变量与函数练习题2016.5.5

合集下载

(完整版)变量与函数测试题

(完整版)变量与函数测试题

变量与函数、函数的图象及正比率函数测试题一、填空题1、某本书的单价是 14 元,当购置 x 本这类书时,花销为 y 元,则用 x 表示 y时,应有 ,此中变量是 ,常量是 。

2、一汽车油箱中有油 60 升,若每小时耗油 6 升,则油箱中节余油量 y (升)与时间 t (时)之间的函数关系式为 ,此中变量是 , 常量是 。

3、当 x =2 时,函数 y =2x+k 和 y=3kx - 2 的函数值相等,则 k = 。

4、已知矩形的周长为 6,设它的一条边长为 x ,那么它的面积 y 与 x 之间的函数关系式是 ,x 的取值范围为 。

5、一盒装冰淇淋售价 19 元,内装有 6 枝小冰淇淋,请写出每枝冰淇淋售价y (元)与函数 x (枝)之间的关系式 。

6、在函数关系式V4 R 3中, 是常量,是变量。

37、函数的三种表示方法是,,。

8、用描点法画函数图象的一般步骤是 , ,。

9、一棵 2 米高树苗,按均匀每年长高 10 厘米计算,树高 h (厘米)与年数 n 之间的函数关系式是 ,自变量 n 的取值范围是10、形如 _____ ______ 的函数是正比率函数。

11、正比率函数 y=kx ( k 为常数, k<0)的图象挨次经过第 ________象限,函数值 y 随自变量 x 的增大而 _________.12、已知 y 与 x 成正比率,且 x=2 时 y=-6 ,则 y 与 x 的函数关系式为 ____ __ . 二、选择题13、函数 y x2 中,自变量 x 的取值范围是( )A .x ≥2B . x>2C . x<2D .x ≠214、以下关系中的两个量成正比率的是( )A .从甲地到乙地,所用的时间和速度; B.正方形的面积与边长 C .买相同的作业本所要的钱数和作业本的数目; D .人的体重与身高 15、以下函数中, y 是 x 的正比率函数的是( )A .y=4x+1B. y=2x 2C . y=-5xD.y= x16、若函数 y=( 2m+6) x 2+( 1-m )x 是正比率函数,则 m 的值是( )A .m=-3B .m=1C . m=3D . m>-31 2,则 1 与17、已知( x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且 y2x >xy ?的大小关系是(). 1 .以上都有可能A .y 1 2B . 1 2C2 D>yy <y y =y 18、以下说法中不建立的是()A.在 y=3x-1 中 y+1 与 x 成正比率;B.在 y=- x中 y 与 x 成正比率2C .在 y=2( x+1)中 y 与 x+1 成正比率;D .在 y=x+3 中 y 与 x 成正比率19、一辆客车从襄樊出发开往武汉,设客车出发 t 小时后与武汉的距离为s 千米,以下图像能大概反应 s 与 t 之间的函数关系的是()s(千米)s(千米)s(千米)s(千米)Ot(小时)Ot(小时)O t(小时)O t (小时)A CB D20、画出以下函数的图象(1)y=-2x(2)y=-2x+121、求以下各函数的自变量的取值范围:(1)y=2x-1(2)y2( 3)y x 1x122、汽车由北京驶往相距850 千米的沈阳,它的均匀速度为80 千米/时,求汽车距沈阳的行程s(千米)与行驶时间t( 时) 的函数关系式,写出自变量的取值范围。

变量与函数练习题

变量与函数练习题

变量与函数练习题变量与函数练习题在编程中,变量和函数是非常基础且重要的概念。

通过练习题的形式,我们可以更好地理解和掌握这些概念。

本文将给出一些变量和函数的练习题,帮助读者巩固相关知识。

一、变量练习题1. 假设有一个圆的半径为5,请计算该圆的面积和周长,并将结果保存在变量中。

2. 请计算一个矩形的面积和周长,矩形的长为10,宽为5,并将结果保存在变量中。

3. 请计算一个三角形的面积,三角形的底边长为8,高为6,并将结果保存在变量中。

4. 假设有一个学生的成绩为85分,请将该成绩保存在一个变量中,并输出该变量的值。

5. 请计算一个圆柱体的体积,圆柱体的底面半径为3,高为10,并将结果保存在变量中。

二、函数练习题1. 编写一个函数,实现两个数相加的功能。

函数的参数为两个数,返回值为它们的和。

2. 编写一个函数,实现计算一个列表中所有元素的平均值的功能。

函数的参数为一个列表,返回值为平均值。

3. 编写一个函数,实现判断一个数是否为偶数的功能。

函数的参数为一个数,返回值为True或False。

4. 编写一个函数,实现计算一个数的阶乘的功能。

函数的参数为一个正整数,返回值为阶乘结果。

5. 编写一个函数,实现将一个字符串反转的功能。

函数的参数为一个字符串,返回值为反转后的字符串。

通过完成以上练习题,我们可以更好地理解和掌握变量和函数的概念。

变量用于保存数据,可以在程序中多次使用,而函数则用于封装一段代码,可以在需要的时候调用。

通过使用变量和函数,我们可以更加灵活地处理数据和实现各种功能。

在解决这些练习题的过程中,我们需要注意变量的命名规范和函数的参数传递方式。

良好的命名规范可以提高代码的可读性,而正确的参数传递方式可以保证函数的正常运行。

除了以上练习题,我们还可以自行设计更多的练习题来巩固变量和函数的知识。

通过不断练习和实践,我们可以逐渐提升自己的编程能力。

总而言之,变量和函数是编程中非常基础且重要的概念。

通过练习题的形式,我们可以更好地理解和掌握这些概念。

初二变量与函数的练习题

初二变量与函数的练习题

初二变量与函数的练习题1. 问题描述在初中数学学习中,变量与函数是一个重要的概念。

下面是一些与变量与函数相关的练习题,通过解答这些问题,我们可以加深对变量与函数的理解。

2. 问题一:小明买水果小明去水果摊买了x个苹果,每个苹果的价格为5元。

如果小明一共花了30元,请你写出一个等式来表示这个问题,并求解x的值。

解答:设小明买的苹果的个数为x,每个苹果的价格为5元。

根据题设,小明一共花了30元,则有等式:5x = 30通过解等式可以得到:x = 30 ÷ 5x = 6所以,小明买了6个苹果。

3. 问题二:直线函数给定一个直线函数y = 2x + 3,求当x等于5时,y的值是多少?解答:根据给定的直线函数y = 2x + 3,我们可以将x = 5带入等式中得到:y = 2 × 5 + 3y = 10 + 3y = 13所以,当x等于5时,y的值为13。

4. 问题三:函数的图像下面是一个函数的图像,请你尝试写出这个函数的解析表达式。

解答:根据给定的函数的图像,我们可以看出,该函数是一个线性函数,并且通过点(0, 1)。

假设该函数的解析表达式为y = kx + b,其中k为斜率,b为y轴截距。

由于该函数通过点(0, 1),所以b = 1。

由于该函数是一个下降的直线,可以判断斜率k为负值。

通过观察图像,我们可以大致估计斜率为-2。

所以,该函数的解析表达式为:y = -2x + 15. 问题四:函数的复合已知函数f(x) = 2x + 1,g(x) = x^2 - 3x,求复合函数f(g(x))的解析表达式。

解答:将函数g(x)代入函数f(x)的表达式中,得到:f(g(x)) = 2(g(x)) + 1= 2(x^2 - 3x) + 1= 2x^2 - 6x + 1所以,复合函数f(g(x))的解析表达式为2x^2 - 6x + 1。

通过解答以上四个问题,我们对初二的变量与函数有了更深入的了解。

变量与函数练习题

变量与函数练习题

变量与函数练习题一、变量练习题1. 小明买了一本书,书的价格是200元,他付了300元,求小明找回的零钱是多少?解答:书的价格是200元,小明付了300元,找回的零钱 = 付的钱 - 书的价格所以,找回的零钱 = 300 - 200 = 100元。

2. 请计算长方形的面积和周长,长为5,宽为3。

解答:长方形的面积 = 长 ×宽长方形的周长 = 2 × (长 + 宽)所以,长方形的面积 = 5 × 3 = 15,长方形的周长 = 2 × (5 + 3) = 16。

二、函数练习题1. 编写一个函数,接受两个参数,计算并返回两个参数的和。

解答:```pythondef calculate_sum(a, b):return a + b# 测试print(calculate_sum(3, 5)) # 输出:8print(calculate_sum(10, -2)) # 输出:8```2. 编写一个函数,接受一个字符串作为参数,返回字符串的长度。

解答:```pythondef calculate_length(string):return len(string)# 测试print(calculate_length("Hello")) # 输出:5print(calculate_length("Python")) # 输出:6```三、综合练习题1. 编写一个程序,接受用户输入的两个数字,计算并输出两个数字的和、差、积、商和余数。

解答:```pythonnum1 = float(input("请输入第一个数字:"))num2 = float(input("请输入第二个数字:"))sum_result = num1 + num2difference = num1 - num2product = num1 * num2quotient = num1 / num2remainder = num1 % num2print("和:", sum_result)print("差:", difference)print("积:", product)print("商:", quotient)print("余数:", remainder)```以上是关于变量和函数的练习题,请根据题目要求编写代码,并对结果进行验证。

变量与函数练习题.汇编

变量与函数练习题.汇编

变量与函数练习题一:填空选择题:1.日落西山”是我们每天都要面对的自然变换, _____________ 是自变量,_________ 是因变量. 2•下列函数中,与 y = x 表示同一个函数的是()2A. y = ~B. y = ^/x2C. y =(五)D. y =入3.用一水管向某容器内持续注水,设单位时间内注入的水量保持不变;在注水过程中,容器内水深h 与注水时间t 关系有如图(A ) ( B ) ( C ) ( D )四个图象,它们分别与(E ) ( F ) (G ) (H )四种容器中的其中一种相对应;请你把相对应容器的字母填在下面的横线上.25.两个不相等的正数满足 a+b=2, ab=t - 1,设S= (a - b ),则S 关于t 的函数图象是()A .射线(不含端点)B .线段(不含端点)C .直线D .抛物线的一部分 6.小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间y 2)在函数图象上,且-1v X 1< X 2< 0,则y 1与y 2的大小关系为( ) &如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢4.如图,何老师早晨出门去锻炼,一段时间内沿OO 的半圆形O T A T C ^B T O 路径匀速散步,那么何老师离出发点 0的距离y 与时间x 之间的函数关系的大致图象是()为t (秒),骑车的路程为s (米),则s 关于t 的函数图象大致是(7.已知某函数图象关于直线 x=1对称,其中一部分图象如图所示, 点A (X 1, y 1),点B (X ,车行驶的时间为X (h ),两车之间的距离为 y (km ),图中的折线表示 y 与x 之间的函数关 系.下列说法中:①B 点表示此时快车到达乙地.②B -C -D 段表示慢车先加速后减速最 后到达甲地.③快车的速度为2i?「厂 km/h④ 慢车的速度为125km/h 正确的是(12. (2013?衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S (阴影部分),13.日常生活中,可用人的年龄x(岁)x <6060 v x v 80x绍0老人系数”a 6012014. 已知函数f 3)「Ux+6,若f (a)=a,贝U a= ___________________ .315. ______________________________________ 函数y=x +x+1的图象在象限.16. (2011?江岸)小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了____________________ 元.9•如图为汽车离出发地的距离s (千米)和时间t (小时)之间的函数关系,给出下列说法:① 汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为80.8千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.⑤ 汽车离出发地64千米是在汽车出发后 1.2小时时.其中正确的说法共有_______________11 (2015?黄冈中学自主招生)平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数二「的图象上整点的个数是----------------------17. (2010春?沙坪)四幅图象分别表示变量之间的关系,请按图象的顺序,将下面的四种 情境用英文序号与之对应排序_________ acdb .a .运动员推出去的铅球(铅球的高度与时间的关系)b •静止的小车从光滑的斜面滑下(小车的速度与时间的关系)c.弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物的质量的关系) .d.小明从A 地到B 地后停留一段时间,然后原速原路返回(离A 地的距离与时间的关系)18. (2011?莆田)已知函数f (x ) =1+ ',其中f (a )表示当x=a 时对应的函数值,如 (a ) =1+—,则 f (1) ?f (2) ?f (3) --f (100) = _320. 求下列函数的定义域 :解答题 21. 阅读下面材料,再回答问题.一般地,如果函数y=f (x )对于自变量取值范围内的任意x ,都有f ( - x ) =f (x ).那么y=f (x )就叫偶函数.如果函数 y=f (x )对于自变量取值 范围内的任意x ,都有f (- x ) = - f (x ).那么y=f (x )就叫奇函数.例如:f ( x ) =x 4 当 x 取任意实数时,f (- x ) = (- x ) 4=x 4 - f (- x ) =f ( x )「. f (x ) =x 4是偶函数. 又如:f (x ) =2x 3- x .当 x 取任意实数时,T f (- x ) =2 (- x ) 3 -( - x ) = - 2x 3+x=-33(2x - x )••• f (- x ) = - f (x )「. f (x ) =2x - x 是奇函数. 问题1:下列函数中:①y=x 2+1②尸Q ③ ^^耳+1④尸K 十丄⑤y=x 2 - 2|x|是奇函数的有;是偶函数的有 _____________ (填序号)问题2:仿照例证明:函数 ④或⑤是奇函数还是偶函数22. (2013?葫芦岛)如图,矩形 ABCD 的对角线交于点 O ,/ BOC=60 ° AD=3,动点P 从 点A 出y 911* yJf —1 /J L_1/\IT 6 TbJC(Df (1)2 2 =1+ ', f (2) =1+ :,19.若函数,则当函数值y=10时,自变量x 的值是 __________________y= (x — 3)y=l>l金颔(元)发,沿折线AD - DO以每秒1个单位长的速度运动到点O停止.设运动时间为x秒,y=S△ POC,求y与x的函数关系并画出图象。

八年级数学:变量与函数-练习(含答案)

八年级数学:变量与函数-练习(含答案)

八年级数学:变量与函数练习(含答案)一、选择题:1.下列关于圆的面积S与半径R之间的函数关系式S=πR2中,有关常量和变量的说法正确的是()A.S,R2是变量,π是常量 B.S,R是变量,2是常量C.S,R是变量,π是常量 D.S,R是变量,π和2是常量2.据调查,北京石景山苹果园地铁站自行车存车处在某星期日的存车量为4000次,其中电动车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()A.y=0.1x+800(0≤x≤4000) B.y=0.1x+1200(0≤x≤4000)C.y=-0.1x+800(0≤x≤4000) D.y=-0.1x+1200(0≤x≤4000)3.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体温计,经历了收集数据、分析数据、得出结论的探索过程.他们收集的数据如下:请你根据上述数据分析判断,水银柱的长度L(mm)与体温计的读数t℃(35≤t≤42)之间存在的函数关系式为()A.L=110t-66 B.L=11370t C.L=6t-3072D.L=39552t二、填空题4.小明带10元钱去文具商店买日记本,已知每本日记本定价2元,则小明剩余的钱y(元)与所买日记本的本数x(元)之间的关系可表示为y=10-2x.在这个问题中______是变量,_______是常量.5.在函数y=12x-中,自变量x的取值范围是______.6.某种活期储蓄的月利率是0.16%,存入10000元本金,按国家规定,取款时应缴纳利息部分20%的利息税,则这种活期储蓄扣除利息税后,实得本息和y(元)与所存月数x之间的函数关系式为________.三、解答题7.求下列函数中自变量x的取值范围;(1)y=2x2+1;(2)y=13x.8.写出下列各问题中的函数关系式(不需标明自变量的取值范围):(1)小明绕着一圈为400m的跑道跑步,求小明跑的路程s(m)与圈数n之间的函数关系式;(2)已知等腰三角形的周长为36,腰长是x,底边上的高是6,若把面积y看作腰长x的函数,试写出它们的函数关系式.四、思考题9.某旅客带了30公斤的行李乘飞机,按规定,旅客最多可免费携带20公斤的行李,超重部分每公斤按飞机票价的1.5%购买行李票,现该旅客购买了120元的行李费,求他的飞机票价格.B卷:提高题一、七彩题1.(一题多解题)按如图所示堆放钢管.(1)填表:(2)当堆到x层时,求钢管总数y关于层数x的函数关系式.二、知识交叉题2.(科外交叉题)一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米,到达坡底时,小球速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;(3)求几秒时小球的速度为16米/秒.三、实际应用题3.山东省是水资源比较贫乏的省份之一,为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定用水收费标准如下:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年3,4月份的用水量和水费如下表所示:用水量(立方米)水费(元)月份3 5 7.54 9 27设某户该月用水量为x(立方米),应交水费为y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的函数关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?四、经典中考题4.(2008,齐齐哈尔,4分),函数中,自变量x的取值范围是_______.C卷:课标新型题一、探究题1.(结论探究题)某商场计划投入一笔资金采购一批商品并转手出售,经市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获得10%;如果月末出售可获利30%,但要付出仓储费用700元.请问根据商场的资金状况,如何购销获利较多?二、说理题2.某移动通讯公司开设两种业务,“全球通”:先缴50元月租费,然后每通话1跳次,再付0.4元;“神州行”:不缴月租费,每通话1跳次,付话费0.6元(本题的通话均指市内通话).若设一个月内通话x跳次,两种方式的费用分别为y1和y2元.(跳次:1min为1跳次,不足1min按1跳次计算,如3.2min为4跳次)(1)分别写出y1,y2与x之间的函数关系式;(2)一个月内通话多少跳次时,两种方式的费用相同?(3)某人估计一个月内通话300跳次,应选择哪种合算?参考答案A卷一、1.C 点拨:解题的关键是对π和R2中的指数如何处理.判断变量和常量的根据就是看它们是否可改变,显然π是不改变的,是常量,圆的面积是随半径R的变化而变化的,故S和R 为变量,当R变化时R2也变化,R2中的指数2与变量和常量无关.2.D 点拨:存车费总收入y=电动车存车总费用+普通车存车总费用=0.3×(4000-x)+0. 2x=-0.1x+1200,其中0≤x≤4000.故应选D.3.C 点拨:由图表可知L随t的变化而变化,通过变化规律,可以得到L与t之间的关系式为L=56.5+6(t-35),即L=6t-3072(35≤t≤42).二、4.x,y;10,2 点拨:因为所买日记本数x是可以变化的,小明余下的钱y也是变化的,故y与x是变量,而10和2是保持不变的,故它们是常量.5.x≠2 点拨:分式12x-有意义,须令x-2≠2,得x≠2.6.y=10000+12.8x(x≥0且x为整数)点拨:本息和=本金+利润,本金=10000元,利息=本金×月利率×月数×(1-20%)=10000×0.16%·x·0.8=12.8x,所以y=10000+12.8x.三、7.解:(1)自变量x的取值范围是全体实数;(2)因为3-x≠0,所以x≠3,即自变量x的取值范围是x≠3.8.解:(1)s=400n.(2)y=-6x+108.点拨:(1)总路程=一圈的长度×圈数;(2)由题意可知,等腰三角形的底边长为(36-2x),所以y=12×(36-2x)×6,即y=-6x+108.四、9.解法一:(从方程的角度解)设他的飞机票价格为x元,根据题意,得(30-20)·x·1.5%=120,所以x=800.解法二:(从函数的角度解)设飞机票价格为k元,则行李票的价格y(元)与所带行李的公斤数x(公斤,x>20)之间的函数关系为y=(x-20)·k·1.5%,已知x=30时,y=120,代入关系式,得120=(30-20)·k·1.5%,解得k=800.答:略.点拨:解法一和解法二实质上是一致的,只不过考虑问题的角度不同,解法一是解法二的特殊情况.B卷一、1.解法一:(1)当x=1时,y=1;当x=2时,y=1+2=3;当x=3时,y=1+2+3=6;当x=4时,y=1+2+3+4=10;…;当x=x时,y=1+2+3+4+…+x=12x(x+1).(2)y=12x(x+1)=12x2+x12(x≥1且为整数).解法二:如图所示,将原题图倒置过来与原图一起拼成平行四边形,利用其面积计算公式可得到结论y=12x(x+1),即y=12x2+12x.(1)题表中依次填为:1,3,6,10,12x2+12x.(2)y=12x·(x+1)=12x2+12x.(x≥1且为整数)点拨:仔细分析总数与层数之间的关系是解决这类图形问题常用方法之一.二、2.解:(1)v=2t;(2)当t=3.5时,v=2×3.5=7,即3.5秒时小球的速度为7米/秒;(3)当v=16时,16=2t,t=8,即8秒时小球的速度为16米/秒.点拨:本题是函数关系式与物理学科的知识交叉题,也就是函数关系式在物理学科中的实际应用.三、3.解:(1)当x≤6时,y=ax;当x>6时,y=6a+c(x-6).将x=5,y=7.5代入y=ax,得7.5=5a,将x=9,y=27代入y=6a+c(x-6),得27=6a+3c.解得a=1.5,c=6.所以y=1.5x(x≤6),y=6x-27(x>6);(2)将x=8代入y=6x-27,得y=21,所以5月份的水费是21元.四、4.x≤3且x≠1C卷一、1.解:设商场投资x元,在月初出售可获利y1元,到月末出售出获利y2元.根据题意,得y1=15%x+10%(1+15%)x=0.265x,y2=30%x-700=0.3x-700.(1)当y1=y2时,0.265x=0.3x-700,所以x=20000;(2)当y1<y2时,0.265x<0.3x-700,所以x>20000;(3)当y1>y2时,0.265x>0.3x-700,所以x<20000.所以当商场投资20000元时,两种销售方法获利相同;当商场投资超过20000元时,第二种销售方式获利较多;当商场投资不足20000元时,第一种销售方式获利较多.点拨:要求哪种销售方式获利较多,关键是比较在自变量的相同取值范围内,两个函数值的大小,除上述方法外,也可以采用作差的方法解决.二、2.解:(1)y1=50+0.4x,y2=0.6x;(2)两种方式的费用相同时,y1=y2,即50+0.4x=0.6x,解得x=250.即一个月内通话250跳次,两种方式的费用相同;(3)某人一个月估计通话300跳次,则全球通的费用为:y1=50+0.4×300=170(元),神州行的费用为:y2=0.6×300=180(元),因为y1<y2,所以选择“全球通”合算.点拨:“话费问题”是日常生活中常见的问题,电话费与通话时间也是一种函数关系,要用函数的思想来加以说理解决.本题体现了分类思想,分两种情况来分析问题是解决此题的关键.。

关于函数与变量的测试题

关于函数与变量的测试题

关于函数与变量的测试题关于函数与变量的测试题一、填空题(每小题3分,共24分)1.矩形的面积为,则长和宽之间的关系为,当长一定时,是常量,是变量.2.飞船每分钟转30转,用函数解析式表示转数和时间之间的关系式是.3.函数中自变量的取值范围是4.函数中,当时,,当时,.5.点在函数的图象上,则点的坐标是.6.函数中自变量的取值范围为.7.下列:①;②;③;④,具有函数关系(自变量为)的是.8.圆的面积中,自变量的取值范围是.二、选择题(每小题3分,共24分)1.在圆的周长公式中,下列说法错误的.是()A.是变量,2是常量B.是变量,是常量C.是自变量,是的函数D.将写成,则可看作是自变量,是的函数2.边形的内角和,其中自变量的取值范围是()A.全体实数B.全体整数C.D.大于或等于3的整数3.在下表中,设表示乘公共汽车的站数,表示应付的票价(元)(站)12345678910(元)1122233344根据此表,下列说法正确的是()A.是的函数B.不是的函数C.是的函数D.以上说法都不对4.油箱中有油20升,油从管道中匀速流出,100分钟流成.油箱中剩油量(升)与流出的时间(分)间的函数关系式是()A.B.C.D.5.根据下表写出函数解析式()A.B.C.D.6.如果每盒圆珠笔有12支,售价为18元,那么圆珠笔的售价(元)与支数之间的函数关系式为()A.B.C.D.7.设等腰三角形(两底角相等的三角形)顶角的度数为,底角的度数为,则有()A.(为全体实数)B.C.D.8.下列有序实数对中,是函数中自变量与函数值的一对对应值的是()[B.C.D.三、解答题(共40分)1.(10分)如图1是襄樊地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温(℃)(填“是”或“不是”)时间(时)的函数.(2)时气温最高,时气温最低,最高汽温是℃,最低气温是℃.(3)10时的气温是℃.(4)时气温是4℃.(5)时间内,气温不断上升.(6)时间内,气温持续不变.2.(10分)按图2方式摆放餐桌和椅子.若用来表示餐桌的张数,来表示可坐人数,则随着餐桌数的增加:(1)题中有几个变量?(2)你能将其中的一个变量看成是另一个变量的函数吗?如果是,写出函数解析式.3.(10分)已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积立方米与时间(时)之间的函数关系式.(2)写出自变量的取值范围.(3)10小时后,池中还有多少水?(4)几小时后,池中还有100立方米的水?4.(10分)某市第五中学校办工厂今年产值是15万元,计划今后每年增加2万元.(1)写出年产值(万元)与今后年数之间的函数关系式.(2)画出函数图象.(3)求5年后的年产值.。

变量与函数-练习

变量与函数-练习

【巩固练习】一.选择题1.下列各图能表示y 是x 的函数是( )A .B .C .D .2. 下列关于圆的面积S 与半径R 之间的关系式S 2R π=中,有关常量和变量的说法正确的是( )A .S ,2R 是变量,π是常量B .S ,π,R 是变量,2是常量C .S ,R 是变量,π是常量D .S ,R 是变量,π和2是常量3. 函数y=中,自变量x 的取值范围是( ) A .x 且x ≠1 B .x 且x ≠1C .x 且x ≠1D .x 且x ≠1 4.矩形的周长为18cm ,则它的面积S (2cm )与它的一边长x (cm )之间的函数关系式是( )A .(9)(09)S x x x =-<<B .(9)(09)S x x x =+<≤C .(18)(09)S x x x =-<≤D .(18)(09)S x x x =+<< 5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 下图描述了他上学的情景,下列说法中错.误.的是( ) A .修车时间为15分钟 B .学校离家的距离为2000米C .到达学校时共用时间20分钟D .自行车发生故障时离家距离为1000米6.如图,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t (小时)与山高h (千米)间的函数关系用图象表示是( )二.填空题7. 若球体体积为V ,半径为R ,则334R V π=.其中变量是_______、•_______,常量是________.8.如图中,每个图形都是若干个棋子围成的正方形图案,•图案的每条边(包括两个顶点)上都有n (n ≥2)个棋子,每个图案的棋子总数为S ,按图的排列规律推断S 与n 之间的关系可以用式子___________来表示.9. 油箱中有油30kg ,油从管道中匀速流出,1小时流完,•求油箱中剩余油量Q (kg )与流出时间t (分钟)间的函数关系式为__________________,•自变量的范围是_____________.当Q =10kg 时,t =__________(分钟).10.图象中所反映的过程是:小强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示小强离家的距离.图象提供的信息,有以下四个说法:①体育场离小强家2.5千米②在体育场锻炼了15分钟③体育场离早餐店4千米④小强从早餐店回家的平均速度是3千米/小时.其中正确的说法为 (只需填正确的序号.).11. 均匀地向一个容器注水,最后把容器注满,在注水过程中,水面的高度h 随时间t 的变化规律如图.(图中OABC 为一这线),这个容器的形状是_________.12.已知等腰三角形的周长为60,底边长为x ,腰长为y ,则y 与x 之间的关系式及自变量的取值范围为_______.三.解答题13. 一个函数的解析式2y x m =-+,其中y 是x 的函数,m 为任意实数.(1)若点A (-3,4)在这个函数的图像上,求实数m ;(2)在(1)的条件上,判断点B (-4,7)是否在它的图像上.14.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体质量x 的一组对应值.所挂物体质量x/kg 0 1 2 3 4 5弹簧长度y/cm 18 20 22 24 26 28(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?15. 如图所示,正方形ABCD 的边长为4 cm ,E 、F 分别是BC 、DC 边上一动点,E 、F 同时从点C 均以1 /cm s 的速度分别向点B 、点D 运动,当点E 与点B 重合时,运动停止.设运动时间为x (s ),运动过程中△AEF 的面积为y ,请写出用x 表示y 的函数关系式,并写出自变量x 的取值范围.【答案与解析】一.选择题1. 【答案】D ;【解析】解:A 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x的函数,故A 选项错误;B 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故B 选项错误;C 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故C 选项错误;D 、对于x 的每一个取值,y 都有唯一确定的值与之对应关系,所以y 是x 的函数,故D 选项正确.故选:D .2. 【答案】C ;【解析】π是圆周率,是一个常量.3. 【答案】B ;【解析】解:2x ﹣1≥0且x ﹣1≠0,解得x ≥且x ≠1.4. 【答案】A ;【解析】矩形的另一边长为18292x x -=-,所以(9)(09)S x x x =-<<. 5. 【答案】A ;【解析】10分钟到15分钟的时间,距离没有变化,所以修车时间是5分钟.6. 【答案】D ;二.填空题7. 【答案】R 、V ;43π; 8. 【答案】44S n =-; 9. 【答案】t Q 5.030-=;600≤≤t ;40.【解析】油从油箱里流出的速度为30÷60=0.5/min kg ,所以函数关系式为t Q 5.030-=10.【答案】①②④.【解析】解:由函数图象可知,体育场离张强家2.5千米,故①正确;由图象可得出张强在体育场锻炼30﹣15=15(分钟),故②正确;体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5=1(千米),故③错误;∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km ,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故④正确.故答案为:①②④.11.【答案】③;【解析】12.【答案】130(030)2y x x =-<<; 【解析】2y +x =60,1302y x =-,由于2y >x 且x >0,所以030x <<. 二.解答题13.【解析】解:(1)由题意得,42(3)m =-⨯-+ 解得 2m =-,22y x =--∴(2)当x =-4时,y =67≠ 所以B (-4,7)不在此函数的图像上.14.【解析】解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为7千克时(在允许范围内)时的弹簧长度=18+2×7=32厘米.15.【解析】解:ABE DAF CEF y S S S S ∆∆∆=---正方形ABCD2111222BC AB BE AD DF EF FC =--- 211144(4)4(4)222x x x x =-⨯⨯--⨯⨯-- 214(04)2x x x =-+≤≤.。

变量与函数练习题二

变量与函数练习题二

17.1 变量与函数练习题二一. 求下列各函数的自变量的取值范围: (1) 21-=x y (2) 21-=x y (3) 5+=x y (4) 53+-=x x y (5) 11-+=x x y (6) x x y -+-=531(7) 321+-=x x y (8) 53322+-=x x y 二. 求下列函数当x 分别为21,4-时的函数值. (1) )2)(1(-+=x x y (2) 322+-=x x y(3) 24-+=x x y (4) 184+=x y三. 已知:函数31,53<<--=y x y ,求自变量x 的取值范围.17.1 变量与函数练习题二一. 求下列各函数的自变量的取值范围: (1) 21-=x y (2) 21-=x y (3) 5+=x y (4)53+-=x x y (5) 11-+=x x y (6) x x y -+-=531 (7) 321+-=x x y (8) 53322+-=x x y 二. 求下列函数当x 分别为21,4-时的函数值. (1) )2)(1(-+=x x y (2) 322+-=x x y (3) 24-+=x x y (4) 184+=x y 三. 已知:函数31,53<<--=y x y ,求自变量x 的取值范围.四. 已知:b ax y +=(,0≠a a 、b 为常数),当1=x 时,1=y ;当1-=x 时, 5-=y ,求a 、b 的值.五、已知,高度每升高1千米,气温就降低6℃,假设地面气温是20℃,请写出气温T(℃)与高度h(千米)的函数关系式和自变量的取值范围,并求一万米的高空的温度是多少.六、在半径为12cm 的圆形铁片的中心,挖去一个半径为x cm 的圆,求剩下圆球面积)(2cm y 与)(cm x 之间的函数关系式,并求出它的自变量的取值范围.。

变量与函数练习题3

变量与函数练习题3

变量与函数练习题3一.填空题1、在圆的周长和半径之间的关系式C=2πr中,其中,_______是常量,_______是变量.2、有一棵树苗,刚栽下去时树高1.2米,以后每年长高0.2米,设x年后树高为y米,那么y与x之间的函数解析式为_______。

3、某弹簧的自然长度为3cm,在弹性限度内,所挂物体的质量x每增加某1千克,弹簧长度y增加0.5厘米。

则y=_______,其中的变量_______,常量_______。

4、小明用30元钱去购买价格为每件5元的某种商品,求他剩余的钱y(元)与购买这种商品x件之间的关系。

当x=5时,函数值是。

5、一个长方形的长比宽大3cm,如果宽是xcm,那么这个长方形的面积是,当x为8时,长方形的面积为.6、当x=9时,函数y=x+4的值是_______。

7、等腰三角形的周长为20cm,设腰长为xcm,底边长为ycm,那么y与x之间的函数解析式是_______,其中自变量x的取值范围是_______。

二.选择题8、下列关系式中,变量x= - 1时,变量y=6的是()A y= 3x+3B y= -3x+3C y=3x – 3D y= - 3x – 39、球的体积公式:V= πr3,r表示球的半径,V表示球的体积。

当r=3时,V=()A 4 πB 12πC 36πD π10、某商店售货时,在进货价的基础上加一定的利润,其数量x与售价y如下表示,根据表中所提供的信息,售价y与售货数量x的函数解析式为()数量x(千克) 1 2 3 4 ???售价y(元) 8+0.4 16+0.8 24+1.2 32+1.6 ???A y=8.4xB y= 8x +0.4C y=0.4x +8D y=8x11、正方体的棱长是a,表面积为S,那么S与a之间的函数解析式是( )A.S=4a2 B.S=a3 C.S=6a2 D.S=8a212、一台机器开始工作时油箱中储油4升,如果每小时耗油0.5升,那么油箱中所剩油y(升)与它工作时间t(小时)之间的函数关系式是A y= 0.5 tB y= 4 - 0.5 tC y= 4+ 0.5 tD y= 4 / t13. 在函数中,自变量x的取值范围是()A. x≠3B. x≠0C. xD. x≠-314. 函数中,自变量x的取值范围是()A. x≥1B. xC. xD. x≠115.如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y(元)与圆珠笔的支数x之间的函数关系式是( )A.y=1.5x(x为自然数) B.y=23x(x为自然数)C.y=12x(x为自然数) D.y=18x(x为自然数)16.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t (小时)(0≤t≤4)之间的函数解析式是( )A.h=4t B.h=5t C.h=20-4t D.h=20-5t17. 一杯水越晾越凉,下列图象中可以表示这杯水的水温T (℃)与时间t(分)的函数关系()A B C D18. 下图是南昌市某天的温度随时间变化的图像,通过观察可知:下列说法错误的是()A. 这天15点时温度最高B. 这天3点时温度最低C. 这天最高温度与最低温度的差是13℃D. 这天21点时温度是30℃19. 近年来国内生产总值年增长率的变化情况如图所示,从图上看,下列结论中不正确的是()A. 2019—2019年国内生产总值的年增长率逐年减小B. 2019年国内生产总值的年增长率开始回升C. 这7年中每年的国内生产总值不断增长D. 这7年中每年国内生产总值有增有减家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

变量与函数练习题4

变量与函数练习题4

变量与函数练习题41、 判定下列哪些为y 是x 的函数,假如是,找出x 的取值范畴(1)12-=x y (2) x y -=11 (3) x y 2±= (4) 112-=x y(5)2-=x y (6)22+=x x y (7) 12+-=x x y (8) x y =2(9) 53--=x x y (10) 321+-=x x y (11) x x y -+-=5312、 写出下列的函数关系式,并指出自变量的范畴(1) 一支蜡烛长20cm ,每分钟燃烧2cm ,写出剩余蜡烛y 与时刻x 之间的函数关系式,并求出x 的范畴。

(2) 某种弹簧原长20厘米,每挂重物1千克,伸长0.2厘米,挂上重物后的长度y(厘米)与所挂上的重物x(千克)之间的关系式;(3)某种饮水机盛满20升水,打开阀门每分钟可流出0.2升水,饮水机中剩余水量y(升)与放水时刻x(分)之间的关系式。

(5)周长为60cm的等腰三角形的腰长y是底边长x的函数关系式(6)汽车由北京驶往相距850千米的沈阳,它的平均速度为80千米/时,求汽车距沈阳程s (千米)是行驶时刻t(时)的函数,写出自变量的取值范畴(7) 出租车收费按路程运算,3千米内(包括3千米)收费10元,超过3千米每增加1千米加收1.6元,则路程x≥3(千米)时,车费y(元)是x(千米)的函数(8)某弹簧的自然长度为3cm,在弹性限度内所挂物体的质量x每增加某1千克,弹簧长度y增加0.5厘米,弹簧长度y是质量x的函数(9) 每台月租费28元,市区内 (三分钟以内)每次020元,若某台 每次通 话均不超过3分钟,则每月应缴费y (元)是市内 通话次数x 的函数(10) 同学购一本代数教科书,书的单价是2 元,总金额Y (元)是学生买书本数x 的函数(11) 游泳池内有清水123m 现以每分钟2 3m 的流量往池里注水,45分钟可将池灌满(1) 求池内水量y(3m )与注水时刻t(分)之间的函数关系式,并指出自变量t 的取值范畴;(2) 当游泳池水注满后,以每分钟4 3m 的流量放出废水,求池内剩余量w(3m )与放水时刻x(分)之间的函数关系式,并指出自变量的取值范畴(12)已知某商店买一种瓜子能够零卖也能够按包卖,若按包卖每包2元,若零卖每斤6元,小明要去买瓜子;①若按包买,小明所付金额y 是所买包数x 的函数②若按斤买,小明所付金额y 是所买包数x 的函数3、某商店钢笔每枝25元,笔记本每本5元,该商店为了促销制定了两种优待方法; ①买钢笔一枝赠送笔记本一本;②按购买总额的90%付款.(1)若某学校需钢笔10枝,笔记本x 本(x>10),则每种优待方法实际付款数y(元)是x 本)的函数,求两种购买方式的函数关系式;(2)若该单位花495元购买所需物品,问采纳哪一种优待方法比较划算?4、请分别写出满足下列的条件的函数关系式,每题写二个(1)自变量x 的取值范畴为全体实数(2)自变量t 的取值范畴为t ≤3(3)自变量x 的取值范畴为60≤≤x 。

变量与函数练习题

变量与函数练习题

变量与函数练习题一、填空1、一根蜡烛原长a(cm),点燃后燃烧的时间为t(分钟),所剩余的蜡烛的长y(cm),其中是变量的,常量是。

2、在圆的周长公式C=2πr中,常量是,变量是。

3、《新文化报》每份元,购买《新文化报》所需钱数y(元)与所买份数x之间的关系是,其中是常量,是变量。

4、(1)用总长为60(m)的篱笆围成长方形场地,长方形的面积S(m2)与一边长为x(m)之间的关系式为(2)用总长为L(m)的篱笆围成长方形场地,长方形的面积为60(m2),一边长为x(m)。

则L与x之间的关系式为5、在判断变量之间的关系是不是函数关系时,应满足两个特征:①必须有个变量,②给定其中一个变量(自变量)的值,另一个变量(因变量)都有与其相对应。

6. 设地面气温是20°C,如果每升高1km,气温下降6°C,则气温t(°C)与高度h(km)的关系是__________________,其中常量是,变量是。

对于每一个确定的h值都有的t值与其对应;所以自变量,是因变量,是的函数7、购买单价是元的铅笔,总金额y(元),与铅笔数n(个)的函数关系是___________.8、等腰三角形的顶角的度数y与底角的度数x的函数关系式是_______________.x的取值范围是___________.9、周长为10 cm的等腰三角形,腰长y(cm)与底边长x(cm)的函数关系为______________自变量x 的取值范围是_____________10、一弹簧,不挂重物时,长6cm ,挂上重物后,重物每增加1kg ,弹簧就伸长,但所挂重物不能超过10kg ,则弹簧总长y (cm )与重物质量x (kg )之间的函数关系式为__________ _。

(注明自变量的取值范围)11、A,B 两地相距30千米,小飞以每小时6千米的速度从A 地步行到B 地,若设他与B 地的距离为y 千米,步行的时间为x 小时,则y 与x 之间的关系式为________12.已知5x +2y -7=0,用含x 的代数式表示y 为______;用含y 的代数式表示x为______.13、据调查,某公园自行车存放处在某一星期日的存放量为4000辆,其中变速车存放车费是每辆次元,普通车存车费是每辆一次元.若普通车存放车数为x 辆次,则变速车存放车数为 辆次,存车费总收入y 元,则y 关于x 的函数关系是_________14、.函数是表达现实世界中数量之间变化规律的一种数学模型,它的三种数学表示方法分别为_________、_________、_________.15、函数1-=x y 中,自变量x 的取值范围是______________;函数11+=x y 中,自变量x 的取值范围是______________16、函数1-=x x y 中,自变量x 的取值范围是 . 17.已知函数y =2x 2-1,当x 1=-3时,相对应的函数值y 1=______;当52-=x 时,相对应的函数值y 2=______;当x 3=m 时,相对应的函数值y 3=______.反过来,当y =7时,自变量x =______.18.已知等式24x y +=,则y 关于x 的函数关系式为________________.19.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是20.某商店进一批货,每件5元,售出时,每件加利润元,如售出x 件,应收货款y 元,那么y 与x 的函数关系式是______,自变量x 的取值范围是______.21. 市场上一种豆子每千克售2元,即单价是2元/千克,豆子总的售价y (元)与所售豆子的数量x kg 之间的关系为_______,当售出豆子5kg 时,豆子总售价为______元;当售出豆子10kg 时,豆子总售价为______元.22.导弹飞行高度h (米)与飞行时间t (秒)之间存在着的数量关系为213004h t t =-+,当15t =时,h =____________. 23、.如图,表示一辆汽车行驶的速度和时间的图象,你能用语言描述汽车的行驶情况吗________________________________.24、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n 个三角形需要S 支火柴棒,那么S 与n 的关系可以用式子表示为 (n 为正整数).25.购买一些铅笔,单价为元/枝,总价元随铅笔枝数变化,则关于的解析式是________,当x=40时,函数值是________元,二、选择题1、汽车在匀速行驶的过程中,若用s 表示路程,v 表示速度,t 表示时间,那么对于等式s=vt ,下列说法正确的是( )与v 是变量,t 是常量 与s 是变量,v 是常量 与v 是变量,s 是常量 、v 、t 三个都是变量2、下列变量之间的关系中,不是函数关系的是()A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边和面积D.球的体积和球的半径3.在下列等式中,y是x的函数的有()3x-2y=0,x2-y2=1,.|||,|,yxxyxy===A.1个B.2个C.3个D.4个4、.下列函数中自变量取值范围选取错误..的是()A.2y x x=中取全体实数B.1y=中x≠0 x-1C.1y=中x≠-1x+1D.1 y x=≥5、下列函数中自变量x的取值范围是x≥5的函数是()A.y= B.y=C.y=D.y= 6.下列函数中,自变量x不能为1的是().(A)1yx=(B)21xyx+=-(C)21y x=+(D)8xy=7.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升。

人教版八年级数学下册《变量与函数》练习

人教版八年级数学下册《变量与函数》练习

初中数学试卷金戈铁骑整理制作《变量与函数》练习一、选择——基础知识运用1.以下四个关系式:( 1) y=x ;( 2) y=x2 ;( 3)y=x3 ;( 4) |y|=x,其中y 不是x 的函数的是()A .(1)B .(2)C.( 3)D.( 4)2.若是每盒钢笔有10 支,售价25 元,那么购买钢笔的总钱数y(元)与支数x 之间的关系式为()A . y=10x B. y=25x C. y=x D. y=x3.如图,y 是x 的函数图像的是()A.B.C.D.4.以下说法正确的选项是()A .变量 x、 y 满足 y2=x ,则 y 是 x 的函数B .变量 x、y 满足 x+3y=1 ,则 y 是 x 的函数C.代数式πr3是它所含字母 r 的函数D.在 V=πr3中,是常量, r 是自变量, V 是 r 的函数5.已知 x=3-k , y=2+k ,则 y 与 x 的关系是()A .y=x-5B .x+y=1C. x-y=1 D .x+y=56.已知两个变量x 和 y,它们之间的 3 组对应值以下表,则y 与 x 之间的函数关系式可能是()x-101y-3-4-3A .y=3xB .y=x-4C. y=x2-4D. y=二、解答——知识提高运用7.圆柱的底面半径为10cm,当圆柱的高变化时圆柱的体积也随之变化,(1)在这个变化过程中自变量是什么?因变量是什么?(2)设圆柱的体积为 V ,圆柱的高为 h,则 V 与 h 的关系是什么?(3)当 h 每增加 2, V 怎样变化?8.某镇居民生活用水的收费标准如表。

月用水量x(立方米)0< x≤ 88< x≤16x> 16收费标准y(元 /立方米)4(1) y 是关于 x 的函数吗?为什么?(2)小王同学家 9 月份用水 10 立方米, 10 月份用水 8 立方米,两个月合计应付水费多少元?y 与层数 x 之间的关系式,并写出自变9.瓶子或罐头盒等物体常以以下列图那样堆放,试确定瓶子总数量 x 的取值范围。

基础练习5变量与函数一次函数(含答案)

基础练习5变量与函数一次函数(含答案)

基础练习5 变量与函数 一次函数学号 姓名 得分一、选择题:(每小题4分,共32分)1.下列关系式中,y 不是x 的函数的是 ( D )A .y=|x|B .y=xC .y=-xD .y=±x2.下列函数即是一次函数又是正比例函数的是 ( D )A .y=B .y=C .y=5x-4D .y= -3x3.函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( D )A .0<kB .1>kC .1≤kD .1<k4.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是 ( C )A .B .C .D .5.已知等腰三角形的周长为20cm ,将底边长y(cm)表示成腰长x(cm)的函数关系式是 y=20-2x ,则其自变量x 的取值范围是 ( C )A .0<x <10 B.一切实数 C .5<x <10 D .x >06.直线a x y +-=2经过),3(1y 和),2(2y -,则1y 与2y 的大小关系是 ( B )A . 21y y >B .21y y <C .21y y =D .无法确定7.如图,线段AB 对应的函数表达式为 ( B )A .y=-32x +2B .y=-23x +2(0≤x≤3) C .y=-23x +2 D .y=-23x +2(0<x <3) 8.若点P (a ,b )在第二象限内,则直线y=ax+b 不经过 ( C )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(每小题4分,共32分)9.一次函数y=-2x +4的图象与x 轴交点坐标是(2,0),与y 轴交点坐标是(0,4) 。

10.直线y=2x 向上平移3个单位得到的直线解析式是 y =2x +3 。

11.已知函数1)1(2++=m x m y 是一次函数,则m = 1 。

12.函数12-+=x x y 中自变量x 的取值范围是 x ≥-2且x ≠1 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1变量与函数同步测试题
一、精心选一选
1.一本笔记本每本4.5元,买x 本共付y 元,则4.5和y 分别是 ( )
A.常量、常量
B.变量、变量
C.常量、变量
D.变量、常量
2.若一辆汽车以50千米/时的速度匀速行驶,则行驶的路程s (千米)与行驶的时间t (时)之间的函数关系式是 ( ) A.S=50+50t B.s=50t C.s=50-50t D.以上都不对
3、一台机器开始工作时油箱中储油4升,如果每小时耗油0.5升,那么油箱中所剩油y (升)与它工作时间t(小时)之间的函数关系式是 ( ) A y= 0.5 t B y= 4 - 0.5 t C y= 4+ 0.5 t D y= 4 / t 4.下列函数中,自变量的取值范围为x ≥2的是 ( )
A.y=2+x
B.y=2-x
C.y=21+x
D.y=2
1
-x 5. 在函数3
x 1
y -=中,自变量x 的取值范围是 ( )
A. x ≠3
B. x ≠0
C. x>3
D. x ≠-3
6.下列y 是x 的函数的是 ( )
A. x+2y=-3
B. |y|=x
C.y 2=x
D.y 2=x 2
7.下列图形中的曲线不表示y 是x 的函数的是 ( )
8、函数y= x 2
-3x +4的图象经过点(-1,m ),则m = ( ) A .2 B.8 C.0 D.6
9、下列四个点中在函数y=2x —3的图象上的个数有 ( ) (1,2) (3,3) (-1, -1) (1.5,0) A .1 B.2 C.3 D.4
(B )
y
O
x
10.一枝蜡烛长20cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度h(cm)与燃烧时间t(时)之间的函数关系的图象大致为(如图所示) ( )
A
C
D
11.小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图象能表示小明离家距离y 与时
间x 关系的是( )
12.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )
13. 下图是南昌市某天的温度随时间变化的图像,通过观察可知:下列说法错误的是( )
A .这一天的最高气温是8℃,最低气温是一3℃
B .中午14时气温最高
C .从0时到14时气温是不断上升的
D .从14时到24时气温呈下降状态
14. 近年来国内生产总值年增长率的变化情况如图所示,不正确的是( )
A. 1995—1999年国内生产总值的年增长率逐年减小
B. 2000年国内生产总值的年增长率开始回升
C. 这7年中每年的国内生产总值不断增长
D. 这7年中每年国内生产总值有增有减
A .
/
B .
C .
D .
B
A
O A.
B.
C.
D.
二、细心填一填
1、在圆的周长和半径关系式C=2πr 中,其中,_______是常量,_______是变量. 是自变量, 是因变量, 是 的函数
2、函数y=3x-5中,自变量x 的取值范围是________,
函数y=
x
x --32
中,自变量x 的取值范围是________. 3、分别写出下列各问题中的函数关系式及自变量的取值范围:
(1)某市民用水费标准为每吨0.90元,则水费y (元)关于用水吨数x 的函数关 系式: x 的取值范围是
(2)等腰三角形的面积为30cm 2
,底边长为x (cm ),求底边上的高y (cm )关于x 的函数关
系式: x 的取值范围是
(3)等腰三角形的周长为20cm ,设腰长为ycm ,底边长为xcm ,那么y 与x 之间的函数解析式是_____ __,其中自变量x 的取值范围是______ _。

(4)等腰三角形的周长为20cm ,设腰长为xcm ,底边长为ycm ,那么y 与x 之间的函数解析式是____ ___,其中自变量x 的取值范围是_____ __。

(5)长方形的周长为18cm ,面积为ycm ,一边长为xcm .则y 与x 之间的函数解析式 ,自变量x 的取值范围为 。

(6)有一棵树苗,刚栽下去时树高1.2米,以后每年长高0.2米,设x 年后树高为y 米,则
y 与x 的函数解析式为______ _。

x 的取值范围是
(7).某电影院共有25排座位,第一排有20个座位,后面每排都比前排多一个座位,则每排的座位数y 与排数x 的函数关系式为______ _.x 的取值范围是
(8)、一个小球由静止开始在一个斜坡上向下滚动,其速度每秒钟增加2米,到达坡底时,小球速度达到40米/秒,小球速度v 与时间t 之间的函数关系式是 。

(9)、某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y 如下表示,根据表中所提供的信息回答下列问题
写出售价y 与售货数量x 的函数解析式是 自变量的取值范围是 (10).一个水池有水60立方米,现要将水池的水排出,如果排水管每小时排出的水量为3立方米.(1)写出水池中余水量Q 与排水时间t 之间的函数关系式.自变量的取值范围;(2)经过多少小时池中还剩30立方米的水(3)经过15小时,池中还剩多少立方米的水?
三、函数图像
1.假设甲、乙两人在一次赛跑中,路程S 与时间t 的关系如图,则可知道: (1)这是一次_______米赛跑.
(2)甲、乙两人中先到达终点的是_______.
(3)乙在这次赛跑中的平均速度是_______._______的速度较大
2.甲、乙进行登山比赛,已知山脚到山顶的路程为300米.甲先走了一段路程,乙开始出发.图中两条线段分别表示甲、乙离开山脚登山的路程S(米)与登山所用的时间t (分)的关系(从乙开始登山时计时).根据图象,下列说法正确的有 A .乙登山时,甲已走了50米 B .乙走了5分钟,甲仍在乙的前面 C .甲比乙晚到山顶
D .乙前10分钟登山的速度比甲慢,10分钟后登山的速度比甲快
3. 甲乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (时)之间的函数关系的图象,如图所示。

根据图中提供的信息,有下列说法: ① 他们都行驶了18千米。

② 甲车停留了0.5小时。

③ 乙比甲晚出发了0.5小时。

④ 相遇后甲的速度小于乙的速度。

⑤ 甲、乙两人同时到达目的地。

其中符合图象描述的说法有
4.已知有两人分别骑自行车和摩托车沿着相同的路线从甲地到乙地去,•下图反映的是这两个人行驶过程中时间和路程的关系,请根据图象回答下列问题: (1)甲地与乙地相距_______千米?
(2)两个人分别用了_______小时,_______小时才到达乙地?• (3)_______先到达了乙地?早到_______小时?
(4)分别描述在这个过程中自行车和摩托车的行驶状态. (5)求摩托车行驶的平均速度_______.
5. 小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示).
(1)图象表示了变量_______与_______的关系? (2)10时他离家_______㎞?
(3)他到达离家最远的地方的时间是_______?离家_______ (4)11时到12时他行驶了_______千米? (5)他可能在_______哪段时间内休息,并吃午餐? (6)他由离家最远的地方返回时的平均速度是_______?
19。

相关文档
最新文档