M2解析式为:,联立之后求得交点坐标即可.
2.如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=-x2+bx+c交x轴于另一点C,点D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交于x轴于点H,交直线AB于点F,作PG⊥AB于点G,求出△PFG的周长最大值;
(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM 与△ABD的面积相等?若存在,请求出此点M的坐标;若不存在,请说明理由.
答案
(1)直线AB:y=x+3与坐标轴交于A(-3,0)、B(0,3),
代入抛物线的解析式为y=-x2+bx+c中,
有{0=−9−3b+c3=c,
∴{b=−2c=3,
∴抛物线的解析式为:y=-x2-2x+3;
(2)有题可知△PFG是等腰直角三角形,
设P(m,-m2-2m+3),
∴F(m,m+3),
∴PF=-m2-2m+3-m-3=-m2-3m,
FG=PG= 12√ (-m2-3m),
∴△PFG的周长为-m2-3m+2× 12√ (-m2-3m)
=-( 2√ +1)(m+ 32 )2+ 9(2√+1)4,
∴△PFG的周长最大值是9(2√+1)4;
(3)点M有三个位置,如图所示的M1、M2、M3,都能使△ABM的面积等于△ABD的面积,
此时DM1∥AB,M3N2∥AB,且与AB距离相等,
∵D(-1,4),
∴E(-1,2),则N(-1,0),
∵y=x+3中,k=1,
∴直线DM1解析式为y=x+5,
直线M3N2解析式为y=x+1,
∴x+5=-x2-2x+3或x+1=-x2-2x+3,
∴x1=-1,x2=-2,x3= −3+17−−√2,x4= −3−17−−√2,
∴M1(-2,3),M2(−3+17−−√2,−1+17−−√2),M3(−3−17−−√2,−1−17−−√2).
解析
【解题方法提示】
对于(1),根据直线解析式可得两个点的坐标,然后代入抛物线解析式中可得方程组,从而得出解析式;
对于(2),分析题可知△PFG是等腰直角三角形,利用点的坐标先得出P F,FG=PG可得周长;
如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B 点,过A、B两点的抛物线y=-x2+bx+c交x轴于另一点C,点D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交于x轴于点H,交直线AB于点F,作PG⊥AB于点G,求出△PFG的周长最大值;
(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM 与△ABD的面积相等?若存在,请求出此点M的坐标;若不存在,请说明理由.
答案
(1)直线AB:y=x+3与坐标轴交于A(-3,0)、B(0,3),
代入抛物线的解析式为y=-x2+bx+c中,
有{0=−9−3b+c3=c,
∴{b=−2c=3,
∴抛物线的解析式为:y=-x2-2x+3;
(2)有题可知△PFG是等腰直角三角形,
设P(m,-m2-2m+3),
∴F(m,m+3),
∴PF=-m2-2m+3-m-3=-m2-3m,
FG=PG= 12√ (-m2-3m),
∴△PFG的周长为-m2-3m+2× 12√ (-m2-3m)
=-( 2√ +1)(m+ 32 )2+ 9(2√+1)4,
∴△PFG的周长最大值是9(2√+1)4;
(3)点M有三个位置,如图所示的M1、M2、M3,都能使△ABM的面积等于△ABD的面积,
此时DM1∥AB,M3N2∥AB,且与AB距离相等,
∵D(-1,4),
∴E(-1,2),则N(-1,0),
∵y=x+3中,k=1,
∴直线DM1解析式为y=x+5,
直线M3N2解析式为y=x+1,
∴x+5=-x2-2x+3或x+1=-x2-2x+3,
∴x1=-1,x2=-2,x3= −3+17−−√2,x4= −3−17−−√2,
∴M1(-2,3),M2(−3+17−−√2,−1+17−−√2),M3(−3−17−−√2,−1−17−−√2).
解析
【解题方法提示】
对于(1),根据直线解析式可得两个点的坐标,然后代入抛物线解析式中可得方程组,从而得出解析式;
对于(2),分析题可知△PFG是等腰直角三角形,利用点的坐标先得出P F,FG=PG可得周长;。

相关文档
最新文档