河南省新乡市2019届高三第三次模拟测试——数学(理)
河南省新乡市2023届高三第三次模拟考试理科数学试题
一、单选题二、多选题1. 的二项展开式中第4项的系数为( )A .-80B .-40C .40D .802. 如图所示,一种儿童储蓄罐有6个密码格,由购买者设定密码后方可使用,其中密码的数字只能在中进行选择,且每个密码格都必须设定数字,则数字“1”出现奇数次的不同密码个数为()A .172B .204C .352D .3643. 设为虚数单位,若复数满足,则复数的虚部为( )A.B.C.D.4. 在数列中,,其前项和满足,若对任意总有恒成立,则实数的最小值为( )A.B.C.D.5. 下列命题正确的个数为①“都有”的否定是“使得”;②“”是“”成立的充分条件;③命题“若,则方程有实数根”的否命题为真命题A .0B .1C .2D .36.将函数的图象向右平移个单位长度,然后将所得图象上所有点的横坐标缩小到原来的(纵坐标不变),得到函数的图象,则下列说法正确的是( )A.B .在上单调C .的图象关于直线对称D .当时,函数的值域为7.设,,,则a ,b ,c 的大小顺序为( )A.B.C.D.8. 在棱长为1的正方体中,分别为的中点,点在正方体的表面上运动,且满足,则下列说法正确的是()A.点可以是棱的中点B .线段的最大值为C .点的轨迹是正方形D .点轨迹的长度为9. 已知函数的部分图象如图所示,则( )河南省新乡市2023届高三第三次模拟考试理科数学试题河南省新乡市2023届高三第三次模拟考试理科数学试题三、填空题四、解答题A.B.的图象过点C .函数的图象关于直线对称D.若函数在区间上不单调,则实数的取值范围是10. 如图所示,点是函数(,)图象的最高点,、是图象与轴的交点,若,且,则()A.B.C.D.11. 已知随机变量服从二项分布,其方差,随机变量服从正态分布,且,则( )A.B.C.D.12. 已知函数满足,且在上有最小值,无最大值.则下列说法正确的是( )A.B .若,则C .的最小正周期为3D .在上的零点个数最少为202个13.,若,则______.14.若,则的值可能为___________.15. 已知为等比数列,,那么的公比为___________,数列的前5项和为___________.16. 成雅高速铁路(又称成雅高铁)是川藏铁路的重要组成部分,于2018年12月顺利通车,它的开通改变了成都到雅安没有直达铁路的历史,在出行人群中越来越受欢迎现交通部门利用大数据随机抽取了出行人群中的100名旅客进行调查统计,得知在40岁及以下的旅客中采用乘坐成雅高铁出行的占.(1)请完成2×2列联表,并由列联表中所得数据判断有多大把握认为“采用乘坐成雅高铁出行与年龄有关”?40岁及以下40岁以上合计乘成雅高铁10不乘成雅高铁合计60100(2)为提升服务质量,铁路部门从这100名旅客按年龄采用分层抽样的方法选取5人免费到雅安参加座谈会,再从选出的5人中抽两人作为主题发言人,求抽到的2个人中恰有一人为40岁以上的概率.参考公式:,,参考数据如表:0.1000.0500.0100.0012.7063.841 6.63510.82817. 求经过定点,以y轴为准线,离心率为的椭圆的左顶点的轨迹方程.18. 年冬季奥林匹克运动会主办城市是北京,北京成为第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会以及亚洲运动会三项国际赛事的城市!为迎接冬奥会的到来,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了所学校进行研究,得到如下数据:(1)“单板滑雪”与“自由式滑雪”每项参与人数都超过人的学校可以作为“参与冬奥运动积极学校”,现在从这所学校中随机选出所,记为选出“参与冬奥运动积极学校”的学校个数,求的分布列和数学期望;(2)现在有一个“单板滑雪”集训营,对“滑行、转弯、跳跃、停止”这个动作技巧进行集训,且在集训中进行了多轮测试.规定:在一轮测试中,这个动作中至少有个动作达到“优秀”,则该轮测试记为“优秀”.在集训测试中,小明同学“滑行”这个动作达到“优秀”的概率均为,其余每个动作达到“优秀”的概率都为,每个动作互不影响且每轮测试互不影响.如果小明同学在集训测试中要想获得“优秀”的次数的平均值达到次,那么理论上至少要进行多少轮测试?19. 已知递增等比数列的前n项和为,且满足,.(1)求数列的通项公式.(2)若数列满足,求数列的前15项和.20. 为了保障电力供应,支持可再生能源发展,促进节能减排,某省推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价元/度;第二阶梯电量:年用电量超过2160度且在4200度以下(含4200度),执行第二档电价元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价元/度.电力部门从本省的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下:用户编号12345678910年用电量(度)1000126014001824218024232815332544114600以表中抽到的10户作为样本,估计全省居民的用电情况,并将频率视为概率.(1)从全省居民用电户中随机地抽取1户,估计抽到的这户用电量在第一阶梯中的概率;(2)若从全省居民用电户中随机抽取2户,若抽到用电量为第一阶梯的有户,求的分布列与数学期望.21. 某学校记录了某学期40名学生期中考试的数学成绩和期末考试的数学成绩,得到的频数分布表如下:期中考试的数学成绩频数分布表数学成绩频数4141642期末考试的数学成绩频数分布表数学成绩频数6101284(1)估计这40名学生期中考试的数学成绩小于100分的概率;(2)估计这40名学生期末考试的数学成绩的平均分比期中考试数学成绩的平均分提高多少分.(同一组中的数据用该组区间的中点值作代表)。
河南省新乡市2019-2020学年高考数学仿真第三次备考试题含解析
河南省新乡市2019-2020学年高考数学仿真第三次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知ABC ∆为等腰直角三角形,2A π=,22BC =,M 为ABC ∆所在平面内一点,且1142CM CB CA =+u u u u r u u u r u u u r ,则MB MA ⋅=u u u r u u u r( )A .224-B .72-C .52-D .12-【答案】D 【解析】 【分析】以AB,AC 分别为x 轴和y 轴建立坐标系,结合向量的坐标运算,可求得点M 的坐标,进而求得,MB MA u u u r u u u r,由平面向量的数量积可得答案. 【详解】如图建系,则()0,0A ,()2,0B ,()0,2C ,由1142CM CB CA =+u u u u r u u u r u u u r ,易得11,22M ⎛⎫⎪⎝⎭,则31111,,22222MB MA ⎛⎫⎛⎫⋅=-⋅--=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r .故选:D 【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.2.已知向量a b (3,1),3)==r r,则向量b r 在向量a r 方向上的投影为( )A .3B 3C .1-D .1【答案】A 【解析】 【分析】投影即为cos a b b aθ⋅⋅=r rr r ,利用数量积运算即可得到结论. 【详解】设向量a r 与向量b r的夹角为θ,由题意,得331323a b ⋅=+=-r r ()22312a =-+=r,所以,向量b r 在向量a r方向上的投影为cos 2a b b aθ⋅-⋅===r rr r 故选:A. 【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题. 3.等比数列{},n a 若3154,9a a ==则9a =( ) A .±6 B .6C .-6D .132【答案】B 【解析】 【分析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可. 【详解】由等比数列中等比中项性质可知,23159a a a ⋅=,所以96a ===±,而由等比数列性质可知奇数项符号相同,所以96a =, 故选:B. 【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题. 4.已知等差数列{a n },则“a 2>a 1”是“数列{a n }为单调递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C 【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{a n }中,若a 2>a 1,则d >0,即数列{a n }为单调递增数列, 若数列{a n }为单调递增数列,则a 2>a 1,成立, 即“a 2>a 1”是“数列{a n }为单调递增数列”充分必要条件, 故选C .考点:必要条件、充分条件与充要条件的判断.5.函数f x x 2()cos(2)3π=+的对称轴不可能为( ) A .65x π=-B .3x π=-C .6x π=D .3x π=【答案】D 【解析】 【分析】由条件利用余弦函数的图象的对称性,得出结论. 【详解】对于函数()2cos 23f x x π⎛⎫=+ ⎪⎝⎭,令22,3x k k Z ππ+=∈,解得,23k x k Z ππ=-∈, 当1,0,1k =-时,函数的对称轴为65x π=-,3x π=-,6x π=. 故选:D. 【点睛】本题主要考查余弦函数的图象的对称性,属于基础题. 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( )A .4B .289 C .329D .327【答案】C 【解析】 【分析】根据()2222x y t tt R +=-∈表示圆和直线x y t +=与圆()2222x y t t t R +=-∈有公共点,得到403t ≤≤,再利用二次函数的性质求解. 【详解】因为()2222x y t tt R +=-∈表示圆,所以220->t t ,解得02t <<, 因为直线x y t +=与圆()2222x y t tt R +=-∈有公共点,所以圆心到直线的距离d r ≤, 即≤解得403t ≤≤, 此时403t ≤≤,因为()()()224424=-=-+=--+f t t t t t t ,在40,3⎡⎤⎢⎥⎣⎦递增,所以()4t t -的最大值34329⎛⎫=⎪⎝⎭f . 故选:C 【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.7.已知集合{}15{|},|2M x x N x x =-≤<=<,则M N =I ( ) A .{|12}x x -≤< B .{}|25x x -<< C .{|15}x x -≤< D .{}|02x x <<【答案】A 【解析】 【分析】考虑既属于M 又属于N 的集合,即得. 【详解】{}2|{2,1|2}N x x M N x x =-<<∴⋂=-≤<Q .故选:A 【点睛】本题考查集合的交运算,属于基础题.8.已知正方体1111ABCD A B C D -的体积为V ,点M ,N 分别在棱1BB ,1CC 上,满足1AM MN ND ++最小,则四面体1AMND 的体积为( ) A .112V B .18VC .16VD .19V【答案】D 【解析】 【分析】由题意画出图形,将1,MN ND 所在的面延它们的交线展开到与AM 所在的面共面,可得当11111,33BM BB C C N C ==时1AM MN ND ++最小,设正方体1AC 的棱长为3a ,得327V a =,进一步求出四面体1AMND 的体积即可. 【详解】 解:如图,∵点M ,N 分别在棱11,BB CC 上,要1AM MN ND ++最小,将1,MN ND 所在的面延它们的交线展开到与AM 所在的面共面,1,,AM MN ND 三线共线时,1AM MN ND ++最小,∴11111,33BM BB C C N C == 设正方体1AC 的棱长为3a ,则327a V =,∴327V a =. 取13BG BC =,连接NG ,则1AGND 共面,在1AND ∆中,设N 到1AD 的距离为1h ,12212212222211111112(3)(3)32,(3)10,(32)(2)22,cos 21022255319sin 25511sin 22319192D NA AD a a a D N a a a AN a a a D NA a a D NA S D N AN D NA AD a h h ∆=+==+==+=∴∠==⋅⋅∴∠=∴=⋅⋅⋅∠=⋅⋅∴,设M 到平面1AGND 的距离为2h ,22111111[(2)322]323222M AGN A MGNV Vh a a a a a aha--∴=∴⋅⋅⋅+⋅-⋅⋅-⋅⋅∴=⋅⋅=131339AMNDVV a∴===.故选D.【点睛】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题.9.若复数12z i=+,2cos isin()zααα=+∈R,其中i是虚数单位,则12||z z-的最大值为( )A1B.12C1D.12【答案】C【解析】【分析】由复数的几何意义可得12z z-表示复数12z i=+,2cos sinz iαα=+对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数12z i=+对应的点为()2,1,复数2cos sinz iαα=+对应的点为()cos,sinαα,所以121z z-=,其中tanφ2=,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将12z z-转化为两复数所对应点的距离求值即可,属于基础题型.10.已知236a b==,则a,b不可能满足的关系是()A.a b ab+=B.4a b+>C.()()22112a b-+-<D.228a b+>【答案】C【解析】【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果. 【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++232l 23og log 82>+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:a b +≥和不等式222a b ab +≥的应用,属于中档题11.双曲线2214x y -=的渐近线方程是( )A .2y x =±B .3y x =±C .2x y =±D .2y x =±【答案】C 【解析】 【分析】根据双曲线的标准方程即可得出该双曲线的渐近线方程. 【详解】由题意可知,双曲线2214x y -=的渐近线方程是2x y =±.故选:C. 【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用. 12.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为()A.45 B.60 C.75 D.100 【答案】B【解析】【分析】根据程序框图中程序的功能,可以列方程计算.【详解】由题意12315234S⨯⨯⨯=,60S=.故选:B.【点睛】本题考查程序框图,读懂程序的功能是解题关键.二、填空题:本题共4小题,每小题5分,共20分。
河南省新乡市高三第三次模拟测试理数试题
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设复数错误!未找到引用源。
,则复数错误!未找到引用源。
的虚部为()A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
【答案】A【解析】由题意错误!未找到引用源。
,故复数错误!未找到引用源。
的虚部为错误!未找到引用源。
,选A2. 若集合错误!未找到引用源。
,错误!未找到引用源。
,且错误!未找到引用源。
,则错误!未找到引用源。
的取值范围为()A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
【答案】D3. 在错误!未找到引用源。
的展开式中,系数为有理数的项为()A. 第二项B. 第三项C. 第四项D. 第五项【答案】B【解析】解:由二项式展开式的通项公式有:错误!未找到引用源。
,系数为有理数的项时,错误!未找到引用源。
,即系数为有理数的项为第三项.本题选择B选项.4. 某程序框图如图所示,若输入的错误!未找到引用源。
,则输出的错误!未找到引用源。
等于()A. 2B. 3C. 4D. 5【答案】B点睛:本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能.5. 若函数错误!未找到引用源。
与错误!未找到引用源。
错误!未找到引用源。
存在相同的零点,则错误!未找到引用源。
的值为()A. 4或错误!未找到引用源。
B. 4或错误!未找到引用源。
C. 5或错误!未找到引用源。
D. 6或错误!未找到引用源。
【答案】C【解析】将函数错误!未找到引用源。
的零点错误!未找到引用源。
代入错误!未找到引用源。
得到错误!未找到引用源。
,解得错误!未找到引用源。
或错误!未找到引用源。
,故选C6. 记集合错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
河南省新乡市高三第三次模拟测试数学(理)试题 Word版含答案
新乡市高三第三次模拟测试数学试卷(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数34i =+z ,则复数+zz z的虚部为( ) A .165 B .16i 5 C .185 D .18i 52.若集合{}25140=+-<M x x x ,{}3=<<+N x m x m ,且=∅I M N ,则m 的取值范围为( )A .()10,2-B .()(),102,-∞-+∞UC .[]10,2-D .(][),102,-∞-+∞U3.在42-的展开式中,系数为有理数的项为( ) A .第二项 B .第三项 C .第四项 D .第五项 4.某程序框图如图所示,若输入的4=t ,则输出的k 等于( )A .2B .3C .4D .55.若函数()()2log =+f x x a 与()()21=-+g x x a x ()45-+a 存在相同的零点,则a 的值为( )A .4或52-B .4或2-C .5或2-D .6或52- 6.记集合{}11=A a ,{}223,=A a a ,{}3456,,=A a a a ,{}478910,,,=A a a a a …,其中{}n a 为公差大于0的等差数列,若{}23,5=A ,则199属于( ) A .12A B .13A C .14A D .15A7.已知向量uu r OA ,uu u rOB 满足2==uu r uu u r OA OB ,λμ=+uu u r uu r uu u r OC OA OB ,若λμ=+uu u r uu r uu u r OC OA OB 且1λμ+=(λ,R μ∈),则uuu rOC 的最小值为( )A .1B D 8.已知2παπ<<,且3sin 65πα⎛⎫+= ⎪⎝⎭,则cos 6πα⎛⎫- ⎪⎝⎭等于( )A .410-- B .410+ C .410- D .4109.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,高一丈.问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出如下图所示,其中网格纸上小正方形的边长为1丈,则该楔体的体积为( )A .5000立方尺B .5500立方尺C .6000立方尺D .6500立方尺10.已知椭圆22221x y a b+=(0a b >>)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( ) A .35 B .12 C .23 D .3411.设x ,y 满足约束条件230,2210,0,+-≤⎧⎪--≤⎨⎪-≥⎩x y x y x a 若-+x y x y 的最大值为2,则a 的值为( )A .12 B .14 C .38 D .5912.定义在()0,+∞上的函数()f x 满足()(()2'>f x x f x ,其中()'f x 为()f x 的导函数,则下列不等式中,一定成立的是( ) A .()()()23123>>f f f B .()()()149234>>f f f C .()()()23123<<f f f D .()()()149234<<f f f 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若函数()sin 3πω⎛⎫=+⎪⎝⎭f x x (01ω<<)的图象关于点()2,0-对称,则ω= .14.P 为双曲线2213-=y x 右支上一点,1F 、2F 为左、右焦点,若1210+=PF PF ,则12⋅=uuu r uuu rPF PF .15.若数列{}1--n n a a 是等比数列,且11=a ,22=a ,35=a ,则=n a . 16.已知四面体ABCD 的每个顶点都在球O 的表面上,5==AB AC ,8=BC ,⊥AD 底面ABC ,G 为V ABC 的重心,且直线DG 与底面ABC 所成角的正切值为12,则球O 的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.设V ABC 的内角A ,B ,C 的对边分别为a ,b ,c,已知222+-=b c a . (1)若tan =B b a;(2)若23π=B ,=b BC 边上的中线长. 18.如图,在四棱锥-P ABCD 中,⊥PD 底面ABCD ,底面ABCD 为矩形,且12==PD AD AB ,E 为PC 的中点. (1)过点A 作一条射线AG ,使得∥AG BD ,求证:平面∥PAG 平面BDE ; (2)求二面角--D BE C 的余弦值的绝对值.19.为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.分数 [)50,59[)60,69[)70,79[)80,89[]90,100甲班频数 5 6 4 4 1 一般频数13655(1)由以下统计数据填写下面22⨯列联表,并判断能否在犯错误的额概率不超过0.025的前提下认为“成绩优良与教学方式有关”?甲班 乙班 总计 成绩优良 成绩不优良总计附:()()()()()22-=++++n ad bc K a b c d a c b d ,其中=+++n a b c d .临界值表()2≥P K k0.10 0.05 0.025 0.010 k2.7063.8415.0246.635(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为X ,求X 的分布列及数学期望.20.已知抛物线C :22=x py (0>p )的焦点为F ,直线220-+=x y 交抛物线C 于A 、B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)D 是抛物线C 上的动点,点()1,3-E ,若直线AB 过焦点F ,求+DF DE 的最小值;(2)是否存在实数p ,使2+=uu r uu u r QA QB 2-uu r uu u rQA QB ?若存在,求出p 的值;若不存在,说明理由.21.已知函数()2ln 2=-+f x m x x (8≤m ).(1)当曲线()=y f x 在点()()1,1f 处的切线的斜率大于2-时,求函数()f x 的单调区间; (2)若()()'-f x f x 43≤-x 对[)1,∈+∞x 恒成立,求m 的取值范围.(提示:ln 20.7≈)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为4cos ρθ=,曲线M 的直角坐标方程为220-+=x y (0>x ).(1)以曲线M 上的点与点O 连线的斜率k 为参数,写出曲线M 的参数方程; (2)设曲线C 与曲线M 的两个交点为A ,B ,求直线OA 与直线OB 的斜率之和. 23.选修4-5:不等式选讲已知不等式-<x m x 的解集为()1,+∞. (1)求实数m 的值; (2)若不等式511-<+-a x x 21+-<m a x x对()0,∈+∞x 恒成立,求实数a 的取值范围.新乡市高三第三次模拟测试 数学试卷参考答案(理科)一、选择题1-5: ADBBC 6-10:CDDAA 11、12:CB 二、填空题13.6π 14.18 15.1312-+n 16.6349π三、解答题17.解:(1)由222+-=b c a得cos 2=A ,6π∴=A. tan 12=Q B ,1sin 5∴=B . 由正弦定理得,sin sin =a b A B ,则sin sin ==b B a A 125152=.(2)6π=Q A ,6ππ=--=C A B ,∴=AB BC .由sin sin =c bC B得2=c .取BC 中点D ,在V ABD 中,2222=+-AD AB BD cos 7⨯⨯⨯=AB BD B,∴=AD ,即BC 边.18.(1)证明:在矩形ABCD 中,连接AC 和BD 交于点O ,连接OE ,则O 是AC 的中点,由于E 是PC 的中点,所以OE 是V PAC 的中位线,则∥OE PA 又⊂OE 平面BDE ,⊄PA 平面BDE , 所以∥PA 平面BDE .又∥AG BD ,同理得∥AG 平面BDE .因为=I PA AG A ,所以平面∥PAG 平面BDE .(2)分别以DA ,DC ,DP 所在的直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设=AD a ,则=P D a ,2=AB a ,故(),2,0B a a ,()0,0,P a ,()0,2,0C a ,0,,2⎛⎫⎪⎝⎭a E a , 所以(),2,0=uu u r DB a a ,0,,2⎛⎫= ⎪⎝⎭uuu r a DE a ,(),0,0=uu r CB a ,0,,2⎛⎫=- ⎪⎝⎭uu u r a EC a ,设平面BDE 的一个法向量为()1111,,=u r n x y z ,则有110,0,⎧⋅=⎪⎨⋅=⎪⎩u r uu u r u r uuu rn DB n DE ,即 20,0,2+=⎧⎪⎨+=⎪⎩ax ay aay z 令2=x ,则1=-y ,2=z ,故()12,1,2=-u r n . 同理,可得平面BEC 的一个法向量()20,1,2=u u rn .所以121212cos ,⋅==u r u u ru r u u r u r u u r n n n n nn5,即二面角--D BE C的余弦值的绝对值为5.19.解:(1)甲班 乙班 总计 成绩优良 9 16 25 成绩不优良11 4 15 总计202040根据22⨯列联表中的数据,得2K 的观测值为()24094161125152020⨯-⨯=⨯⨯⨯k 5.227 5.024≈>,∴能在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”.(2)由表可知在8人中成绩不优良的人数为158340⨯=,则X 的可能取值为0,1,2,3.()31131533091===C P X C ;()2111431544191===C C P X C ; ()12114315662455===C C P X C ;()3431543455===C P X C . ∴X 的分布列为:X 0123P3391 4491 66455 4455 ()3344019191∴=⨯+⨯E X 66423455455+⨯+⨯364455=. 20.解:(1)Q 直线220-+=x y 与y 轴的交点为()0,2,()0,2∴F ,则抛物线C 的方程为28=x y ,准线l :2=-y .设过D 作⊥DG l 于G ,则+=DF DE +DG DE , 当E 、D 、G 三点共线时,+DF DE 取最小值235+=. (2)假设存在,抛物线22=x py 与直线22=+y x 联立方程组得:2440--=x px p ,设()11,A x y ,()22,B x y ,则124+=x x p ,124=-x x p ,()2,2∴Q p p .2+uu r uu u r Q QA QB 2=-uu r uu u rQA QB ,∴⊥QA QB .则0⋅=uu r uu u rQA QB 得:()()1222--+x p x p ()()12220--=y p y p ,()()1222--+x p x p ()()122222220+-+-=x p x p ,()()1212546+-++x x p x x 28840-+=p p ,代入得24310+-=p p , 解得14=p 或1=-p (舍去).21.解:(1)的定义域为()0,+∞,()2'=-=mf x x x22-+x m x ,()122'=->-Q f m ,0∴>m .由()0'=f x,得=x .当0<<x ()0'>f x ,()∴f x的单调递增区间为⎛ ⎝;当>x 时,()0'<f x ,()∴f x的单调递减区间为⎫+∞⎪⎪⎭. (2)令()2ln 2=-+g x m x x 243-+-+=m x x x 2ln 25---+mm x x x x,1≥x , 则()222'=--+=m m g x x x x 32222--++x x mx m x ()()2212+-=x m xx,1≥x , ①当2≤m 时,()0'≤g x ,所以()g x 在()1,+∞上单调递减,所以当1≥x ,()()1≤g x g ,故只需()10≤g ,即1250---+≤m ,即2≥m ,所以2=m . ②当28<≤m 时,令()0'=g x,得=x .当1≤<x ()0'>g x ,()g x 单调递增;当>x 时,()0'<g x ,()g x 单调递减.所以当=x 时,()g x 取得最大值.故只需0≤g,即2-mm 50≤,化简得ln 222--m mm50+≤, 令2=mt,得ln 50--≤t t t (14<≤t ). 令()ln =--h x x xx 5(14<≤t ),则()1ln 1'=+-h x xln =x , 令()ln =-H x x ,()10'=+>H x x , 所以()'h x 在()1,+∞上单调递增,又()120'=-<h ,()4ln 410'=->h ,所以()01,4∃∈x ,()00'=h x ,所以()h x 在()01,x 上单调递减,在(]0,4x 上递增,而()11450=--+=h ,()44ln 4485=--+=h 8ln 270-<, 所以(]1,4∈x 上恒有()0≤h x , 即当28<≤m时,ln2-mm 50≤. 综上所述,28≤≤m .22.解:(1)由()2200-+=>⎧⎪⎨=⎪⎩x y x y kx 得221221⎧=⎪⎪-⎨⎪=⎪-⎩x k k y k .故曲线M 的参数方程为221221⎧=⎪⎪-⎨⎪=⎪-⎩x k ky k .(k 为参数,且12>k ).(2)由4cos ρθ=,得24cos ρρθ=,224∴+=x y x .将221221⎧=⎪⎪-⎨⎪=⎪-⎩x k k y k 代入224+=x y x 整理得2430-+=k k ,精 品 文 档试 卷 故直线OA 与直线OB 的斜率之和为4.23.解:(1)由-<x m x 得22-<x m x ,即22>mx m , 而不等式-<x m x 的解集为()1,+∞,则1是方程22=mx m 的解,解得2=m (0=m 舍去).(2)2=Q m ,∴不等式511-<+-a x x 21+-<m a x x对()0,∈+∞x 恒成立等价于 不等式51-<+-a x 22-<+x a 对()0,∈+∞x 恒成立.设()12=+--=f x x x 21,023,2-<<⎧⎨≥⎩x x x , 则()(]1,3∈-f x .23∴+>a ,51-≤-a ,14∴<≤a .。
河南省新乡市2019届高三第三次模拟测试数学(理)试卷
新乡市2019届高三第三次模拟测试数学试卷(理科)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填写在答题卡上.3.本试卷主要考试内容:高考全部内容.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(1+i )(2+i )(3+i )=A .-10iB .10iC .-10D .10 2.已知集合A ={x |x 2-4x <5},则A .-1.2∈AB .30.9∉AC .log 230∈AD .A ∩N ={1,2,3,4}3.设向量e l ,e 2是平面内的一组基底,若向量a =-3e l -e 2与b =e l -λe 2共线,则λ= A .13 B .-13C .-3D .3 4.若f (x )=a -2+asin2x 为奇函数,则曲线y =f (x )在x =0处的切线的斜率为 A .-2 B .-4 C .2 D .45.已知函数f (x )在(-∞,+∞)上单调递减,且当x ∈[-2,1]时,f (x )=x 2-2x -4,则关于x 的不等式f (x )<-1的解集为 A .(-1,+∞) B .(-∞,3) C .(-1,3) D .(-∞,-1)6.某图形由一个等腰直角三角形,一个矩形(矩形中的阴影部分为半圆),一个半圆组成,从该图内随机取一点,则该点取自阴影部分 的概率为A .25 B .22ππ+5+ C .12D .2ππ4+10+7.如图,过双曲线C :22221x y a b-=(a >0,b >0)的右焦点F作x 轴的垂线交C 于A ,B两点(A 在B 的上方),若A ,B 到C 的一条渐近线的距离分别为d l ,d 2,且d 2=4d l , 则C 的离心率为A B .54C D .438.若钝角α满足sin 3cos tan 2cos sin α-α=αα-α,则tan α=A .2-B .2C .2-D .2 9.某几何体由一个棱柱与一个棱锥组合而成,其三视图如图所示,其中俯视图和侧视图中的正方形的边长为2, 正视图和俯视图中的三角形均为等腰直角三角形,则该 几何体的体积为A .163 B .163或203 C .203 D .203或610.设a =lg 6,b =lg 20,则log 23=A .11a b b +-+ B .11a b b +-- C .11a b b -++ D .11a b b -+-11.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知a ),b =1,且abcos C +ccos A =abc ,则cos B 的取值范围为 A .(712,34) B .(712,23) C .(0,34) D .(0,23) 12.在直角坐标系xOy 中,直线y =kx +1与抛物线C :x 2=4y 交于A ,B 两点,若∠AOB =120°,则k =A .4±B .C .34± D .± 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.某校有高一学生n 名,其中男生数与女生数之比为6 :5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10n的样本,若样本中男生比女生多12人,则n =__________.14.一个球的内接正方体的表面积为32,则该球的体积为__________.15.已知a >0,则当391aa x x(-)(+)的展开式的常数项(即不含x 的项)取得最小值时,a =___________.16.某农户计划种植莴笋和西红柿,种植面积不超过30亩,投入资金不超过25万元,假设种植莴笋和西红柿的产量、成本和售价如下表:那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为__________万元.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)在数列{n a }中,1a =1,且n a ,2n ,1n a +成等比数列. (1)求2a ,3a ,4a ;(2)求数列{2n a }的前n 项和n S .18.(12分)以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:(1)计算该炮兵连这8周中总的命中频率p 0,并确定第几周的命中频率最高;(2)以(1)中的p 0作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射5次,记命中的次数为X ,求X 的方差;(3)以(1)中的p 0作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg 0.4= -0.398) 19.(12分)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,且PA =AB =BC =2,AC = (1)证明:三棱锥P -ABC 为鳖臑.(2)若D 为棱PB 的中点,求二面角D -AC -P 的余弦值.注:在《九章算术》中鳖臑(nào )是指四面皆为直角三角形的三棱锥.20.(12分)已知椭圆22221x y a b+=(a >b >0)的短轴长为2,且椭圆的—个焦点在圆(x -2)2+(y -3)2=18上.(1)求椭圆的方程;(2)已知椭圆的焦距小于4,过椭圆的左焦点F 的直线l 与椭圆相交于A ,B 两点,若 |AF |=3|FB |,求|AB |. 21.(12分)已知函数ln x af x x -()=(a ∈R ). (1)讨论函数f x g x x()()=在(1,+∞)上的单调性; (2)若a ≥0,不等式x 2f (x )+a ≥2-e 对x ∈(0,+∞)恒成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分) 在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y ⎧⎨⎩=+α,=+α(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知点A 的极坐标为(3,2π). (1)求曲线C 的极坐标方程;(2)过A 作曲线C 的切线,切点为M ,过O 作曲线C 的切线,切点为N ,求ON AM ||||.23.[选修4-5:不等式选讲](10分) 已知函数1a f x x a x()=|+|+|+2|. (1)若a =1,证明:f (|x |)≥5.(2)若f (1)<5a 2,求a 的取值范围.。
最新题库2019年河南省新乡市高考数学模拟试卷及答案(理科)(3月份).Word
每个试题考生都必须作答.第 22, 22 题为选考题,考生根据要求作答. ( -)必考题:共 60
分.
17.( 12 分)已知正项数列 { an} 的前 n 项和 Sn 满足 2Sn=an+2﹣ 2,n∈N* . ( 1)若数列 { an} 为等比数列,求数列 { an} 的公比 q 的值. ( 2)若 a2= a1=1, b1= 2,bn= an﹣1+an,求数列 { bn} 的通项公式.
则函数 y= f (x) g( x)的最大值为(
)
A.
B.
C. 1
D.
8.( 5 分)某几何体的三视图如图所示,则该几何体的体积为(
)
A.
B.
C.
D.
9 .( 5 分 ) 在 △ ABC 中 , 角 A , B , C 的 对 边 分 別 为 a , b , c , 若
,点 G 是△ ABC 的重心, 且 AG=
即有双曲线的 e= =
=
= 2.
故选: A.
4.( 5 分)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如表所示:
不喜欢 喜欢
男性青年观众
30
10
第 7 页(共 22 页)
女性青年观众
30
50
现要在所有参与调查的人中用分层抽样的方法抽取 的男性青年观众”的人中抽取了 6 人,则 n=(
n 人做进一步的调研,若在“不喜欢 )
,
故选: A.
8.( 5 分)某几何体的三视图如图所示,则该几何体的体积为(
)
A.
B.
C.
【解答】 解:由几何体的三视图得该几何体是如图所示的三棱锥 其中底面△ ABC 是边长为 2 的等边三角形, 平面 SAC⊥平面 ABC,SA= SC= 2,
(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。
河南省新乡市高三第三次模拟测试数学(理)试题(解析版)
河南省新乡市高三第三次模拟测试数学(理)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,则=( )A.B.C.D.2. 已知复数在复平面内对应的点分别为,则( )A.B. C.D.3. 已知上的奇函数满足:当时,,则( )A. -1B. -2C. 1D. 24. 某中学有高中生人,初中生人,男、女生所占的比例如下图所示.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取女生人,则从初中生中抽取的男生人数是( )A. B. C. D.5. 已知等差数列中,,,则( )A.B. C.D.6. 已知实数,满足,则的最大值与最小值之和为( )A.B.C.D.7. 将函数的图象向右平移个单位长度后,再将图象上各点的纵坐标伸长到原来的倍,得到函数的图象,则( )A. B. C. D.8. 我国古代数学著作《九章算术》有如下问题:“今有三人共车,二车空;二人共车,九人步.问人与车各几何?”意思是:今有人坐一辆车,有辆车是空的;人坐一辆车,有个人需要步行.问人与车各多少?下图是该问题中求人数的程序框图,执行该程序框图,则输出的值为()A. B. C. D.9. 下图是某几何体的三视图,则此几何体的表面积为()A. B. C. D.10. 已知三棱锥中,侧面底面,,则三棱锥外接球的体积为()A. B. C. D.11. 已知双曲线的离心率,对称中心为,右焦点为,点是双曲线的一条渐近线上位于第一象限内的点,的面积为,则双曲线的方程为()A. B. C. D.12. 设实数,若对任意的,不等式恒成立,则的最大值是()A. B. C. D. e第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知非零向量,若与的夹角等于与的夹角,则__________.14. 的展开式中不含常数项的所有项的系数之和是__________.15. 已知等比数列的前项和为,且,则__________(,且).16. 已知抛物线的焦点为为坐标原点,点,射线分别交抛物线于异于点的点,若三点共线,则的值为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,分别是内角的对边,已知.(1)求的大小;(2)若,求的面积18. 2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子500米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要经过4个直道与弯道的交接口.已知某男子速滑运动员顺利通过每个交接口的概率均为,摔倒的概率均为.假定运动员只有在摔倒或达到终点时才停止滑行,现在用表示该运动员在滑行最后一圈时在这一圈后已经顺利通过的交接口数.(1)求该运动员停止滑行时恰好已顺利通过3个交接口的概率;(2)求的分布列及数学期望.19. 在如图所示的几何体中,平面.(1)证明:平面;(2)求平面与平面所成二面角的正弦值.20. 已知椭圆的焦距为,且,圆与轴交于点,,为椭圆上的动点,,面积最大值为.(1)求圆与椭圆的方程;(2)圆的切线交椭圆于点,,求的取值范围.21. 已知函数.(1)若在定义域上不单调,求的取值范围;(2)设分别是的极大值和极小值,且,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出该曲线是什么曲线;(2)若直线与曲线的交点分别为,,求.23. 已知函数.(1)解关于的不等式;(2)记函数的最大值为,若,求的最小值.河南省新乡市高三第三次模拟测试数学(理)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,则=()A. B. C. D.【答案】B【解析】分析:由题意首先求得集合U,据此可得结合B,最后求解交集运算即可.详解:求解二次不等式可得:,则:,结合可得:,故=.本题选择B选项.点睛:本题主要考查补集的概念,交集的概念与运算等知识,意在考查学生的转化能力和计算求解能力.2. 已知复数在复平面内对应的点分别为,则()A. B. C. D.【答案】A【解析】分析:首先确定复数,然后结合题意进行复数的混合运算即可.详解:由题意可得:,则:,,据此可得:.本题选择A选项.点睛:本题主要考查复数的定义及其运算法则等知识,意在考查学生的转化能力和计算求解能力.3. 已知上的奇函数满足:当时,,则()A. -1B. -2C. 1D. 2【答案】C【解析】分析:由题意结合函数的解析式首先求得,然后求解的值即可.详解:由题意可得:,则.本题选择C选项.点睛:本题主要考查函数的奇偶性,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.4. 某中学有高中生人,初中生人,男、女生所占的比例如下图所示.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取女生人,则从初中生中抽取的男生人数是()A. B. C. D.【答案】A【解析】分析:首先确定分层抽样的抽取比例,然后求解初中生中抽取的男生人数即可.详解:因为分层抽样的抽取比例为,所以初中生中抽取的男生人数是人.本题选择A选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1) ;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.5. 已知等差数列中,,,则()A. B. C. D.【答案】D【解析】分析:由题意首先求得,然后结合等差数列前n项和公式求解前n项和即可求得最终结果. 详解:由等差数列前n项和公式结合等差数列的性质可得:,则,据此可得:.本题选择D选项.点睛:本题主要考查等差数列的性质,等差数列的前n项和公式等知识,意在考查学生的转化能力和计算求解能力.6. 已知实数,满足,则的最大值与最小值之和为()A. B. C. D.【答案】C【解析】分析:首先画出可行域,然后结合目标函数的几何意义求得最大值与最小值,最后两者作差即可求得最终结果.详解:作出不等式组表示的平面区域如图所示,当直线:z=-3x+y过点A(-2,0)时,z取得最大值6,过点B(2,-1)时,z取得最小值-7,它们的和为.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z 值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.7. 将函数的图象向右平移个单位长度后,再将图象上各点的纵坐标伸长到原来的倍,得到函数的图象,则()A. B. C. D.【答案】B【解析】分析:首先确定伸缩变换和平移变换之后的函数解析式,然后求解三角函数值即可,注意诱导公式和特殊角的三角函数值的应用.详解:因为,所以y=f(x)的图象向右平移个单位长度后,得到函数的解析式为,各点的纵坐标伸长到原来的2倍,得到函数,所以.本题选择B选项.点睛:本题主要考查三角函数图象的平移变换与伸缩变换等知识,意在考查学生的转化能力和计算求解能力.8. 我国古代数学著作《九章算术》有如下问题:“今有三人共车,二车空;二人共车,九人步.问人与车各几何?”意思是:今有人坐一辆车,有辆车是空的;人坐一辆车,有个人需要步行.问人与车各多少?下图是该问题中求人数的程序框图,执行该程序框图,则输出的值为()A. B. C. D.【答案】D【解析】分析:由题意结合流程图中的循环结构运行程序,确定输出值即可.详解:结合题中所给的流程图运行程序如下:首先初始化数据:,第一次循环:,满足;第二次循环:,满足;第三次循环:,满足;第四次循环:,满足;第五次循环:,满足;第六次循环:,不满足;此时结束循环,输出.本题选择D选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.9. 下图是某几何体的三视图,则此几何体的表面积为()A. B. C. D.【答案】A【解析】分析:由题意首先确定该三视图对应的几何体,然后结合几何体的空间结构求解该组合体的表面积即可.详解:该几何体为三棱锥,其直观图如图所示,为三棱锥,则其表面积为四个面面积之和:.本题选择A选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.10. 已知三棱锥中,侧面底面,,则三棱锥外接球的体积为()A. B. C. D.【答案】B【解析】分析:由几何关系首先求得外接球的半径,然后利用球的体积公式求解体积的大小即可.详解:如图取BC的中点为D,显然三棱锥P-ABC的外接球的球心O一定在过点D,且垂直于面ABC的垂线DO上.设OD=h,在△PAC中,AC=4,PA=,PC=,利用余弦定理得cos∠PCA=.在△PAC中过P作PH⊥AC,所以PH⊥平面ABC,易求PH=CH=1.在△CDH中,CH=1,CD=,,以DO与DH为邻边作矩形DOGH,因为三棱锥P-ABC的外接球的球心为O,所以OP=OB,OP2=(h+1)2+5,OB2=()2+h2,那么,解得OD=h=1,可得外接球的半径OB=3,.本题选择B选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.11. 已知双曲线的离心率,对称中心为,右焦点为,点是双曲线的一条渐近线上位于第一象限内的点,的面积为,则双曲线的方程为()A. B. C. D.【答案】C【解析】分析:由题意首先求得点A的坐标,结合离心率和三角形的面积得到关于a,b的方程组,求解方程组即可求得a,b的值,进一步可得双曲线的方程.详解:由题意点A所在的渐近线为bx-ay=0,设该渐近线的倾斜角为,则,因为∠AOF=∠OAF,所以直线AF的倾斜角为,,联立方程组,解得,即,所以.因为曲线的离心率,,所以.结合,得a=3,b=.所以双曲线的方程为.本题选择C选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为(λ≠0),再由条件求出λ的值即可. .12. 设实数,若对任意的,不等式恒成立,则的最大值是()A. B. C. D. e 【答案】D【解析】分析:将原问结合函数的单调性转化为对任意的恒成立,结合导函数的性质求解实数的最大值即可.详解:不等式.设,则,于是f(x)在上是增函数.因为,,所以,即对任意的恒成立,因此只需.设,,所以在上为增函数,所以,所以,即m的最大值是e.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知非零向量,若与的夹角等于与的夹角,则__________.【答案】4或-4【解析】分析:由题意结合向量的夹角公式得到关于t的方程,求解关于实数t的方程即可求得最终结果.详解:因为,所以与的夹角的余弦值为,而与的夹角的余弦值为,又因为,所以,解得t=4或t=-4.点睛:本题主要考查平面向量的夹角公式,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.14. 的展开式中不含常数项的所有项的系数之和是__________.【答案】-449【解析】分析:由题意结合二项式展开式的通项公式求得常数项,然后结合所有项的系数之和即可求得最终结果.详解:展开式的通项公式为,令可得r=6,所以常数项为,令x=1,得所有项的系数之和是-1,故不含常数项的所有项的系数之和是.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.15. 已知等比数列的前项和为,且,则__________(,且).【答案】【解析】分析:由题意首先求得数列的公比,然后结合数列的通项公式即可求得最终结果.详解:很明显等比数列的公比,则由题意可得:,解得:,则:.点睛:一是在运用等比数列的前n项和公式时,必须注意对q=1或q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.二是运用等比数列的性质时,注意条件的限制.16. 已知抛物线的焦点为为坐标原点,点,射线分别交抛物线于异于点的点,若三点共线,则的值为__________.【答案】2【解析】分析:由题意联立直线方程与抛物线方程可得A,B两点的坐标,然后利用斜率相等得到关于p的方程,求解方程即可求得最终结果.详解:直线OM的方程为,将其代入x2=2py,解方程可得,故.直线ON的方程为,将其代入x2=2py,解方程可得,故.又,所以,,因为A,B,F三点共线,所以k AB=k BF,即,解得p=2.点睛:(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,分别是内角的对边,已知.(1)求的大小;(2)若,求的面积【答案】(1);(2).【解析】分析:(1)由题意角化边可得,则.(2)由题意结合同角三角函数基本关系可得.结合正弦定理可得.且又.由面积公式可得.详解:(1)因为.所以,即.又,所以.(2)因为,所以.由,可得.又.所以.点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.18. 2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子500米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要经过4个直道与弯道的交接口.已知某男子速滑运动员顺利通过每个交接口的概率均为,摔倒的概率均为.假定运动员只有在摔倒或达到终点时才停止滑行,现在用表示该运动员在滑行最后一圈时在这一圈后已经顺利通过的交接口数.(1)求该运动员停止滑行时恰好已顺利通过3个交接口的概率;(2)求的分布列及数学期望.【答案】(1);(2)答案见解析.【解析】分析:(1)由题意可知.(2)的所有可能只为0,1,2,3,4.则,且相互独立.据此可得:,,,,.据此可得分布列,计算相应的数学期望值为.详解:(1)由题意可知:.(2)的所有可能只为0,1,2,3,4.则,且相互独立.故,,,,.从而的分布列为所以.点睛:本题主要考查离散型随机变量的分布列,离散型随机变量的数学期望的计算等知识,意在考查学生的转化能力和计算求解能力.19. 在如图所示的几何体中,平面.(1)证明:平面;(2)求平面与平面所成二面角的正弦值.【答案】(1)证明见解析;(2).【解析】分析:(1)在中,由勾股定理可得.又平面,据此可得.利用线面垂直的判断定理可得平面.(2)(方法一)延长,相交于,连接,由题意可知二面角就是平面与平面所成二面角.取的中点为,则就是二面角的平面角.结合几何关系计算可得.(方法二)建立空间直角坐标系,计算可得平面的法向量.取平面的法向量为.利用空间向量计算可得.详解:(1)在中,.所以,所以为直角三角形,.又因为平面,所以.而,所以平面.(2)(方法一)如图延长,相交于,连接,则平面平面.二面角就是平面与平面所成二面角.因为,所以是的中位线.,这样是等边三角形.取的中点为,连接,因为平面.所以就是二面角的平面角.在,所以.(方法二)建立如图所示的空间直角坐标系,可得..设是平面的法向量,则令得.取平面的法向量为.设平面与平面所成二面角的平面角为,则,从而.点睛:本题主要考查空间向量的应用,二面角的定义,线面垂直的判断定理等知识,意在考查学生的转化能力和计算求解能力.20. 已知椭圆的焦距为,且,圆与轴交于点,,为椭圆上的动点,,面积最大值为.(1)求圆与椭圆的方程;(2)圆的切线交椭圆于点,,求的取值范围.【答案】(1)圆的方程为,椭圆的方程为.;(2).【解析】分析:(1)由题意结合几何关系得到关于a,b,c的方程组,求解方程组可得,,.则圆的方程为,椭圆的方程为.(2)①当直线的斜率不存在时,计算可得.②当直线的斜率存在时,设直线的方程为利用圆心到直线的距离等于半径可得,联立直线与椭圆方程可得,由弦长公式有.令,换元后结合二次函数的性质可得.则的取值范围是.详解:(1)因为,所以.①因为,所以点为椭圆的焦点,所以.设,则,所以.当时,,②由①,②解得,所以,.所以圆的方程为,椭圆的方程为.(2)①当直线的斜率不存在时,不妨取直线的方程为,解得.②当直线的斜率存在时,设直线的方程为.因为直线与圆相切,所以,即,联立,消去可得,.==.令,则,所以=,所以=,所以.综上,的取值范围是.点睛:(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21. 已知函数.(1)若在定义域上不单调,求的取值范围;(2)设分别是的极大值和极小值,且,求的取值范围.【答案】(1);(2).【解析】分析:由已知,(1)①若在定义域上单调递增,讨论可得;②若在定义域上单调递减,讨论可得.据此可得.(2)由(1)知,.令的两根分别为,设,则,计算可得令,换元讨论可得.详解:由已知,(1)①若在定义域上单调递增,则,即在(0,+∞)上恒成立,而,所以;②若在定义域上单调递减,则,即在(0,+∞)上恒成立,而,所以.因为在定义域上不单调,所以,即.(2)由(1)知,欲使在(0,+∞)有极大值和极小值,必须.又,所以.令的两根分别为,即的两根分别为,于是.不妨设,则在上单调递增,在上单调递减,在上单调递增,所以,所以令,于是.,由,得.因为,所以在上为减函数.所以.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出该曲线是什么曲线;(2)若直线与曲线的交点分别为,,求.【答案】(1)见解析;(2)10.【解析】分析:(1)极坐标方程化为直角坐标方程可得,则曲线表示焦点坐标为(0,2),对称轴为轴的抛物线.(2)直线参数方程为(t为参数),与C的直角坐标方程联立可得,由弦长公式可得.详解:(1)因为所以,即,所以曲线表示焦点坐标为(0,2),对称轴为轴的抛物线.(2)直线过抛物线焦点坐标(0,2),且参数方程为(t为参数),代入曲线的直角坐标方程,得,所以.所以.点睛:本题主要考查直线的参数方程的几何意义,极坐标方程与直角坐标方程的互化公式等知识,意在考查学生的转化能力和计算求解能力.23. 已知函数.(1)解关于的不等式;(2)记函数的最大值为,若,求的最小值.【答案】(1);(2)4.【解析】分析:(1)结合不等式的性质零点分段可得不等式的解集为.(2)由绝对值三角不等式的性质可得.结合指数运算可得.结合均值不等式的结论有.则的最小值为4.详解:(1)当时,由,得,所以;当时,由,得,所以;当时,由,得,无解.综上可知,,即不等式的解集为.(2)因为,所以函数的最大值.应为,所以.又,所以,所以,即.所以有.又,所以,,即的最小值为4.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
河南省新乡市2019届高三理综第三次模拟测试试卷
新乡市2019届高三第三次模拟测试理科综合试卷考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共300分。
考试时间150分钟。
2.请将各题答案填写在答题卡上。
3.可能用到的相对原子质量:H 1 Li 7 C 12 O 16 Cl 35.5 Fe 56 Co 59第Ⅰ卷(选择题共126分)一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于细胞的叙述,不能体现“结构与功能相适应”观点的是A.豚鼠胰腺腺泡细胞代谢旺盛,核仁的体积较大B.人体细胞的细胞膜外侧分布有糖蛋白,有利于接收信息C.小肠绒毛上皮细胞内的线粒体分布在细胞中央,有利于吸收和转运物质D.植物根尖成熟区细胞含有大液泡,有利于调节细胞的渗透压2.下列关于基因表达的叙述,正确的是A.真核细胞中的RNA都是在细胞核中转录合成的B.遗传信息在表达为氨基酸序列的过程中会有损失C.翻译时,一种tRNA可能携带多种氨基酸D.mRNA翻译后只能得到一条多肽链3.高温诱导细胞产生的自由基会攻击磷脂和蛋白质分子而损伤细胞膜。
某小组分别在正常温度、中度高温和极端高温条件下处理组织细胞,细胞内的自由基产生速率情况如下图所示。
下列分析错误的是A.若组织细胞长期处于高温环境中,细胞衰老可能会加快B.在实验过程中,极端高温组细胞内的自由基产生速率逐渐加快C.与中度高温组相比,极端高温组细胞的细胞膜通透性较大D.中度高温组细胞内的自由基产生速率与对照组的基本相同4.谷氨酸是中枢神经系统中含量高、分布最广、作用最强的兴奋性神经递质,下列有关叙述错误的是A.突触前膜释放谷氨酸,实现了由电信号向化学信号的转换B.正常情况下,突触间隙中谷氨酸的浓度保持相对稳定C.谷氨酸与受体结合后,使突触后膜对K+的通透性增强D.谷氨酸只能由突触前膜释放,并作用于突触后膜5.福寿螺的适应能力强、繁殖速度快,能取食水生植物。
河南省新乡市高三第三次模拟数学试题(理)含答案
新乡市高三第三次模拟测试数学试卷(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数34i =+z ,则复数+zz z的虚部为( ) A .165 B .16i 5 C .185 D .18i 52.若集合{}25140=+-<M x x x ,{}3=<<+N x m x m ,且=∅M N ,则m 的取值范围为( )A .()10,2-B .()(),102,-∞-+∞C .[]10,2-D .(][),102,-∞-+∞3.在4233122⎛⎫- ⎪⎝⎭x x 的展开式中,系数为有理数的项为( ) A .第二项 B .第三项 C .第四项 D .第五项 4.某程序框图如图所示,若输入的4=t ,则输出的k 等于( )A .2B .3C .4D .55.若函数()()2log =+f x x a 与()()21=-+g x x a x ()45-+a 存在相同的零点,则a 的值为( )A .4或52-B .4或2-C .5或2-D .6或52- 6.记集合{}11=A a ,{}223,=A a a ,{}3456,,=A a a a ,{}478910,,,=A a a a a …,其中{}n a 为公差大于0的等差数列,若{}23,5=A ,则199属于( ) A .12A B .13A C .14A D .15A7.已知向量OA ,OB 满足2==OA OB ,λμ=+OC OA OB ,若λμ=+OC OA OB 且1λμ+=(λ,R μ∈),则OC 的最小值为( )A .1B .52C .2D .3 8.已知2παπ<<,且3sin 65πα⎛⎫+= ⎪⎝⎭,则cos 6πα⎛⎫- ⎪⎝⎭等于( )A .43310-- B .43310+ C .43310- D .33410- 9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,高一丈.问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出如下图所示,其中网格纸上小正方形的边长为1丈,则该楔体的体积为( )A .5000立方尺B .5500立方尺C .6000立方尺D .6500立方尺10.已知椭圆22221x y a b+=(0a b >>)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( ) A .35 B .12 C .23 D .3411.设x ,y 满足约束条件230,2210,0,+-≤⎧⎪--≤⎨⎪-≥⎩x y x y x a 若-+x y x y 的最大值为2,则a 的值为( )A .12 B .14 C .38 D .5912.定义在()0,+∞上的函数()f x 满足()(()2'>f x x x f x ,其中()'f x 为()f x 的导函数,则下列不等式中,一定成立的是( ) A .()()()23123>>f f f B .()()()149234>>f f f C .()()()23123<<f f f D .()()()149234<<f f f 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若函数()sin 3πω⎛⎫=+⎪⎝⎭f x x (01ω<<)的图象关于点()2,0-对称,则ω= .14.P 为双曲线2213-=y x 右支上一点,1F 、2F 为左、右焦点,若1210+=PF PF ,则12⋅=PF PF .15.若数列{}1--n n a a 是等比数列,且11=a ,22=a ,35=a ,则=n a . 16.已知四面体ABCD 的每个顶点都在球O 的表面上,5==AB AC ,8=BC ,⊥AD 底面ABC ,G 为ABC 的重心,且直线DG 与底面ABC 所成角的正切值为12,则球O 的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2223+-=b c a bc . (1)若6tan =B b a;(2)若23π=B ,23=b ,求BC 边上的中线长. 18.如图,在四棱锥-P ABCD 中,⊥PD 底面ABCD ,底面ABCD 为矩形,且12==PD AD AB ,E 为PC 的中点. (1)过点A 作一条射线AG ,使得∥AG BD ,求证:平面∥PAG 平面BDE ; (2)求二面角--D BE C 的余弦值的绝对值.19.为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.分数 [)50,59[)60,69[)70,79[)80,89[]90,100甲班频数 5 6 4 4 1 一般频数13655(1)由以下统计数据填写下面22⨯列联表,并判断能否在犯错误的额概率不超过0.025的前提下认为“成绩优良与教学方式有关”?甲班 乙班 总计 成绩优良 成绩不优良总计附:()()()()()22-=++++n ad bc K a b c d a c b d ,其中=+++n a b c d .临界值表()2≥P K k0.10 0.05 0.025 0.010 k2.7063.8415.0246.635(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为X ,求X 的分布列及数学期望.20.已知抛物线C :22=x py (0>p )的焦点为F ,直线220-+=x y 交抛物线C 于A 、B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)D 是抛物线C 上的动点,点()1,3-E ,若直线AB 过焦点F ,求+DF DE 的最小值;(2)是否存在实数p ,使2+=QA QB 2-QA QB ?若存在,求出p 的值;若不存在,说明理由.21.已知函数()2ln 2=-+f x m x x (8≤m ).(1)当曲线()=y f x 在点()()1,1f 处的切线的斜率大于2-时,求函数()f x 的单调区间; (2)若()()'-f x f x 43≤-x 对[)1,∈+∞x 恒成立,求m 的取值范围.(提示:ln 20.7≈) 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为4cos ρθ=,曲线M 的直角坐标方程为220-+=x y (0>x ).(1)以曲线M 上的点与点O 连线的斜率k 为参数,写出曲线M 的参数方程; (2)设曲线C 与曲线M 的两个交点为A ,B ,求直线OA 与直线OB 的斜率之和. 23.选修4-5:不等式选讲已知不等式-<x m x 的解集为()1,+∞. (1)求实数m 的值; (2)若不等式511-<+-a x x 21+-<m a x x对()0,∈+∞x 恒成立,求实数a 的取值范围.新乡市高三第三次模拟测试 数学试卷参考答案(理科)一、选择题1-5: ADBBC 6-10:CDDAA 11、12:CB 二、填空题13.6π 14.18 15.1312-+n 16.6349π三、解答题17.解:(1)由2223+-=b c a bc 得3cos 2=A ,6π∴=A . 6tan 12=B ,1sin 5∴=B . 由正弦定理得,sin sin =a b A B ,则sin sin ==b B a A 125152=.(2)6π=A ,6ππ=--=C A B ,∴=AB BC .由sin sin =c bC B得2=c .取BC 中点D ,在ABD 中,2222=+-AD AB BD cos 7⨯⨯⨯=AB BD B ,7∴=AD ,即BC 边7.18.(1)证明:在矩形ABCD 中,连接AC 和BD 交于点O ,连接OE ,则O 是AC 的中点,由于E 是PC 的中点,所以OE 是PAC 的中位线,则∥OE PA 又⊂OE 平面BDE ,⊄PA 平面BDE , 所以∥PA 平面BDE .又∥AG BD ,同理得∥AG 平面BDE . 因为=PAAG A ,所以平面∥PAG 平面BDE .(2)分别以DA ,DC ,DP 所在的直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设=AD a ,则=PD a ,2=AB a ,故(),2,0B a a ,()0,0,P a ,()0,2,0C a ,0,,2⎛⎫⎪⎝⎭a E a , 所以(),2,0=DB a a ,0,,2⎛⎫= ⎪⎝⎭a DE a ,(),0,0=CB a ,0,,2⎛⎫=- ⎪⎝⎭a EC a ,设平面BDE 的一个法向量为()1111,,=n x y z ,则有110,0,⎧⋅=⎪⎨⋅=⎪⎩n DB n DE ,即20,0,2+=⎧⎪⎨+=⎪⎩ax ay aay z 令2=x ,则1=-y ,2=z ,故()12,1,2=-n . 同理,可得平面BEC 的一个法向量()20,1,2=n . 所以121212cos ,⋅==n n n n n n 55,即二面角--D BE C 的余弦值的绝对值为55.19.解:(1)甲班 乙班 总计 成绩优良 9 16 25 成绩不优良11 4 15 总计202040根据22⨯列联表中的数据,得2K 的观测值为()24094161125152020⨯-⨯=⨯⨯⨯k 5.227 5.024≈>,∴能在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”.(2)由表可知在8人中成绩不优良的人数为158340⨯=,则X 的可能取值为0,1,2,3.()31131533091===C P X C ;()2111431544191===C C P X C ; ()12114315662455===C C P X C ;()3431543455===C P X C . ∴X 的分布列为:X 0123P3391 4491 66455 4455 ()3344019191∴=⨯+⨯E X 66423455455+⨯+⨯364455=. 20.解:(1)直线220-+=x y 与y 轴的交点为()0,2,()0,2∴F ,则抛物线C 的方程为28=x y ,准线l :2=-y .设过D 作⊥DG l 于G ,则+=DF DE +DG DE , 当E 、D 、G 三点共线时,+DF DE 取最小值235+=. (2)假设存在,抛物线22=x py 与直线22=+y x 联立方程组得:2440--=x px p ,设()11,A x y ,()22,B x y ,则124+=x x p ,124=-x x p ,()2,2∴Q p p .2+QA QB 2=-QA QB ,∴⊥QA QB .则0⋅=QA QB 得:()()1222--+x p x p ()()12220--=y p y p ,()()1222--+x p x p ()()122222220+-+-=x p x p ,()()1212546+-++x x p x x 28840-+=p p ,代入得24310+-=p p , 解得14=p 或1=-p (舍去).21.解:(1)的定义域为()0,+∞,()2'=-=mf x x x22-+x m x ,()122'=->-f m ,0∴>m .由()0'=f x ,得2=mx .当02<<mx ()0'>f x ,()∴f x 的单调递增区间为2⎛ ⎝m ; 当2>mx 时,()0'<f x ,()∴f x 的单调递减区间为,2⎫+∞⎪⎪⎭m . (2)令()2ln 2=-+g x m x x 243-+-+=m x x x 2ln 25---+mm x x x x,1≥x , 则()222'=--+=m m g x x x x 32222--++x x mx m x ()()2212+-=x m xx,1≥x , ①当2≤m 时,()0'≤g x ,所以()g x 在()1,+∞上单调递减,所以当1≥x ,()()1≤g x g ,故只需()10≤g ,即1250---+≤m ,即2≥m ,所以2=m . ②当28<≤m 时,令()0'=g x ,得2=mx . 当12≤<mx ()0'>g x ,()g x 单调递增; 当2>mx 时,()0'<g x ,()g x 单调递减. 所以当2=mx 时,()g x 取得最大值.故只需02≤m g ,即22-m m m 25022≤m m ,化简得ln 222--m m m2250+≤m , 令2=mt ,得ln 450--≤t t t t (14<≤t ). 令()ln =--h x x x x 45x (14<≤t ),则()1ln 1'=+-h x x x ln =x x, 令()ln =-H x x x,()10'=+>H x x x x , 所以()'h x 在()1,+∞上单调递增,又()120'=-<h ,()4ln 410'=->h ,所以()01,4∃∈x ,()00'=h x ,所以()h x 在()01,x 上单调递减,在(]0,4x 上递增,而()11450=--+=h ,()44ln 4485=--+=h 8ln 270-<, 所以(]1,4∈x 上恒有()0≤h x , 即当28<≤m 时,ln22-m m m 25022≤m m. 综上所述,28≤≤m .22.解:(1)由()2200-+=>⎧⎪⎨=⎪⎩x y x y kx 得221221⎧=⎪⎪-⎨⎪=⎪-⎩x k k y k .故曲线M 的参数方程为221221⎧=⎪⎪-⎨⎪=⎪-⎩x k ky k .(k 为参数,且12>k ).(2)由4cos ρθ=,得24cos ρρθ=,224∴+=x y x .将221221⎧=⎪⎪-⎨⎪=⎪-⎩x k k y k 代入224+=x y x 整理得2430-+=k k ,11 / 11 故直线OA 与直线OB 的斜率之和为4.23.解:(1)由-<x m x 得22-<x m x ,即22>mx m , 而不等式-<x m x 的解集为()1,+∞,则1是方程22=mx m 的解,解得2=m (0=m 舍去).(2)2=m ,∴不等式511-<+-a x x 21+-<m a x x对()0,∈+∞x 恒成立等价于 不等式51-<+-a x 22-<+x a 对()0,∈+∞x 恒成立.设()12=+--=f x x x 21,023,2-<<⎧⎨≥⎩x x x , 则()(]1,3∈-f x .23∴+>a ,51-≤-a ,14∴<≤a .。
河南省新乡市2019-2020学年高考第三次模拟数学试题含解析
河南省新乡市2019-2020学年高考第三次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线2214x y -=的渐近线方程是( )A .2y x =±B .3y x =±C .2x y =±D .2y x =±【答案】C【解析】【分析】根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】 由题意可知,双曲线2214x y -=的渐近线方程是2x y =±. 故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.2.下列函数中,在区间(0,)+∞上单调递减的是( )A .12y x =B .2x y =C .12log y = xD .1y x =- 【答案】C【解析】【分析】由每个函数的单调区间,即可得到本题答案.【详解】 因为函数12,2x y x y ==和1y x=-在(0,)+∞递增,而12log y x =在(0,)+∞递减. 故选:C【点睛】本题主要考查常见简单函数的单调区间,属基础题.3.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo )、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )A .314B .1114C .114D .27【答案】B【解析】 【分析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有2828C =种取法;“两音”中含有打击乐器的取法共有228422C C -=种取法;∴所求概率22112814p ==. 故选:B .【点睛】 本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.4.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()x e x f x x+= B .()21x f x x -= C .()x e x f x x -= D .()21x f x x+= 【答案】A【解析】【分析】 由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B, ()21x f x x-=为 奇函数可判断B 错误; 对于选项C,当1x <-时, ()0x e x f x x-=<,可判断C 错误;对于选项D, ()22111=+x f x x x x+=,可知函数在第一象限的图象无增区间,故D 错误; 故选:A. 【点睛】 本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.5.如图在直角坐标系xOy 中,过原点O 作曲线()210y x x =+≥的切线,切点为P ,过点P 分别作x 、y 轴的垂线,垂足分别为A 、B ,在矩形OAPB 中随机选取一点,则它在阴影部分的概率为( )A .16B .15C .14D .12【答案】A【解析】【分析】设所求切线的方程为y kx =,联立()201y kx k y x ⎧=>⎨=+⎩,消去y 得出关于x 的方程,可得出0∆=,求出k 的值,进而求得切点P 的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【详解】设所求切线的方程为y kx =,则0k >,联立()201y kx k y x ⎧=>⎨=+⎩,消去y 得210x kx -+=①,由240k ∆=-=,解得2k =,方程①为2210x x -+=,解得1x =,则点()1,2P ,所以,阴影部分区域的面积为()1232100111233S x x dx x x x ⎛⎫=+-=-+= ⎪⎝⎭⎰, 矩形OAPB 的面积为122S '=⨯=,因此,所求概率为16S P S =='. 故选:A.【点睛】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.6.在ABC ∆中,30C =︒,2cos 3A =-,152AC =-,则AC 边上的高为() A .5 B .2 C .5 D .15 【答案】C【解析】【分析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得BC 边长,由此求得AC 边上的高.【详解】过B 作BD CA ⊥,交CA 的延长线于D .由于2cos 3A =-,所以A 为钝角,且25sin 1cos 3A A =-=,所以()()sin sin sin CBA CBA A C π∠=-∠=+5321152sin cos cos sin 32A C A C -=+=⨯-⨯=.在三角形ABC 中,由正弦定理得sin sin a b AB =,即1525152-=-,所以25BC =.在Rt BCD ∆中有1sin 2552BD BC C ==⨯=,即AC 边上的高为5. 故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题. 7.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( )A .12种B .18种C .24种D .64种【答案】C【解析】【分析】根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有246C =种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有222A =种情况, 此时有224⨯=种情况,则有6424⨯=种不同的安排方法;故选:C .【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.8.设复数z 满足12z z z +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+B .221y x =+C .221x y =-D .221y x =- 【答案】B【解析】【分析】根据共轭复数定义及复数模的求法,代入化简即可求解.【详解】z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-, ∵12z z z +=+,1x =+,解得221y x =+.故选:B.【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.9.已知a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .b c a >>D .b a c >> 【答案】D【解析】【分析】构造函数()ln x f x x =,利用导数求得()f x 的单调区间,由此判断出,,a b c 的大小关系. 【详解】依题意,得3ln 3ln 33a ==,1ln e b e e -==,3ln 2ln888c ==.令ln ()x f x x=,所以21ln '()x f x x -=.所以函数()f x 在(0,)e 上单调递增,在(,)e +∞上单调递减.所以max 1[()]()f x f e b e ===,且(3)(8)f f >,即a c >,所以b a c >>.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.10.水平放置的ABC V ,用斜二测画法作出的直观图是如图所示的A B C '''V ,其中2,O A O B ''''== 3O C ''=,则ABC V 绕AB 所在直线旋转一周后形成的几何体的表面积为( )A .83πB .3πC .(833)πD .(16312)π【答案】B【解析】【分析】 根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得2AO BO ==,23OC =ABC V 绕AB 所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得2AO BO ==,23OC =4AB AC BC ===,ABC V 绕AB 所在直线旋转一周后形成的几何体是两个相同圆锥的组合体, 它的表面积为22234163S rl πππ==⨯⨯=. 故选:B 【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.11.已知向量a b (3,1),(3,3)=-=r r ,则向量b r 在向量a r 方向上的投影为()A .3-B .3C .1-D .1【答案】A【解析】【分析】投影即为cos a bb a θ⋅⋅=rr r r ,利用数量积运算即可得到结论.【详解】设向量a r 与向量b r 的夹角为θ,由题意,得331323a b ⋅=-⨯+⨯=-r r ,()22312a =-+=r ,所以,向量b r 在向量a r 方向上的投影为23cos 3a b b a θ⋅-⋅===-rr r r .故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.12.函数的图象可能是下列哪一个?( )A .B .C .D .【答案】A【解析】【分析】由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果.【详解】由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.二、填空题:本题共4小题,每小题5分,共20分。
河南省新乡市2019-2020学年高考数学第三次调研试卷含解析
河南省新乡市2019-2020学年高考数学第三次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线2214x y -=的渐近线方程是( )A .2y x =±B .3y x =±C .2x y =±D .2y x =±【答案】C 【解析】 【分析】根据双曲线的标准方程即可得出该双曲线的渐近线方程. 【详解】由题意可知,双曲线2214x y -=的渐近线方程是2x y =±.故选:C. 【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用. 2.若复数12z i =+,2cos isin ()z ααα=+∈R ,其中i 是虚数单位,则12||z z -的最大值为( )A 1B .12C 1D .12【答案】C 【解析】 【分析】由复数的几何意义可得12z z -表示复数12z i =+,2cos sin z i αα=+对应的两点间的距离,由两点间距离公式即可求解. 【详解】由复数的几何意义可得,复数12z i =+对应的点为()2,1,复数2cos sin z i αα=+对应的点为()cos ,sin αα,所以121z z -=,其中tan φ2=,故选C 【点睛】本题主要考查复数的几何意义,由复数的几何意义,将12z z -转化为两复数所对应点的距离求值即可,属于基础题型.3.已知抛物线2:8C y x =的焦点为F ,A B 、是抛物线上两个不同的点,若||||8AF BF +=,则线段AB的中点到y 轴的距离为( ) A .5 B .3C .32D .2【答案】D 【解析】 【分析】由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知12||||228AF BF x x +=+++=,继而可求出124x x +=,从而可求出AB 的中点的横坐标,即为中点到y 轴的距离. 【详解】解:由抛物线方程可知,28p =,即4p =,()2,0F ∴.设()()1122,,,A x y B x y 则122,2AF x BF x =+=+,即12||||228AF BF x x +=+++=,所以124x x +=. 所以线段AB 的中点到y 轴的距离为1222x x +=. 故选:D. 【点睛】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得A B 、两点横坐标的和.4.不等式组201230x y y x x y -≥⎧⎪⎪≥⎨⎪+-≤⎪⎩表示的平面区域为Ω,则( )A .(),x y ∀∈Ω,23x y +>B .(),x y ∃∈Ω,25x y +>C .(),x y ∀∈Ω,231y x +>- D .(),x y ∃∈Ω,251y x +>- 【答案】D 【解析】 【分析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设1222,1y z x y z x +=+=-,分析12,z z 的几何意义,可得12,z z 的最小值,据此分析选项即可得答案. 【详解】解:根据题意,不等式组201230x yy xx y-≥⎧⎪⎪≥⎨⎪+-≤⎪⎩其表示的平面区域如图所示,其中()2,1A,()1,2B,设12z x y=+,则122zxy=-+,1z的几何意义为直线122zxy=-+在y轴上的截距的2倍,由图可得:当122zxy=-+过点()1,2B时,直线12z x y=+在y轴上的截距最大,即25x y+≤,当122zxy=-+过点原点时,直线12z x y=+在y轴上的截距最小,即20x y+≥,故AB错误;设221yzx+=-,则2z的几何意义为点(),x y与点()1,2-连线的斜率,由图可得2z最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题. 5.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.下图为研究“角谷猜想”的一个程序框图.若输入n的值为10,则输出i的值为()A .5B .6C .7D .8【答案】B 【解析】 【分析】根据程序框图列举出程序的每一步,即可得出输出结果. 【详解】输入10n =,1n =不成立,n 是偶数成立,则1052n ==,011i =+=; 1n =不成立,n 是偶数不成立,则35116n =⨯+=,112i =+=; 1n =不成立,n 是偶数成立,则1682n ==,213i =+=; 1n =不成立,n 是偶数成立,则842n ==,314i =+=;1n =不成立,n 是偶数成立,则422n ==,415i =+=;1n =不成立,n 是偶数成立,则212n ==,516i =+=;1n =成立,跳出循环,输出i 的值为6.故选:B. 【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.6.已知双曲线22214x y b -=(0b >30x y ±=,则b =( )A .3B 3C 3D .43【答案】A 【解析】 【分析】根据双曲线方程22214x y b-=(0b >)0y ±=得到b a =. 【详解】因为双曲线22214x y b-=(0b >),所以2a =0y ±=,所以2b ba ==,所以b =故选:A. 【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题. 7.已知函数()f x 是奇函数,且22()'()ln(1)ln(1)1f x f x x x x -=+----,若对11[,]62x ∀∈,(1)(1)f ax f x +<-恒成立,则a 的取值范围是( )A .(3,1)--B .(4,1)--C .(3,0)-D .(4,0)-【答案】A 【解析】 【分析】先根据函数奇偶性求得()(),f x f x ',利用导数判断函数单调性,利用函数单调性求解不等式即可. 【详解】因为函数()f x 是奇函数, 所以函数'()f x 是偶函数.22()'()ln(1)ln(1)1f x f x x x x ---=--+--, 即22()'()ln(1)ln(1)1f x f x x x x --=--+--,又22()'()ln(1)ln(1)1f x f x x x x -=+----,所以()ln(1)ln(1)f x x x =+--,22'()1f x x =-. 函数()f x 的定义域为(1,1)-,所以22'()01f x x =>-,则函数()f x 在(1,1)-上为单调递增函数.又在(0,1)上,()(0)0f x f >=,所以()f x 为偶函数,且在(0,1)上单调递增.由(1)(1)f ax f x +<-,可得11111ax x ax ⎧+<-⎨-<+<⎩,对11[,]62x ∈恒成立,则1120ax x a x⎧+<-⎪⎨-<<⎪⎩,21120a x a x⎧-<<-⎪⎪⎨⎪-<<⎪⎩对11[,]62x ∈恒成立,,得3140a a -<<-⎧⎨-<<⎩,所以a 的取值范围是(3,1)--. 故选:A. 【点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题. 8.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( ) A . B .C .D .【答案】A 【解析】 【分析】求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值. 【详解】 抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A .【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.9.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .38243【答案】C 【解析】 【分析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果. 【详解】从6个球中摸出2个,共有2615C =种结果,两个球的号码之和是3的倍数,共有(1,2),(1,5),(2,4),(3,6),(4,5)∴摸一次中奖的概率是51153=, 5个人摸奖,相当于发生5次试验,且每一次发生的概率是13, ∴有5人参与摸奖,恰好有2人获奖的概率是35222180()()33243C ⋅⋅=, 故选:C . 【点睛】本题主要考查了n 次独立重复试验中恰好发生k 次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.10.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为( ) A .20 B .24 C .25 D .26【答案】D 【解析】 【分析】利用组合的意义可得混合后所有不同的滋味种数为23455555C C C C +++,再利用组合数的计算公式可得所求的种数. 【详解】混合后可以组成的所有不同的滋味种数为23455555205126C C C C +++=++=(种),故选:D. 【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.11.若函数()2xf x e mx =-有且只有4个不同的零点,则实数m 的取值范围是( )A .2,4e ⎡⎫+∞⎪⎢⎣⎭B .2,4e ⎛⎫+∞ ⎪⎝⎭C .2,4e ⎛⎫-∞ ⎪⎝⎭D .2,4e ⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】由()2xf x e mx =-是偶函数,则只需()2xf x e mx =-在()0,x ∈+∞上有且只有两个零点即可.【详解】解:显然()2xf x e mx =-是偶函数所以只需()0,x ∈+∞时,()22xxf e x e mx mx ==--有且只有2个零点即可令20xe mx -=,则2xe m x=令()2xe g x x =,()()32x e x g x x-'= ()()()0,2,0,x g x g x '∈<递减,且()0,x g x +→→+∞ ()()()2,+,0,x g x g x '∈∞>递增,且(),x g x →+∞→+∞()()224e g x g ≥=()0,x ∈+∞时,()22x x f e x e mx mx ==--有且只有2个零点,只需24e m > 故选:B 【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.12.根据最小二乘法由一组样本点(),i i x y (其中1,2,,300i =L ),求得的回归方程是ˆˆˆybx a =+,则下列说法正确的是( )A .至少有一个样本点落在回归直线ˆˆˆybx a =+上 B .若所有样本点都在回归直线ˆˆˆybx a =+上,则变量同的相关系数为1 C .对所有的解释变量i x (1,2,,300i =L ),ˆˆibx a +的值一定与i y 有误差D .若回归直线ˆˆˆy bx a =+的斜率ˆ0b>,则变量x 与y 正相关 【答案】D 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A 错误;所有样本点都在回归直线ˆˆˆybx a =+上,则变量间的相关系数为1±,故B 错误; 若所有的样本点都在回归直线ˆˆˆy bx a =+上,则ˆˆbx a +的值与y i 相等,故C 错误;相关系数r 与ˆb符号相同,若回归直线ˆˆˆy bx a =+的斜率ˆ0b >,则0r >,样本点分布应从左到右是上升的,则变量x 与y 正相关,故D 正确. 故选D . 【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力. 二、填空题:本题共4小题,每小题5分,共20分。
河南省新乡市2019-2020学年高考第三次质量检测数学试题含解析
河南省新乡市2019-2020学年高考第三次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.M 是抛物线24y x =上一点,N 是圆()()22121x y -+-=关于直线10x y --=的对称圆上的一点,则MN 最小值是( )A.1112- B .31- C .221-D .32【答案】C 【解析】 【分析】求出点()1,2关于直线10x y --=的对称点C 的坐标,进而可得出圆()()22121x y -+-=关于直线10x y --=的对称圆C 的方程,利用二次函数的基本性质求出MC 的最小值,由此可得出min min 1MN MC =-,即可得解.【详解】 如下图所示:设点()1,2关于直线10x y --=的对称点为点(),C a b ,则121022211a b b a ++⎧--=⎪⎪⎨-⎪=-⎪-⎩,整理得3030a b a b --=⎧⎨+-=⎩,解得30a b =⎧⎨=⎩,即点()3,0C ,所以,圆()()22121x y -+-=关于直线10x y --=的对称圆C 的方程为()2231x y -+=,设点2,4y M y ⎛⎫ ⎪⎝⎭,则MC ===当2y =±时,MC 取最小值min min 11MN MC =-=. 故选:C. 【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.2.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a Q 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>Q ,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠Q ,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意. 所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列. 所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.3.已知A ,B 是函数()2,0ln ,0x x a x f x x x a x ⎧++≤=⎨->⎩图像上不同的两点,若曲线()y f x =在点A ,B 处的切线重合,则实数a 的最小值是( ) A .1- B .12-C .12D .1【答案】B 【解析】 【分析】先根据导数的几何意义写出()f x 在,A B 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出()122112x a x e =-,令函数()()()22102x g x x e x =-≤ ,结合导数求出最小值,即可选出正确答案. 【详解】解:当0x ≤ 时,()2f x x x a =++,则()'21f x x =+;当0x >时,()ln x x a f x =-则()'ln 1f x x =+.设()()()()1122,,,A x f x B x f x 为函数图像上的两点, 当120x x << 或120x x <<时,()()12''f x f x ≠,不符合题意,故120x x <<. 则()f x 在A 处的切线方程为()()()2111121y x x a x x x -++=+-;()f x 在B 处的切线方程为()()2222ln ln 1y x x a x x x -+=+-.由两切线重合可知 21221ln 121x x x a a x +=+⎧⎨--=-⎩ ,整理得()()12211102x a x e x =-≤.不妨设()()()22102x g x x e x =-≤ 则()()22',''12xxg x x e g x e =-=- ,由()''0g x = 可得11ln 22x =则当11ln 22x =时,()'g x 的最大值为11111'ln ln 022222g ⎛⎫=-< ⎪⎝⎭. 则()()2212x g x x e =-在(],0-∞ 上单调递减,则()102a g ≥=-. 故选:B. 【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出a 和x 的函数关系式.本题的易错点是计算.4.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm 3A.243π+B.342π+C.263π+D.362π+【答案】D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×1+12•π•12×1=(6+1.5π)cm1.故答案为6+1.5π.点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.5.函数的图象可能是下列哪一个?()A.B.C.D.【答案】A【解析】【分析】由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果. 【详解】 由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6.根据散点图,对两个具有非线性关系的相关变量x ,y 进行回归分析,设u= lny ,v=(x-4)2,利用最小二乘法,得到线性回归方程为ˆu=-0.5v+2,则变量y 的最大值的估计值是( ) A .e B .e 2C .ln2D .2ln2【答案】B 【解析】 【分析】将u= lny ,v=(x-4)2代入线性回归方程ˆu=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值. 【详解】解:将u= lny ,v=(x -4)2代入线性回归方程ˆu=-0.5v+2得: ()2ln 0.542y x =--+,即()20.542x y e--+=,当4x =时,()20.542x --+取到最大值2, 因为xy e =在R 上单调递增,则()20.542x y e --+=取到最大值2e .故选:B. 【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.7.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )A .2B .83C .6D .8【答案】A 【解析】 【分析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果. 【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2, 所以该四棱锥的体积为()11V 1222232=⨯⨯+⨯⨯=. 故选A 【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型. 8.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===o 若点E 为边CD 上的动点,则AE BE ⋅u u u v u u u v的最小值为 ( )A .2116B .32C .2516D .3【答案】A 【解析】 【分析】 【详解】分析:由题意可得ABD △为等腰三角形,BCD V 为等边三角形,把数量积AE BE ⋅u u u v u u u v分拆,设(01)DE tDC t =≤≤u u u v u u u v,数量积转化为关于t 的函数,用函数可求得最小值。
河南省新乡市2019届高三3月份质量检测数学(理)试题
2019届高三考试数学(理科)考生注意:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷 (非选择题)两部分,共150分。
考试时间120分钟。
2. 请将各题答案填写在答题卡上。
3. 本试卷主要考试内容:高考全部内容。
第Ⅰ卷一、选择题:本大题共12小题,每小题 5分,共60分。
在毎小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{0,1,2,3}A =,{|ln 1}B x N x =∈<,则A B =( )A.{0,1}B.{1,2}C.{0,1,2}D.{0,1,2,3}2.设复z 满足i iiz =--2,则=||z ( ) A. 2B.5C. 3D. 103. 已知双曲线22221(0,0)x y a b a b-=>>的一条渐近钱经过点,则该双曲线的离心率为( )A. 2B. 2C. 3D. 34.某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取n 人做进一歩的调研,若存不喜欢的男性青年观众”的人中抽取了6人,则n =( ) A.12B.16C.24D.325. 在ABC ∆中,若点D 满足3BD DC =,点E 为AC 的中点,则ED =( ) A.3165+B.4141+ C.4143-D.3165-6. 若某程序框图如图所示,则该程序运行后输出的B 等于( )A.4B. 13C. 40D. 417.将函数x x f sin )(=的图象向右平移4π个单位长度后得到函数)(x g y =的图象,则函数)()(x g x f 的最大值为( ) A.422+B.422-C.1D.21 8.某几何体的三视图如图所示,则该几何体的体积为( )A.43B. 3C.433D.4349.在ABC ∆中,角A ,B ,C 的对边分別为a ,b ,c ,若1b =,(2sin )a B C A =,点G是ABC ∆的重心,且3AF =,则ABC ∆的面积为( ) A. 3B.23C. 3或32D.433或3 10.函数x x x x f cos 2sin )(+=的大致图象有可能是( )A. B. C. D.11.已知四棱锥S ABCD -,SA ⊥平面ABCD ,AB BC ⊥,BCD DAB π∠+∠=,2SA =,BC =,二面角S BC A --的大小为3π,若四面体SACD 的四个顶点都在同一球面上,则该球的表面积为( ) A. π24 B. π4C. π8D. π1612.已知函数xx e e x f --=)(,若对任意的(0,)x ∈+∞,()>mx f x 恒成立,则m 的取值范围为( )A. )1,(-∞B. ]1,(-∞C. )2,(-∞D. ]2,(-∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分。
河南省新乡市2019届高三3月份质量检测数学(理)试题-f3bb43b039974af59dbf1b1fe09565a7
绝密★启用前【学科网WORD 转化】河南省新乡市2019届高三3月份质量检测数学(理)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知集合 , ,则 ( ) A .B .C .D .2.设复 满足,则 ( ) A .2B .C .3D .3.已知双曲线的一条渐近线经过点 ,则该双曲线的离心率为( ) A .2B .C .3D .4.某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取 人做进一步的调研,若从不喜欢的男性青年观众”的人中抽取了 6人,则 ( ) A .12B .16C .24D .32○……………装…………○………○…………线…※不※※要※※在※※装※※※题※※○……………装…………○………○…………线…5.在 中,若点 满足,点 为 的中点,则 ( ) A .B .C .D .6.若某程序框图如下图所示,则该程序运行后输出的 等于( )A .4B .13C .40D .417.将函数 的图象向右平移个单位长度后得到函数 的图象,则函数 的最大值为( ) A .B .C .1D .8.某几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .9.在 中,角 的对边分別为 ,若 , ,点 是 的重心,且,则 的面积为( )A .B .C . 或D .或 10.函数 的大致图象有可能是( )A .B .………○……………○……C . D .11.已知四棱锥 , 平面 , , , ,,二面角 的大小为,若四面体 的四个顶点都在同一球面上,则该球的表面积为( ) A .B .C .D .12.已知函数 ,若对任意的 , 恒成立,则 的取值范围为( ) A . B .C .D .………装……请※※不※※要※※在………装……第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.二项式的展开式中的系数是________.14.设,满足约束条件,则的最大值是_________.15.已知,则__________.16.已知,是抛物线上任意不同的两点,线段的垂直平分线与轴相交于点,则的取值范围是_______.(用含的区间表示)三、解答题17.已知正项数列的前项和满足,.(1)若数列为等比数列,求数列的公比的值.(2)若,,求数列的通项公式.18.如图,在正方体中,点是底面的中心,是线段的上一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新乡市2019届高三第三次模拟测试
数学试卷(理科)
考生注意:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.
2.请将各题答案填写在答题卡上.
3.本试卷主要考试内容:高考全部内容.
第Ⅰ卷
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(1+i )(2+i )(3+i )=
A .-10i
B .10i
C .-10
D .10
2.已知集合A ={x |x 2-4x <5},则
A .-1.2∈A
B .30.9∉A
C .log 230∈A
D .A ∩N ={1,2,3,4}
3.设向量e l ,e 2是平面内的一组基底,若向量a =-3e l -e 2与b =e l -λe 2共线,则λ=
A .13
B .-13
C .-3
D .3 4.若f (x )=a -2+asin2x 为奇函数,则曲线y =f (x )在x =0处的切线的斜率为
A .-2
B .-4
C .2
D .4
5.已知函数f (x )在(-∞,+∞)上单调递减,且当x ∈[-2,1]时,f (x )=x 2-2x -4, 则关于x 的不等式f (x )<-1的解集为
A .(-1,+∞)
B .(-∞,3)
C .(-1,3)
D .(-∞,-1)
6.某图形由一个等腰直角三角形,一个矩形(矩形中的阴影部分为半
圆),一个半圆组成,从该图内随机取一点,则该点取自阴影部分
的概率为
A .
25
B .22ππ+5+
C .12
D .2ππ4+10+
7.如图,过双曲线C :22
221x y a b
-=(a >0,b >0)的右焦点F 作x 轴的垂线交C 于A ,B 两点(A 在B 的上方),若A ,B
到C 的一条渐近线的距离分别为d l ,d 2,且d 2=4d l ,
则C 的离心率为
A B .54
C D .
43 8.若钝角α满足sin 3cos tan 2cos sin α-α=αα-α
,则tan α=
A .2-
B .2
C .2-
D .2
9.某几何体由一个棱柱与一个棱锥组合而成,其三视图如
图所示,其中俯视图和侧视图中的正方形的边长为2,
正视图和俯视图中的三角形均为等腰直角三角形,则该
几何体的体积为
A .
163 B .163或203 C .203 D .203或6 10.设a =lg 6,b =lg 20,则log 23=
A .11a b b +-+
B .11a b b +--
C .11a b b -++
D .11
a b b -+-
11.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知a ),b =1,且abcos C +ccos A =abc ,则cos B 的取值范围为
A .(712,34)
B .(712,23)
C .(0,34)
D .(0,23
) 12.在直角坐标系xOy 中,直线y =kx +1与抛物线C :x 2=4y 交于A ,B 两点,若∠AOB =120°,
则k =
A .
B .
C .34
± D .± 第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.
13.某校有高一学生n 名,其中男生数与女生数之比为6 :5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10
n 的样本,若样本中男生比女生多12人,则n =__________.
14.一个球的内接正方体的表面积为32,则该球的体积为__________.
15.已知a >0,则当
39
1a a x x (-)(+)的展开式的常数项(即不含x 的项)取得最小值时,a =___________.
16.某农户计划种植莴笋和西红柿,种植面积不超过30亩,投入资金不超过25万元,假设种植
莴笋和西红柿的产量、成本和售价如下表:
那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为__________万元.
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~
21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)
在数列{n a }中,1a =1,且n a ,2n ,1n a +成等比数列.
(1)求2a ,3a ,4a ;
(2)求数列{2n a }的前n 项和n S .
18.(12分)
以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:
(1)计算该炮兵连这8周中总的命中频率p 0,并确定第几周的命中频率最高;
(2)以(1)中的p 0作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射5次,记命中的次数为X ,求X 的方差;
(3)以(1)中的p 0作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg 0.4=
-0.398)
19.(12分)
如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,且PA =AB =BC =2,AC =.
(1)证明:三棱锥P -ABC 为鳖臑.
(2)若D 为棱PB 的中点,求二面角D -AC -P 的余弦值.
注:在《九章算术》中鳖臑(nào )是指四面皆为直角三角形的三棱锥.
20.(12分)
已知椭圆22
221x y a b
+=(a >b >0)的短轴长为2,且椭圆的—个焦点在圆(x -2)2+ (y -3)2=18上.
(1)求椭圆的方程;
(2)已知椭圆的焦距小于4,过椭圆的左焦点F 的直线l 与椭圆相交于A ,B 两点,若 |AF |=3|FB |,求|AB |.
21.(12分) 已知函数ln x a f x x
-()=
(a ∈R ). (1)讨论函数f x g x x ()()=在(1,+∞)上的单调性; (2)若a ≥0,不等式x 2f (x )+a ≥2-e 对x ∈(0,+∞)恒成立,求a 的取值范围.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y ⎧⎨⎩
=+α,=+α(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知点A 的极坐标为(3,
2π). (1)求曲线C 的极坐标方程;
(2)过A 作曲线C 的切线,切点为M ,过O 作曲线C 的切线,切点为N ,求
ON AM ||||
. 23.[选修4-5:不等式选讲](10分) 已知函数1a f x x a x ()=|+|+|+2|.
(1)若a =1,证明:f (|x |)≥5.
(2)若f (1)<5a 2,求a 的取值范围.。