2019高中数学《2.1.1平面》导学案
2019_2020学年高中数学第二章平面向量2.1.1向量的概念学案新人教B版必修4
2.1.1 向量的概念1.了解平面向量的实际背景.2.理解平面向量的概念,两个向量相等的含义. 3.掌握向量的几何表示.1.向量的定义及表示方法 (1)向量:具有大小和方向的量. (2)向量的表示方法2.与向量有关的概念(1)零向量:长度等于零的向量,记作0. (2)向量共线或平行基线:通过有向线段AB →的直线,叫做向量AB →的基线.如果向量的基线互相平行或重合,则称这些向量共线或平行.共线向量的方向相同或相反.向量a 平行于b ,记作a ∥b .(3)相等向量:两个向量a 和b 同向且等长,即a 和b 相等,记作a =b . (4)向量的长度(模)如果AB →=a ,那么AB →的长度表示向量a 的大小,也叫做a 的长(或模),记作|a |. 3.用向量表示点的位置任给一定点O 和向量a (如图),过点O 作有向线段OA →=a ,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量OA →常叫做点A 相对于点O 的位置向量.1.判断(正确的打“√”,错误的打“×”) (1)向量的模是一个正实数.( ) (2)向量就是有向线段.( ) (3)向量AB →与向量BA →是相等向量.( )(4)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (5)零向量是最小的向量.( )答案:(1)× (2)× (3)× (4)× (5)× 2.已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M 答案:D3.如图,在⊙O 中,向量OB →、OC →、AO →是( )A .有相同起点的向量B .共线向量C .模相等的向量D .相等的向量 答案:C4.若A 地位于B 地正西方向5 km 处,C 地位于A 地正北方向5 km 处,则C 地相对于B 地的位移是________.解析:如图所示C 地相对于B 地的位移是西北方向5 2 km.答案:西北方向5 2 km向量的概念[学生用书P34]下列关于向量的说法正确的个数是( )①起点相同,方向相同的两个非零向量的终点相同;②起点相同,长度相等的两个非零向量的终点相同;③两个平行的非零向量的方向相同;④两个共线的非零向量的起点与终点一定共线.A .3B .2C .1D .0【解析】 起点相同,方向相同的两个非零向量若长度不相等,则终点不相同,故①不正确;起点相同,长度相等的两个非零向量的终点不一定相同,其终点在一个圆上,故②不正确;两个平行的非零向量的方向相同或相反,故③不正确;两个共线的非零向量的起点与终点不一定共线,所对应的直线可能平行,故④不正确.【答案】 D对于概念性题目,关键把握好概念的内涵与外延,正确理解向量共线、向量相等的概念,清楚它们的区别与联系.给出下列几种说法:①若非零向量a 与b 共线,则a =b ; ②若向量a 与b 同向,且|a |>|b |,则a >b ; ③若两向量有相同的基线,则两向量相等. 其中错误说法的序号是______.解析:①错误.共线向量是指向量的基线互相平行或重合,其方向相同或相反,所以共线向量未必相等.②错误.向量是既有大小,又有方向的量,不能比较大小.③错误.两向量有相同的基线表示两向量共线(或平行),但两向量的大小和方向都不一定相同.答案:①②③向量的表示[学生用书P34]一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解】 (1)如图所示.(2)由题意,易知AB →与CD →方向相反, 故AB →与CD →共线, 即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).用有向线段表示向量的步骤在如图所示的坐标纸中,每个小正方形的边长为1,画出下列向量.(1)|OA →|=3,点A 在点O 正西方向;(2)|OB →|=32,点B 在点O 北偏西45°方向; (3)|BC →|=6,点C 在点B 正东方向. 解:(1)(2)(3)如图:相等向量与共线向量[学生用书P35]如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的长度相等,方向相反的向量有哪些? (2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c 相等的向量.【解】 (1)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(3)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,FA →;与c 相等的向量有FO →,ED →,AB →.相等向量与共线向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.如图所示的▱ABCD ,OA →=a ,OB →=b .(1)与OA →的模相等的向量有多少个? (2)与OA →的模相等且方向相反的向量有哪些? (3)写出分别与OA →、AB →共线的向量.解:(1)与OA →的模相等的向量有OC →,AO →,CO →三个向量. (2)与OA →的模相等且方向相反的向量为OC →,AO →.(3)与OA →共线的向量有AO →,AC →,OC →,CO →,CA →;与AB →共线的向量有DC →,CD →,BA →.1.向量既有大小又有方向,但不能比较大小,向量的模是数量,可以比较大小.对于一个向量,只要不改变它的大小和方向,是可以任意平行移动的.2.平行(共线)概念不是平面几何中平行线概念的简单移植,这里的平行是指方向相同或相反的一对向量,它与长度无关,与是否在一条直线上无关.向量平行与直线平行的区别1.直线的平行具有传递性,即a ∥b ,b ∥c ⇒a ∥c .2.向量的平行不具有传递性,即若a ∥b ,b ∥c ,则未必有a ∥c ,因为若b =0,它与任意向量共线,故a ,c 两向量不一定共线.1.下列物理量:①速度;②位移;③力;④加速度;⑤路程;⑥密度.其中不是向量的有( )A .1个B .2个C .3个D .4个解析:选B.由于速度、位移、力、加速度都是由大小和方向确定,具备了向量的两个要素,所以是向量;而路程、密度只有大小没有方向,所以不是向量.故选B.2.下列关于零向量的说法不正确的是( ) A .零向量是没有方向的向量 B .零向量的方向是任意的 C .零向量与任一向量平行 D .零向量只能与零向量相等解析:选A.零向量的方向是任意的,是有方向的.3.如图,小正方形的边长为1,则|AB →|=________;|CD →|=________;|EF →|=________.解析:根据勾股定理可得|AB →|=32,|CD →|=26, |EF →|=2 2. 答案:3 226 2 24.在四边形ABCD 中,若AB →∥CD →,且|AB →|≠|CD →|,四边形ABCD 为________. 解析:由题意可知,对边AB 与CD 平行且不相等,故四边形ABCD 为梯形.答案:梯形, [学生用书P103(单独成册)])[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等; ④与非零向量a 共线的单位向量是a |a|. A .3 B .2 C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的. 2.若a 为任一非零向量,b 的模为1,给出下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1. 其中正确的是( ) A .①④ B .③ C .①②③D .②③解析:选B.①中,|a |的大小不能确定,故①错误;②中,两个非零向量的方向不确定,故②错误;④中,向量的模是一个非负实数,故④错误;③正确.选B.3.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则两向量共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形B .矩形C .菱形D .等腰梯形解析:选C.由BA →=CD →,知AB =CD 且AB ∥CD , 即四边形ABCD 为平行四边形. 又因为|AB →|=|AD →|, 所以四边形ABCD 为菱形.5.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A .AB →=OC → B .AB →∥DE → C .|AD →|=|BE →|D .AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →不共线,故AD →≠FC →,故选D. 6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22, 所以|OA →|= 2. 答案: 27.给出下列三个条件:①|a |=|b |;②a 与b 方向相反;③|a |=0或|b |=0,其中能使a ∥b 成立的条件是________.解析:由于|a |=|b |并没有确定a 与b 的方向, 即①不能够使a ∥b 成立; 因为a 与b 方向相反时,a ∥b , 即②能够使a ∥b 成立; 因为零向量与任意向量共线, 所以|a |=0或|b |=0时,a ∥b 能够成立.故使a ∥b 成立的条件是②③. 答案:②③8.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在如图的方格纸(每个小方格的边长为1)上,已知向量a .(1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么. 解:(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如图所示.(2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如图所示.10.如图所示,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.证明:因为AB →=DC →, 所以|AB →|=|DC →|且AB ∥CD , 所以四边形ABCD 是平行四边形, 所以|DA →|=|CB →|且DA ∥CB .同理可得,四边形CNAM 是平行四边形, 所以CM →=NA →. 所以|CM →|=|NA →|, 所以|MB →|=|DN →|, 又DN →与MB →的方向相同, 所以DN →=MB →.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是( ) A .与AB →相等的向量只有一个(不含AB →) B .与AB →的模相等的向量有9个(不含AB →) C .BD →的模恰为DA →模的3倍 D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图所示,已知四边形ABCD 是矩形,O 为对角线AC 与BD 的交点,设点集M ={O ,A ,B ,C ,D },向量的集合T ={PQ →|P ,Q ∈M ,且P ,Q 不重合},则集合T 有________个元素.解析:以矩形ABCD 的四个顶点及它的对角线交点O 五点中的任一点为起点,其余四点中的一个点为终点的向量共有20个.但这20个向量中有8对向量是相等的,其余12个向量各不相等,即为AO →(OC →)、OA →(CO →),DO →(OB →),BO →(OD →),AD →(BC →),DA →(CB →),AB →(DC →),BA →(CD →),AC →,CA →,BD →,DB →,由元素的互异性知T 中有12个元素.答案:1213.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →,如图所示:(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=55米.14.(选做题)如图所示方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC →|= 5.(1)画出所有的向量AC →;(2)求|BC →|的最大值与最小值.解:(1)画出所有的向量AC →,如图所示.(2)由第一问所画的图知,①当点C 位于点C 1和C 2时,|BC →|取得最小值12+22=5;②当点C 位于点C 5和C 6时,|BC →|取得最大值42+52=41.所以|BC →|的最大值为41,最小值为 5.。
人教版高中数学必修2全册导学案及答案
高一数学必修2导学案主备人: 备课时间: 备课组长:1.1.1棱柱、棱锥、棱台的结构特征一、学习目标:1、知识与技能:(1)能根据几何结构特征对空间物体进行分类。
(2)会用语言概述棱柱、棱锥、棱台的结构特征。
(3)会表示有关几何体以及柱、锥、台的分类。
2、过程与方法:(1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。
(2)观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象概括能力。
二、学习重点、难点:学习重点:感受大量空间实物及模型,概括出柱、锥、台的结构特征。
学习难点:柱、锥、台的结构特征的概括。
三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。
3、A类是自主探究,B类是合作交流。
四、知识链接:平行四边形:矩形:正方体:五、学习过程:A问题1:什么是多面体、多面体的面、棱、顶点?A问题2:什么是旋转体、旋转体的轴?B问题3:什么是棱柱、锥、台?有何特征?如何表示?如何分类?C问题4;探究一下各种四棱柱之间有何关系?C问题5:质疑答辩,排难解惑1.有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱?(举反例说明)2.棱柱的任何两个平面都可以作为棱柱的底面吗?A 例1:如图,截面BCEF 把长方体分割成两部分,这两部分是否是棱柱?B 例2:一个三棱柱可以分成几个三棱锥?六、达标测试A1、下面没有对角线的一种几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱A2、若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A .正方体B .正四棱锥C .长方体D .直平行六面体B3、棱长都是1的三棱锥的表面积为()A .3B.23C.33D.43B4、正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为()A .279cm2B .79cm2C .323cm2D .32cm2B5、若长方体的三个不同的面的面积分别为2,4,8,则它的体积为()A .2B .4C .8D .12C6、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A .必须都是直角三角形B.至多只能有一个直角三角形C .至多只能有两个直角三角形D.可能都是直角三角形A7、长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_______________.七、小结与反思:【励志良言】不为失败找理由,只为成功找方法。
2.1.1算法的基本思想导学案-高中数学北师大版必修3
§2.1算法的基本思想【学习目标】1.通过对解决具体问题过程与步骤的分析,体会算法的思想,了解算法的含义及其基本特征。
(重点)2.能分析具体问题,抽象出算法的过程,培养抽象概括能力、语言表达能力和逻辑思维能力。
(难点)3.通过算法的学习,让学生体验到数学与现实世界的关系、数学与计算机技术的关系,从而提高学生学习数学的兴趣。
一、知识记忆与理解【自主预习】阅读教材P75~P83“练习”以上部分,完成下列问题。
1、算法的概念:2、算法的基本思想:3、算法的特征:4、是不是任何一个算法都有明确的结果?5、做任何一件事情都得有算法吗?6、算法与解法的区别与关系.【预习检测】1、完成课本78p页练习1,2题及习题。
2、判断(正确的打“√”,错误的打“×”)(1)求解某一类问题的算法是唯一的.( )(2)算法执行后一定产生确定的结果.( )(3)算法只能解决一个问题,不能重复使用.( )(4)算法的步骤必须有限.( )3、下列对算法的理解不.正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤C.算法中的每一步都应当有效地执行,并得到确定的结果D.一个问题只能设计出一个算法4、下列语句中是算法的有( )①做饭需要刷锅、淘米、加水、加热这些步骤;②解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;③方程x2-1=0有两个实根;④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果是10.A.1个B.2个C.3个D.4个二、思维探究与创新【问题探究】一、数值型计算问题的算法探究一:写出解方程x2-2x-3=0的一个算法.整理反思变式训练1:写出求方程组⎩⎪⎨⎪⎧3x -2y =14, ①x +y =-2 ②的解的算法.二、非数值型计算问题的算法探究二:各种比赛在计算选手最后得分时,要去掉所有评委对该选手所打分数中的最高分和最低分,试设计一个找出最高分的算法.变式训练2: 在解放战争中,有一名战士接到命令,要求在最短的时间内配制出三副炸药,但是由于条件艰苦,称量物品的天平只剩下50 g 和5 g 两个砝码.现有465 g 硫黄,要平均分成三份,如何设计算法才能使称量的次数最少?需称量多少次?三、技能应用与拓展 【当堂检测】1.下列说法正确的是( ) A .算法就是某个问题的解题过程 B .算法执行后可以产生不同的结论 C .解决某一个具体问题,算法不同所得的结果不同D .算法执行步骤的次数不可以很大,否则无法实施2.下列四种自然语言叙述中,能称作算法的是( )A .在家里一般是妈妈做饭B .在野外做饭叫野炊C .研究函数奇偶性可以按“判断定义域是否关于原点对称,考查f (x )与f (-x )满足的关系”的程序进行D .做饭必须要有米3.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用( ) A .13分钟 B .14分钟 C .15分钟 D .23分钟 4.有以下六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法________.(写序号) 【拓展延伸】已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分,求他的总分S 和平均成绩x 的一个算法为: 1.取A =89,B =96,C =99; 2.________; 3.________; 4.输出计算的结果.整理 反思。
高中数学 2.1.1 平面教案 新人教A版必修2
第二章点、直线、平面之间的位置关系本章教材分析本章将在前一章整体观察、认识空间几何体的基础上,以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系;通过大量图形的观察、实验和说理,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,初步体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.本章主要内容:2.1点、直线、平面之间的位置关系,2.2直线、平面平行的判定及其性质,2.3直线、平面垂直的判定及其性质.2.1节的核心是空间中直线和平面间的位置关系.从知识结构上看,在平面基本性质的基础上,由易到难顺序研究直线和直线、直线和平面、平面和平面的位置关系.本章在培养学生的辩证唯物主义观点、公理化的思想、空间想象力和思维能力方面,都具有重要的作用.2.2和2.3节内容的编写是以“平行”和“垂直”的判定及其性质为主线展开,依次讨论直线和平面平行、平面和平面平行的判定和性质;直线和平面垂直、平面和平面垂直的判定和性质.“平行”和“垂直”在定义和描述直线和直线、直线和平面、平面和平面的位置关系中起着重要作用.在本章它集中体现在:空间中平行关系之间的转化、空间中垂直关系之间的转化以及空间中垂直与平行关系之间的转化.本章教学时间约需12课时,具体分配如下(仅供参考):2.1.1 平面约1课时2.1.2 空间中直线与直线之间的位置关系约1课时2.1.3 空间中直线与平面之间的位置关系约1课时2.1.4 平面与平面之间的位置关系约1课时2.2.1 直线与平面平行的判定约1课时2.2.3 直线与平面平行的性质约1课时2.2.2平面与平面平行的判定平面与平面平行的性质约1课时2.2.42.3.1 直线与平面垂直的判定约1课时2.3.2 平面与平面垂直的判定约1课时2.3.3 直线与平面垂直的性质约1课时2.3.4 平面与平面垂直的性质约1课时本章复习约1课时§2.1 空间点、直线、平面之间的位置关系§2.1.1 平面一、教材分析平面是最基本的几何概念,教科书以课桌面、黑板面、海平面等为例,对它只是加以描述而不定义.立体几何中的平面又不同于上面的例子,是上面例子的抽象和概括,它的特征是无限延展性.为了更准确地理解平面,教材重点介绍了平面的基本性质,即教科书中的三个公理,这也是本节的重点.另外,本节还应充分展现三种数学语言的转换与翻译,特别注意图形语言与符号语言的转换.二、教学目标1.知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力.2.过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识.3.情感、态度与价值观使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.三、重点难点三种数学语言的转换与翻译,利用三个公理证明共点、共线、共面问题.四、课时安排1课时五、教学过程(一)导入新课思路1.(情境导入)大家都看过电视剧《西游记》吧,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,孙悟空可以看作是一个点,他的运动成为一条直线,大家说如来佛的手掌像什么?对,像一个平面,今天我们开始认识数学中的平面.思路2.(事例导入)观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?图1长方体由上、下、前、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.(二)推进新课、新知探究、提出问题①怎样理解平面这一最基本的几何概念;②平面的画法与表示方法;③如何描述点与直线、平面的位置关系?④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?⑤根据自己的生活经验,几个点能确定一个平面?⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;⑦描述点、直线、平面的位置关系常用几种语言?⑧自己总结三个公理的有关内容.活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.③点在直线上和点在直线外;点在平面内和点在平面外.④确定一条直线需要几个点?⑤引导学生观察教室的门由几个点确定.⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.⑦文字语言、图形语言、符号语言.⑧平面的基本性质小结.讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚线画出来,如图3.图2 图3平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的四个字母表示,如平面ABCD(图5);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC(图5).图4 图5点A在直线a上(或直线a经过点A)A∈a元素与集合间的关系点A在直线a外(或直线a不经过点A)A∉a点A在平面α内(或平面α经过点A)A∈α点A在平面α外(或平面α不经过点A)A∉α④直线上有一个点在平面内,直线没有全部落在平面内(图7),直线上有两个点在平面内,则直线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内.如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内.这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示:若A∈a,B∈a,且A∈α,B∈α,则a⊂α.图6 图7请同学们用符号语言和图形语言描述直线与平面相交.若A∈a,B∈a,且A∉α,B∈α,则a⊄α.如图(图7).⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪等等.上述事实和类似的经验可以归纳为下面的公理.公理2:经过不在同一直线上的三点,有且只有一个平面.如图(图8).图8公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一.⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?不是,因为平面是无限延展的.直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看).问:两个平面会不会只有一个公共点?不会,因为平面是无限延展的,应当有很多公共点.正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?可见,这无数个公共点在一条直线上.这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图(图9),用符号语言表示为:P∈α,且P∈β⇒α∩β=l,且P∈l.图9公理3告诉我们,如果两个不重合的平面有一个公共点,那么这两个平面一定相交,且也就是说,如果两个平面有一个公共点,那么它们必定还有另外一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线.由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出了找这条交线的方法.⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言.⑧“平面的基本性质”小结:名称作用公理1 判定直线在平面内的依据公理2 确定一个平面的依据公理3 两平面相交的依据(三)应用示例思路1例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.图10活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,B∉α,A∈l,B∈l;(2)a⊂α,b⊂β,a∥c,b∩c=P,α∩β=c.解:如图11.图112.根据下列条件,画出图形.(1)平面α∩平面β=l,直线AB⊂α,AB∥l,E∈AB,直线EF∩β=F,F∉l;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,B∉a,C∈β,C∉a.答案:如图12.图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2 已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A、B、C有一个平面α,因为A、B在平面α内,根据公理1,直线a在平面α内,同理直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A、B在a上,A、C在b上,所以经过直线a和直线b的平面一定经过点A、B、C.于是根据公理2,经过不共线的三点A、B、C的平面有且只有一个,所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.证明:如图14,直线a、b、c、d两两相交,交点分别为A、B、C、D、E、F,图14∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,b⊂α.∵B、C∈a,E、F∈b,∴B、C、E、F∈α.而B、F∈c,C、E∈d,∴c、d⊂α,即a、b、c、d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点.(2)两条相交直线.(3)两条平行直线.(2)思路2例1 如图15,已知α∩β=EF,A∈α,C、B∈β,BC与EF相交,在图中分别画出平面ABC 与α、β的交线.图15活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对作图不准确的学生提示引导考虑问题的思路.解:如图16所示,连接CB,∵C∈β,B∈β,∴直线CB⊂β.图16∵直线CB⊂平面ABC,∴β∩平面ABC=直线CB.设直线CB与直线EF交于D,∵α∩β=EF,∴D∈α,D∈平面AB C.∵A∈α,A∈平面ABC,∴α∩平面ABC=直线AD.变式训练1.如图17,AD∩平面α=B,AE∩平面α=C,请画出直线DE与平面α的交点P,并指出点P 与直线BC的位置关系.图17解:AD 和AC 是相交直线,它们确定一个平面ABC , 它与平面α的交线为直线BC ,DE ⊂平面ABC , ∴DE 与α的交点P 在直线BC 上.2.如图18,正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,图18(1)画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线. (2)设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.解:(1)设M 、N 、P 三点确定的平面为α,则α与平面AA 1B 1B 的交线为直线MP ,设MP∩A 1B 1=R ,则RN 是α与平面A 1B 1C 1D 1的交线,设RN∩B 1C 1=Q ,连接PQ ,则PQ 是所要画的平面α与平面BB 1C 1C 的交线.如图18.(2)正方体棱长为8 cm ,B 1R=BM=4 cm ,又A 1N=4 cm ,B 1Q=31A 1N, ∴B 1Q=31×4=34(cm ).在△PB 1Q 中,B 1P=4 cm ,B 1Q=34cm , ∴PQ=10342121=+Q B P B cm.点评:公理3给出了两个平面相交的依据,我们经常利用公理3找两平面的交点和交线.例2 已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线.解:如图19,∵A、B 、C 是不在同一直线上的三点,图19∴过A 、B 、C 有一个平面β. 又∵AB∩α=P,且AB ⊂β,∴点P 既在β内又在α内.设α∩β=l,则P ∈l, 同理可证:Q ∈l,R ∈l, ∴P、Q 、R 三点共线. 变式训练三个平面两两相交于三条直线,若这三条直线不平行,求证:这三条直线交于一点. 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行.求证:l 1、l 2、l 3相交于一点.证明:如图20,α∩β=l 1,β∩γ=l 2,α∩γ=l 3,图20∵l1⊂β,l2⊂β,且l1、l2不平行,∴l1与l2必相交.设l1∩l2=P,则P∈l1⊂α,P∈l2⊂γ,∴P∈α∩γ=l3.∴l1、l2、l3相交于一点P.点评:共点、共线问题是本节的重点,在高考中也经常考查,其理论依据是公理3.(四)知能训练画一个正方体ABCD—A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.解:如图21,图21∵F∈CD′,∴F∈平面ACD′.∵E∈AC,∴E∈平面ACD′.∵E∈BD,∴E∈平面BDC′.∵F∈DC′,∴F∈平面DC′B.∴EF为所求.(五)拓展提升O1是正方体ABCD—A1B1C1D1的上底面的中心,过D1、B1、A作一个截面,求证:此截面与对角线A1C的交点P一定在AO1上.解:如图22,连接A1C1、AC,图22因AA1∥CC1,则AA1与CC1可确定一个平面AC1,易知截面AD1B1与平面AC1有公共点A、O1,所以截面AD1B1与平面AC1的交线为AO1.又P∈A1C,得P∈平面AC1,而P∈截面AB1D1,故P在两平面的交线上,即P∈AO1.点评:证明共点、共线问题关键是利用两平面的交点必在交线上.(六)课堂小结1.平面是一个不加定义的原始概念,其基本特征是无限延展性.名称作用公理1 判定直线在平面内的依据公理2 确定一个平面的依据公理3 两平面相交的依据。
2019-2020学年新导学同步人教A版高中数学必修2__第2章 点_直2.1.1-2.1
知识导图
学法指导 1.研究几何问题,不仅要掌握自然语言、符号语言、图形语言 的相互转换,也要学会用符号语言表示点、直线、平面之间的位置 关系.用图形语言表示点、直线、平面之间的位置关系时,一定要 注意实线与虚线的区别. 2.学会用自然语言、符号语言描述四个公理的条件及结论, 明确四个公理各自的作用. 3.要理解异面直线的概念中“不同在任何一个平面内”的含 义,即两条异面直线永不具备确定平面的条件. 4.判断异面直线时,要更多地使用排除法和反证法. 5.作异面直线所成的角时,注意先选好特殊点,再作平行线.
3.公理 3 的主要作用:①判定两个平面是否相交;②证明共 线问题;③证明线共点问题.
公理 3 强调的是两个不重合的平面,只要它们有公共点,其交 集就是一条直线.以后若无特别说明,“两个平面”是指不重合的 两个平面.
[小试身手]
1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)空间不同三点确定一个平面.( × ) (2)空间两两相交的三条直线确定一个平面.( × ) (3)和同一直线都相交的三条平行线在同一平面内.( √ )
(1)一个希腊字母:如 α,β,γ 等;
表示 (2)两个大写英文字母:表示平面的平行四边形的相对的两个
方法 顶点;
(3)四个大写英文字母:பைடு நூலகம்示平面的平行四边形的四个顶点
1.平面和点、直线一样,是只描述而不加定义的原始概念, 不能进行度量;
高中数学 2.1.1平面教案 新人教A版必修2
四、课堂小结
1.平面的概念及表示;2.平面基本性质.
归纳概括,升华知识
学生回顾反思、归纳知识
总结教学,帮助学生建立知识结构.
五、作业布置
课本51页 1、2题,《红对勾》第9课时.
学生独立完成
巩固所学知识
2.1.1 平面
3.在对公理的简单应用中促进学生对公理的
理解与掌握.
公理2
1.空间中,经过一条直线可以作多少个平面?经过
两点可以作多少个平面?经过三点可以作多少个平面?
2.公理2的作用及三种语言形式;
3.牛刀小试(公理2的三个推论及简单应用).
1.引导学生演示操作,得出公理2;
2.引导学生用三种语言形式表述公理2;
教学重点
平面的基本性质
教学难点
三个公理的简单应用及文字语言、图形语言、符号语言三种数学语言形式的相互转化.
教 学 过 程
一、提出问题,引入新课
1.空间几何里平面的概念是什么?平面有哪些几何性质?
2.空间中,点、直线、平面之间有哪些基本位置关系?
教师活动
学生活动
设计意图
从长方体模型出发,提出问题,引入本章内容,明确本节学习任务.
教学目标
知识与技能
1.学生掌握平面的画法和表示以及平面的三个公理;2.学生初步建立图形、文字、符号这三种数学语言的联系.
过程与方法
1.学生从实际生活感性经验出发,通过观察、讨论和思考,得出平面的三个公理;2.在练习过程中,学生初步体会平面三个公理的应用及三种语言的转化.
情感态度与价值观
1.从感性经验出发,通过演示、观察、讨论和抽象,形成知识,激发学生的学习兴趣;2.通过数学符号的应用感受数学的简洁美.
2019-2020年高中数学 2.1.1平面全册精品教案 新人教A版必修2
2019-2020年高中数学 2.1.1平面全册精品教案新人教A版必修2(一)教学目标1.知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力.2.过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识.3.情感、态度与价值观使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.(二)教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面基本性质的掌握与运用.(三)教学方法师生共同讨论法(1)公理3的图形如图(2)符号表示为:(3)公理3作用:判断两个平面是否相交.师投影公理2图示与符号表示,分析注意事项.师:下面请同学们观察教室的天花板与前面的墙壁,思考这两个平面的公共点有多少个?它们有什么特点.生:这两个平面的无穷多个公共点,且所有这些公共点都在一条直线上.师:我们把这条直线称为这两个平面的公共直线.事实上,如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(板书)这就是我们要学的公理3.加强学生对知识的理解,培养学生语言(符号图形)的表达能力.学生在观察、实验讨论中得出正确结论,加深了对知识的理解,还培养了他们思维的严谨性.典例分析例1 如图,用符号表示下图图形中点、直线、平面之间的位置关系.分析:根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来.解:在(1)中,,,.在(2)中,,,,,.学生先独立完成,让两个学生上黑板,师生给予点评巩固所学知识随堂练习1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面学生独立完成答案:1.D2.(1)不共面的四点可确定4个平面.(2)共点的三条直线可确定一个或3个平面.巩固所学知识课后作业2.1第一课时 习案 学生独立完成备选例题例1 已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面.证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , 但A d ,如图1.∴直线d 和A 确定一个平面α. 又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则A ,E ,F ,G ∈α.∵A ,E ∈α,A ,E ∈a ,∴a α. 同理可证b α,c α.∴a ,b ,c ,d 在同一平面α内.2o 当四条直线中任何三条都不共点时,如图2. ∵这四条直线两两相交,则设相交直线a ,b 确定一个平面α.设直线c 与a ,b 分别交于点H ,K ,则H ,K ∈α. 又 H ,K ∈c ,∴c α. 同理可证d α.∴a ,b ,c ,d 四条直线在同一平面α内.说明:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.例2 正方体ABCD —A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于点O ,AC 、BD 交于点M ,求证:点αb adcG F EA a bcd α H K图1图2C 1、O 、M 共线.分析:要证若干点共线的问题,只需证这些点同在两个相交平面内即可. 解答:如图所示A 1A ∥C 1C 确定平面A 1CA 1C 平面A 1C 又O ∈A 1C平面BC 1D ∩直线A 1C = O O ∈平面BC 1DO 在平面A 1C 与平面BC 1D 的交线上. AC ∩BD = MM ∈平面BC 1D 且M ∈平面A 1C平面BC 1D ∩平面A 1C = C 1M O ∈C 1M ,即O 、C 1、M 三点共线.评析:证明点共线的问题,一般转化为证明这些点同是某两个平面的公共点.这样,可根据公理2证明这些点都在这两个平面的公共直线上..O ∈平面A 1CM O B 1C 1D 1A 1DC BA。
2019年高中数学第二章点、直线、平面之间的位置关系2.1.1平面课时作业解析版新人教A版必修2
2.1.1 平面1.文字语言叙述:“平面内有一条直线,则这条直线上的点必在这个平面内”改成符号语言是( B )(A)a∈α,A⊂a⇒A⊂α(B)a⊂α,A∈a⇒A∈α(C)a∈α,A∈a⇒A⊂α(D)a∈α,A∈a⇒A∈α解析:直线在平面内用“⊂”,点在直线上和点在平面内用“∈”,故选B.2.若点A在直线b上,b在平面β内,则A,b,β之间的关系可以记作( B )(A)A∈b,b∈β(B)A∈b,b⊂β(C)A⊂b,b⊂β(D)A⊂b,b∈β解析:点与直线是属于关系,直线与平面是包含关系,故选B.3.下列图形中不一定是平面图形的是( D )(A)三角形(B)平行四边形(C)梯形 (D)四边相等的四边形解析:利用公理2可知:三角形、平行四边形、梯形一定是平面图形,而四边相等的四边形不一定是平面图形,故选D.4.空间不共线的四点,可以确定平面的个数是( C )(A)0 (B)1(C)1或4 (D)无法确定解析:四点可以确定平面的个数为1个;四点不共面,可以确定平面的个数是4,故空间不共线的四点,可以确定平面的个数是1或4个.5.如图平面α∩平面β=直线l,点A,B∈α,点C∈β,C∉l,直线AB∩l=D,过A,B,C三点确定平面γ,则γ与β的交线必过( D )(A)点A(B)点B(C)点C但不过点D(D)点C和点D解析:因为C∈β,D∈β,且C∈γ,D∈γ,所以γ与β的交线必过点C和D.6.下列各图均是正六棱柱,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是( D )解析:在选项A,B,C中,由棱柱、正六边形、中位线的性质,知均有PS∥QR,即在此三个图形中P,Q,R,S共面,故选D.7.以下三个命题:①不共面的四点中,其中任意三点不共线;②若A,B,C,D共面,A,B,C,E共面,则A,B,C,D,E共面;③依次首尾相接的四条线段一定共面,其中正确命题的个数是( B ) (A)0 (B)1 (C)2 (D)3解析:①正确;对于②,当A,B,C三点共线,如图(1)所示,A,B,C,D,E不一定共面,故②不正确;对于③,如图(2)所示的AB,BC,CD,DA依次首尾相连,但四条线段不共面,故③不正确.8.(2017·金华九校联考)长方体的12条棱所能确定的平面个数为( C )(A)8 (B)10(C)12 (D)14解析:在长方体中由12条棱可构成长方体的6个面和6个对角面,共12个面.9.把下列符号叙述所对应的图形的字母编号填在题后横线上.(1)A∉α,a⊂α;(2)α∩β=a,P∉α且P∉β;(3)a⊄α,a∩α=A ;(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O .解析:考查识图能力及“图形语言与符号语言”相互转化能力,要注意点线面的表示.习惯上常用大写字母表示点,小写字母表示线,希腊字母表示平面.答案:(1)C (2)D (3)A (4)B10.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是.解析:空间中和一条直线都相交的两条直线不一定在同一平面内,故①错;若三条直线相交于一点时,不一定在同一平面内,如长方体一角的三条线,故②错;若两平面相交时,也可有三个不同的公共点,故③错;若三条直线两两平行且在同一平面内,则只有一个平面,故④错.答案:011.已知α,β为不重合的平面,A,B,M,N为不同的点,a为直线,下列推理中错误的是(填序号).①A∈a,A∈β,B∈a,B∈β⇒a⊂β;②M∈α,M∈β,N∈α,N∈β⇒α∩β=MN;③A∈α,A∈β⇒α∩β=A.解析:由公理1知①正确;②中,易知M,N为平面α与β交线上的点,故②正确;易知③错误. 答案:③12.如图,正方体ABCDA1B1C1D1中,若E,F,G分别为棱BC,C1C,B1C1的中点,O1,O2分别为四边形ADD1A1,A1B1C1D1的中心,则下列各组中的四个点在同一个平面上的是.①A,C,O1,D1;②D,E,G,F;③A,E,F,D1;④G,E,O1,O2.解析:①O1是AD1的中点,所以O1在平面ACD1内,即A,C,O,D四点共面;②因为E,G,F在平面BCC1B1内,D不在平面BCC1B1内,所以D,E,G,F不共面;③由已知可得EF∥AD1,所以A,E,F,D1共面;④连接GO2,交A1D1于H,则H为A1D1的中点,连接HO1,则HO1∥GE,所以G,E,O1,O2四点共面.答案:①③④13.如图,在正方体ABCDA1B1C1D1中,E,F为所在棱的中点,求证:D1,E,F,B四点共面.证明:如图,在BB1上取中点M,则BM=AE,连接EM,C1M,因为ABCDA1B1C1D1是正方体,所以ME∥AB且ME=AB,所以ME∥C1D1且ME=C1D1,所以四边形C1D1EM是平行四边形,所以D1E∥C1M.同理可得C1M∥FB且C1M=FB,所以D1E∥FB且D1E=FB,所以四边形EBFD1是平行四边形.所以D1,E,F,B四点共面.14.如图,空间四边形ABCD中,E,H分别是AB,AD中点,F,G分别是BC,CD上的点,且==.求证:三条直线EF,GH,AC交于一点.证明:因为E,H分别是AB,AD中点,所以EHBD,因为==,所以GF∥BD,GF=BD,所以EH∥GF且EH≠GF,所以四边形EFGH为梯形,所以两腰EF,GH交于一点,记为P.因为EF⊂平面ABC,所以P∈平面ABC,同理P∈平面ADC,所以P在平面ADC和平面ABC的交线AC上,所以三条直线EF,GH,AC交于一点.15.在正方体ABCDA1B1C1D1中,点Q是棱DD1上的动点,判断过A,Q,B1三点的截面图形的形状. 解:由于点Q是线段DD1上的动点,故当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图1所示.当点Q与点D重合时,截面图形为矩形AB1C1D,如图2所示.当点Q不与点D,D1重合时,截面图形为梯形AQRB1,如图3所示.图1 图2 图316.下列各图是正方体,A,B,C,D分别是所在棱的中点,这四个点中共面的图有( C )(A)①②③(B)①③④(C)①③ (D)①②④解析:如图所示,正方体中A,B,C,D分别是所在棱的中点.图①中,因为AD∥EF,BC∥EF,所以AD∥BC,所以A,B,C,D四点共面.图②中,因为CD∥EF,EF∥MN,所以A,B,C,D四点不共面.图③中,因为CD∥EF,EF∥AB,所以CD∥AB,所以A,B,C,D四点共面.图④中,因为CD∥EF,所以A,B,C,D四点不共面.所以这四个点中共面的图有①③.故选C.17.在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与GH交于点M,则( A )(A)M一定在直线AC上(B)M一定在直线BD上(C)M可能在AC上,也可能在BD上(D)M既不在AC上,也不在BD上解析:如图所示,HG∩EF=M,HG⊂平面ACD,EF⊂平面ACB,所以M∈平面ACD,M∈平面ACB.又平面ACD∩平面ACB=AC,所以M∈AC.故选A.18.如图所示,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论错误的是.①A,M,O三点共线;②A,M,O,A1四点共面;③A,O,C,M四点共面;④B,B1,O,M四点共面.解析:因为A,M,O三点既在平面AB1D1内,又在平面AA1C内,故A,M,O三点共线,从而易知①②③均正确.答案:④19.如图,正方体ABCDA1B1C1D1棱长为1,P为BC中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得截面记为S.当CQ=时,S的面积为,若S为五边形,则此时CQ的取值范围为.解析:如图1所示,当CQ=时,截面S为等腰梯形,易求得上、下底边长分别为, ,腰为,所以底边上的高为,所以S的面积为.当CQ=时,可知截面是等腰梯形,当CQ=1时,易得截面是一个菱形.所以,只有<CQ<1时,截面是一个五边形,如图2所示.答案: (,1)20.如图,在正方体ABCDA1B1C1D1中,棱长为2,M,N,P分别是A1B1,AD,BB1的中点.(1)画出过M,N,P三点的平面与平面ABCD,平面BB1C1C的交线;(2)设过M,N,P三点的平面与BC交于点Q,求PQ的长.解:(1)如图,连接MP并延长交AB的延长线于R,连接NR交BC于点Q,则NQ就是过M,N,P三点的平面与平面ABCD的交线,连接PQ,则过M,N,P三点的平面与平面BB1C1C的交线是PQ.(2)易知Rt△MPB1≌Rt△RPB,所以MB1=RB=1.因为BQ∥AN,所以△BQR∽△ANR,所以==,可得BQ=.在Rt△PBQ中,PQ===.。
新人教A版必修1高中数学2.1.1指数与指数幂的运算导学案
高中数学 2.1.1指数与指数幂的运算导学案新人教A版必修1 学习目标:理解根式、分数指数幂、无理数指数幂、实数指数幂的定义学习重点:会应用运算性质进行根式、指数幂的运算计算学习过程:一、根式1、观察发现:22=中2叫做4的平方根,记作___;44-中2-叫做4的平方)2(2=根,记作____823=中2叫做8的立方根,记作___;8-中2-叫做8-的立=)2(3-方根,记作___±中2±叫做16的4次方根,记作_________16(4=)2=(5--中2-叫做______________,记作_______)232(6=±中2±叫做________________,记作________ )2642、归纳总结:若ax n=,则x叫做a的_______ (其中*n,1)n∈>N当n是正奇数时,若0<a,则x____,a,则x>0,x=________,若0>x=_____当n是正偶数时,若0<a,则>a,则x=___________,若0x_____________其中式子n a叫做_______,这里n (*n,1)叫做_________,a叫n∈>N做_______注:______0=n ()=n n a ___________n 是正奇数时,=n n a __________;n 是正偶数时,=n n a __________3、练习体验: _______)8(33=- ______)10(2=- 44)3(π-=________ _______)(66=-y x (x>y )_____)4(2=-π _____)(2=-b a二、 分数指数幂1、 观察与归纳:(1)_______________224===;_______________248===_______________510===a ______________412===a()0____32>=a a ;()0_____>=b b ;()0_____45>=c c 正数的正分数指数幂)10______(>∈>=*,n N ,m、n a a mn(2)______21=- )0_______(1≠=-x x ______534—= _____32—=a正数的负分数指数幂)10______(—>∈>=*,n N ,m、n a a m n(3)0的正分数指数幂等于0;0的负分数指数幂没有意义。
2019高中数学2.1.1 平面导学案
课题:2.1.1 平面【学习目标】1.知道平面的概念初步体会平面的无限延展性,2.记住平面的表示法并会画平面水平放置的直观图;3.知道平面的基本性质及作用;【课前导学】1. 平面的概念;2.平面的画法及表示:3.点、线、面位置关系:4.平面的性质:(1)公理1文字语言:如果一个平面内,那么这条直线在此平面内.符号语言:,且α⇒l.⊂公理1的作用:_______________________________________________(2)公里2:文字语言:的三点,有且只有一个平面.简记:公理2的作用:公理2的三个推论:推论1.经过一条直线和这条直线外一点,有且只有一个平面.简记:推论2.经过两条相交直线,有且只有一个平面.简记:推论3.经过两条平行直线,有且只有一个平面简记:公理3:文字语言:如果两个不重合的平面,那么它们有且只有一条过该点的公共直线.符号语言: ,且lβ⇒∈,且 .βP=⋂α公理3的作用:____________________________________例1:如图,用符号表示下图图形中点、直线、平面之间的位置关系.例2:根据下列条件,画出图形(1) A∈α,a⊂α,A∈a;(2) a⊂α,b⊂α,c⊂α,且a∩b=A,b∩c=B,c∩a=C.例3:已知△ABC在平面α外,它的三条边所在直线分别交平面α于P、Q、R。
求证:P、Q、R共线【学习检测】1. 直线1l ∥2l ,在1l 上取3个点,在2l 上取2个点,由这5个点确定的平面个数为( ).A.1个B.3个C.6个D.9个2. 下列推理错误的是( ).A.A l ∈,A α∈,B l ∈,B α∈l α⇒⊂B.A α∈,A β∈,B α∈,B β∈AB αβ⇒=C.l α⊄,A l A α∈⇒∉D.A ,B ,C α∈, A ,B ,C β∈,且A ,B ,C 不共线αβ⇒与重合3.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( )(A ) 1个或3个 (B ) 1个或4个 (C ) 3个或4个 (D ) 1个、3个或4个4.课本教43p 1,2,3,4【我的收获】学完本节课,你在知识、方法等方面有什么收获与感受?。
高中数学(必修二)导学案
高中数学(必修二)导学案第一章:平面直角坐标系1.1 坐标系的引入- 了解平面直角坐标系的基本概念- 掌握点在平面直角坐标系中的坐标表示方法1.2 平面直角坐标系上的距离公式- 了解平面直角坐标系上两点之间距离的公式- 掌握如何使用距离公式计算两个点之间的距离1.3 直线的斜率- 了解直线斜率的概念及其计算方法- 掌握如何根据两点坐标计算直线的斜率第二章:二次函数2.1 二次函数的图像和性质- 了解二次函数的基本概念和特点- 掌握根据二次函数的参数确定二次函数图像的方法2.2 二次函数的最值和零点- 了解二次函数最值和零点的基本概念及其计算方法- 掌握如何根据二次函数求解实际问题2.3 二次函数与一次函数的比较- 了解二次函数和一次函数的基本概念及其图像特点- 掌握如何比较二次函数和一次函数的大小关系第三章:三角函数3.1 任意角及其测量- 了解任意角的基本概念及其测量方法- 掌握如何将任意角的三角函数转化为其它角度的三角函数3.2 常用角的三角函数值- 掌握常用角的三角函数值及其推导方法- 掌握如何根据三角函数值求解实际问题3.3 三角函数的图像和性质- 了解三角函数的图像及其性质- 掌握如何根据三角函数图像解决实际问题第四章:概率统计4.1 随机事件与概率- 掌握随机事件和概率的基本概念和运算法则- 掌握如何计算简单事件的概率4.2 条件概率和独立性- 了解条件概率和独立性的基本概念及其计算方法- 掌握如何根据条件概率和独立性计算事件的概率4.3 离散型随机变量及其分布律- 了解离散型随机变量及其分布律的概念- 掌握如何根据分布律计算离散型随机变量的期望值和方差以上是本章节的导学内容,希望同学们认真学习,做好课后习题。
祝学习愉快!。
高中数学人教A版必修2《2.1.1平面》教学案2
A
α
d a E FbG c
图1
∵A,E∈α,A,E∈a,∴a α. 同理可证b α,c α.∴a,b,c,d在同一平面 α内.
HK
a
b
图2
α
d c
2o当四条直线中任何三条都不共点时,如图2.
∵这四条直线两两相交,则设相交直线a,b确定一个平面α.
设直线c与a,b分别交于点H,K,则H,K∈α.
注
问题1:回忆上节课学习过那些内容?说说如何定义平面?表示平面?
问题2:平面有那些基本性质?
点题:今天我们将学习平面基本性质的应用
活动二:师生交流、进入新知,(20分钟)
例1: 已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d
共面.
证明 1o若当四条直线中有三条相交于一点,
不妨设a,b,c相交于一点A, 但Ad,如图1.∴直线d和A确定一个平面α. 又设直线d与a,b,c分别相交于E,F,G, 则A,E,F,G∈α.
活动四:归纳整理、提高认识(2分钟)
(1)本节课我们学习了哪些知识内容?
(2)如何进行三线共点与三点共线的证明?
活动五:作业布置、提高巩固
(1)书本P53B组2、3;
(2)预习:同一平面内的两条直线有几种位置关系? 板书设计:
一、平面的三个公理的应用 二、例题 例1 变式1 例2 变式2
教学后记:
又 H,K∈c,∴c,则c α.同理可证d α.
∴a,b,c,d四条直线在同一平面α内.
说明:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,
由题给条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或
点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此在分析题
高中数学 2.1.1《平面》导学案 新人教A版必修2
【学习目标】知识与技能:利用生活中的实物对平面进行描述;掌握平面的表示法及水平放置的直观图;掌握平面的基本性质及作用;培养学生的空间想象能力。
过程与方法:通过共同讨论,增强对平面的感性认识;归纳整理本节所学知识情感态度与价值观:认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
【重点难点】学习重点:1、平面的概念及表示;2、平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言。
学习难点:平面基本性质的掌握与运用。
【学法指导】通过阅读教材,联系身边的实物思考、交流,从而较好地完成本节课的学习目标。
【知识链接】生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?【学习过程】A问题1、平面含义A问题2、平面的画法A问题3、平面的表示平面通常用希腊字母()等表示,如()等,也可以用表示平面的平行四边形的()来表示,如()等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成()A问题4、点与平面的关系:平面内有无数个点,平面可以看成点的集合。
点A在平面α内,记作:点B在平面α外,记作:A例1、判断下列各题的说法正确与否,在正确的说法的题号后打√,否则打×:1)、一个平面长 4 米,宽 2 米; ( )2)、平面有边界; ( )3)、一个平面的面积是 25 cm 2; ( )4)、菱形的面积是 4 cm 2; ( )5)、一个平面可以把空间分成两部分. ( )A问题5如果直线l与平面α有一个公共点,直线l是否在平面α内?如果直线l与平面α有两个公共点呢?·B1A 问题6公理1: 符号表示为公理1作用:判断直线是否在平面内B 问题7公理2:符号表示为:公理2作用:确定一个平面的依据。
注意:(1)公理中“有且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形惟一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“有且只有一个平面”也可以说成“确定一个平面.B 问题8公理3:符号表示为:公理3作用:判定两个平面是否相交的依据B 例题教材P43 例1【基础达标】B 课本P43 练习1、2、3、4①为什么有的自行车后轮旁只安装一只撑脚?②三角形、梯形是否一定是平面图形?为什么?③四条线段顺次首尾连接,所得的图形一定是平面图形吗?为什么?④用符号表示下列语句,并画出图形:⑴点A 在平面α内,点B 在平面α外;⑵直线L 在平面α内,直线m 不在平面α内;⑶平面α和β相交于直线L⑷直线L 经过平面α外一点P 和平面α内一点Q ;⑸直线L 是平面α和β的交线,直线m 在平面α内, 和m 相交于点P.【学习反思】1.平面的概念,画法及表示方法.2.平面的性质及其作用3.符号表示C · B· A · α P · α L β。
高中数学新人教版A版精品教案《2.1.1 平面》
教学方法启发式,问题导学法,实验法教学重点理解平面的特点和三个公理,以及能用三种语言表述直线与平面、平面与平面的位置关系.教学难点符号语言和图形语言的准确表示,学习公理的作用和意义.教学过程一、概念的引入问题1:观察图中的房屋,有你熟悉的空间图形吗进一步从该物体中抽取一个长方体出来,追问:长方体是由哪些几何元素构成的?设计意图:从整体到局部,从现实世界中抽象出数学模型,这么一栋赏心悦目的别墅竟然是由一些几何体组成的,让学生感受到自己生活在一个充满几何体的世界里!那么这些几何体到底是怎样的结构呢?接着,以学生熟悉的长方体为载体,提出新的问题,激发学生的兴趣,让学生感到学习数学是必要的、有用的.点、线、面是空间图形的基本元素,它们构成了千姿百态的世界.本节我们就来研究点、线、面的位置关系。
首先我们大家一起来探讨一下平面及其基本性质.二、概念的生成问题2:(1)生活中有哪些例子给了我们直线形象?(2)直线有哪些基本特征?(3)怎么表示直线?学生通过讨论给出如黑板的边缘、空中划过的闪电等都给我们以直线的形象,从而教师明确数学中的“直线”就是从同学们所举的例子中抽象出来的.学生进而给出直线的基本特征如:①直的;②向两边无限延伸;③无粗细.回忆后才好说与平面有关的事.两点确定一条直线,那么两点能否确定一个平面?学生说:不能.老师继续提问:“在空间中至少需要几个点才能确定一个平面?是三个呢?还是四个、五个呢?”请学生上台,动手做数学实验1.数学实验1:用手指头将一块硬纸板平衡地摆放在空间某一位置,至少需要几个手指?引导学生归纳出公理2.设计意图:在动手操作、观察感悟中获取新知.通过做数学实验,让学生感受满足什么条件才可以确定一个平面,有利于降低学习难度,调动学生的学习积极性,增强学习兴趣,体会到该公理2的正确性.公理2:过不在一条直线上的三点,有且只有一个平面.预设:学生可能会忽略“不在同一条直线上”,教师提出问题:在同一直线上的三点,能否确定一个平面?学生回答不行,进一步让学生举出反例.也有学生可能会疑惑为什么是“三点可以确定一个平面?四点、五点可以吗?”另外,通过提问“经过不在同一条直线上的三点的平面只有一个吗?”让学生感受到“有且只有”的内涵.师生共同探究:如何用图形语言表示公理2,及公理2的作用?(因为学生第一次碰到文字语言转换为图形语言,确实对他们来说是一个难点)设计意图:给学生时间思考,画出图形,体会图形的直观.师生共同体会公理2在生活中的简单应用.比如相机、测量仪器的三角架定位、三角形所在平面的稳定性等都是公理2的实际应用.公理2的内容不仅给出了确定一个平面的依据,即“过不在一条直线的三点有一个平面”;而且给出了这样的平面具有唯一性,即“有且只有一个平面”.另外,该公理还可以判断直线与平面的位置关系,如不共线的三点中任意取两点可以确定一条直线,则这条直线一定在不共线的三点确定的平面内,从而为公理1打下铺垫.2、公理1确定“平面”以后,接下来我们就会想到“点”、“线”和新的对象“面”之间有什么关系了.我们主要探讨线与面,面与面的关系.对新对象(平面)与已经有的对象(直线)关系的关注——满足什么条件就可以说直线a在平面 内呢?数学实验2:如果把硬纸板看作一个平面,把你的笔看作是一条直线的话:1你能使笔上的一个点在平面内,而其他点不在平面内吗?2你能使笔上的两个点在平面内,而其他点不在平面内吗?引导学生归纳出平面的公理1.设计意图:通过笔和课桌面直观感知原本难以想象的直线和平面的关系,有利于降低学习难度,调动学生的学习积极性,增强学习兴趣,体会到公理1的正确性.公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.师生共同探究:如何用图形语言表示?师生共同探究:数学符号更简洁,如何用符号语言表示?设计意图:点与面,直线与面之间用什么符号表示,让学生点燃思维的火花,最后体会线,面都是点的集合,所以可以借助集合语言表示.用PPT展示长方体ABCD-A'B'C'D'中点、线、面的位置关系,用集合符号表示,由学生总结.设计意图:进一步熟悉符号语言,也为以后符号语言的使用打下坚实的基础.最后回到公理1的三种表示,总结三种语言的特点和公理1的作用.公理1为我们提供了一种判断直线是否在平面内的方法,同时也为我们在纸面上画一条直线在平面内提供了理论依据.进一步分析,直线是向两边无限延伸的,无限延伸的直线放在平面上,说明平面也是向四周无限延展的.公理1用直线的“无限延伸性”来检查平面的“无限延展性”.师生共同体会公理1在生活中的简单应用.比如工人用直棒检查桌面是否平整,木匠将绳子拉紧,将两端置于桌旁,通过是否漏光来检查桌面是否平整.公理1用直线的“直”来检查平面的“平”.3、公理3数学实验3:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点B?为什么?引导学生归纳出平面的公理3.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.预设:可能学生在归纳公理3时会忽略“有且只有”,教师可通过提问:“两个不重合的平面,如果有一个公共点,因为平面是向四周无限延展的,那么一定有一条过该点的公共直线.它们还有除了这条交线以外的公共点吗?”帮助学生理解“有且只有”的内涵.师生共同探究:如何用图形语言和符号语言来表示?师生共同体会公理3的作用.例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系例2 空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,已知EH和FG相交于点P,求证:P点在直线BD上。
高中数学二 2.1.1 平面 导学案
第二章 点、直线、平面之间的位置关系【学习目标】(1)掌握平面的表示法及水平放置的直观图 (2)掌握平面的基本性质及作用; (3)培养学生的空间想象能力。
【学习重点、难点】学习重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.学习难点:平面基本性质的掌握与运用.【学法指导】自主探究,合作交流。
学习过程一、课前准备预习理解教材4043P P -的内容。
1。
如何理解“平面”?平面的主要特点有哪些?2.怎样画平面(图形语言)?怎样表示平面(符号语言)?3。
请叙述点与平面位置关系,并用符号来表示。
(2)αACBHG(3)FEADCBβα练习:判断下列各题的说法正确与否,在正确的说法的题号后打√,否则打×:1)、一个平面长4 米,宽2 米;( ) 2)、平面有边界;() 3)、一个平面的面积是25 cm 2;()4)、菱形的面积是4 cm 2;()5)、一个平面可以把空间分成两部分. ( )二、新课导学(一)思考、探究1.根据你的经验,要固定一根木棍在板面上只需钉_ ____个钉子!公理1:(文字语言)如果一条直线上的___ __点在一个平面内,则这条直线在此__ ___ 。
图形语言:符号语言:.2.根据经验,要摆稳一个架子,至少要_____个支点,请举例说明!公理2:(文字语言)过不在一条直线上的______点,___ ____一个平面。
图形语言:符号语言:。
推论1:经过,有且只有一个平面;推论2:经过,有且只有一个平面;推论3:经过,有且只有一个平面。
3。
将三角板的一角立在课桌上,三角板所在平面与桌面交于__ ___点?你认为其相交部分是什么? .公理3:(文字语言)如果两个不重合的平面有一个公共点,则它们有且只有一条过给该点的_ _。
图形语言:符号语言: .(二)合作交流【例1】用符号表示下列图形中的点、直线、平面之间的位置关系。
【例2】空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,已知EF 和GH 交于P 点,判断EF 、GH 、AC 三线是否共点,说明理由。
2019年最新-人教版高中数学必修二2.1.1_《平面》教学教案
作用: ①判断两个平面相交的依据.
②判断点在直线上.
l P
典型例题
例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.
a
B
A l
a
l
P
b
(1)
(2)
解:在(1)中,
l,a A ,a B .
在(2)中,
l , a , b , a l P , b l P .
l
A B
在生产、生活中,人们经过 长期观察与实践,总结出关于平 面的一些基本性质,我们把它作 为公理.这些公理是进一步推理 的基础.
A l ,B l ,A ,B l
作用: 判定直线是否在平面内.
图形、文字、符号
l
A
点A在直线l上.
Al
l
A
直线l在平面 外 .
l
l A
点A在直线l外.
D
A
C B
记作: 平面
平面ABCD 平面AC或平面BD
D
F
C
A
E
B
记作: 平面 平面
点与平面的位置关系
平面内有无数个点,平面可以看成点的集合.点在平面内和点在平面 外都可以用元素与集合的属于、不属于关系来表示.
B
A
点A在平面 内 ,
记作 A.
读作
点B在平面 外 , 记作 B .
读作
平面公理
B 提示:歌中唱出了哪些内容?你想 和小燕 子说什 么?
C 听歌曲《小燕子》分小组编创动作 。
D 随着复听歌曲的录音,分组表演。
三 结束部分:小结。结束全课。
课题:表演《春天》 课时:1——2
教学目标:1,通过演唱《小雨沙沙 》,引 导学生 细心地 观察事 物,启 迪学生 热爱大 自然。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《2.1.1平面》导学案
【学习目标】:
1. 会描述平面的基本特征,表示方法和基本画法;
2. 能正确地用数学语言表示点、直线、平面以及它们之间的关系. 【学习重、难点】
学习重点: 掌握平面的基本性质;
学习难点: 用数学语言表示点、直线、平面以及它们之间的关系. 【学法指导及要求】:
认真研读教材P
40---P
43
页,认真思考、独立规范作答,认真完成每一个问题,
每一道习题,不会的先绕过,做好记号.
【知识链接】
平面是构成空间几何体的基本要素.那么什么是平面呢?平面如何表示呢?平面又有哪些性质呢?
【学习过程】
※探索新知
探究一:平面的概念与表示
1、平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念)。
平面的基本特征是。
2、平面通常画成平行四边形,规定:①画平行四边形,锐角画成,横边长等于其邻边长的倍;②两个平面相交时,画出交线,被遮挡部分用画出来;③用希腊字母表示平面时,字母标注在锐角内.
图1 图2
3、平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐
角内(图3);(2)用平行四边形的四个字母表示,如平面ABCD (图4);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC (图4)
.
图3 图4 4、点与直线、平面的位置关系如下表:
问题1:直线l 与平面α有一个公共点P ,直线l 是否在平面α内?有两个公共点呢?
公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内.
用符号语言表示: 图形语言表示(图5):
图5
问题2:两点确定一直线,两点能确定一个平面吗?任意三点能确定一个平面吗?
公理2:经过不在同一直线上的三点,有且只有一个平面. 如图(图6).
问题3:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B ?为什么
?
公理3:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.
用符号语言表示为: 图形语言表示(图7):
【典型例题】
例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.
图
6
图7
图8
例2、画图表示下列由集合符号给出的关系:
(1)A∈α,B∉α,A∈l,B∈l;
(2)a⊂α,b⊂β,a∥c,b∩c=P,α∩β=c.
例3、如图9,已知α∩β=EF,A∈α,C、B∈β,BC与EF相交,
在图中分别画出平面ABC与α、β的交线.
图9
【归纳小结】:
图形语言与符号语言的转换是本节的重点,主要有两种题型:
(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.
(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.
【当堂检测】
1. 下面说法正确的是().
①平面ABCD的面积为2
10cm②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④平面不一定用平行四边形表示.
A.①
B.②
C.③
D.④
2. 下列结论正确的是().
①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一个平面③经过两条平行直线,可以确定一个平面④经过空间任意三点可以确定一个平面
A.1个
B.2个
C.3个
D.4个
3.
).
A.在直线DB上
B.在直线AB上
C.在直线CB上
D.都不对
4. 直线
12
,l l相交于点P,并且分别与平面 相交于点,A B两点,用符号表示为____________________.
5. 两个平面不重合,在一个面内取4点,另一个面内取3点,这些点最多能够确定平面_______个.
【学习反思】
【课后练习】
1. 画出满足下列条件的图形:
⑴三个平面:一个水平,一个竖直,一个倾斜; ⑵ ,,,l AB CD αβαβ=⊂⊂AB ∥l ,CD ∥l .
2、已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点, 求证:P 、Q 、R 三点共线.。