10三角函数填空题

合集下载

三角函数练习题及答案

三角函数练习题及答案

三角函数练习题及答案一、填空题1.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,4ACB AB π∠=则四面体ABCD 体积的最大值为___________.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.3.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________4.通信卫星与经济、军事等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为km h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为km r ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan θ________.5.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)6.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______.7.关于函数())cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).8.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.已知1OB →=,,A C 是以O 为圆心,220BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A .33⎝ B .332⎛ ⎝C .33⎡⎤⎢⎥⎣ D .332⎡⎢⎣13.已知O 是三角形ABC 的外心,若()22AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin 3B C +=,则实数m 的最大值为( )A .3B .35C .75D .3214.已知函数()()sin f x x ωφ=+π0,02ωφ⎛⎫><< ⎪⎝⎭在π5π,88⎛⎫ ⎪⎝⎭上单调,且π3π088f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则π2f ⎛⎫⎪⎝⎭的值为( ) A 22B .1C .1-D .22-15.已知F 是椭圆2221(1)x y a a+=>的左焦点,A 是该椭圆的右顶点,过点F 的直线l (不与x 轴重合)与该椭圆相交于点M ,N .记MAN α∠=,设该椭圆的离心率为e ,下列结论正确的是( ) A .当01e <<时,2πα<B .当202e <<时,2πα>C .当1222e <<时,23πα>D .当212e <<时,34πα> 16.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C 151-D 51-17.在ABC 中,若22sin cos 1A B +=,则8cos AB BCBC A AC+的取值范围为( )A .)43,8⎡⎣B .)43,7⎡⎣C .()7,8D .(0,4318.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .319.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( ) A .(21,)+∞B .(12,)+∞C .(1,12)D .(31,)+∞20.在锐角ABC 中,若cos cos sin sin 3sin A C B C a c A+=3cos 2C C +=,则a b +的取值范围是( ) A .(6,23⎤⎦B .(0,43C .(23,43D .(6,43三、解答题21.若函数()y f x =的图像上存在两个不同的点关于y 轴对称,则称函数()y f x =图像上存在一对“偶点”.(1)写出函数()sin f x x =图像上一对“偶点”的坐标;(不需写出过程) (2)证明:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”;(3)若函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”,求m 的取值范围.22.已知函数()()()()2cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.23.已知函数2()2sin cos ()f x x x x a a R =-++∈,且(0)f = (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围.24.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.25.已知函数()2sin 2cos 3f x x a x =+-.(1)当1a =时,求该函数的最大值;(2)是否存在实数a ,使得该函数在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为1?若存在,求出对应a的值;若不存在,试说明理由. 26.已知函数()sin 2coscos 2sin33f x x x ππ=+.(1)若对任意,63x ππ⎡⎤∈⎢⎥⎣⎦,都有4f x m π⎛⎫- ⎪⎝⎭成立,求实数m 的取值范围;(2)设函数()1226g x f x π⎛⎫=- ⎪⎝⎭()g x 在区间[],3ππ-内的所有零点之和.27.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值;()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.28.已知函数())2sin cos 0f x x x x ωωωω=+>的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式; (2)求()g x 的单调递增区间及对称中心29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.已知函数()()()24sin sin cos sin cos sin 142x f x x x x x x π⎛⎫=+++-- ⎪⎝⎭.(1)求函数()f x 的最小正周期; (2)若函数()()()12122g x f x af x af x a π⎡⎤⎛⎫=+---- ⎪⎢⎥⎝⎭⎣⎦在,42ππ⎡⎤-⎢⎥⎣⎦的最大值为2,求实数a 的值.【参考答案】一、填空题1.3(21)22.22⎝ 3.12(,)369- 4.2rr h-+ 5.8,83⎛⎫ ⎪⎝⎭6.137.②③8.14-9.1或2##2或110.⎡⎢⎣⎦二、单选题 11.A 12.A 13.D 14.D 15.A 16.A 17.A 18.B 19.B 20.D 三、解答题21.(1)()(),0,0ππ-(2)见解析(3)()1,+∞ 【解析】(1)根据题意即正弦函数的性质即可直接求解;(2)要证:函数数()2x h x e mx =--图象上有且只有一对“偶点”,只需证:())()()y Q x g x g x ==--=在(0,2)上有且只有一个零点,结合导数及函数的性质即可证明;(3)由题意,问题可转化为函数()()y h x h x =--只有一个零点,结合函数的性质及导数可求. 【详解】(1)函数()sin f x x =图像上一对“偶点”的坐标为()(),0,0ππ-, (2)设()()()()()ln 2ln 22Q x g x g x x x x =--=+--+-, 因为()y Q x =的定义域为()2,2-,且()()Q x Q x -=-, 所以函数()y Q x =为奇函数,要证:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”, 只需证:()y Q x =在()0,2上有且只有一个零点, 令()()222204x Q x x -'==-,得x =所以,函数()Q x 在(上为单调减函数,在)2上为单调增函数,(ln 30Q=+-<,4441122ln 40Q e e e ⎛⎫⎛⎫-=-+> ⎪ ⎪⎝⎭⎝⎭,所以函数()Q x 在41e ⎫-⎪⎭上有且只有一个零点,所以函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”,(3)设()()()2x xF x h x h x e e mx -=--=--,()00F =,因为()y F x =的定义域为R ,且()()F x F x -=-, 所以函数()y F x =为奇函数,因为函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”, 所以函数()y F x =在()0,∞+有且只有一个零点, ()12x xF x e m e '=+-,()0,x ∈+∞, ①当1m 时,因为()220F x m '>-≥,所以函数()y F x =在()0,∞+上为单调增函数,所以()()00F x F >=, 所以函数()F x 在()0,∞+无零点,②当1m 时,由()212120x x xx xe me F x e m e e -+'=+-==,得:(0ln x m =,所以函数()y F x =在()00,x 上单调减函数,在()0,x +∞上单调增函数, 所以()()000F x F <=, 设()ln H x x x =-,()1xH x x-'=, 所以函数()H x 在()0,1上单调增函数,在()1,+∞上单调减函数, 所以()()110H x H ≤=-<,所以ln x x <,所以(ln ln 22m m m +<<,设()()211x m x e x x =-->,设()()2xM x m x e x '==-, 因为()220xM x e e '=->->,所以函数()M x 在()1,+∞单调增函数,所以()()120M x M e >=->,所以函数()m x 在()1,+∞单调增函数, 所以()()120m x m e >=->,所以当1x >时,21x e x >+, ()22222124140m m m F m e m e m e=-->-->, 因为函数()y F x =在()0,x +∞上单调增函数,所以函数()F x 在()0,2x m 上有且仅有一个1x ,使得()10F x =, 综上:m 的取值范围为()1,+∞. 【点睛】本题中综合考查了函数的性质及导数的综合应用,体现了分类讨论思想的应用,试题具有一定的综合性.22.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.23.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值.(2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.24.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.25.(1)1-;(2)存在,且2a =. 【解析】 【分析】(1)将1a =代入函数()y f x =的解析式,得出()()2cos 11f x x =---,由1cos 1x -≤≤结合二次函数的基本性质可得出该函数的最大值;(2)换元[]cos 0,1t x =∈,将问题转化为二次函数()222t at g t -+-=在区间[]0,1上的最大值为1,然后分0a ≤、01a <<和1a ≥三种情况讨论,利用二次函数的基本性质求出函数()222t at g t -+-=在区间[]0,1上最大值,进而求得实数a 的值.【详解】(1)当1a =时,()()22sin 2cos 3cos 11f x x x x =+-=---,1cos 1x -≤≤,当cos 1x =时,该函数取得最大值,即()max 1f x =-;(2)()22sin 2cos 3cos 2cos 2x a x x a x f x =+-=-+-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,设[]cos 0,1t x =∈,设()222t at g t -+-=,[]0,1t ∈,二次函数()y g t =的图象开口向下,对称轴为直线t a =.当0a ≤时,函数()y g t =在[]0,1上单调递减,所以0=t 时,()()max 021g t g ==-≠,0a ∴≤不符合题意;当1a ≥时,函数()y g t =在[]0,1上单调递增,所以1t =时,()()max 1231g t g a ==-=,2a ∴=满足1a ≥;当01a <<时,函数()y g t =在[]0,a 上单调递增,在(],1a 上单调递减, ∴当t a =时,()()2max 21g t g a a ==-=,a ∴=01a <<.综上,存在2a =符合题意. 【点睛】本题考查二次型余弦函数的最值,将问题转化为二次函数的最值来求解是解题的关键,第二问要对二次函数图象的对称轴与区间的位置关系进行分类讨论,结合二次函数的单调性求解,考查分类讨论思想的应用,属于中等题. 26.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)2π【解析】(1)首先根据两角和的正弦公式得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,从而得到4f x π⎛⎫- ⎪⎝⎭的解析式,根据正弦函数的性质求出其值域,从而得到参数的取值范围; (2)首先求出()g x 的解析式,根据正弦函数的对称性即可解答. 【详解】解:(1)因为()sin 2coscos 2sin33f x x x ππ=+()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 所以sin 2sin 24436f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.又,63x ππ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 故1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即min 142f x π⎛⎫-= ⎪⎝⎭,12m, 所以实数m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.(2)由(1)得()1122sin 22sin 26263g x f x x x πππ⎡⎤⎛⎫⎛⎫=-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令()0g x =,得sin x =sin x =[],3ππ-上有4个零点 这4个零点从小到大不妨设为1x ,2x ,3x ,4x ,则由对称性得1222x x π+=-,34322x x π+=, 从而所有零点和为12342x x x x π+++=. 【点睛】本题考查两角和的正弦公式的应用,三角函数的性质的应用,属于基础题. 27.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---, ①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m =,∴2g()(2)6t t =--,[0,1]t ∈max ()g(0)2f x ==-,min ()g(1)5f x ==-12max ()(25)()3f x f x =---=- ∴ 1234a -≥,∴ 138a ≥, 综上所述:13[,)8a ∈+∞.本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题.28.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】 【分析】(1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解. (2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+.于是()y g x =图象对应的解析式为()2sin()23x g x π=+.(2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z . 所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π.【解析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值. 【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭,2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=,故123x x π+=.【点睛】本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题. 30.(1) 2T π=;(2)2a =-或6a = 【解析】 【分析】(1)根据二倍角公式进行整理化简可得()2sin f x x =,从而可得最小正周期;(2)将()g x通过换元的方式变为21112y t at a =-+--,1t ≤;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得a 的值. 【详解】(1)()2221cos sin cos sin 12f x x x x x π⎡⎤⎛⎫=-++-- ⎪⎢⎥⎝⎭⎣⎦()222sin sin 12sin 12sin x x x x =++--= ∴最小正周期2T π=(2)()1sin2sin cos 12g x a x a x x a =+---令sin cos x x t -=,则()22sin 21sin cos 1x x x t =--=-22221111122242a a y t at a t at a t a ⎛⎫∴=-+--=-+-=--+- ⎪⎝⎭sin cos 4t x x x π⎛⎫=-=- ⎪⎝⎭由42x ππ-≤≤得244x πππ-≤-≤1t ≤①当2a<a <-当t =max 122y a ⎫=--⎪⎭由1222a ⎫--=⎪⎭,解得()817a ==->-)②当12a≤,即2a -≤时 当2a t =时,2max 142a y a =- 由21242a a -=得2280a a --=,解得2a =-或4a =(舍去) ③当12a>,即2a >时 当1t =时,max 12a y =-,由122a-=,解得6a = 综上,2a =-或6a = 【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围.。

三角函数练习题及解析

三角函数练习题及解析

三角函数练习题及解析一、单选题1. 已知直角三角形ABC,角A的对边BC=5,斜边AC=13,则角B 的邻边AB等于:A) 5B) 12C) 4D) 3解析:根据勾股定理,$AB=\sqrt{AC^2-BC^2}=\sqrt{13^2-5^2}=\sqrt{144}=12$,因此选项B) 12.2. 在单位圆上,点A的坐标为$(\frac{\sqrt{3}}{2}, \frac{1}{2})$,则角A的度数为:A) 45°B) 60°C) 90°D) 120°解析:单位圆上的点A的坐标$(\frac{\sqrt{3}}{2}, \frac{1}{2})$对应的角A的度数为$60^\circ$,因此选项B) 60°.3. $\sin^2 30^\circ + \cos^2 60^\circ$的值等于:A) 0B) 1C) $\frac{3}{4}$D) $\frac{1}{2}$解析:$\sin^2 30^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,$\cos^2 60^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,因此$\sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$,因此选项D)$\frac{1}{2}$.二、填空题4. 对于任意角θ,$\sin(90^\circ - \theta)$的值等于 __________。

答案:$\cos \theta$解析:根据“余角公式”,$\sin (90^\circ - \theta) = \cos \theta$.5. $\cos(\frac{3\pi}{4})$的值等于 __________。

答案:$-\frac{\sqrt{2}}{2}$解析:根据单位圆上角度为 $\frac{3\pi}{4}$ 的点坐标为 $(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$,因此 $\cos(\frac{3\pi}{4}) = \frac{-\sqrt{2}}{2}$.三、解答题6. 解方程 $\sin x = \frac{1}{2}$,其中 $0 \leq x < 2\pi$。

三角函数题型汇总(附答案)

三角函数题型汇总(附答案)

三角函数训练题(1)一、选择题(本大题共10小题,每小题3分,共30分)1.命题p :α是第二象限角,命题q:α是钝角,则p 是q 的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件2.若角α满足sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.集合M ={x |x =42ππ±k ,k ∈Z }与N ={x |x =4πk ,k ∈Z }之间的关系是( )A.M NB.N MC.M =ND.M ∩N=∅4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( )A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( )A.52B.-52C.51D.-51 6.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于( )A.-23B.23C.21D.±237.已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2B.1sin 2C.2sin1D.sin29.如果sin x +cos x =51,且0<x <π,那么cot x 的值是( )A.-34 B.-34或-43 C.-43 D.34或-43 10.已知①1+cos α-sin β+sin αsin β=0,②1-cos α-cos β+sin αcos β=0.则sin α的值为( )A.3101- B.351- C.212- D.221-二、填空题(本大题共4小题,每小题4分,共16分)11.tan300°+cot765°的值是_______.12.已知tan α=3,则sin 2α-3sin αcos α+4cos 2α的值是______.13.若扇形的中心角为3π,则扇形的内切圆的面积与扇形面积之比为______.14.若θ满足cos θ>-21,则角θ的取值集合是______.三、解答题(本题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?16.(本小题满分10分)设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=42x , 求sin α与tan α的值.17.(本小题满分12分)已知sin α是方程5x 2-7x -6=0的根,求)(cos )2cos()2cos()2(tan )23sin()23sin(22απαπαπαπαππα-⋅+⋅--⋅-⋅--的值.18.(本小题满分12分)已知sin α+cos α=-553,且|sin α|>|cos α|,求cos 3α-sin 3α的值.19.(本小题满分12分) 已知sin(5π-α)=2 cos(27π+β)和3cos(-α)=- 2cos(π+β),且0<α<π,0<β<π,求α和β的值.三角函数训练题(2)参考答案:1.解析:“钝角”用集合表示为{α|90°<α<180°},令集合为A ;“第二象限角”用集合表示为{α|k ²360°+90°<α<k ²360°+180°,k ∈Z },令集合为B .显然A B .答案:B2.解析:由sin αcos α<0知sin α与cos α异号;当cos α-sin α<0,知sin α>cos α.故sin α>0,cos α<0.∴α在第二象限.答案:B 3.解法一:通过对k 的取值,找出M 与N 中角x 的所有的终边进行判断.解法二:∵M ={x |x =4π²(2k ±1),k ∈Z },而2k ±1为奇数,∴M N .答案:A4.解析:787°=2³360°+67°,-957°=-3³360°+123°. -289°=-1³360°+71°,1711°=4³360°+271°. ∴在第一象限的角是(1)、(3). 答案:C5.解析:∵r=a a a 5)4()3(22-=+-.α为第四象限. ∴53cos ,54sin ==-==r x r y αα.故sin α+2cos α=52. 答案:A6.解析:∵cos(π+α)=- 21,∴cos α=21,又∵23π<α<2π. ∴sin α=-23cos 12-=-α.故sin(2π-α)=-sin α=23. 答案:B 7.答案:D8.解析:∵圆的半径r =1sin 2,α=2 ∴弧度l=r ²α=1sin 2. 答案:B9.分析:若把sin x 、cos x 看成两个未知数,仅有sin x +cos x =51是不够的,还要利用sin 2x +cos 2x =1这一恒等式.解析:∵0<x <π,且2sin x cos x =(sin x +cos x )2-1=-2524. ∴cos x <0.故sin x -cos x =57cos sin 4)cos (sin 2=-+x x x x ,结合sin x +cos x =51,可得sin x =54,cos x =-53,故co t x =-43.答案:C10.分析:已知条件复杂,但所求很简单,由方程思想,只要由①、②中消去β即可.解析:由已知可得:sin β=ααsin 1cos 1-+,cos β=ααsin 1cos 1--.以上两式平方相加得:2(1+cos 2α)=1-2sin α+sin 2α.即:3sin 2α-2sin α-3=0.故sin α=3101-或sin α=3101+ (舍). 答案:A11.解析:原式=tan(360°-60°)+cot (2³360°+45°)=-tan60°+cot45°=1-3.答案:1-312.分析:将条件式化为含sin α和cos α的式子,或者将待求式化为仅含tan α的式子.解法一:由tan α=3得sin α=3cos α,∴1-cos 2α=9cos 2α.∴cos 2α=101.故原式=(1-cos 2α)-9cos 2α+4cos 2α=1-6cos 2α=52.解法二:∵sin 2α+cos 2α=1.∴原式=52194991tan 4tan 3tan cos sin cos 4cos sin 3sin 222222=++-=++-=++-ααααααααα 答案:5213.分析:扇形的内切圆是指与扇形的两条半径及弧均相切的圆.解析:设扇形的圆半径为R ,其内切圆的半径为r ,则由扇形中心角为3π知:2r +r =R ,即R =3r .∴S 扇=21αR 2=6πR 2,S 圆=9πR 2.故S 扇∶S 圆=23. 答案:23 14.分析:对于简单的三角不等式,用三角函数线写出它们的解集,是一种直观有效的方法.其过程是:一定终边,二定区域;三写表达式.解析:先作出余弦线OM =-21,过M 作垂直于x 轴的直线交单位圆于P 1、P 2两点,则OP 1、OP 2是cos θ=21时θ的终边.要cos θ>-21,M 点该沿x 轴向哪个方向移动?这是确定区域的关键.当M 点向右移动最后到达单位圆与x 轴正向的交点时,OP 1、OP 2也随之运动,它们扫过的区域就是角θ终边所在区域.从而可写出角θ的集合是{θ|2k π-32π<θ<2k π+32π,k ∈Z }.答案:{θ|2k π-32π<θ<2k π+32π,k ∈Z }15.解:设扇形的中心角为α,半径为r ,面积为S ,弧长为l,则:l+2r =C ,即l=C -2r .∴16)4()2(212122C C r r r C lr S +--=⋅-==.故当r =4C时,S max =162C ,此时:α=.2422=-=-=CCC rrC r l∴当α=2时,S max =162C .16.解:由三角函数的定义得:cos α=52+x x ,又cos α=42x , ∴34252±=⇒=+x x x x . 由已知可得:x <0,∴x =-3. 故cos α=-46,sin α=410,ta n α=-315. 17.解:∵sin α是方程5x 2-7x -6=0的根. ∴sin α=-53或sin α=2(舍).故sin 2α=259,cos 2α=⇒2516tan 2α=169. ∴原式=169tan cot )sin (sin tan )cos (cos 222==⋅-⋅⋅-⋅ααααααα.18.分析:对于sin α+cos α,sin α-cos α及sin αcos α三个式子,只要已知其中一个就可以求出另外两个,因此本题可先求出sin αcos α,进而求出sin α-cos α,最后得到所求值.解:∵sin α+cos α=-553, ∴两边平方得:1+2sin αcos α=⇒59sin αcos α=52. 故(cos α-sin α)2=1-2sin αcos α=51.由sin α+cos α<0及sin αcos α>0知sin α<0,cos α<0. 又∵|sin α|>|cos α|,∴-sin α>-cos α cos α-sin α>0.∴cos α-sin α=55. 因此,cos 3α-sin 3α=(cos α-sin α)(1+sin αcos α)=55³(1+52)=2557. 评注:本题也可将已知式与sin 2α+cos 2α=1联解,分别求出sin α与cos α的值,然后再代入计算.19.分析:运用诱导公式、同角三角函数的关系及消元法.在三角关系式中,一般都是利用平方关系进行消元.解:由已知得sin α=2sin β ①3cos α=2cos β ② 由①2+②2得sin 2α+3cos 2α=2. 即:sin 2α+3(1-sin 2α)=2. ∴sin 2α=⇒21sin α=±22,由于0<α<π,所以sin α=22. 故α=4π或43π. 当α=4π时,cos β=23,又0<β<π,∴β=6π, 当α=43π时,cos β=-23,又0<β<π,∴β=65π.综上可得:α=4π,β=6π或α=43π,β=65π.三角函数训练题(2)一、选择题(本大题共10小题,每小题3分,共30分) 1.cos24°cos36°-cos66°cos54°的值等于( ) A.0 B.21 C.23 D.-21 2.在△ABC 中,如果sin A =2sin C cos B .那么这个三角形是( )A.锐角三角形B.直角三角形C.等腰三角形D.等边三角形 3.︒-︒80sin 310sin 1的值是( ) A.1 B.2 C.4 D.41 4.tan20°+4sin20°的值是( )A.1B.2C.3D.336+ 5.tan θ和tan(4π-θ)是方程x 2+px +q =0的两根,则p 、q 之间的关系是( )A.p +q +1=0B.p -q -1=0C.p +q -1=0D.p -q +1=06.设sin x +sin y =22,则cos x +cos y 的取值范围是( ) A.[0,214] B.(- 214,0] C.[-214,214] D.[-21,27]7.M =sin α²tan 2α+cos α,N =tan 8(tan 8ππ+2),则M 与N 的关系是( )A.M >NB.M =NC.M <ND.大小与α有关8.已知sin α+sin β=3 (cos β-cos α),α,β∈(0,2π),那么sin3α+sin3β的值是( )A.1B.23C.21D.09.已知tan α、tan β是方程x 2+33x +4=0的两个根,且α、β∈(-2,2ππ),则α+β的值是( )A.3π B.-32πC. 3π或-32πD.- 3π或32π10.(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是( ) A.16 B.8 C.4 D.2二、填空题(本大题共4小题,每小题4分,共16分)11.已知tan x =34(π<x <2π).则cos(2x -3π)cos(3π-x )-sin(2x -3π)sin(3π-x )=______.12.sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)的值等于______.13.log 4cos5π+log 4cos 52π的值等于______.14.已知tan(α+β)=52,tan(β-41)4=π,则sin(α+4π)²sin(4π-α)的值为___.三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)求值:212cos 412csc )312tan 3(2-︒︒-︒.16.(本小题满分10分) 已知cot β=βαsin sin ,5=sin(α+β),求cot(α+β)的值.17.(本小题满分12分)已知tan2θ=-22,x <2θ<2π,求)4sin(21sin 2cos 22πθθθ+--的值.18.(本小题满分12分)是否存在锐角α和β,使得(1)α+β=32π;(2)tan 2αtan β=2-3同时成立?若存在,则求出α和β的值;若不存在,说明理由.19.(本小题满分12分)已知△ABC 的三内角A 、B 、C 成等差数列,且BC A cos 2cos 1cos 1-=+,求cos 2CA -的值.三角函数训练题(2)参考答案:1.解析:原式=cos24°cos36°-sin24°sin36°=cos(24°+36°)=cos60°=21.答案:B2.解析:∵A +B +C =π,∴A =π-(B +C ).由已知可得:sin(B +C )=2sin C cos B ⇒sin B cos C +cos B sin C =2sin C cos B ⇒sin B cos C -cos B sin C =0⇒sin(B -C )=0. ∴B =C ,故△ABC 为等腰三角形. 答案:C3.解析:原式=︒︒-︒=︒-︒20sin 2110sin 310cos 10cos 310sin 1420sin 70cos 420sin )1060cos(420sin )10sin 2310cos 21(4=︒︒=︒︒+︒=︒︒-︒=.答案:C4.分析:运用三角变形的通法:化弦法、异角化同角.解析:原式=︒︒︒+︒=︒+︒︒20cos 20cos 20sin 420sin 20sin 420cos 20sin.320cos )20sin 20cos 3(20sin 20cos )2060sin(220sin 20cos 40sin 220sin =︒︒-︒+︒=︒︒-︒+︒=︒︒+︒=答案:C5.解析:由根与系数关系得tan θ+tan(4π-θ)=-p ,tan θ²tan(4π-θ)=q .又4π=θ+(4π-θ) ∴tan4π=tan [θ+( tan-θ)]=qp--1 故p -q +1=0. 答案:D6.解析:设cos x +cos y =t ,又sin x +sin y =22. 两式平方相加得2+2cos(x -y )=t 2+21 即cos(x -y )=4322-t ,由于|cos(x -y )|≤1.故-1≤4322-t ≤1⇒t 2≤21427-⇒≤t ≤214.答案:C7.解析:12s i n212s in 2)2si n 21(2co s 2s i n 22cos2s i n 222=-+=-+⋅=αααααααM .14cos14sin 24cos 124cos 14sin 24cos18cos 4sin8sin )28cos 8sin(8cos8sin22=++-=++-=+=+=πππππππππππππN∴M =N . 答案:B8.分析:先从已知式中求出α与β的关系,然后代入求值. 解析:由已知得:sin α+3cos α=3cos β-sin β.即cos(α-6π)=cos(β+6π) 又α-6π∈(-6π,3π),β+6π∈(6π,32π)故α-6π=β+6π⇒α=β+3π,∴sin3α+sin3β=sin(3β+π)+sin3β=0. 答案:D 9.解析:由韦达定理得:tan α+tan β=-33,tan αtan β=4 ∴tan(α+β)=3tan tan 1tan tan =-+βαβα.又∵α、β∈(-2,2ππ),且tan α+tan β<0,tan αtan β>0. ∴tan α<0,tan β<0.故α、β∈(-2π,0)从而α+β∈(-π,0),∴α+β=-32π.答案:B 10.分析:本题中所涉及的角均为非特殊角,但两角之和为45°特殊角,为此,将因式重组来求.解析:∵tan45°=tan(21°+24°)=︒︒-︒+︒24tan 21tan 124tan 21tan∴1-tan21°tan24°=tan21°+tan24° 即1+tan21°+tan24°+tan21°tan24°=2 即(1+tan21°)(1+tan24°)=2.(同理,由tan45°+tan(22°+23°)可得 (1+tan22°)(1+tan23°)=2.故(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)=4. 答案:C11.解析:原式=cos [(2x -3π)+(3π-x )]=cos x .∵tan x =34>0且π<x <2π,∴π<x <23π.故cos x <0,从而得cos x =-52.答案:-5312.分析:观察所给角易得θ+75°=(θ+15°)+60°,θ+45°=(θ+15°)+30°.考查两角和的正弦余弦公式及换元法的运用.解析:令θ+15°=α,则原式=sin(α+60°)+cos(α+30°)-3cos α=21sin α+23cos α+23cos α-21sin α-3cos α=0.答案:013.解析:∵5sin252cos 5cos 5sin252cos 5cos ππππππ=415sin454sin 5sin 252cos 52sin ===πππππ ∴原式=log 4141log )52cos 5(cos 4-==ππ答案:-114.解析:∵tan(α+4π)=tan [(α+β)-(β-4π)=223,∴原式=sin(α+4π)cos(α+4π)=)4(sin )4(cos )4cos()4sin(22παπαπαπα+++++49366)4(tan 1)4tan(2=+++=παπα. 答案:4936615.分析:本题中函数种类较多,在变换过程中,常用“切割化弦”的基本方法,考查公式的灵活运用.解:原式=)112cos 2(24sin 12cos 312sin 3)112cos 2(212sin 1)312cos 12sin 3(22-︒⋅︒︒-︒=-︒︒⋅-︒︒ ︒⋅︒︒-︒=24cos 24sin )12cos 2312sin 21(323448sin 21)6012sin(32-=︒︒-︒=16.分析:条件式中出现α、β及α+β角,要得到所求三角式的α+β角,显然就需对角α进行变换.即α=(α+β)-β.解:∵βαsin sin =sin(α+β). ∴sin [(α+β)-β]=sin β²sin(α+β).即sin(α+β)cos β-cos(α+β)sin β=sin βsin(α+β). ∴sin(α+β)cos β=sin β[sin(α+β)+cos(α+β)] ∴)sin()cos()sin(sin cos βαβαβαββ++++=即cot β=1+cot(α+β) ∴cot(α+β)=cot β-1=5-1.评注:三角变换的基本原则是化异为同,可以从角及函数名称、式子结构等方面分析思考,逐步实行由异向同的转化.17.分析:求三角函数的值,一般先要进行化简,至于化成哪一种函数,可由已知条件来确定.本题中由已知可求得tan θ的值,所以应将所求的式子化成正切函数式.解:原式=)4sin(2)4sin(2)4sin(2sin cos θπθππθθθ+-=+- ∵2)4()4(πθπθπ=++-∴原式=θθθπθπθπtan 1tan 1)4tan()4cos()4sin(+-=-=--.由已知tan2θ=-22得22tan 1tan 22-=-θθ解得tan θ=-22或tan θ=2. ∴π<2θ<2π,∴2π<θ<π,故tan θ=-22.故原式=223221221+=-+. 评注:以上所给解法,似乎有点复杂,但对于提高学生的三角变换能力大有好处.本题也可将所求式化成θθθθsin cos sin cos +-,注意到此时分子、分母均是关于si n θ、cos θ的齐次式.通过同时除以cos θ,即可化成θθtan 1tan 1+-.18.分析:这是一道探索性问题的题目,要求根据(1)、(2)联解,若能求出锐角α和β,则说明存在,否则,不存在.由于条件(2)涉及到2α与β的正切,所以需将条件(1)变成2α+β=3π,然后取正切,再与(2)联立求解.解:由(1)得:2α+β=3π,∴3tan 2tan 1tan 2tan)2tan(=-+=+βαβαβα将(2)代入上式得tan 2α+tan β=3-3. 因此,tan2α与tan β是一元二次方程x 2-(3-3)x +2-3=0的两根,解之得x 1=1,x 2=2-3.若tan2α=1,由于0<2α<4π.所以这样的α不存在; 故只能是tan 2α=2-3,tan β=1.由于α、β均为锐角,所以α=6π,β=4π故存在锐角α=6π,β=4π使(1)、(2)同时成立.19.解法一:依题意得B =3π,设A =3π+α,C =3π-α,则2CA -=α.同时有:3cos2)3cos(1)3cos(1παπαπ-=-++即22sin 3cos 2sin 3cos 2-=++-αααα023cos 2cos 242sin 3cos cos 2222=-+⇒-=-⇒ααααα ∴cos α=22或cos α=-423 (舍去)即cos222=-C A . 解法二:依题意得C C A C C A C A B -=--=-=+=32,232,32,3ππππ,不妨设cos(C -3π)=x .由已知得CC C C CC CA cos )32cos(cos )32cos(cos 1)32cos(1cos 1cos 1-+-=+-=+πππ∵cos(π32-C )+cos C=cos 32πcos C +sin 32πsin C +cos C=21cos C +23sin C =cos(3π-C ). cos(32π-C )cos C =cos 32πcos 2C+sin 32πsin C cos C)3(cos 43]1)3(cos 2[2141)232cos(21412sin 43)2cos 1(4122C C C C C -+-=--+-=-+-=++-=πππ∴22432-=+-x x 即0232242=-+x x∴x =22或x =-423 (舍去).故222cos=-C A . 解法三:依题意得B =3π,由已知得22cos 1cos 1-=+C A即cos A +cos C =-22cos A cos C利用积化和差及和差化积公式,并注意到A +C =32π,可得2cos22cos 2-=-+CA C A [cos(A +C )+cos(A -C )] 即22cos 22222cos2+--=-CA C A . 即0232cos 22cos 242=--+-CA C A ∴222cos=-C A 或4232cos -=-C A (舍去). 故222cos=-C A . 评注:解法三运用了和差化积及积化和差公式,这组公式虽不要求记忆,但在给出公式的情况下会运用.(3)1.在半经为2米的圆中,120°的圆心角所对的弧长为_____(34π)米。

三角函数练习题及答案

三角函数练习题及答案

三角函数一、选择题1.已知 α 为第三象限角,则2α 所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ).A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限 3.sin 3π4cos 6π5tan ⎪⎭⎫ ⎝⎛3π4-=( ). A .-433 B .433 C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ). A .-43 B .-34 C .43 D .34 6.已知sin α >sin β,那么下列命题成立的是( ).A .若α,β 是第一象限角,则cos α >cos βB .若α,β 是第二象限角,则tan α >tan βC .若α,β 是第三象限角,则cos α >cos βD .若α,β 是第四象限角,则tan α >tan β7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆CB .B ⊆A ⊆C C .C ⊆A ⊆BD .B ⊆C ⊆A 8.已知cos (α+β)=1,sin α=31,则sin β 的值是( ). A .31 B .-31 C .322 D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ).A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫ ⎝⎛4π5 ,πB .⎪⎭⎫ ⎝⎛π ,4πC .⎪⎭⎫ ⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫ ⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R D .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R 二、填空题11.函数f (x )=sin 2 x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 . 12.已知sin α=552,2π≤α≤π,则tan α= . 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫ ⎝⎛α - 2π= . 14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题: ①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫ ⎝⎛6π - 2x ; ②函数 y = f (x )是以2π为最小正周期的周期函数;③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ; (2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xa x sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2 x +k (cos x -1)的最小值.参考答案 一、选择题 1.D 解析:2k π+π<α<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z . 2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限.3.A解析:原式=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin=-433. 4.D解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin θ cos θ=21. (sin θ+cos θ)2=1+2sin θcos θ=2.sin θ+cos θ=±2.5.B解析:由 得25cos 2 x -5cos x -12=0.解得cos x =54或-53. 又 0≤x <π,∴ sin x >0.若cos x =54,则sin x +cos x ≠51, ∴ cos x =-53,sin x =54,∴ tan x =-34. 6.D解析:若 α,β 是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β 的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合. ⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x (第6题`)8.B解析:∵ cos (α+β)=1,∴ α+β=2k π,k ∈Z .∴ β=2k π-α.∴ sin β=sin (2k π-α)=sin (-α)=-sin α=-31. 9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象. 二、填空题11.415. 解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan 3π=415. 12.-2.解析:由sin α=552,2π≤α≤π⇒cos α=-55,所以tan α=-2. 13.53. 解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos α=53,∴ sin ⎪⎭⎫ ⎝⎛α - 2π=cos α=53. 14.21. 解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数 y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ), ω=6k +21,又ω>0,所以当k =0时,ωmin =21. 15.⎥⎦⎤⎢⎣⎡221 ,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sinsin cos ≥sin cos即 f (x )等价于min {sin x ,cos x },如图可知,f (x )max =f ⎪⎭⎫ ⎝⎛4π=22,f (x )min =f (π) =-1.16.①③. 解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx =4cos ⎪⎭⎫ ⎝⎛+-6π2x =4cos ⎪⎭⎫ ⎝⎛-6π2x . ② T =22π=π,最小正周期为π. ③ 令 2x +3π=k π,则当 k =0时,x =-6π, ∴ 函数f (x )关于点⎪⎭⎫ ⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾. ∴ ①③正确.三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }. 解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2① >0 sin x x 先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线.由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π]. 二者的公共部分为x ∈⎥⎦⎤ ⎝⎛4π0,. 所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. (第15题)(第17题)18.(1)-1;(2) ±α cos 2. 解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1. (2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=αcos 2. ②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2. 19.对称中心坐标为⎪⎭⎫ ⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z ,∴ 令2x -6π=k π,得x =2πk +12π. ∴ 所求的对称中心坐标为⎪⎭⎫ ⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π, ∴ 令2x -6π=k π+2π,得x =2πk +3π. ∴ 所求的对称轴方程为x =2πk +3π (k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ; (2)0.解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0,∴ k (cos x -1)≥0,又 sin 2 x ≥0,∴ 当 cos x =1,即x =2k π(k ∈Z )时,f (x )=sin 2 x +k (cos x -1)有最小值f (x )min =0.。

三角函数经典练习题(含详细答案)

三角函数经典练习题(含详细答案)

三角函数典型例题(含详解答案)一、选择题1.函数)y x ωϕ=+其中(0,0π)ωϕ><<,的图象的一部分如图所示,则( )A. π3π,84ωϕ== B. ππ,84ωϕ== C. ππ,42ωϕ== D. π3π,44ωϕ==2.+( ) A.1sin 2 B.1cos 2C.112sin cos 22- D.112cos sin 22-3.若sin 2α=,sin()βα-=,且π,π4α⎡⎤∈⎢⎥⎣⎦,3ππ,2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π44.已知1tan 2α=-求2212sin cos sin cos αααα+-的值是( ) A.13 B.3 C.13- D.-35.已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位B.向右平移π12个长度单位C .向左平移π6个长度单位 D.向左平移π12个长度单位 二、填空题6.计算:1tan151tan15+-= ___________. 三、解答题7.已知π0,cos sin 2ααα<<-=,求1tan cos2cos21ααα--+的值. 8.已知函数21()1sin 2sin sin tan 44f x x x x x ππ⎛⎫⎛⎫⎛⎫=+-+⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (1)若tan 2α=,求()f α;(2)若,122x ππ⎡⎤∈⎢⎥⎣⎦,求()f x 的值域.9.已知函数2π()sin()sin 2f x x x x =-. (I )求()f x 的最小正周期和最大值;(II )讨论()f x 在π2π[,]63上的单调性. 10.已知ABC △内角,,A B C 的对边分别为,,,a b c 向量(cos ,2),(2,1)m A a b n c =-=,且m n ⊥.(1).求角C ;(2).若2c =,ABC △ 求ABC △的周长.参考答案一、选择题1.答案:B解析:如图根据函数的图象可得:函数的周期为()62416-⨯=,又∵0ω>, ∴2ππ8T ω==,当2x =时取最大值,即π28ϕ⎛⎫⨯+= ⎪⎝⎭可得:ππ22π,Z 82k k ϕ⨯+=+∈, ∴π2π,Z 4k k ϕ=+∈, ∵0<πϕ<, ∴π4ϕ=, 故选:B .先利用图象中求得函数的周期,求得ω,最后根据2x =时取最大值,求得ϕ,即可得解.本题主要考查了由()sin()f x A x ωϕ=+的部分图象确定其解析式,考查了学生基础知识的运用和图象观察能力,属于基本知识的考查.2.答案:B解析:原式1111cos sin sin cos 2222=-+=. 3.答案:A解析:因为π,π4α⎡⎤∈⎢⎥⎣⎦,所以π2,2π2α⎡⎤∈⎢⎥⎣⎦.又sin 2α=,故π2,π2α⎡⎤∈⎢⎥⎣⎦,所以ππ,42α⎡⎤∈⎢⎥⎣⎦,所以cos 2α=.又3ππ,2β⎡⎤∈⎢⎥⎣⎦,所以π5π,24βα⎡⎤-∈⎢⎥⎣⎦,且5π,2π4αβ⎡⎤+∈⎢⎥⎣⎦,于是cos()βα-=所以cos()cos[2()]αβαβα+=+-cos2cos()sin 2sin()αβααβα=---⎛== ⎝⎭,故7π4αβ+=. 4.答案:C解析:5.答案:A解析:二、填空题6.解析:三、解答题7.答案:1tan cos2cos21ααα--+ 2cos sin cos (sin 22sin )ααααα-=+ cos sin sin 2(cos sin )ααααα-=+由cos sin αα-=两边平方得4sin 25α=, 29(cos sin )1sin 25ααα+=+= 而π02α<<,cos sin αα∴+=,故原式512== 解析:8.答案:(1)由题意,知2()sin sin cos cos 2f x x x x x =++ 1cos2111sin 2cos2(sin 2cos2)2222x x x x x -=++=++. 有tan 2α=,得2222sin cos 2tan 4sin 2sin cos tan 15ααααααα===++, 222222cos sin 1tan 3cos2sin cos tan 15ααααααα--===-++, 所以14313()25525f α⎛⎫=-+= ⎪⎝⎭. (2)由(1),得111()(sin 2cos 2)22242f x x x x π⎛⎫=++=++ ⎪⎝⎭.由,122x ππ⎡⎤∈⎢⎥⎣⎦,得552,4124x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x ⎡⎤π⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦.从而()f x 的值域为⎡⎢⎣⎦. 解析:9.答案:(Ⅰ)函数2π()sin()sin 2f x x x x =-cos sin cos2)x x x =+1sin 22x x =πsin(2)2x =-故函数的周期为2ππ2=,最大值为1- (Ⅱ)当π2π[,]63x ∈时,π2[0,π]3x -∈, 故当ππ0232x ≤-≤时,即π5π[,]612x ∈时,()f x 为增函数; 当ππ2π23x ≤-≤时,即5π2π[,]123x ∈时,()f x 为减函数. 解析:10.答案:(1).由m n ⊥得2cos 2c A b a =-, 由正弦定理2sin 2sin cos 2sin sin CcsoA A C C A =+-,2sin cos sin A C A ∴= 在ABC △中,0πA <<,sin 0A ≠,1cos 2C ∴=,0πC <<,π3C ∴=. (2).4ab = 由余弦定理,22π42cos 3a b ab ab +-==,2()43a b ab ∴+-=,从而4a b += 2a b ==,周长为6解析:。

2010年高考数学试题分类汇编——三角函数填空

2010年高考数学试题分类汇编——三角函数填空

2010年高考数学试题分类汇编——三角函数(2010浙江理数)(11)函数2()sin(2)4f x x x π=--的最小正周期是__________________ .解析:()242sin 22-⎪⎭⎫⎝⎛+=πx x f 故最小正周期为π,本题主要考察了三角恒等变换及相关公式,属中档题(2010全国卷2理数)(13)已知a 是第二象限的角,4tan(2)3a π+=-,则tan a = . 【答案】12-【命题意图】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生的计算能力. 【解析】由4tan(2)3a π+=-得4tan 23a =-,又22t a n 4t a n 21t a n 3a αα==--,解得1tan tan 22αα=-=或,又a 是第二象限的角,所以1tan 2α=-.(2010全国卷2文数)(13)已知α是第二象限的角,tan α=1/2,则cos α=__________【解析】5-:本题考查了同角三角函数的基础知识 ∵1tan 2α=-,∴cos α=(2010重庆文数)(15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311coscossin sin3333αααααα++-=____________ . 解析:232312311coscossinsincos33333ααααααααα++++-=又1232αααπ++=,所以1231cos 32ααα++=-(2010浙江文数)(12)函数2()sin (2)4f x x π=-的最小正周期是 。

答案:2π(2010山东文数)(15) 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +则角A 的大小为 . 答案:(2010北京文数)(10)在ABC ∆中。

三角函数公式(填空)

三角函数公式(填空)

三角函数公式1.锐角三角函数公式sin α=;cos α=;tan α=;cot α=4.同角三角函数的基本关系式倒数关系: tanα ·cotα=;商的关系:tan a=;平方关系:sin2α+cos2α=5.诱导公式:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= ;cos(2kπ+α)=tan(kπ+α)= ;cot(kπ+α)=公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= ;cos(π+α)=tan(π+α)= ;cot(π+α)=公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)= ;cos (-α)= tan (-α)= ;cot (-α)= 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= ;cos (π-α)= tan (π-α)= ;cot (π-α)= 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= ;cos (2π-α)= tan (2π-α)= ;cot (2π-α)= 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系: sin (π/2+α)= ; cos (π/2+α)= tan (π/2+α)= ; cot (π/2+α)= sin (π/2-α)= ; cos (π/2-α)= tan (π/2-α)= ; cot (π/2-α)= sin (3π/2+α)= ;cos (3π/2+α)= tan (3π/2+α)= ;cot (3π/2+α)= sin (3π/2-α)= ; cos (3π/2-α)=tan (3π/2-α)= ; cot (3π/2-α)=6.和角公式:sin(A+B) = ; sin(A-B) =cos(A+B) = ; cos(A-B) =()tan A B += ; ()t a n A B-=7.倍角公式Sin2A= ; Cos2A= = =tan2A =8.半角公式22a sin = 22a c o s =9.化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。

三角函数练习题附答案

三角函数练习题附答案

三角函数练习题附答案一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________3.已知三棱锥P ABC -中,23APB ∠=π,3PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为_________.4.已知单位向量1e ,2e 与非零向量a 满足12322e e +≤()120a e e ⋅-≤,则()1232a e e a⋅+的最大值是______.5.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =BD 长度的最大值为______.6.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.7.在ABC 中,AB BC ≠,O 为ABC 的外心,且有23AB BC AC +=,sin (cos 3)cos sin 0C A A A +=,若AO x AB y AC =+,,x y R ∈,则2x y -=________.8.在角1θ,2θ,3θ,…,29θ的终边上分别有一点1P ,2P ,3P ,…,29P ,如果点k P 的坐标为()()()sin 15,sin 75k k-+,129k ≤≤,k ∈N ,则12329cos cos cos cos θθθθ+++⋅⋅⋅+=______9.关于函数()()33cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).10.已知O 为△ABC 外接圆的圆心,D 为BC 边的中点,且4BC =,6AO AD ⋅=,则△ABC 面积的最大值为___________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .3⎡⎫⎪⎢⎪⎣⎭B .3⎛ ⎝⎦C .122⎛ ⎝⎦D .2⎡⎫⎪⎢⎪⎣⎭13.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭14.已知ABC 的内角分别为,,A B C ,23cos 1sin 26A A =-,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1215.设函数()211f x x =-,()122x f e x --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( ) A .123I I I << B .321I I I << C .132I I I << D .213I I I <<16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A .132B .2C .31+D .2317.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C 151-D 51-18.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( ) A .6B .62C .12D .12219.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( )A .11[,]52B .21[,]52C .14[,]55D .24[,]5520.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.22.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间. 23.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.24.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间;(2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?26.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.27.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.28.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S . 29.已知函数2133()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.982.473.28π 4535616.32⎝⎭7.4333-8.09.②③10.2二、单选题 11.A 12.A 13.A 14.A 15.D 16.C 17.A 18.C19.B 20.C 三、解答题21.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+ ⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222xx x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.23.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tanα.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ 在△OPQ 中,OQOP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ.由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π.故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f ′(θ)令f ′(θ)=0,得sinθθ0满足0sin θ则0cos θ=,即()02f θ===列表如下:由(1)可知tanα=f (θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭, tanα单调递增则当tanα取最大值2时,α也取得最大值. 故游客在观赏亭P 处的观赏效果最佳时,sinθ 【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 24.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1. 【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果. 【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+,所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π=当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题. 25.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题26.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin 64sin cos S θθθθ=-+ ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅,即222m n mn =++.所以22222()3()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8153)+. 答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8153)m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()838sin 64sin cos 3f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.27.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值. 【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.28.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==, 所以集合3{2S =-,0,3}2. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 29.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】 【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间.(2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案. 【详解】解:(1)函数2133()sin 24f x x x =131cos 23sin 242x x +=131sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭ 故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦ (2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,则2()(1)n f x m +-⋅的最小值大于零. 当n 为偶数时,10m -+>,所以,1m 当n 为奇数时,10m -->,所以,1m <- 综上所述,m 的范围为∅. 【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力. 30.(Ⅰ)3π(Ⅱ)5 【解析】 【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析: 解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-= ∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。

三角函数试题及答案

三角函数试题及答案

三角函数试题及答案本文将针对三角函数进行试题及答案的探讨,通过一系列问题来帮助读者深入理解与掌握三角函数的相关知识。

以下是一些试题及相应的答案。

I. 选择题1. 以下哪个是三角函数的定义?A. sin(x) = a/c, cos(x) = b/cB. sin(x) = b/c, cos(x) = a/cC. sin(x) = a/b, cos(x) = c/bD. sin(x) = c/a, cos(x) = b/a答案:B2. sin(π/2) 的值是多少?A. 0B. 1C. -1D. 无定义答案:B3. 以下哪个等式成立?A. sin(x) = cos(x)B. sin(x) = tan(x)C. cos(x) = tan(x)D. sin^2(x) + cos^2(x) = 1答案:DII. 填空题1. sin(0) =答案:02. cos(π/3) =答案:1/23. tan(π/4) =答案:1III. 解答题1. 求解方程 sin(x) = 1/2 的所有解。

解答:根据三角函数的定义,当 sin(x) = 1/2 时,可以得到x = π/6 + 2kπ 或x = 5π/6 + 2kπ,其中 k 是整数。

2. 求解方程 tan(x) + 1 = 0 的所有解。

解答:将 tan(x) + 1 = 0 移项得 tan(x) = -1。

在单位圆上,我们知道tan(x) 的值等于对应点的 y 坐标除以 x 坐标。

因此,我们可以找到tan(x) = -1 对应的两个点,它们是 (-√2/2, -1/2) 和(√2/2, 1/2)。

根据三角函数的性质,我们可以得到 x = -3π/4 + kπ 或x = π/4 + kπ,其中 k 是整数。

通过以上试题和答案,相信读者能够更好地理解和掌握三角函数的相关知识。

不断练习三角函数的运用和求解,将有助于读者在数学学习中取得更好的成绩。

希望本文能为读者提供帮助。

三角函数习题及答案

三角函数习题及答案

任意角的三角函数一、选择题:1.使得函数有意义的角在()(A)第一,四象限(B)第一,三象限(C)第一、二象限(D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ(B)α-β=2κπ(C)α+β=2κπ-π(D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A)(B)(C)(D)4.若,则θ只可能是()(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角5.若且,则θ的终边在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限二、填空题:6.已知α是第二象限角且则2α是第▁▁▁▁象限角,是第▁▁▁象限角。

7.已知锐角α终边上一点A的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设则Y的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线上,求sinα及cot的值。

11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sinβ=0。

12.已知,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。

同角三角函数的基本关系式及诱导公式一、选择题:1.化简结果是()(A)0 (B)(C)22.若,且,则的值为()或3. 已知,且,则的值为()4. 已知,并且是第一象限角,则的值是()5. 化简的结果是()6. 若且,则角所在的象限是()(A)一、二象限(B)二、三象限(C)一、三象限(D)一、四象限填空题:7.化简▁▁▁▁▁▁。

8.已知,则的值为▁▁▁▁▁▁。

9.=▁▁▁▁▁。

10.若关于的方程的两根是直角三角形两锐角的正弦值,则▁▁▁▁。

解答题:11.已知:,求的值。

12.已知,求证:13.已知,且,求的值。

14.若化简:两角和与差的三角函数1.“”是“”的()(A)充分必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件2.已知且为锐角,则为()或非以上答案3.设则下列各式正确的是()4.已知,且则的值是()二、填空题:5.已知则的值为6.已知且则7.已知则8.在中,是方程的两根,则三、解答题:9.求值。

高考数学三角函数选择填空专题练习(含答案)

高考数学三角函数选择填空专题练习(含答案)

高考数学三角函数选择填空专题练习一、选择题1.为了得到函数sin 2y x =的图象,只需把函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移π12个单位长度 B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向右平移π6个单位长度 2.若3tan 4x =,则ππtan tan 2424x x ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭( ) A .2- B .2 C .32 D .32-3.已知函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为πB .()f x 的图象关于直线8π3x =对称 C .()f x 的一个零点为π6 D .()f x 在区间π03⎛⎫⎪⎝⎭,上单调递减4.函数()()π2sin 03f x x ωω⎛⎫=+> ⎪⎝⎭的图象在[]0,1上恰有两个最大值点,则ω的取值范围为( )A .[]2π,4πB .9π2π,2⎡⎫⎪⎢⎣⎭C .13π25π,66⎡⎫⎪⎢⎣⎭ D .25π2π,6⎡⎫⎪⎢⎣⎭5.已知函数()()πsin 0,0,2f x A x A ωϕϕω⎛⎫=+>>< ⎪⎝⎭为π2,且()f x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称,则下列判断正确的是( )A .要得到函数()f x 的图象,只需将2y x =的图象向右平移π6个单位 B .函数()f x 的图象关于直线5π12x =对称C .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为D .函数()f x 在ππ,63⎡⎤⎢⎥⎣⎦上单调递增6.函数()πsin sin 3f x x x ⎛⎫=++ ⎪⎝⎭的最大值为( )A B .2C .D .47.已知函数()cos sin f x x x =-在[],a a -上是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π8.已知A 是函数()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值,若存在实数1x ,2x 使得对任意实数x总有()()()12f x f x f x ≤≤成立,则12A x x ⋅-的最小值为( ) A .π2018B .π1009C .2π1009D .π40369.如图,己知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象关于点()2,0M 对称,且()f x 的图象上相邻的最高点与最低点之间的距离为4,将()f x 的图象向右平移13个单位长度,得到函数()g x 的图象;则下列是()g x 的单调递增区间的为( )A .713,33⎡⎤⎢⎥⎣⎦B .410,33⎡⎤⎢⎥⎣⎦C .17,33⎡⎤⎢⎥⎣⎦D .1016,33⎡⎤⎢⎥⎣⎦10.已知函数()2sin 22sin f x x x =-,给出下列四个结论( )①函数()f x 的最小正周期是π;②函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数;③函数()f x 图像关于π,08⎛⎫- ⎪⎝⎭对称;④函数()f x 的图像可由函数2y x =的图像向右平移π8个单位,再向下平移1个单位得到. 其中正确结论的个数是( ) A .1B .2C .3D .411.已知()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)()()12''0f x f x ==,12x x -的最小值为π2,()π3f x f x ⎛⎫=- ⎪⎝⎭,将()f x 的图像向左平移π6个单位得()g x ,则()g x 的单调递减区间是( )A .ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈ZB .π2πππ63k k ⎡⎤++⎢⎥⎣⎦,,()k ∈ZC .π5ππ,π36k k ⎡⎤++⎢⎥⎣⎦,()k ∈ZD .π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,()k ∈Z12.已知函数()sin sin3f x x x =-,[]0,2πx ∈,则()f x 的所有零点之和等于( ) A .8π B .7π C .6π D .5π二、填空题13.已知α为第一象限角,sin cos αα-=,则()cos 2019π2α-=__________. 14.已知tan 2α=,则2cos sin2αα+=__________.15.已知πtan 26α⎛⎫-= ⎪⎝⎭,π7π,66α⎡⎤∈⎢⎥⎣⎦,则2sin cos 222ααα=_____.16.已知函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =,且当π6x =-时,()f x 取得最大值,则当ω取最小值时,下列说法正确的是___________.(填写所有正确说法的序号) ①23ω=;②()01f =-; ③当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 单调递减;④函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称.参考答案 1.【答案】B【解析】ππsin 2sin 2126y x x ⎡⎤⎛⎫==-+⎪⎢⎥⎝⎭⎣⎦,故应向右平移π12个单位长度.故选B . 2.【答案】C【解析】因为2tan1tan 14tanππ3222tan tan 2tan 242421tan 1tan 1tan 222x x xx x x x x x+-⎛⎫⎛⎫++-=+=== ⎪ ⎪⎝⎭⎝⎭-+-, 故选C . 3.【答案】B【解析】函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,周期为2ππ2T ==,故A 正确;函数图像的对称轴为2ππ2π32x k +=+,ππ122k k x ∈⇒=-+Z ,k ∈Z ,8π3x =不是对称轴,故B 不正确; 函数的零点为2π2π3x k +=,ππ32k k x ∈⇒=-+Z ,k ∈Z ,当1k =时,得到一个零点为π6,故C 正确; 函数的单调递减区间为2ππ3π2π,π322x k k ⎛⎫+∈++ ⎪⎝⎭,k ∈Z ,解得x 的范围为ππ5π,π122122k k ⎛⎫-++ ⎪⎝⎭,k ∈Z ,区间π0,3⎛⎫⎪⎝⎭是其中的一个子区间,故D 正确.故答案为B .4.【答案】C 【解析】由题意得π5π32ω+≥,π9π32ω+<,13π25π66ω∴≤<,故选C . 5.【答案】A【解析】因为()f xA =,又图象相邻两条对称轴之间的距离为π2,故π22T =, 即2ω=,所以()()2f x x ϕ=+, 令π12x =-,则ππ6k ϕ-+=即ππ6k ϕ=+,k ∈Z , 因π2ϕ<,故π6ϕ=,()π26f x x ⎛⎫=+ ⎪⎝⎭.πππ22266y x x x ⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故向右平移π6个单位后可以得到()π26f x x ⎛⎫+ ⎪⎝⎭,故A 正确;5π5ππ01266f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故函数图像的对称中心为5π,012⎛⎫⎪⎝⎭,故B 错; 当ππ66x -≤≤时,πππ2662x -≤+≤,故()min f x =,故C 错; 当ππ63x ≤≤时,ππ5π2266x ≤+≤,()π26f x x ⎛⎫=+ ⎪⎝⎭在ππ,63⎡⎤⎢⎥⎣⎦为减函数,故D 错. 综上,故选A . 6.【答案】A【解析】函数()π1sin sin sin sin 32f x x x x x x ⎛⎫=++=++ ⎪⎝⎭31πsin cos 226x x x x x ⎫⎛⎫=+=+=+≤⎪ ⎪⎪⎝⎭⎭A . 7.【答案】A【解析】()'sin cos f x x x =--,由题设,有()'0f x ≤在[],a a -上恒成立,π04x ⎛⎫+≥ ⎪⎝⎭,故3ππ2π2π44k x k -≤≤+,k ∈Z .所以3π2π4π2π4k a a k -≤-⎧⎪≤⎨+⎪⎪⎪⎩,因0a >,故0k =即π04a <≤,a 的最大值为π4,故选A .8.【答案】B 【解析】()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭112018cos2018cos2018201822x x x x =++π2018cos 20182sin 20186x x x ⎛⎫=+=+ ⎪⎝⎭,()max 2A f x ∴==,周期2ππ20181009T ==, 又存在实数1x ,2x ,对任意实数x 总有()()()12f x f x f x ≤≤成立,()()2max 2f x f x ∴==,()()1min 2f x f x ==-,12A x x ⋅-的最小值为1π21009A T ⨯=,故选B .9.【答案】D【解析】由图象可知A =()f x 的图象上相邻的最高点与最低点之间的距离为4, 所以(22242T ⎛⎫+= ⎪⎝⎭,解得4T =,即2π4w =,即π2w =,则()π2f x x ϕ⎛⎫=+ ⎪⎝⎭,因为函数()f x 关于点()2,0M 对称,即()20f =π202ϕϕ⎛⎫⨯+= ⎪⎝⎭,解得0ϕ=,所以()π2f x x ⎛⎫= ⎪⎝⎭,将()f x 的图象向右平移13个单位长度,得到()g x 的图象,即()π1ππ2326g x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由ππππ2π2π2262k x k -+≤-≤+,k ∈Z ,得244433k x k -+≤≤+,k ∈Z ,当1k =时,101633x ≤≤,即函数的单调增区间为1016,33⎡⎤⎢⎥⎣⎦,故选D . 10.【答案】B【解析】()2πsin 22sin sin 2cos21214f x x x x x x ⎛⎫=-=+-+- ⎪⎝⎭∴函数()f x 的最小正周期2ππ2T ==,故①正确 令ππ3π2π22π242k x k +≤+≤+,解得π5πππ88k x k +≤≤+, 当0k =时,()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数,故②正确令π204x +=,解得π8x =-,则()f x 图像关于π,18⎛⎫-- ⎪⎝⎭对称,故③错误 ()π214f x x ⎛⎫+- ⎪⎝⎭,可以由()2f x x =的图象向左平移π8个单位,再向下平移一个单位得到,故④错误,综上,正确的结论有2个,故选B . 11.【答案】A【解析】∵()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)由()()12''0f x f x ==可得,1x ,2x 是函数的极值点, ∵12x x -的最小值为π2,∴1ππ22T ω⋅==,2ω∴=,()()sin 2f x x θ∴=+, 又()π3f x f x ⎛⎫=- ⎪⎝⎭,∴()f x 的图象的对称轴为π6x =,ππ2π62k θ∴⨯+=+,k ∈Z ,令0k =可得π6θ=,()πsin 26f x x ⎛⎫∴=+ ⎪⎝⎭,将()f x 的图象向左平移π6个单位得()ππsin 2cos 266g x x x ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭的图象,令2π22ππk x k ≤≤+,πππ2k x k ∴≤≤+, 则()cos 2g x x =的单调递减区间是ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈Z ,故选A . 12.【答案】B【解析】由已知函数()sin sin3f x x x =-,[]0,2πx ∈,令()0f x =,即sin sin30x x -=,即2sin sin3sin cos2cos sin 2sin cos22sin cos x x x x x x x x x x ==+=+, 即()2sin cos22cos 10x x x +-=,解得sin 0x =或2cos22cos 10x x +-=, 当sin 0x =,[]0,2πx ∈时,0x =或πx =或2πx =;当2cos22cos 10x x +-=时,即222cos 2cos 20x x +-=,解得cos x =, 又由[]0,2πx ∈,解得π4x =或3π4或5π4或7π4, 所以函数()f x 的所有零点之和为π3π5π7π0π2π7π4444++++++=,故选B .13. 【解析】()cos 2019π2cos2αα-=-,因为sin cos αα-=,所以11sin23α-=,2sin23α∴=,因为sin cos 0αα->,α为第一象限角, 所以ππ2π2π42k k α+<<+,k ∈Z ,π4π24ππ2k k α∴+<<+,k ∈Z ,所以cos2α=. 14.【答案】1【解析】tan 2α=,∴原式22222cos 2sin cos 12tan 1221sin cos tan 121ααααααα+++⨯====+++. 故答案为1.15.【解析】原式1ππsin sin cos 236αααα⎛⎫⎛⎫==+=- ⎪ ⎪⎝⎭⎝⎭,因为π7π,66α⎡⎤∈⎢⎥⎣⎦,所以[]π0,π6α-∈,因πtan 26α⎛⎫-= ⎪⎝⎭,所以πcos 6α⎛⎫-= ⎪⎝⎭.16.【答案】①④【解析】函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =, 则ππ2sin 1033f ωϕ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,π1sin 32ωϕ⎛⎫+= ⎪⎝⎭,ππ2π36k ωϕ+=+或()5π2π6k k +∈Z ,()ππ2π62n n ωϕ-+=+∈Z , 两式相减得()243k n ω=-±,又0ω>,则min 23ω=, 此时2π5π2π96k ϕ+=+,k n =,11π2π18k ϕ∴=+, 又πϕ<,则11π18ϕ=,()211π2sin 1318f x x ⎛⎫∴=+- ⎪⎝⎭,当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 先减后增,函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称,()11π02sin1118f =-≠-, 故填①④.。

(完整版)三角函数定义练习含答案

(完整版)三角函数定义练习含答案

课时作业3 三角函数的定义时间:45分钟 满分:100分一、选择题(每小题6分,共计36分)1.下列命题中正确的是( )A .若cos θ<0,则θ是第二或第三象限角B .若α>β,则cos α<cos βC .若sin α=sin β,则α与β是终边相同的角D .若α是第三象限角,则sin αcos α>0且cos αtan α<0解析:α是第三象限角,sin α<0,cos α<0,tan α>0,则sin αcos α>0且cos αtan α<0.答案:D2.若sin θ·cos θ<0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限解析:因为sin θcos θ<0,所以sin θ,cos θ异号.当sin θ>0,cos θ<0时,θ在第二象限;当sin θ<0,cos θ>0时,θ在第四象限.答案:D3.若角α的终边经过点P (35,-45),则sin αtan α的值是( )A.1615 B .-1615C.1516 D .-1516解析:∵r =(35)2+(-45)2=1,∴点P 在单位圆上.∴sin α=-45,tan α=-4535=-43.∴sin αtan α=(-45)·(-43)=1615.答案:A4.若角α终边上一点的坐标为(1,-1),则角α为( )A .2k π+π4,k ∈Z B .2k π-π4,k ∈ZC .k π+π4,k ∈Z D .k π-π4,k ∈Z解析:∵角α过点(1,-1),∴α=2k π-π4,k ∈Z .故选B.答案:B5.已知角α的终边在射线y =-3x (x ≥0)上,则sin αcos α等于() A .-310 B .-1010 C.310 D.1010解析:在α终边上取一点P (1,-3),此时x =1,y =-3. ∴r =1+(-3)2=10. ∴sin α=y r =-310,cos α=x r =110 .∴sin αcos α=-310×110=-310.答案:A6.函数y =sin x +lgcos x tan x的定义域为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π≤x <2k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 2k π<x <2k π+π2,k ∈Z C.{}x | 2k π<x <2k π+π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π-π2<x <2k π+π2,k ∈Z 解析:要使函数有意义,则有⎩⎪⎨⎪⎧ sin x ≥0 ①cos x >0 ②tan x ≠0 ③由①知:x 的终边在x 轴上、y 轴非负半轴上或第一、二象限内.由②知:x 的终边在第一、四象限或x 轴的正半轴.由③知x 的终边不能在坐标轴上.综上所述,x 的终边在第一象限,即函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x <2k π+π2,k ∈Z . 答案:B二、填空题(每小题8分,共计24分)7.用不等号(>,<)填空: (1)sin 4π5·cos 5π4·tan 5π3________0;(2)tan100°sin200°·cos300°________0.解析:(1)∵45π在第二象限,5π4在第三象限,5π3在第四象限,∴sin 4π5>0,cos 5π4<0,tan 5π3<0,∴sin 4π5·cos 5π4·tan 5π3>0.(2)∵100°在第二象限,200°在第三象限,300°在第四象限, ∴tan100°<0,sin200°<0,cos300°>0,∴tan100°sin200°·cos300°>0. 答案:(1)> (2)>8.函数f (x )=cos x 的定义域为__________________.解析:若使f (x )有意义,须满足cos x ≥0,即2k π-π2≤x ≤2k π+π2,k ∈Z ,∴f (x )的定义域为{x |2k π-π2≤x ≤2k π+π2,k ∈Z }.答案:{x |2k π-π2≤x ≤2k π+π2,k ∈Z }9.下列说法正确的有________.(1)正角的正弦值是正的,负角的正弦值是负的,零角的正弦值是零(2)若三角形的两内角α,β满足sin α·cos β<0,则此三角形必为钝角三角形(3)对任意的角α,都有|sin α+cos α|=|sin α|+|cos α|(4)若cos α与tan α同号,则α是第二象限的角解析:对于(1)正角和负角的正弦值都可正、可负,故(1)错.对于(2)∵sin α·cos β<0,又α,β∈(0,π),∴必有sin α>0,cos β<0,即β∈(π2,π),∴三角形必为钝角三角形,故(2)对.对于(3)当sin α,cos α异号时,等式不成立.故(3)错.对于(4)若cos α,tan α同号,α可以是第一象限角,故(4)错.因此填(2).答案:(2)三、解答题(共计40分,其中10题10分,11、12题各15分)10.已知角α的终边上一点P 与点A (-3,2)关于y 轴对称,角β的终边上一点Q 与点A 关于原点对称,求sin α+sin β的值.解:由题意,P (3,2),Q (3,-2),从而sin α=232+22=21313, sin β=-232+(-2)2=-21313,所以sin α+sin β=0.11.求下列函数的定义域.(1)y =cos x +lg(2+x -x 2);(2)y =tan x +cot x .解:(1)依题意有⎩⎨⎧ cos x ≥0,2+x -x 2>0,所以⎩⎪⎨⎪⎧ -π2+2k π≤x ≤π2+2k π(k ∈Z ),-1<x <2.取k =0解不等式组得-1<x ≤π2,故原函数的定义域为⎝ ⎛⎦⎥⎤-1,π2. (2)因为tan x 的定义域为{x |x ∈R ,且x ≠k π+π2,k ∈Z },cot x 的定义域为{x |x ∈R ,且x ≠k π,k ∈Z },所以函数y =tan x +cot x 的定义域为{x |x ∈R ,且x ≠k π+π2,k ∈Z }∪{x |x ∈R ,且x ≠k π,k ∈Z }={x |x ∈R ,且x ≠k π2,k ∈Z }.12.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.解:当角α的终边在第一象限时,在角α的终边上取点P (1,2),设点P 到原点的距离为r .则r =|OP |=12+22=5,所以sin α=25=255,cos α=15=55, tan α=21=2;当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2).则r =|OQ |=(-1)2+(-2)2=5,所以sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2. 综上所得,当α是第一象限角时,sin α=255,cos α=55,tan α=2; 当α是第三象限角时,sin α=-255,cos α=-55,tan α=2.。

三角函数专项练习(含答案)

三角函数专项练习(含答案)

三角函数专项练习(含答案)一、填空题1.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()33f t f t t ⎛⎫⎛⎫≤-- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________2.已知在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且6a =,点O 为其外接圆的圆心.已知·15BO AC =,则当角C 取到最大值时ABC 的面积为______ 3.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论: ①203f π⎛⎫=⎪⎝⎭; ②若5112f π⎛⎫= ⎪⎝⎭,则函数()f x 的最小正周期为π; ③ω的取值范围为(]0,4;④函数()f x 在区间[)0,2π上最多有6个零点. 其中所有正确结论的编号为________.4.已知函数23tan ,,,2332()2,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________.5.已知函数()sin 2sin 23f x x x a π⎛⎫=+++ ⎪⎝⎭同时满足下述性质:①若对于任意的()()()123123,0,,4,x x x f x f x f x π⎡⎤∈+⎢⎥⎣⎦恒成立;②236f a π⎛⎫- ⎪⎝⎭,则a 的值为_________.6.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________. 7.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移4π个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有___________(填序号).①()2sin 23g x x π⎛⎫=- ⎪⎝⎭;②方程()()360,2f x g x x π⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为712π;③函数()y f x =与函数()y g x =图象关于724x π=对称. 8.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.9.已知||||||1,0,||1OA OB OC OA OB OP ===⋅=≤,则AP BP BP CP CP AP ⋅+⋅+⋅的最大值为__________.10.△ABC 内接于半径为2的圆,三个内角A ,B ,C 的平分线延长后分别交此圆于1A ,1B ,1C .则111coscos cos 222sin sin sin A B C AA BB CC A B C++++的值为_____________.二、单选题11.已知()1,0A -,()3,0B ,P 是圆22:45O x y +=上的一个动点,则sin APB ∠的最大值为( ) A 3B 5C 3D 512.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A .3,32⎛⎤⎥ ⎝⎦B .3,32⎛⎤⎥⎝⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,32⎡⎤⎢⎥⎣⎦13.如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==,1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13D .314.设函数()211f x x =-,()122x f ex --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( ) A .123I I I << B .321I I I << C .132I I I <<D .213I I I <<15.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则91()()44t t --( ) A .1B 277C 1693D .9816.在棱长为2的正方体1111ABCD A B C D -中,N 为BC 的中点.当点M 在平面11DCC D 内运动时,有//MN 平面1A BD ,则线段MN 的最小值为( ) A .1B 6C 2D 317.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+>18.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5519.设函数()3sinxf x mπ=,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞20.△ABC 中,BD 是AC 边上的高,A=4π,cosB=-55,则BD AC =( )A .14B .12C .23D .34三、解答题21.(1)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,R 表示ABC ∆的外接圆半径. ①如图,在以O 圆心、半径为2的圆O 中,BC 和BA 是圆O 的弦,其中2BC =,45ABC ∠=︒,求弦AB 的长;②在ABC ∆中,若C ∠是钝角,求证:2224a b R +<;(2)给定三个正实数a 、b 、R ,其中b a ≤,问:a 、b 、R 满足怎样的关系时,以a 、b 为边长,R 为外接圆半径的ABC ∆不存在、存在一个或存在两个(全等的三角形算作同一个)?在ABC ∆存在的情况下,用a 、b 、R 表示c .22.在直角ABC ∆中,2BAC π∠=,延长CB 至点D ,使得2CB BD =,连接AD .(1)若AC AD =,求CAD ∠的值; (2)求角D 的最大值.23.已知向量(1,0)a =,(sin 2,1)b x =--,(2sin ,1)c x =+,(1,)d k =(,)x k R ∈. (1)若[,]x ππ∈-,且()//a b c +,求x 的值; (2)对于()11,m x y =,()22,n x y =,定义12211(,)2S m n x y x y =-.解不等式1(,)2S b c >; (3)若存在x ∈R ,使得()()a b c d +⊥+,求k 的取值范围. 24.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.25.已知函数()cos s co )f x x x x =-. (1)求()f x 的最小正周期及对称中心;(2)若将函数()y f x =的图象向左平移m 个单位所得图象关于y 轴对称,求m 的最小正值.26.已知函数()2212cos f x x x +-. (1)求()f x 的对称轴; (2)将()f x 的图象向左平移12π个单位后得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.27.已知函数()sin 2coscos 2sin33f x x x ππ=+.(1)若对任意,63x ππ⎡⎤∈⎢⎥⎣⎦,都有4f x m π⎛⎫- ⎪⎝⎭成立,求实数m 的取值范围;(2)设函数()1226g x f x π⎛⎫=- ⎪⎝⎭()g x 在区间[],3ππ-内的所有零点之和.28.已知函数22()cos sin sin cos 3f x a x a x x x =-+-,其中a R ∈. (Ⅰ)当1a =时,求函数()f x 的对称中心;(Ⅱ)若函数()f x 的最小值为4-,求实数a 的值. 29.函数()()sin tan f x x ω=,其中0ω≠. (1)讨论()f x 的奇偶性;(2)1ω=时,求证:()f x 的最小正周期是π;(3)()1.50,1.57ω∈,当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,求满足条件的ω的个数,说明理由.30.函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的部分图象如图所示,把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x 的图像.(1)当17,424x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域(2)令()=()3F x f x -,若对任意x 都有2()(2)()20F x m F x m -+++≤恒成立,求m 的最大值【参考答案】一、填空题1.π6∞⎛⎤- ⎥⎝⎦, 2.353.①②④4.47,912ππ⎧⎫⎨⎬⎩⎭ 5.06107.①③8735+ 9.5+3210.4二、单选题11.D 12.A 13.B 14.D 15.B 16.B 17.A 18.B 19.C 20.A 三、解答题21.(1)②证明见解析,(2)见解析. 【解析】 【分析】(1)①由正弦定理知2sin sin sin AB b aR C B A===,根据题目中所给的条件可求出AB 的长; ②若C ∠是钝角,则其余弦值小于零,由余弦定理得2222(2)a b c R +<<,即可证出结果;(2)根据图形进行分类讨论判断三角形的形状与两边,a b 的关系,以及与直径的大小的比较,分三类讨论即可. 【详解】(1)①解:因为1sin 22a A R ==,角A 为锐角,所以30A =︒ 因为45ABC ∠=︒,所以105C =︒由正弦定理得,2sin1054sin 75AB R =︒=︒②证明:因为C ∠是钝角,所以cos 0C <,且cos 1C ≠-所以222cos 02a b c C ab +-=<,所以2222(2)a b c R +<<, 即2224a b R +<(2)当2a R >或2a b R ==时,ABC ∆不存在当2a R b a =⎧⎨<⎩时,90A =︒,ABC ∆存在且只有一个所以c =当2a R b a<⎧⎨=⎩时,A B ∠=∠且都是锐角,sin sin 2a A B R ==时,ABC ∆存在且只有一个所以2sin c R C ==当2b a R <<时,B 总是锐角,A ∠可以是钝角,可以是锐角 所以ABC ∆存在两个当90A ∠<︒时,c =当90A ∠>︒时, c =【点睛】此题考查三角形中的几何计算,综合考查了三角形形状的判断然,三角形的外接圆等知识,综合性强,属于难题. 22.(1)23CAD π∠=;(2)6π.【解析】 【分析】(1)在ABD ∆中,由正弦定理得,sin sin BD ABDα=,再结合在直角ABC ∆中,sin AB BC C =,然后求解即可;(2)由正弦定理及两角和的余弦可得()2tan tan cos 2sin 22D D αααϕ=+=+,然后结合三角函数的有界性求解即可. 【详解】解:(1)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,sin AB BC C =,所以sin sin sin BD BC CDα=, 因为AC AD =,所以C D =, 又因为2CB BD =,所以1sin 2α=,所以6πα=,所以23CAD π∠=;(2)设BAD ∠=α, 在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,()cos cos AB BC ABC BC D α=∠=+, 所以()()cos cos cos sin sin sin sin sin BC D BC D D BD D Dαααα+-==, 因为2CB BD =,所以2sin 2sin cos cos 2sin sin D D D ααα=-, 即22sin cos sin 2tan 12sin 2cos 2D ααααα==+-,即()2tan tan cos 2sin 22D D αααϕ=++,1≤及0,2D π⎛⎫∈ ⎪⎝⎭,解得0tan D <≤ 所以角D 的最大值为6π. 【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题. 23.(1)6π-或56π-(2)5,,66x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭(3)[]5,1k ∈--【解析】 【分析】(1)由题()sin 1,1a b x +=--,由()//a b c +可得()sin 12sin x x -=-+,进而求解即可; (2)由题意得到()()()1,sin 22sin sin 2S b c x x x =-++=,进而求解即可; (3)由()()a b c d +⊥+可得()()0a b c d +⋅+=,整理可得k 关于x 的函数,进而求解即可 【详解】(1)由题,()sin 1,1a b x +=--,因为()//a b c +,所以()sin 12sin x x -=-+,则1sin 2x =-,因为[,]x ππ∈-,所以6x π=-或65x π=-(2)由题,()()()1,sin 22sin sin 2S b c x x x =-++=, 因为1(,)2S b c >,所以1sin 2x >, 当[]0,x π∈时,566x ππ<<, 因为sin y x =是以π为最小正周期的周期函数, 所以5,,66x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭(3)由(1)()sin 1,1a b x +=--,由题,()3sin ,1c d x k +=++, 若()()a b c d +⊥+,则()()()()()sin 13sin 10a b c d x x k +⋅+=-+-+=, 则()22sin 2sin 4sin 15k x x x =+-=+-, 因为[]sin 1,1x ∈-,所以[]5,1k ∈-- 【点睛】本题考查共线向量的坐标表示,考查垂直向量的坐标表示,考查解三角函数的不等式24.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max 2f x =,()min 12f x =- 【解析】【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+()24f x x π⎛⎫∴=+ ⎪⎝⎭ 令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()224f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型. 25.(1)π,1,()2122k k Z ππ⎛⎫+-∈⎪⎝⎭;(2)3π 【解析】 【分析】(1)直接利用三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步求出函数的周期和对称中心.(2)利用(1)的关系式,利用整体思想的应用对函数的关系式进行平移变换和对称性的应用求出最小值. 【详解】(1)因为2()cos cos )cos cos f x x x x x x x =-=-1cos 212sin 2262x x x π+⎛⎫=-=-- ⎪⎝⎭, 所以最小正周期为22T ππ==, 由正弦函数的对称中心知26x k ππ-=,解得212k x ππ=+,k Z ∈, 所以对称中心为1,()2122k k Z ππ⎛⎫+-∈ ⎪⎝⎭; (2)()y f x =的图象向左平移m 个单位所得解析式是1sin 2262y x m π⎛⎫=+-- ⎪⎝⎭, 因为其图象关于y 轴对称, 所以262m k πππ-=+,k Z ∈, 解得23k m ππ=+,k Z ∈, 所以m 的最小正值是3π. 【点睛】 本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.26.(1)23k x ππ=+(k Z ∈)(2)[]0,2 【解析】(1)利用三角恒等变换,化简函数解析式为标准型,再求对称轴;(2)先求平移后的函数解析式,再求值域.【详解】(1)()222cos 1f x x x =-+2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭ 令:262x k πππ-=+,得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+(k Z ∈). (2)将()f x 的图象向左平移12π个单位后得到函数()g x ,所以()12g x f x π⎛⎫=+ ⎪⎝⎭2sin 22sin 2126x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦当0,3x π⎡⎤∈⎢⎥⎣⎦时,有220,3x π⎡⎤∈⎢⎥⎣⎦, 故[]sin 20,1x ∈, ()g x ∴的值域为[]0,2.【点睛】本题考查利用三角恒等变换化简函数解析式,求解函数性质,同时涉及三角函数图象的平移,以及值域的求解问题.属三角函数综合基础题.27.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)2π 【解析】(1)首先根据两角和的正弦公式得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,从而得到4f x π⎛⎫- ⎪⎝⎭的解析式,根据正弦函数的性质求出其值域,从而得到参数的取值范围;(2)首先求出()g x 的解析式,根据正弦函数的对称性即可解答.【详解】解:(1)因为()sin 2cos cos 2sin 33f x x x ππ=+()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 所以sin 2sin 24436f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 又,63x ππ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 故1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即min 142f x π⎛⎫-= ⎪⎝⎭,12m , 所以实数m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦. (2)由(1)得()1122sin 22sin 26263g x f x x x πππ⎡⎤⎛⎫⎛⎫=-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 令()0g x =,得sin x =sin x =[],3ππ-上有4个零点 这4个零点从小到大不妨设为1x ,2x ,3x ,4x ,则由对称性得1222x x π+=-,34322x x π+=, 从而所有零点和为12342x x x x π+++=.【点睛】本题考查两角和的正弦公式的应用,三角函数的性质的应用,属于基础题. 28.(Ⅰ)(,3),.122k k Z ππ-+-∈(Ⅱ)12a =或12a =- 【解析】(Ⅰ)当1a =时,根据二倍角公式、辅助角公式化简函数,根据正弦函数的性质可得. (Ⅱ)将函数化简为()sin()f x A x b ωϕ=++的形式,分类讨论可得.【详解】解:(Ⅰ)当1a =时,22()cos sin cos 3f x x x x x =-+-cos 2232sin(2)36x x x π=-=+- ()2sin(2)36f x x π∴=+- 由2,6x k k Z ππ+=∈ 得:,122k x k Z ππ=-+∈ ()f x ∴的对称中心为(,3),.122k k Z ππ-+-∈(Ⅱ)22()cos sin sin cos 3f x a x a x x x =-+-()cos 2sin 23f x a x x ∴=-()2sin(2)36f x a x π∴=+- 1sin(2)16x π-≤+≤ 当0a >时,232sin(2)3236a a x a π--≤+-≤- 则有234a --=- 解得12a = 当0a =时,min ()3f x =-,不合题意当0a <时,232sin(2)3236a a x a π-≤+-≤-- 则有234a -=-解得12a =- 综上 12a ∴=或12a =-. 【点睛】本题主要考查三角函数的图象和性质,利用三角公式将函数进行化简是解决本题的关键,要求熟练掌握三角函数的图象和性质,属于中档题.29.(1)奇函数;(2)见解析;(3)ω的个数为198个,见解析.【解析】(1)根据奇偶函数的定义进行判断即可;(2)根据最小正周期公式进行验证即可;(3)利用函数的图象和不等式的性质可以求出满足条件的ω的个数.【详解】(1)()sin[tan()]sin(tan )sin(tan )()f x x x x f x ωωω-=-=-=-=-,所以函数()f x 是奇函数;(2)()sin[tan()]sin(tan )()f x x x f x ππ+=+==,所以()f x 的最小正周期是π;(3)因为当0x >时,()111122g x x x ⎛⎫=+≥⨯ ⎪⎝⎭,(当且仅当1x =时取等号),所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,只能()sin tan 1x ω=,即tan 22k πωπ=+,因为(1.50, 1.57)ω∈,所以2(tan1.50,tan1.57)2k ππ+∈,因此1.99199.6k <<,2,3,4,,199k =⋯,因此满足条件的ω的个数为198个, 当0x >时,也是一样的,因为两个函数是奇函数都关于原点对称,所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,满足条件的ω的个数为198. 【点睛】本题考查了函数奇偶性和周期性,考查了三角奇函数的性质,考查了基本不等式的应用,考查了数学运算能力.30.(1)1,0⎡⎤⎢⎥⎣⎦(2)265- 【解析】【分析】(1)根据图象的最低点求得A 的值,根据四分之一周期求得ω的值,根据点7,112π⎛⎫- ⎪⎝⎭求得ϕ的值,由此求得函数()f x 的解析式,进而根据图象平移变换求得()g x 的解析式,并由此求得17,424x ππ⎡⎤∈⎢⎥⎣⎦时()g x 的值域.(2)先求得()f x 的值域,由此求得()F x 的值域.令()[4,2]t F x =∈--对题目所给不等式换元,根据二次函数的性质列不等式组,解不等式组求得m 的取值范围,由此求得m 的最大值.【详解】(1)根据图象可知171,4123A T ππ==- 2,2,()sin(2)T f x x Tππωϕ∴=∴===+ 代入7,112π⎛⎫- ⎪⎝⎭得,7sin 1,2,63k k Z ππϕϕπ⎛⎫+=-=+∈ ⎪⎝⎭, ||,0,23k ππϕϕ<∴==()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭ 把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x ()sin 21sin 21436g x x x πππ⎛⎫⎛⎫⎛⎫∴=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设26t x π=-,则5,34t ππ⎡⎤∈⎢⎥⎣⎦,此时sin t ⎡⎤∈⎢⎥⎣⎦,所以值域为1,0⎡⎤⎢⎥⎣⎦. (2)由(1)可知()sin 2[1,1]3f x x π⎛⎫=+∈- ⎪⎝⎭ ()()3[4,2]F x f x =-∈--对任意x 都有2()(2)()20F x m F x m -+++≤恒成立令()[4,2]t F x =∈--,2()(2)2h t t m t m =-+++,是关于t 的二次函数,开口向上则max ()0h t ≤恒成立而()h t 的最大值,在4t =-或2t =-时取到最大值则(2)0(4)0h h -≤⎧⎨-≤⎩,4(2)(2)2016(2)(4)20m m m m -+-++≤⎧⎨-+-++≤⎩, 解得103265m m ⎧≤-⎪⎪⎨⎪≤-⎪⎩所以265m ≤-,则m 的最大值为265-. 【点睛】 本小题主要考查由三角函数图像求三角函数的解析式,考查三角函数图像变换,考查不等式恒成立问题,考查化归与转化的数学思想方法,属于中档题.。

三角函数练习题(含答案)

三角函数练习题(含答案)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

三角函数练习题含答案

三角函数练习题含答案

三角函数练习题含答案一、填空题1.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________2.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,23AB =,60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.3.给出下列命题:①若函数()f x 的定义域为[]0,2,则函数(2)f x 的定义域为[]0,4; ②函数()tan f x x =在定义域内单调递增;③若定义在R 上的函数()f x 满足(1)()f x f x +=-,则()f x 是以2为周期的函数;④设常数a ∈R ,函数2log ,04()10,41x x f x x x ⎧<≤⎪=⎨>⎪-⎩若方程()f x a =有三个不相等的实数根1x ,2x ,3x ,且123x x x <<,则312(1)x x x +的值域为[64,)+∞.其中正确命题的序号为_____.4.已知函数()()21sin sin ,22bf x x x a a b R =+-+∈,若对于任意x ∈R ,均有()1f x ≤,则a b +的最大值是___________.5.在ABC 中,记角,,A B C 所对的边分别是,,a b c ,面积为S ,则24Sb ac+的最大值为___________.6.在角1θ,2θ,3θ,…,29θ的终边上分别有一点1P ,2P ,3P ,…,29P ,如果点k P 的坐标为()()()sin 15,sin 75k k-+,129k ≤≤,k ∈N ,则12329cos cos cos cos θθθθ+++⋅⋅⋅+=______7.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移4π个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有___________(填序号).①()2sin 23g x x π⎛⎫=- ⎪⎝⎭;②方程()()360,2f x g x x π⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为712π;③函数()y f x =与函数()y g x =图象关于724x π=对称. 8.已知平面四边形ABCD 的面积为36,4AB =,3AD =,5BC =,6CD =,则cos()A C +=___________.9.已知||||||1,0,||1OA OB OC OA OB OP ===⋅=≤,则AP BP BP CP CP AP ⋅+⋅+⋅的最大值为__________.10.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且222a c b ac +-=,则sin cos A C 的最大值为______.二、单选题11.已知双曲线2221(0)y x b b-=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( ) A .333B .2C .113D .1112.如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==,1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13D .3 13.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( )A .4B .8C .12D .1614.如图,在正方体ABCD EFGH -中,P 在棱BC 上,BP x =,平行于BD 的直线l 在正方形EFGH 内,点E 到直线l 的距离记为d ,记二面角为A l P --为θ,已知初始状态下0x =,0d =,则( )A .当x 增大时,θ先增大后减小B .当x 增大时,θ先减小后增大C .当d 增大时,θ先增大后减小D .当d 增大时,θ先减小后增大15.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-16.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()33f π()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .1417.已知函数()()sin 302f x x πϕϕ⎛⎫=-<≤ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π上单调递增,现有如下三个结论:①ϕ的最小值为3π; ②当ϕ取得最大值时,将函数()f x 的图像向左平移18π个单位后,再把曲线上各点的横坐标伸长到原来的2倍,得到函数()g x 的图像,则132g π⎛⎫= ⎪⎝⎭;③函数()f x 在[]0,2π上有6个零点. 则上述结论正确的个数为( ) A .0B .1C .2D .318.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5519.设锐角ABC ∆的三个内角,,A B C 的对边分别为,,a b c 且1c =,2A C =,则ABC ∆周长的取值范围为( ) A .(0,22)+B .(0,33)+C .(22,33)++D .(22,33]++20.已知1sin ,sin ,sin ,222a x x b x ωωω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,其中0>ω,若函数1()2f x a b =⋅-在区间(,2)ππ内有零点,则实数ω的取值可能是( )A .18B .14C .12D .34三、解答题21.已知向量()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,若函数()12f x a b =⋅+的最小正周期为π. (1)求()f x 的解析式;(2)若关于x 的方程22cos 22cos 23301212a f x x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦在04π⎡⎤⎢⎥⎣⎦,有实数解,求实数a 的取值范围.22.已知1l ,2l ,3l 是同一平面内自上而下的三条不重合的平行直线.(1)如图1,如果1l 与2l 间的距离是1,2l 与3l 间的距离也是1,可以把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,求这个正三角形ABC 的边长.(2)如图2,如果1l 与2l 间的距离是1,2l 与3l 间的距离是2,能否把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,如果能放,求BC 和3l 夹角θ的正切值并求该正三角形边长;如果不能,试说明理由.(3)如果边长为2的正三角形ABC 的三顶点分别在1l ,2l ,3l 上,设1l 与2l 间的距离为1d ,2l 与3l 间的距离为2d ,求12d d ⋅的取值范围.23.如图,甲、乙两个企业的用电负荷量y 关于投产持续时间t (单位:小时)的关系()y f t =均近似地满足函数()sin()(0,0,0)f t A t b A ωϕωϕπ=++>><<.(1)根据图象,求函数()f t 的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟(0)m m >小时投产,求m 的最小值.24.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.25.如图,长方形ABCD 中,2,3AB BC ==,点,,E F G 分别在线段,,AB BC DA (含端点)上,E 为AB 中点,⊥EF EG ,设AEG θ∠=.(1)求角θ的取值范围;(2)求出EFG ∆周长l 关于角θ的函数解析式()f θ,并求EFG ∆周长l 的取值范围. 26.如图,在ABC ∆中,90,3,1ABC AB BC ︒∠===,P 为ABC ∆内一点,90BPC ︒∠=.(1)若3PC =,求PA ; (2)若120APB ︒∠=,求ABP ∆的面积S . 27.已知函数22cos 3sin 2f xxx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值.28.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角ΔABC 和以BC 为直径的半圆拼接而成,点P 为半圈上一点(异于B ,C ),点H 在线段BC 上,且满足CH AB ⊥.已知90ACB ∠=︒,1dm AB =,设ABC θ∠=.(1)为了使工艺礼品达到最佳观赏效果,需满足ABC PCB ∠=∠,且CA CP +达到最大.当θ为何值时,工艺礼品达到最佳观赏效果;(2)为了工艺礼品达到最佳稳定性便于收藏,需满足60PBA ∠=︒,且CH CP +达到最大.当θ为何值时,CH CP +取得最大值,并求该最大值.29.已知函数()sin cos cos 63f x x x x a ππ⎛⎫⎛⎫=-+-++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求常数a 的值;(2)求函数()f x 的单调递增区间; (3)求使()0f x <成立的实数x 的取值集合.30.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.【参考答案】一、填空题1.12(,)369-2.20π3.③④4.1-56.07.①③ 8.710##0.7 9.10.12+二、单选题 11.A 12.B 13.B 14.C 15.C 16.C 17.C 18.B 19.C 20.D 三、解答题21.(1)()sin(2)6f x x π=-;(2)1a 或732a +-.【解析】(1)根据向量数量积的坐标运算及三角公式,化简可得()f x 的解析式; (2)先化简()sin 212f x x π+=,利用换元法,设sin 2cos2t x x =-,把目标方程转化为关于t 的方程,分离参数后进行求解.【详解】 (1)因为()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,所以()2111cos 213sin cos 22222x f x a b x x x x ωωωωω+=⋅+=-+=-+sin(2)6x πω=-.因为()f x 的最小正周期为π,所以22ππω=,即1ω=,所以()sin(2)6f x x π=-. (2)由(1)可知()sin 212f x x π+=.因为2(sin 2cos 2)x x +22sin 22sin 2cos 2cos 2x x x x =++12sin 2cos2x x =+, 222(sin 2cos 2)sin 22sin 2cos 2cos 2x x x x x x -=-+12sin 2cos2x x =-,所以22(sin 2cos2)12sin 2cos211(sin 2cos2)x x x x x x ⎡⎤+=+=+--⎣⎦.令sin 2cos2t x x =-,则22(sin 2cos 2)2x x t +=-,则方程22cos 22cos 23301212a fx x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦可化为()2222330a t t a ---+=,即22230at t a +--=.因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以2,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 2cos 22[1,1]4t x x x π⎛⎫=-=-∈- ⎪⎝⎭.所以由题意可知,方程22230at t a +--=在[1,1]t ∈-时有解; 令2()223g t at t a =+--,当0a =时,()23g t t =-,由()0g t =得32t =(舍);当0a ≠时,则22230at t a +--=可化为212132t a t-=-,令22132t y t-=-,[1,1]t ∈-,设32u t =-,则1(3),[1,5]2t u u =-∈,2212(3)11(3)222u u y u u⎡⎤--⎢⎥--⎣⎦==⨯1762u u ⎛⎫=+- ⎪⎝⎭,因为7u u+≥u = 当1u =时,7u u+取到最大值8,所以3,1]y ∈,所以13,1]a ∈,解得1a 或732a +-. 所以实数a 的取值范围是1a 或732a +- 【点睛】本题主要考查三角函数的性质,利用向量的坐标运算及三角公式把目标函数化简为最简形式,是这类问题常用求解方向,方程有解问题通常利用分离参数法来解决,侧重考查数学运算的核心素养.22.(1)2 ;(2)能放,tan θ=;(3)(]0,1 【解析】 【分析】(1)根据,A C 到直线2l 的距离相等,可得2l 过AC 的中点M ,2l AC ⊥,从而求得边长2AC AM =的值.(2)假设能放,设边长为a ,BC 与3l 的夹角θ,不妨设060θ<≤,可得sin 2a θ=,()sin 601a θ-=,两式相比化简可得sin θa 的值,从而得出结论. (3)利用两角和差的正弦、余弦公式化简()124sin 60sin d d θθ⋅=-为()2sin 2301θ+-,再根据正弦函数的定义和值域求出12d d ⋅的取值范围. 【详解】 (1),A C 到直线2l 的距离相等,∴2l 过AC 的中点M , ∴2l AC ⊥, ∴边长22AC AM ==(2)假设能放,设边长为a ,BC 与3l 的夹角θ, 由对称性,不妨设060θ<≤, ∴sin 2a θ=,()sin 601a θ-=,两式相比可得:()sin 2sin 60θθ=-,即sin sin θθθ-,2sin θθ∴=,tan θ∴=,sin θ∴=,故边长3a ==, 综上可得,能放.(3)()1214sin 60sin 4sin sin 2d d θθθθθ⎫⋅=-=-⎪⎪⎝⎭()1cos 2222sin 23012θθθ⎫+=-=+-⎪⎪⎝⎭. 060θ<≤,30230150θ∴<+≤,()1sin 23012θ≤+≤, 所以()02sin 23011θ≤+-≤, 又10d >,20d >,所以(]120,1d d ⋅∈. 【点睛】本题是一道考查三角函数应用的题目,解题的关键是掌握等边三角形的性质以及三角函数的恒等变换,属于中档题.23.(1)()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭;(2)4【解析】 【分析】 (1)由212T πω==,得ω,由53A b b A +=⎧⎨-=⎩,得A ,b ,代入(0,5),求得ϕ,从而即可得到本题答案;(2)由题,得()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,等价于cos ()cos 166t m t ππ⎡⎤⎛⎫++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案. 【详解】(1)解:由图知212T πω==,6πω∴=又53A b b A +=⎧⎨-=⎩,可得41b A =⎧⎨=⎩ ()sin 46f t t πϕ⎛⎫∴=++ ⎪⎝⎭,代入(0,5),得22k πϕπ=+,又0ϕπ<<,2πϕ∴=所求为()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭(2)设乙投产持续时间为t 小时,则甲的投产持续时间为()t m +小时,由诱导公式,企业乙用电负荷量随持续时间t 变化的关系式为:()sin 4cos 4626f t t t πππ⎛⎫=++=+ ⎪⎝⎭同理,企业甲用电负荷量变化关系式为:()cos ()46f t m t m π⎡⎤+=++⎢⎥⎣⎦两企业用电负荷量之和()()cos ()cos 866f t m f t t m t ππ⎡⎤⎛⎫++=+++ ⎪⎢⎥⎣⎦⎝⎭,0t ≥依题意,有()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立即cos ()cos 166t m t ππ⎡⎤⎛⎫++≤⎪⎢⎥⎣⎦⎝⎭恒成立 展开有cos 1cos sin sin 16666m t m t ππππ⎡⎤⎛⎫⎛⎫⎛⎫+-≤ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦恒成立cos 1cos sin sin cos 66666m t m t A t πππππϕ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中,A =cos 16cos m Aπϕ⎛⎫+ ⎪⎝⎭=,sin 6sin m A πϕ=1A ∴=≤ 整理得:1cos 62m π⎛⎫≤- ⎪⎝⎭解得2422363k m k πππππ⎛⎫+≤≤+ ⎪⎝⎭ 即124128k m +≤≤+取0k =得:48m ≤≤m ∴的最小值为4.【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.24.(1)()fx 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1.【解析】【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案;(2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】 (1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭ ∴sin 214x π⎛⎫-≤ ⎪⎝⎭, ()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭, ∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 2124x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.25.(1)[,]63ππ(2)1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈,EFG ∆周长l 的取值范围为1)]【解析】(1)结合图像可得当点G 位于D 点时,角θ取最大值,点F 位于C 点时,BEF ∠取最大值,角θ取最小值,在直角三角形中求解即可.(2)在Rt ΔEAG 中,求出1cos EG θ=,在Rt ΔEBF 中,求得1sin EF θ=,在Rt ΔGEF 中,根据勾股定理得222FG EF EG =+,从而可得111()cos sin sin cos f θθθθθ=++,通分可得1sin cos ()sin cos f θθθθθ++=,令sin cos t θθ=+,借助三角函数的性质即可求解. 【详解】(1)由题意知,当点G 位于D 点时,角θ取最大值,此时tan θ=02πθ<<,所以max 3πθ=当点F 位于C 点时,BEF ∠取最大值,角θ取最小值, 此时=3BEF π∠,所以min 236πππθ=-=故所求θ的取值集合为[,]63ππ (2)在Rt ΔEAG 中,cos AE EG θ=,1AE =,所以1cos EG θ= 在Rt ΔEBF 中,cos cos()2BE BEF EF πθ∠=-=,1BE =,所以1sin EF θ= 在Rt ΔGEF 中,有勾股定理得222FG EF EG =+2222222211sin cos 1sin cos sin cos sin cos θθθθθθθθ+=+== 因为[,]63ππθ∈,所以sin 0,cos 0θθ,1sin cos FG θθ= 所以111()cos sin sin cos f EG EF FG θθθθθ=++=++ 所以1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈ 令sin cos t θθ=+,则21sin cos 2t θθ-=所以22(1)211t l t t +==-- 因为[,]63ππθ∈,57[,]41212πππθ+∈,所以sin()4πθ+∈所以sin cos )4t πθθθ=+=+∈所以EFG ∆周长l 的取值范围为1)]【点睛】 本题考查了三角函数的在平面几何中的应用,主要考查了辅助角公式以及换元法求三角函数的值域,属于中档题.26.(1;(2 【解析】【分析】(1)求出12BP ==,,36CBP ABP ππ∠=∠=,ABP ∆中由余弦定理即可求得PA ;(2)设PBA α∠=,利用正弦定理表示出()sin120sin 60AB PB =︒︒-α,求得tan α=,利用面积公式即可得解.【详解】(1)在ABC ∆中,90,1ABC AB BC ︒∠===,2AC =P 为ABC ∆内一点,90BPC ︒∠=,PC =,所以12BP =, CBP ∆中,由余弦定理得:2221cos 22BP BC PC CBP BP BC +-∠==⋅ 所以,36CBP ABP ππ∠=∠=ABP ∆中,由余弦定理得:AP==; (2)120APB ︒∠=,设0,,90,602PBA PBC PAB π⎛⎫∠=α∈∠=︒-α∠=︒-α ⎪⎝⎭, 在Rt PBC ∆中,sin sin PB BC =⋅α=α,在PBA ∆中,由正弦定理()sin120sin 60AB PB =︒︒-α,即()sin 2sin 60α=︒-α,sin sin α=α-α,所以3tan 2α=,33sin ,77PB α== ABP ∆的面积11sin 32233331477S AB PB α=⋅=⨯⨯=⨯. 【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强.27.(1)1,,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈;(2)[)3,4,3-. 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解. 【详解】(1)()cos 23sin 212sin 216x x a x a f x π⎛⎫=+++=+++ ⎪⎝⎭, 由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭, 令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈, 所以123x x π+=,2343x x π+=,所以123523x x x π++=, 所以()1235tan 2tan33x x x π++==-.【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.28.(1)π6θ=(2)当π12θ=,CH CP +【解析】 (1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=,计算得到2sin sin 1AC CP θθ+=-++,计算最值得到答案.(2)计算sin cos CH θθ=⋅,得到πsin 23CH CP θ⎛⎫+=+ ⎪⎝⎭. 【详解】(1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=.在直角ΔPBC 中,2cos cos cos cos PC BC θθθθ=⋅=⋅=,sin sin cos sin cos PB BC θθθθθ=⋅=⋅=.22sin cos sin 1sin AC CP θθθθ+=+=+-2sin sin 1θθ=-++,π0,3θ⎛⎫∈ ⎪⎝⎭, 所以当1sin 2θ=,即π6θ=,AC CP +的最大值为54. (2)在直角ΔABC 中,由1122ABC S CA CB AB CH ∆=⋅=⋅, 可得sin cos sin cos 1CH θθθθ⋅==⋅. 在直角ΔPBC 中,πsin 3PC BC θ⎛⎫=⋅- ⎪⎝⎭ππcos sin cos cos sin 33θθθ⎛⎫=⋅- ⎪⎝⎭,所以1sin cos cos sin 2CH CP θθθθθ⎫+=+-⎪⎪⎝⎭,π0,3θ⎛⎫∈ ⎪⎝⎭,所以211sin 2sin cos 22CH CP θθθθ+=-11πsin 22sin 2423θθθ⎛⎫==+ ⎪⎝⎭所以当π12θ=,CH CP + 【点睛】本题考查了利用三角函数求最值,意在考查学生对于三角函数知识的应用能力. 29.(1)1a =-(2)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭【解析】(1)化简()f x ,求最大值,即可求解;(2)应用整体思想,结合正弦函数的递增区间,即可得出结论;(3)运用正弦函数图像,即可求解.【详解】 解:()sin cos cos sin cos cos sin sin cos 6633f x x x x x x a ππππ=-++++11cos cos cos 22x x x x x a =-+++cos x x a =++12cos 2x x a ⎫=++⎪⎪⎝⎭2sin 6x a π⎛⎫=++ ⎪⎝⎭. (1)函数()f x 的最大值为21a +=,所以1a =-.(2)由22,262k x k k Z πππππ-+≤+≤+∈, 解得222,33k x k k Z ππππ-+≤≤+∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭. 因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭. 所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以722,666k x k k Z πππππ-+<+<+∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭. 【点睛】本题考查三角函数恒等变换,化简解析式,考查三角函数的性质以及三角不等式,属于中档题.30.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π. 【解析】【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值.【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭,2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦, 所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=, 故123x x π+=.【点睛】 本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.。

三角函数填空题整理

三角函数填空题整理
6.函数 的图象如图所示,则 的表达式是 .
10.若 的最小值为-2,其图像相邻最高点与最低
点横坐标之差为 又图像过点 则其解析式是▲ .
9.若 的最小值为-2,其图象相邻最高点与最低点横坐标之差为 ,且图象过点 ,则其解析式是▲.
7. 如上图,某地一天从6时到14时的温度变化曲线近似满足函数
, ,则温度变化曲线的
9.已知函数 ,将 的图象上各点的横坐标伸长为原来的 倍,纵坐标不变,再将所得图象向右平移 个单位,得到函数 的图象,则函数 的解析式为_____________.
8.将函数y=sinx的图像上所有的点向右平行移动 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 .
4.角 的顶点在原点,始边与x轴正半轴重合,点P 是角 终边上一点,则 =▲.
4.已知sinαcosβ=1,则cos(α+β)=▲.
3、若 ▲.
4、已知 ,则 =▲.
1.已知 ,则 ▲.
9.已知 ,则 的值等于_____;
5、已知 =。
10.已知 ,则 =____________.
7.已知 ,则 =▲.
2.若 ,则 ▲.
9.已知 , ,则 .
5、已知 =
6、已知 ,则 =▲.
1、已知 ,则 ▲.
3.若 ,则 =▲.
6.若 ,则 的值为.
6.若 , , 都为锐角,则 =▲
2.已知 ___▲___.
8.如果 且 =________.
6.若 ,则 的值等于;
7.已知 , ,则 值为▲.
3.已知 ,则 ▲.
11.设实数 满足 , .则 的取值范围是__▲__.
12.在斜三角形 中,角 所对的边分别为 ,若 ,则

三角函数填空题整理.docx

三角函数填空题整理.docx

2.若角120。

的终边上有一点(一4, a),则a的值是4馆_;10、已知锐角(a +兰]的终边经过点P(2,4A/3),则COSQ = _______ .I 3丿5.已知510°终边经过点P(m,2),则m二________ ▲_______ .2.己知角a的终边上一点的坐标为sin — ,cos——,则角a的最小正值为▲•I 3 3 )4.若/(x) = asin(x + —) + 3sin(x-—)是偶函数,则实数a= A4 48、已矢0/(%) = 6rsinx+Z?tanx+l,满足/'(5) = 7,贝1护(一5) = ___ 。

5.得到函数尸cos(2x+彳)的图象,只需将函数)=sin2兀的图象向左平移—个单位长度.TT11.将函数y = sin2x的图彖向左平移丝个单位,再向上平移1个单位,所得图象的函数解* 4析式是 ___________5.将函数y = sin(2x-|)的图象向右平移彳后,所得图彖对应的函数解析式为_______________ .9.已知函数/(x) = sin2x+2cos2x-l,将/(兀)的图彖上各点的横坐标伸长为原来的2倍,7T纵坐标不变,再将所得图象向右平移一个单位,得到函数y = gCx)的图象,则函数4 •y = gM的解析式为 ______________ .8.将函数y=shu的图像上所有的点向右平行移动話个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是_____________ ・7•将函数J; = sin 2x的图象向左平移一个单位,再向上平移1个单位,所得图彖的函数解4析式是 _______ .IT 7T7.函数y = 2sin(2x +丝)-2的图像按向量a = ,-5)平移后,所得图像的解析式为—•6 4TT TT5、将函数Xx)=sin(2x--)的图象向左平移仝个单位,再将图象上各点的横坐标压缩到原来的丄,那么所得到的图象的解析表达式为_____________ 。

三角函数知识点填空

三角函数知识点填空

三角函数填空题1、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是|α|= .2、弧度制与角度制的换算公式:2π=3、若扇形的圆心角为α(α为弧度制),半径为r ,弧长为l ,面积为S ,则l =S =4、设α是一个任意大小的角,α的终边上任意一点Ρ的坐标是(x,y ),它与原点的距离是r (r =√x 2+y 2>0),则sin α= cos α= tan α= (x ≠0)5、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.6、角三角函数的基本关系:()221sin cos 1αα+=(sin 2α=1−cos 2α,cos 2α=1−sin 2α);()sin 2tan cos ααα=(sin α=tan αcos α,cos α=sin αtan α).. 7、函数的诱导公式:(1)sin (2kπ+α)= ,cos (2kπ+α)= ,tan (2kπ+α)= . (2)sin (π+α)= ,cos (π+α)= ,tan (π+α)= .(3)sin (−α)= ,cos (−α)= ,tan (−α)= .(4)sin (π−α)= ,cos (π−α)= ,tan (π−α)= .(5)sin (π2−α)= ,cos (π2−α)= . (6)sin (π2+α)= ,cos (π2+α)= . 8两角和与差的正弦、余弦和正切公式:(1)cos (α−β)= ;(2)cos (α+β)= ; (3)sin (α−β)= ;(4)sin (α+β)= ;(5)tan(α−β)= ⇒(tanα−tanβ=tan(α−β)(1+tanαtanβ));(6)tan(α+β)= ⇒(tanα+tanβ=tan(α+β)(1−tanαtanβ)).9、二倍角的正弦、余弦和正切公式:(1)sin2α= .⇒1±sin2α=sin2α+cos2α =()2(2)cos2α== =⇒降幂公式cos2α= ,sin2α= .(3)tan2α= .10、Αsinα+Βcosα= ,其中tanϕ= .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008届全国百套高考数学模拟试题分类汇编04三角函数二、填空题1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)在平面直角坐标系xoy 中已知△ABC的顶点A(-6,0) 和C(6,0),顶点B 在双曲线2212511x y -=的左支上,sin sin sin A CB则-=答案:562、(四川省巴蜀联盟2008届高三年级第二次联考)关于函数f (x ) =sin (2x-4π)(x∈R) 有下列命题:① y=f(x )的周期为π; ② x =4π是y = f (x )的一条对称轴;③(8π,0)是y=f (x )的一个对称中心;④ 将y = f (x )的图象向右平移4π个单位,可得到y=2sinxcosx 的图象.其中正确的命题序号是 (把你认为正确命题的序号都写上). 答案:①③3、(四川省成都市新都一中高2008级一诊适应性测试)函数)0,0)(sin()(>>+=ωϕωA x A x f 的图象如图所示,则)2007()3()2()1(f f f f ++++ 的值等于 . 答案:04、(北京市东城区2008年高三综合练习一)函数xx x y 2cos 3cos sin 2+=的最小正周期为 ;最大值为 .答案:π;25、(北京市东城区2008年高三综合练习二)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3b sin A ,则cos B = . 答案:3226、(北京市丰台区2008年4月高三统一练习一)函数()s i n ()3s i n ()44f x a x x ππ=++-是偶函数,则 a=___________________. 答案:-37、(北京市西城区2008年5月高三抽样测试)设α是第三象限角,tan α5=12,则cos α= 。

答案:-12138、(山东省博兴二中高三第三次月考)已知53)4sin(=-x π,则x 2sin 的值为_____________。

答案:7259、(福建省南靖一中2008年第四次月考)抛物线x 2=4y 的准线l 与y 轴交于P 点,若l 绕点P 以每秒π12弧度的角速度按逆时针方向旋转,则经过_______秒,l 恰好与抛物线第一次相切. 答案:310、(福建省南靖一中2008年第四次月考)下面有五个命题: ①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2}.③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y所有正确命题的序号是 .(把你认为正确命题的序号都填上)答案:①④11、(福建省师大附中2008年高三上期期末考试)下列命题:① 函数sin y x =在第一象限是增函数;② 函数1cos 2y x =+的最小正周期是π;③ 函数tan2x y =的图像的对称中心是(,0),k k Z π∈;④ 函数lg(12cos 2)y x =+的递减区间是[,)4k k πππ+,k Z ∈;⑤ 函数3sin(2)3y x π=+的图像可由函数3sin 2y x =的图像按向量(,0)3a π→=平移得到。

其中正确的命题序号是 。

答案:③④12、(甘肃省河西五市2008年高三第一次联考)已知=+=-=+)tan(,31)6tan(,21)6tan(βαπβπα则 答案:113、(广东省2008届六校第二次联考)要得到cos(2)4y x π=-的图象, 且使平移的距离最短, 则需将cos 2y x=的图象向 方向平移 个单位即可得到.答案:右,π814、(广东省汕头市澄海区2008年第一学期期末考试)如图,测量河对岸的塔高A B 时,可以选与塔底B 在同一水平面内的两个测点C 与D .测得∠BCD =15°,∠BDC =30°,CD =30米,并在点C 测得塔顶A 的仰角为60°, 则BC= 米, 塔高AB= 米。

答案:152, 15 615、(广东省深圳市2008年高三年级第一次调研考试)在ABC ∆中,a 、b 分别为角A 、B 的对边,若60B =︒,75C =︒,8a =,则边b 的长等于 .答案:4 616、(广东省深圳外国语学校2008届第三次质检)在的面积则中,若ABC BC AB A ABC ∆===∠∆,7,5,1200=; 答案:431517、(河北衡水中学2008年第四次调考)函数sin cos (0)y a x b x ab =-≠的图像的一条对称轴为x =π4,则以(,)a a b =为方向向量的直线的倾斜角为 .答案:3π418、(河北省正定中学高2008届一模)直线2y x m =+和圆221x y +=交于点A 、B ,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,那么sin()αβ+等于 . 答案:-4519、若角==⎪⎭⎫ ⎝⎛-απααcos ,316sin 则为锐角,且________________答案:61-6220、(河北省正定中学2008年高三第五次月考)关于函数))(32sin(4)(R x x x f ∈+=π有下列命题:①由0)()(21==x f x f 可得21x x -是π的整数倍;②)(x f y =的表达式可改写为)62cos(4π-=x y ;③)(x f y =的图象关于点(-)0,6π对称;④)x (f y =的图象关于直线6π-=x 对称。

其中正确命题的序号是__ _答案:②③21、(河南省开封市2008届高三年级第一次质量检)在△ABC 中,A=120°,AB=5,BC=7,则CB s in s in 的值为 。

答案:5322、(黑龙江省哈尔滨三中2008年高三上期末)已知)42c o s (,232,53)4c o s (παπαππα+<≤=+则的值为 。

答案:50231-23、(黑龙江省哈尔滨三中2008年高三上期末)给出下列命题: ①函数x y tan =的图象关于点())(0,Z k k ∈π对称;②若向量a,b,c 满足a ·b=a ·c 且a ≠0,则b=c;③把函数)32sin(3π+=x y 的图象向右平移6π得到x y 2sin 3=的图象;④若数列}{n a 既是等差数列又是等比数列,则*)(1N n a a n n ∈=+ 其中正确命题的序号为 。

答案:①③④24、(黑龙江省哈师大附中2008届高三上期末)若)(cos ,2cos 2)(sin x f x x f 则-== 。

答案:2+cos2x25、(黑龙江省哈师大附中2008届高三上期末)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若4,222=⋅+=+AB AC bc a c b 且,则△ABC 的面积等于 。

答案:4 326、(湖北省三校联合体高2008届2月测试)cos555°= 答案:426+27、(湖北省黄冈市麻城博达学校2008届三月综合测试)直线2y x m =+和圆221x y +=交于点A 、B ,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,那么sin()αβ+是 . 答案:4528、(湖北省黄冈中学2008届高三第一次模拟考试)有一解三角形的题因纸张破损,有一条件不清,且具体如下:在ABC ∆中,已知45aB ==,____________,求角A . 经推断破损处的条件为三角形一边的长度,且答案提示A =60°,试将条件补充完整.答案:2c =29、(湖南省长沙市一中2008届高三第六次月考)︒︒+︒︒167cos 43sin 77cos 43cos 的值为 。

答案:-1230、(湖南省岳阳市2008届高三第一次模拟)1tan ,4=α则2cos 2sin αα+的值为 .答案:161731、(湖南省株洲市2008届高三第二次质检)若钝角三角形三内角的度数成等差数列,且最小边长与最大边长的比值为m ,则m 的取值范围是 .答案:(0,12)32、(黄家中学高08级十二月月考)已知11tan ,tan 6263ππαββ⎛⎫⎛⎫++=-=- ⎪ ⎪⎝⎭⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭【解】: tan()tan()66tan tan 13361tan()tan()66ππαββπππααββππαββ++--⎡⎤⎛⎫⎛⎫⎛⎫+=++--== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦+++⋅- 33、(江苏省南通市2008届高三第二次调研考试)若()sin() 1 (0,||<π)f x A x ωϕωϕ=++>对任意实数t ,都有()()ππ33f t f t +=-+.记()cos()1g x A x ωϕ=+-,则π()3g = ▲ . 答案:-1说明:注意对称性.34、(江苏省南通市2008届高三第二次调研考试)已知△ABC 三边a ,b ,c 的长都是整数,且a b c ≤≤,如果b=m (m ∈N*),则这样的三角形共有 ▲ 个(用m 表示).答案:(1)2m m +说明:本题是推理和证明这一章的习题,考查合情推理能力.讲评时可改为c =m 再探究.本题也可以用线性规划知识求解.35、(江苏省南京市2008届高三第一次调研测试)函数y = cos x sin x 的最小正周期是 ▲ . 答案:π36、(江苏省前黄高级中学2008届高三调研)若cos(2)3πα-=且(,0),sin()2παπα∈--=则_________答案:-2337、(江苏省如东高级中学2008届高三四月份模拟)函数sin 3y x π=在区间[]0,t 上至少取得2个最大值,则正整数t 的最小值是 答案:838、(江苏省如东高级中学2008届高三四月份模拟)已知α,β均为锐角,且21sin sin -=-βα,1cos cos 3αβ-=,则cos()αβ-= 答案:597239、(江苏省泰兴市2007—2008学年第一学期高三调研)在∆ABC 中,60A ︒∠=,3A C =,那么B C的长度为 ▲ . 答案:740、(江苏省南通通州市2008届高三年级第二次统一测试)若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭,则c o s s i n αα+的值为 . 答案:1241、(江苏省盐城市2008届高三六校联考)若cos 22sin()4απα=--,则cos sin αα+的值为答案:1242、(山东省聊城市2008届第一期末统考)轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25nmile/h, 15nmile/h ,则下午2时两船之间的距离是 nmile. 答案:7043、(山东省聊城市2008届第一期末统考)定义在R 上的奇函数)(x f 满足:对于任意).()3(,x f x f R x -=+∈有若)cos sin 15(,2tan αααf 则=的值为 .答案:044、(山西省实验中学2007—2008学年度高三年级第四次月考)在△ABC 中,C B A cb a b A s i ns i n s i n ,3,1,60++++==则面积是等于 。

相关文档
最新文档