福大结构力学课后习题详细答案(祁皑).. - 副本知识分享
结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
题3-1图3-2 试不计算反力而绘出梁的M 图。
题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
题4-1图4-2 作图示刚架的M 图。
(b)(a)20kN40kN20kN/m40kN(b)5kN/m40kN(a)(c)(b)(a)题4-2图4-3 作图示三铰刚架的M 图。
题4-3图4-4 作图示刚架的M 图。
题4-4图4-5 已知结构的M 图,试绘出荷载。
P(e)(d)(a)(b)(c)/4kN(b)(a)(a)(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
题4-6图习题55-1 图示抛物线三铰拱轴线方程,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程,求截面K 的弯矩。
题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(e)(g)(h)P(d)(c)(a)(b)(f)x x l l fy )(42-=x x l lfy )(42-=C题6-1图6-2 用结点法计算图示桁架中各杆内力。
题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(b)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
结构力学_福州大学中国大学mooc课后章节答案期末考试题库2023年

结构力学_福州大学中国大学mooc课后章节答案期末考试题库2023年1.用矩阵位移法求解图示刚架时,其结构的综合结点荷载列阵为:{F}={40.5kN·m 31.5kN·m 72kN }T。
()【图片】答案:正确2.该体系为几何()体系,有()个多余约束,缺()必要约束。
备注:第1个空格填“不变、瞬变、可变”字样,第2个、第3个空格填数字。
三个答案之间用“,”号分隔,每空2分。
【图片】答案:不变,0,03.图示连续梁,用力矩分配法求得杆端弯矩MBC= -M/2。
()【图片】答案:错误4.用力矩分配法计算图示结构时,BC杆的分配系数是:();【图片】答案:16/25,5.在力矩分配法的计算中,当放松某个结点时,其余结点所处状态为:()答案:相邻结点锁紧6.在力矩分配法中反复进行力矩分配及传递,结点不平衡力矩愈来愈小,主要是因为分配系数及传递系数< 1。
()答案:正确7.用力矩分配法计算结构时,汇交于每一结点各杆端力矩分配系数总和为1,则表明力矩分配系数的计算绝对无错误。
()答案:错误8.结构体系的计算自由度。
答案:一定小于等于实际自由度。
9.瞬变体系不能做为常规工程结构的原因是。
答案:约束的位置不对;10.图示结构中B结点的不平衡力矩(约束力矩)为:()【图片】答案:-1kNm11.图示结构中,当结点B作用外力偶M时,用力矩分配法计算得MBA等于:()【图片】答案:2M/512.真实的结构是。
答案:可能是没有多余约束的几何不变体系,或者是有多余约束的几何不变体系。
13.图示连续梁用力矩分配法求得AB杆B端的弯矩是:()【图片】答案:6kNm14.二元体的含义是。
答案:从一个单铰出发的两个不共线的刚片,只在远端与其它体系相连。
15.该体系为几何()体系,有()个多余约束,缺()必要约束。
备注:第1个空格填“不变、瞬变、可变”字样,第2个、第3个空格填数字。
三个答案之间用“,”号分隔,每空2分。
结构力学第五版课后习题答案

结构力学第五版课后习题答案结构力学第五版课后习题答案结构力学是工程学中的一门重要学科,它研究物体在受力作用下的变形和破坏行为。
对于学习结构力学的学生来说,课后习题是巩固知识和提高能力的重要途径。
本文将为大家提供结构力学第五版课后习题的答案,希望能对大家的学习有所帮助。
第一章:引言第一章主要介绍了结构力学的基本概念和基本原理。
习题一般涉及力的分解、合成、平衡条件等内容。
以下是一道典型的习题及其答案:习题1.1:一个物体受到一个力F,该力可分解为两个力F1和F2,方向如图所示。
已知F1=3N,F2=4N,求F的大小和方向。
解答:根据力的平衡条件,可以得到F1+F2=F。
代入已知数据,得到3N+4N=F,即F=7N。
根据力的合成,可以得到F的方向与F1和F2的方向相反,即向左。
第二章:静力学基本原理第二章主要介绍了静力学的基本原理,包括力的作用点、力的大小、力的方向等。
习题一般涉及受力分析、力矩计算等内容。
以下是一道典型的习题及其答案:习题2.1:一个杆AB长2m,质量为10kg。
在杆的中点C处施加一个力P=20N,方向向上。
求杆的重力作用点与杆的中点C之间的距离。
解答:首先计算杆的重力,即重力=质量×重力加速度=10kg×9.8m/s²=98N。
由于杆是均匀杆,所以重力作用点在杆的中点C处。
因此,重力作用点与杆的中点C之间的距离为0。
第三章:平面结构的受力分析第三章主要介绍了平面结构的受力分析方法,包括平衡方程、约束条件等。
习题一般涉及平面结构的受力分析和计算等内容。
以下是一道典型的习题及其答案:习题3.1:一个桥梁由两个杆组成,杆AB和杆BC的长度分别为3m和4m。
桥梁的两端A和C分别受到一个力Fa和Fc,方向如图所示。
已知Fa=10N,Fc=15N,求桥梁的重力。
解答:根据平衡方程,可以得到力的合成关系:Fa+Fc=重力。
代入已知数据,得到10N+15N=重力,即重力=25N。
结构力学章节习题及参考答案

第1章绪论(无习题)第2章平面体系的机动分析习题解答习题2.1是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W=0,则该体系一定为无多余约束的几何不变体系。
( )(3) 若平面体系的计算自由度W<0,则该体系为有多余约束的几何不变体系。
( )(4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )习题2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)习题2.1(6)图习题2.2填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
习题2.2(6)图(7) 习题2.2(7)图所示体系为_________体系,有_________个多余约束。
习题2.2(7)图习题2.3对习题2.3图所示各体系进行几何组成分析。
(a)(b)(c)(d)(e)(f)(h)(g)(i)(j)(k)(l)习题2.3图第3章 静定梁与静定刚架习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
结构力学章节习题及参考答案

习题7.2填空题
(1)习题5.2(1)图(a)所示超静定梁的支座A发生转角,若选图(b)所示力法基本结构,则力法方程为_____________,代表的位移条件是______________,其中1c=_________;若选图(c)所示力法基本结构时,力法方程为____________,代表的位移条件是______________,其中1c=_________。
(a)
习题3.7改正习题3.7图所示刚架的弯矩图中的错误部分。
(a)(b)(c)
(d)(e)(f)
习题3.7图
习题3.8作习题3.8图所示刚架的内力图。
(a)
(b)
习题3.8图
第4章 静定拱习题解答
习题4.1是非判断题
(1) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。( )
(2) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。 ( )
习题3.2(2)图
习题3.3作习题3.3图所示单跨静定梁的M图和 图。
(a) (b)
(c) (d)
(e) (f)
习题3.3图
习题3.4作习题3.4图所示单跨静定梁的内力图。
(c)
习题3.4图
习题3.5作习题3.5图所示斜梁的内力图。
习题3.5图
习题3.6作习题3.6图所示多跨梁的内力图。
(a)
习题3.6图
(4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。( )
(5) 习题2.1(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。( )
习题 2.1(5)图
结构力学课后习题答案

结构力学课后习题答案附录B 部分习题答案2 平面体系的几何组成分析2-1 (1)×(2)×(3)√(4)×(5)×(6)×。
2-2 (1)无多余约束几何不变体系;(2)无多余约束几何不变体系;(3)6个;(4)9个;(5)几何不变体系,0个;(6)几何不变体系,2个。
2-3 几何不变,有1个多余约束。
2-4 几何不变,无多余约束。
2-5 几何可变。
2-6 几何瞬变。
2-7 几何可变。
2-8 几何不变,无多余约束。
2-9几何瞬变。
2-10几何不变,无多余约束。
2-11几何不变,有2个多余约束。
2-12几何不变,无多余约束。
2-13几何不变,无多余约束。
2-14几何不变,无多余约束。
5-15几何不变,无多余约束。
2-16几何不变,无多余约束。
2-17几何不变,有1个多余约束。
2-18几何不变,无多余约束。
2-19几何瞬变。
2-20几何不变,无多余约束。
2-21几何不变,无多余约束。
2-22几何不变,有2个多余约束。
2-23几何不变,有12个多余约束。
2-24几何不变,有2个多余约束。
2-25几何不变,无多余约束。
2-26几何瞬变。
3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6)√;(7) √;(8) √。
3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下;(5) 16,右,128,右;(6) 27,下,93,左。
3-3 (a) 298ACM ql =-,Q 32ACF ql =; (b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B =-4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。
结构力学课后答案

结构力学课后答案结构力学课后答案1. 什么是结构力学?结构力学是研究物体在受外力作用下的变形和内应力分布规律的科学。
它主要研究的是原材料的性能、结构设计、施工工艺和建筑物的使用性能等方面。
2. 弹性力学和塑性力学有什么区别?弹性力学研究材料在受外力作用下,瞬间产生变形后,能够自行恢复原来形状的物理学问题。
而塑性力学研究材料在受到一定外力作用后,发生不可逆性变形的物理学问题。
弹性力学研究的是物体在弹性阶段的力学性质,而塑性力学研究的是物体在塑性阶段的力学性质。
3. 如何计算材料的应力和应变?材料的应力指的是材料内部产生的单位面积力的大小,计算公式为:σ=F/A。
材料的应变指的是单位长度内形变的大小,计算公式为:ε=ΔL/L。
其中,F代表受力大小,A代表受力面积,ΔL代表细长物体受力后形变的长度差,L代表细长物体的长度。
4. 什么是杨氏模量?杨氏模量是一个物质固有的长度变形与应力之间的比例关系常数,用E表示。
它是一个物质的刚度的度量。
在弹性固体中,杨氏模量是单位应力作用下单位截面积的长度变形量。
5. 为什么要进行结构分析?结构分析是在结构设计过程中必不可少的一步。
它可以通过对结构内部的应力和应变分析,对结构的设计和材料选择提出建议,从而保证结构的稳定性和安全性。
6. 结构分析中常见的分析方法有哪些?一般结构分析主要使用的方法有两种,分别为力学方法和数学方法。
力学方法包括静力学法、弹性力学法和塑性力学法。
而数学方法则包括有限元法、边界元法、有限差分法等。
7. 什么是静力学?静力学研究平衡物体受力的力学性质,即物体处于不运动或匀速直线运动的状态下所受受力、受力的大小和方向等静态问题。
8. 弹性力学和塑性力学的应用场景分别有哪些?弹性力学适用于钢筋混凝土、预应力混凝土、木材、铝合金等材料结构的设计和分析。
塑性力学适用于塑性极限模式、极限分析、变形性能研究等。
9. 什么是冷弯成形工艺?冷弯成形是利用钢材的塑性,在常温下通过模具施加力量使其发生塑性变形的工艺。
结构力学第五版课后习题答案

结构力学第五版课后习题答案
《结构力学第五版课后习题答案》
结构力学是工程学中的重要学科,它研究物体在外力作用下的变形和破坏规律。
《结构力学第五版》是一本经典的教材,它包含了大量的课后习题,帮助学生巩固所学知识。
在这篇文章中,我们将通过分析课后习题答案的方式,探讨结构力学的重要性和应用。
首先,结构力学的基本原理是力学的基础。
在工程领域,无论是建筑、桥梁还是机械设备,都需要结构力学的理论支持。
通过学习结构力学,我们可以了解物体在外力作用下的受力情况,从而设计出更加稳固和安全的结构。
课后习题答案是学生巩固知识的重要工具,通过分析答案,学生可以更好地理解和应用结构力学的理论。
其次,结构力学的应用范围非常广泛。
从建筑设计到航空航天,都需要结构力学的理论支持。
通过学习《结构力学第五版》的课后习题答案,学生可以更好地掌握结构力学的基本原理,为未来的工程实践做好准备。
课后习题答案不仅是对知识的巩固,更是对知识的应用和拓展。
最后,结构力学的研究对于工程领域的发展至关重要。
随着科技的不断进步,人们对于结构力学的要求也越来越高。
通过学习《结构力学第五版》的课后习题答案,学生可以更好地掌握结构力学的理论和实践,为未来的工程发展做出贡献。
总之,《结构力学第五版课后习题答案》是一本重要的教材,通过学习和分析其中的答案,可以更好地理解和应用结构力学的理论。
希望广大学生能够认真学习这本教材,掌握结构力学的基本原理,为未来的工程实践做好准备。
同时,
也希望工程领域的专业人士能够不断深化对结构力学的研究,为社会的发展做出更大的贡献。
结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
(b)(a)20kN10kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。
(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。
P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。
(b)(a)题4-3图4-4 作图示刚架的M 图。
(a)题4-4图4-5 已知结构的M 图,试绘出荷载。
(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l l fy )(42-=,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。
C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。
(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(a)P题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
结构力学课后习题答案

习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。
(a) (b) (c)1个角位移 3个角位移,1个线位移 4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移 2个线位移3个角位移,2个线位移(g) (h) (i)一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么为何将这些基本未知位移称为关键位移是否可以将静定部分的结点位移也选作位移法未知量7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。
7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化如何变化7-5 试用位移法计算图示结构,并绘出其内力图。
(a)lBl l解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。
Z 1M 图(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m 4m4mC解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程 1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KN mM ⋅图(c)6m6m9m解:(1)确定基本未知量 一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程 1114,243p pr EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图94M 图(d)解:(1)确定基本未知量 一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a2aa2aaF F P图1pR pp M(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程 11126/,55p pr EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l解:(1)确定基本未知量 两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M pF(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程11122122121,4414,0p p p EA r r r l l EA r l R F R ⎛⎫=+== ⎪⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。
结构力学课后习题答案 (2)

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
题3-1图3-2 试不计算反力而绘出梁的M 图。
题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
题4-1图4-2 作图示刚架的M 图。
(b)(a)20kN40kN20kN/m40kN(b)5kN/m40kN(a)(c)(b)(a)//题4-2图4-3 作图示三铰刚架的M 图。
题4-3图4-4 作图示刚架的M 图。
题4-4图4-5 已知结构的M 图,试绘出荷载。
P(e)(d)(a)(b)(c)/4kN(b)(a)(a)(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
题4-6图习题55-1 图示抛物线三铰拱轴线方程,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程,求截面K 的弯矩。
题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(e)(g)(h)P(d)(c)(a)(b)(f)x x l lfy )(42-=x x l lfy )(42-=C题6-1图6-2 用结点法计算图示桁架中各杆内力。
题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(b)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。