九年级数学上册第二章一元二次方程2.2用配方法求解一元二次方程第2课时用配方法解复杂的一元二次方程
北师版九年级数学上册课件 第二章 一元二次方程 第2课时 用配方法解二次项系数不为1的一元二次方程
12.(十堰中考)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a -b)2.若(m+2)◎(m-3)=24,则m=_-__3_或__4.
13.已知等腰△ABC的两边分别为a,b,且a,b满足a2+b2-6a-14b+ 58=0,则△ABC的周长等于_1_7__.
14.(10 分)用配方法解方程:
1 x·x
+4=6,当
x=1x
,即
x=1 时,y 的最小
(1)尝试:当 x>0 时,求 y=x2+xx+1 的最小值. (2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家 庭的交通工具.假设某种小轿车的购车费用为 10 万元,每年应缴保险费等 各类费用共计 0.4 万元,n 年的保养、维护费用总和为n21+0 n 万元.问这种 小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费 用=所有年费数用n之和 )?最少年平均费用为多少万元?
(1)经过多长时间小球飞出的高度为15 m? (2)经过多长时间小球又落回地面上? 解:(1)当h=20t-5t2=15时,解得t1=1,t2=3.∴经过1 s或3 s小球飞出的 高度为15 m (2)当小球又落回地面上时,h=20t-5t2=0,解得t1=0,t2=4.∴经过t2-t1 =4(s)小球又落回地面上
解:x1=5-8 57 ,x2=5+8 57
5.(3分)(郑州外国语月考)对于任意实数x,多项式x2-5x+8的值是一个 (B )
A.非负数 B.正数 C.负数 D.无法确定
6.(3分)(开封月考)已知y1=5x2+7x+1,y2=x2-9x-15,则当x=___-_时2,
y1=y2. 7.(3分)已知x2+y2+z2-2x+4y-6z+14=0,则x-y+z=____6__.
2.2 用配方法求解一元二次方程 第2课时九年级上册数学北师大版
将下列各式填上适当的项,配成完全平方式(口头回答).
1. x2+2x+_____=
1
(x+_____
1 )2
2
4
2. x2–4x+_____=
(x–______)
2
2
3. x2 +____+36
= (x+______)
6
12x
4. x2 + 10x +_____=
25
(x + ) = .
3
9
4
5
1
所以x + =± ,所以x1 = , x2=﹣3.
3
3
3
移项,得x2
,
一个小球从地面以15 m/s的初速度竖直向上弹出,它在空中的
高度h (m)与时间t(s)满足关系:h =15t – 5t2 , 小球何时能达到
10 m 的高度?
解:根据题意得
15t –
5t2 =
得 (t -
2x2+8x+6=0
x2+4x+3=0.
3x2+6x–9=0
x2+2x–3=0.
– 5x2 +20x+25=0
x2–4x–5=0.
例1 解方程 3x2+8x–3=0.
解:方程两边都除以3,得x2
8
+
3
x–1=0 ,
8
+ x=1,
3
8
4 2
4 2
2
配方,得 x + x+( ) =1 +( )
3
3
九年级数学上册 第二章 一元二次方程 2 用配方法求解一元二次方程 解一元二次方程课标解读素材 (新
解一元二次方程课标解读一、课标要求包括配方法、公式法、因式分解法解一元二次方程.?义务教育数学课程标准〔 2022年版〕?对解一元二次方程一节相关内容提出的要求如下。
1.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.2.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.3.了解一元二次方程的根与系数的关系.二、课标解读1.学生已经学习一元一次方程的解法和实际应用,知道可以利用运算律、等式的根本性质,通过去括号、移项、合并同类项等求出它的解.学生还学过二元一次方程组以及三元一次方程组的解法和实际应用,知道可以通过消元,将它们转化为一元一次方程.从数学知识的内部开展看,二元、三元一次方程组可以看成是对一元一次方程在“元〞上的推广.自然地,如果在次数上做推广,首先就是一元二次方程.类比二〔三〕元一次方程组的解法,可以想到:能否将一元二次方程转化为一元一次方程?如何转化?因此,利用什么方法将“二次〞降为“一次〞,这是本章学习的另一条主线.与一元一次方程、二元一次方程组的解法相比,一元二次方程的解法涉及更多的知识,可以根据方程的具体特点,选择相关的知识和方法,对方程进行求解.这是培养学生的思维品质,特别是思维的敏捷性、灵活性、深刻性的时机.根据?课程标准〔 2022年版〕?的规定,教科书着重介绍了配方法、公式法和因式分解法等一元二次方程的解法,而且限定解数字系数的一元二次方程.2.解一元二次方程的根本策略是降次,即通过配方、因式分解等,将一个一元二次方程转化为两个一元一次方程来解.具体地,根据平方根的意义,可得出方程和的解法;通过配方,可将一元二次方程转化为的形式再解;一元二次方程的求根公式,就是对方程配方后得出的.如能将分解为两个一次因式的乘积,那么可令每个因式为0来解.一元二次方程的三种解法——配方法、公式法和因式分解法各有特点.一般地,配方法是推导一元二次方程求根公式的工具.掌握了公式法,就可以直接用公式求一元二次方程的根了.当然,也要根据方程的具体特点,选择适当的解法,因式分解法就显示了这样的灵活性.配方法是一种重要的、应用广泛的数学方法,如后面研究二次函数时也要用到它.在推导求根公式的过程中,从到再到,是方程形式的不断推广,表达了从特殊到一般的过程;而求解方程的过程那么是将推广所得的方程转化为已经会解的方程,表达了化归思想.显然,这个过程对于培养学生的推理能力、运算能力等都是很有作用的.3.与?课程标准〔实验稿〕?相比,?课程标准〔 2022年版〕?重新强调了一元二次方程根的判别式和一元二次方程根与系数关系的重要性,要求“会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等〞,“了解一元二次方程的根与系数的关系〞,这是需要注意的一个变化.这里不仅是为了一元二次方程理论的完整性,更重要的是为了解决初高中衔接问题.实际上,一元二次方程根的判别式、一元二次方程根与系数关系在高中数学中有着广泛的应用,是学习高中数学的必备根底.教科书先以一个设计人体雕像的实际问题作为开篇,并在第一节中又给出两个实际问题,通过建立方程,并引导学生思考这些方程的共同特点,从而归纳得出一元二次方程的概念、一般形式,给出一元二次方程根的概念.在这个过程中,通过归纳具体方程的共同特点,定义一元二次方程的概念,表达了研究代数学问题的一般方法;一般形式也是对具体方程从“元〞〔未知数的个数〕、“次数〞和“项数〞等角度进行归纳的结果;a ≠0的规定是由“二次〞所要求的,这实际上也是从不同侧面理解一元二次方程概念的契机.一元二次方程的解法,包括配方法、公式法和因式分解法等,是全章的重点内容之一.教科书在第二节中,首先通过实际问题,建立了一个最简单的一元二次方程,并利用平方根的意义,通过直接开平方法得到方程的解;然后将它一般化为,通过分类讨论得到其解的情况,从而完成解一元二次方程的奠基.接着,教科书安排“探究〞栏目,自然引出解并总结出“降次〞的策略,从而为用配方法解比拟复杂的一元二次方程做好铺垫,然后教科书重点讲解了配方的步骤,并归纳出通过配方将一元二次方程转化为后的解的情况.以配方法为根底,教科书安排了“探究〞栏目,引导学生自主地用配方法解一般形式的一元二次方程(a≠0),得到求根公式.最后,通过实际问题,获得一个显然可以用“提取公因式法〞而到达“降次〞目的的方程,从而引出因式分解法解一元二次方程,并在“归纳〞栏目中总结出几种解法的根本思路、各自特点和适用范围等.上述过程的思路自然,表达了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,并通过将一般性问题化归为特殊问题,获得这一类问题的解.这是具有普适性的数学思想方法.由于限定在实数范围,因此对求根公式,首先要关注判别式的讨论.这是使学生领悟分类讨论数学思想方法的契机.另一方面,求根公式不仅直接反映了方程的根由系数唯一确定〔系数a,b,c确定,方程就确定,其根自然就唯一确定〕,而且也反映了根与系数的联系.这里表达了一种多角度看问题的思想观点,而根与系数的联系表达非常简洁.教科书仍然采用从特殊到一般的方法,先讨论“将方程化为的形式,,与p,q之间的关系〞,在“+,〞的启发下,利用求根公式求和,进而得到根与系数的关系.让学生学习根与系数的关系,不仅能深化对一元二次方程的理解,提高用一元二次方程分析和解决问题的能力,而且也是培养学生发现和提出问题的能力的时机.根与系数的关系是求根公式的自然延伸,得出它的过程并不复杂,而其中蕴含的思想很重要.所以,对于根与系数的关系,教科书着重在其数学思想的启发和引导上,而对用根与系数的关系去解决问题,严格地控制了难度.。
初中数学九年级上册第二章 一元二次方程用配方法求解一元二次方程
第二章一元二次方程2.用配方法求解一元二次方程(二)一、学生知识状况分析学生的知识技能基础:初二上学期,学生已经学习过开平方根的定义以及完全平方公式,在上节课学生初步学习了配方法解二次项系数为1的一元二次方程,这些为本节课学习解二次项系数不为1的方程打下较好的基础。
学生活动经验基础:上一课时,学生已经经历了二次项系数为1的方程的解的过程,已经体会到其中转化的思想方法,这些都成为完成本课任务的活动经验基础。
二、教学任务分析在课程安排上这节课的具体学习任务:用配方法解二次项系数不为1的一元二次方程以及利用一元二次方程解决实际问题。
这节课内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,为此,本节课的教学目标是:①经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能;②经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想;③能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力.三、教学过程分析本节课设计了七个教学环节:第一环节:复习回顾;第二环节:探究析疑;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小测;第六环节:课堂小结;第七环节:布置作业。
第一环节:复习回顾活动内容:1、将下列各式填上适当的项,配成完全平方式(口头回答).(1).x2+2x+________=(x+______)2(2).x2-4x+________=(x-______)2(3).x2+5x+________ =(x+______)2活动目的:回顾配方法解二次项系数为1的一元二次方程的基本步骤。
为本节课研究二次项系数不为1的二次方程的解法打下基础。
实际效果:学生对口答题的积极抢答,调动了各自的思维,进入了积极学习的状态;教学中为了便于学生回顾,可以通过举例的形式,帮助学生回顾并整理步骤,例如,x2-6x-40=0 移项,得 x2-6x= 40方程两边都加上32(一次项系数一半的平方),得x2-6x+32=40+32即(x-3)2=49开平方,得 x-3 =±7即 x-3=7或x-3=-7所以 x1=10,x2=-4学生一般都能整理出配方法解方程的基本步骤:移项,配方,开平方,求解及注意事项。
2 第2课时 用配方法求解二次项系数不为1的一元二次方程
当x取何值时,2x2+4x-5的值最小?试求出这个最小值.
第2课时 用配方法求解二次项系数不为1的一元二次方程
第2课时 用配方法求解二次项系数不为1的一元二次方程
第2课时 用配方法求解二次项系数不为1的一元二次方程
变式:试用配方法说明:不论k取何实数,多项式k2-4k+5 的 值必定大于零.
第2课时 用配方法求解二次项系数不为1的一元二次方程
例题讲解
例1 解方程 3x2 + 8x -3 = 0.
解:两边同除以3,得 x2 + 8 x - 1=0 3
方程两边都加上一次项系数一半的平方
8 x2 +
x+(
4 )2-1=(
4
)2
3
3
3
即(x + 4 )2 =25 39
两边开方,得
(x + 4 ) = ± 5
3
3
即 x+ 4
=
5
或
x+
4 =
5
33
33
1
x1=
, 3
x2 =
-3
第2课时 用配方法求解二次项系数不为1的一元二次方程 归纳解一元二次方程的步骤
第2课时 用配方法求解二次项系数不为1的一元二次方程
二、一元二次方程的应用
例2 一小球以15m/s的初速度竖直向上弹出,它在空中的高
度h(m)与时间t(s)满足关系:h=15t-5t2,小球何时能达到10m的
移项,得
x2-6x= 40
方程两边都加上32(一次项系数一半的平方),得
x2-6x+32=40+32
即
(x-3)2=49>0
九年级数学上册第二章一元二次方程2用配方法求解一元二次方程第2课时二次项数不为1的一元二次方程的配方
归类探究
类型之一 用配方法解一元二次方程 用配方法解方程:2x2+1=3x.
解:移项,得 2x2-3x=-1, 二次项系数化为 1,得 x2-32x=-21, 配方,得 x2-23x+-342=-12+-342,
即x-342=116,则 x-34=±14, ∴x1=1,x2=12.
【点悟】 配方是代数中一种非常常见的变形方法,对于一个二次项系数不 为 1 的二次三项式配方,一般先把二次项系数化为 1,然后在一次项后面加上一 次项系数一半的平方,这样就可以配成一个完全平方式了.
分层作业
1.用配方法解方程 3x2-6x+1=0,则方程可变形为( C ) A.(x-3)2=-13 B.3(x-1)2=13
C.(x-1)2=23
D.(3x-1)2=1
2.把方程21x2-3x-5=0 化成(x+m)2=n 的形式正确的是( C )
A.x+322=19 B.x+322=149
C.(x-3)2=19 D.(x-3)2=129
3.已知代数式 3x2-9x,当 x=_1_或__2__时,其值为-6;当 x=_4_或___-__1_时,
其值为 12.
4.若一个矩形的周长为 34 cm,面积是 70 cm2,要求它的边长,则可设一 边长为 x cm,则它的邻边长为_(1_7_-___x)_cm,可列出方程为x_(_1_7_-__x_)_=__7_0_,它的 两条邻边的边长分别为__7_c_m__,__1_0_c_m____.
(1)求代数式 m2+m+1 的最小值; (2)求代数式 4-x2+2x 的最大值.
解:(1)m2+m+1=m2+m+14+34=m+122+34≥34,∴m2+m+1 的最小值是34. (2)4-x2+2x=-x2+2x-1+5=-(x-1)2+5≤5, ∴4-x2+2x 的最大值是 5.
2.2 用配方法求解一元二次方程(2课时)
2用配方法求解一元二次方程第1课时用配方法解x2+px+q=0型方程一、基本目标1.理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.2.理解配方法,会用配方法求解二次项系数为1的一元二次方程.3.通过根据平方根的意义解形如x2=n(n≥0)的方程,迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.二、重难点目标【教学重点】利用配方法解一元二次方程.【教学难点】把一元二次方程通过配方转化为(x+m)2=n(n≥0)的形式.环节1自学提纲、生成问题【5 min阅读】阅读教材P36~P37的内容,完成下面练习.【3 min反馈】1.解一元二次方程的思路是将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边同时开平方,转化为一元一次方程,便可得到方程的根是x1x22.通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.3.用配方法求解二次项系数为1的一元二次方程的步骤:(1)移——移项,使方程左边为二次项和一次项,右边为常数项;(2)配——配方,方程两边都加上一次项系数一半的平方,使原方程变为(x+m)2=n的形式;(3)开——如果方程的右边是非负数,即n≥0,就可左右两边开平方得(4)解——方程的解为x环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】用直接开平方法解下列方程:(1)x2=5;(2)(x+6)2+72=102.【互动探索】(引发学生思考)直接开平方法解一元二次方程的一般步骤是什么?【解答】(1)方程两边同时开平方,得x1=5,x2=- 5.(2)移项,得(x+6)2=102-72,即(x+6)2=51.方程两边同时开平方,得x+6=±51.所以x1=-6+51,x2=-6-51.【互动总结】(学生总结,老师点评)利用直接开平方求解一元二次方程时,不要漏掉方程的负根.对于此种方程最好直接开平方进行计算,不要去掉括号进行整理后,再进行计算.【例2】用配方法解下列方程:(1)x2+2x+1=5;(2)x2-8x-2=7.【互动探索】(引发学生思考)用配方法解一元二次方程的一般步骤是什么?【解答】(1)配方,得(x+1)2=5.方程两边同时开平方,得x+1=±5.所以x1=-1+5,x2=-1- 5.(2)移项,得x2-8x=9.两边都加上(-4)2(一次项系数一半的平方),得x2-8x+(-4)2=9+(-4)2,即(x-4)2=25.两边开平方,得x-4=±5,即x-4=5或x-4=-5.所以x1=9,x2=-1.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边开平方便可求出它的根.活动2巩固练习(学生独学)1.用配方法解方程x2-2x-1=0时,配方后得到的方程为(D)A.(x+1)2=0 B.(x-1)2=0C.(x+1)2=2 D.(x-1)2=22.用直接开平方法解下列方程:(1)4x2=81;(2)36x2-1=0;(3)(x+5)2=25.解:(1)x 1=92,x 2=-92. (2)x 1=16,x 2=-16. (3)x 1=0,x 2=-10. 3.用配方法解下列关于x 的方程:(1)x 2+2x -35=0; (2)x 2-8x +7=0.解:(1)x 1=5,x 2=-7. (2)x 1=1,x 2=7.活动3 拓展延伸(学生对学)【例3】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z 的值.【互动探索】求解本题的关键是确定出x 、y 、z 的值.已知等式,需对其进行适当的变形才能确定出x 、y 、z 的值.【解答】由已知方程,得x 2-4x +4+y 2+6y +9+z +2=0,即(x -2)2+(y +3)2+z +2=0,∴x =2,y =-3,z =-2.∴(xy )z =[2×(-3)]-2=136. 【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0. 环节3 课堂小结,当堂达标(学生总结,老师点评)用配方法求解二次项系数为1的一元二次方程的步骤:移项→配方→开方→解请完成本课时对应训练!第2课时 用配方法解ax 2+bx +c =0(a ≠0)型方程一、基本目标1.进一步理解配方法,会用配方法求解二次项系数不为1的一元二次方程.2.通过将ax 2+bx +c =0(a ≠0)型方程转化为形如(x +m )2=n (n ≥0)的方程的过程,掌握配方的方法.3.通过用配方法求解一般型一元二次方程,进一步体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】用配方法求解二次项系数不为1的一元二次方程.【教学难点】会用转化的数学思想解决有关问题.环节1 自学提纲、生成问题【5 min 阅读】阅读教材P38的内容,完成下面练习.【3 min 反馈】用配方法求解二次项系数不为1的一元二次方程的步骤:(1)化——化二次项系数为1;(2)配——配方,使原方程变为(x +m )2-n =0的形式;(3)移——移项,使方程变为(x +m )2=n 的形式;(4)开——如果n ≥0,就可左右两边开平方得(5)解——方程的解为x 环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解方程:2x 2+5x +3=0.【互动探索】(引发学生思考)类比用配方法解二次项系数为1的一元二次方程的解法解决本题.【解答】两边同除以2,得x 2+52x +32=0.配方,得x 2+52x +⎝⎛⎭⎫542-⎝⎛⎭⎫542+32=0,即⎝⎛⎭⎫x +542-116=0.移项,得⎝⎛⎭⎫x +542=116.两边开平方,得x +54=±14,即x +54=14或x +54=-14.所以x 1=-1,x 2=-32. 【互动总结】(学生总结,老师点评)利用配方法求解形如ax 2+bx +c =0(a ≠0)形式的方程的关键是利用转化的方法将其转化为二次项系数为1的一元二次方程,从而把问题转化为用配方法求形如x 2+px +q =0形式的一元二次方程.活动2 巩固练习(学生独学)1.某学生解方程3x 2-x -2=0的步骤如下:解:3x 2-x -2=0,→x 2-13x -23=0,→x 2-13x =23①,→⎝⎛⎭⎫x -232=23+49②,→x -23=±103③,→x 1=2+103,x 2=2-103④,上述解题过程中,最先发生错误的是( B )A .第①步B .第②步C .第③步D .第④步2.解下列方程: (1)3x 2+6x -5=0; (2)2x 2-4x +1=0;(3)2x 2-4x =6; (4)9y (y -2)=4.解:(1)x 1=263-1,x 2=-263-1. (2)x 1=1+22,x 2=1-22. (3)x 1=3,x 2=-1. (4)y 1=1+133,y 2=1-133. 活动3 拓展延伸(学生对学)【例2】先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+3x -1=0的根. 【互动探索】解决此类问题的一般规律是先化简,再确定m 的值,最后解决问题.本题中m 的值能否直接求出?【解答】原式=m -33m (m -2)÷m 2-9m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3)= 13(m 2+3m ). ∵m 是方程x 2+3x -1=0的根,∴m 2+3m -1=0,即m 2+3m =1.∴原式=13(m 2+3m )=13. 【互动总结】(学生总结,老师点评)要求m -33m 2-6m ÷⎝ ⎛⎭⎪⎫m +2-5m -2的值,首先要对它进行化简,然后从已知条件入手,将m 的关系式直接代入即可求解.环节3 课堂小结,当堂达标(学生总结,老师点评)用配方法求解二次项系数不为1的一元二次方程的步骤: 化→移项→配方→开方→解请完成本课时对应训练!。
2019秋九年级数学上册 第2章 一元二次方程 2.2 用配方法求解一元二次方程课件 (新版)北师大版
答案
D
3x2-4x-2=0,x2-
4 3
x=
2 3,x2-4 3来自x+2 3
2
=
2 3
+
2 3
2
,
x
2 3
2
=10
9
,故选
D.
3.把方程x2+4x+1=0配方成(x+p)2+q=0的形式后,p2+q2的值是 ( ) A.41 B.14 C.13 D.7
答案 C ∵x2+4x+1=0可以配方成(x+2)2-3=0的形式,∴p=2,q=-3.∴p2+ q2=22+(-3)2=13.
题型三 应用配方法结合非负数的性质求代数式的值 例3 若x2-4x+y2+6y+ z 2 +13=0,求(xy)z的值.
分析 原式有三个未知数,只能寻找特殊方法求解.注意到含有x的两项与 含有y的两项可分别配成完全平方式,故可从这里找到突破口. 解析 将x2-4x+y2+6y+ z 2+13=0化为(x2-4x+4)+(y2+6y+9)+ z 2=0,即 (x-2)2+(y+3)2+ z 2=0.根据非负数的性质知x=2,y=-3,z=2,∴(xy)z=[2×(-3)]2=36. 点拨 这里将13拆成4与9的和,分别与其他项配成了完全平方式,从而 可以利用非负数的性质求值.
63
x2-
11 6
x+
11 12
2
=-
2 3
+
11 12
2
,
x
北师大版九年级数学上册2.22用配方法解较复杂的一元二次方程教案
2 用配方法求解一元二次方程课题第2课时用配方法解较复杂的一元二次方程授课人教学目标知识技能会用配方法解简单的数字系数的一元二次方程.通过经历配方法解一元二次方程的过程,获得解一元二次方程的基本技能.数学思考经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想,总结用配方法解一元二次方程的基本步骤.问题解决能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性.情感态度通过配方法将一元二次方程变形的过程,让学生进一步体会转化的数学思想方法,并培养学生的合作交流及探索意识,养成良好的思维品质.教学重点用配方法求解二次项系数不为1的一元二次方程.教学难点理解配方法.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.定义:我们通过配成完全平方式的方法得到一元二次方程的根,这种解一元二次方程的方法称为配方法.2.配方根据:(1)平方根的意义:如果x2=a,那么x=±a;(2)完全平方公式:a2±2ab+b2=(a±b)2.学生回忆并回答,为本课的学习提供迁移或类比方法,进一步加深对配方法的理解.活动一:创设情境导入新课【课堂引入】1.(1)将下列各式填上适当的项,配成完全平方式(口头回答).①x2+2x+________=(x+________)2;②x2-4x+________=(x-________)2;③x2+________+36=(x+________)2;④x2+10x+________=(x+________)2.(2)请同学们比较下列两个一元二次方程的联系与区别.①x2+6x+8=0;②3x2+18x+24=0.探讨:方程②应如何去解呢?2.复习提问:用配方法解一元二次方程(二次项系数为1)的步骤是什么?1.让学生回顾配方法的过程,能熟练将二次项系数为1的二次三项式配成完全平方式.2.让学生梳理用配方法解一元二次方程(二次项系数为1)的步骤,主要是夯实基础,为完善用配方法求解一元二次方程(二次项系数不为1)的步骤做准备.活动二:实践探究交流新知【探究1】(多媒体出示)观察方程3x2+8x-3=0,它与上面我们所解的方程有什么不同?你有什么想法?先让学生回答这个方程与上面我们所解的方程有什么不同,再动员学生思考如何把这个方程转化为上面我们所解的方程类型,教师提醒后,找一位同学尝试板书,然后教师投影演示.【探究2】用配方法解一元二次方程的步骤.师:下面请大家仔细观察教材例2的解题过程,你能说一说用配方法解一元二次方程的步骤吗?请同学们总结一下.交流归纳:用配方法解一元二次方程的一般步骤大致概括如下:(1)化二次项系数为1;(2)移项,使方程的左边为二次项和一次项,右边为常数项;(3)配方,方程两边同时加上一次项系数一半的平方,使原方程变为(x+m)2=n(n≥0)的形式;(4)开平方;(5)解——方程的解为x=―m±n.1.让学生在实践中逐步体会配方法求解一元二次方程的一般步骤,在学生有了初步认识的基础上,教师再展示步骤,目的是引导学生掌握这种思想,而不是让学生死记硬背这些步骤.使他们在自主探索的过程中真正理解和掌握基本的数学知识、思想和方法,同时获得广泛的数学活动经验.2.通过让学生探讨总结用配方法解一元二次方程的一般步骤,一方面培养学生归纳总结问题的能力及逻辑思维和语言表达能力,另一方面学生能熟练掌握用配方法解一元二次方程的基本步骤,掌握每一步的原理,这样会增强学生对这个知识点的驾驭能力.活动三:开放训练体现应用【应用举例】例解方程:3x2+8x-3=0.[变式题1] 方程2x2-3m-x+m2+2=0有一根为x=0,则m的值为()A.1B.2C.1或2D.1或-2[变式题2] 解方程:(1)6x2-7x+1=0;(2)2x2-5x-2=0.引导学生自我锻炼、合作交流,小组互评,让学生熟悉利用配方法求解一元二次方程的步骤.【拓展提升】1.利用配方法解方程例1解下列方程:(1)3x2-4x+1=0;(2)5x2-9x-18=0.图2-2-62.应用一元二次方程解决实际问题例2如图2-2-6,在Rt△ACB中,∠C=90°,AC=8 cm,BC=6 cm,点P,点Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动(到点C为止),它们的速度都是1 cm/s,几秒后△PCQ的面积为Rt△ACB面积的一半?3.应用配方法求最值例3用配方法求:(1)2x2-7x+2的最小值;(2)-3x2+5x+1的最大值.1.学以致用,当堂检测,及时获知学生对所学知识的掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,实现教学目标.2.知识的综合与拓展,提高应考能力.活动四:课堂总结反思【当堂训练】1.课本P39中的随堂练习2.课本P40习题2.4中的T1、T2、T3当堂检测,及时反馈学习效果.【板书设计】第2课时用配方法解较复杂的一元二次方程1.二次项系数是1的一元二次方程的配方法解题步骤:(学生完善)2.二次项系数不是1的一元二次方程的配方法解题步骤:(教师指导学生完善)投影区提纲挈领,重点突出.【教学反思】①[授课流程反思]本节课一开始通过复习,让学生用配方法解二次项系数为1的一元二次方程,然后给出方程3x2+8x―3=0,对比与前面所学的方程有何不同,引出本课课题,从而点明本节课的主要内容是如何解二次项系数不为1的一元二次方程,学生接受起来很自然.②[讲授效果反思]在授课过程中通过对比,层层递进,不仅抓住了学生的兴趣,而且步步引导学生自主探究,通过学生的自主探究与合作交流,探讨方程3x2+8x―3=0的解法,并归纳﹑总结出用配方法解一元二次方程的一般步骤,使学生在探究、合作的过程中掌握知识,顺利地突破重点、难点.在整个教学过程中,学生均处于主导地位,培养了学生独立思考﹑合作探究及分析问题﹑解决问题的能力,形成良好的情感态度和价值观.③[师生互动反思]_______________________________________________ _______________________________________________④[习题反思]好题题号______________________________________ 错题题号_______________________________________反思,更进一步提升.。
北师版初中数学九年级上册课件 第2章一元二次方程 2第2课时用配方法解二次项系数不为1的一元二次方程
=
25
16
2
,
.
5
开平方,得 x+ =± .
4
4
1
∴x1= ,x2=-2.
2
返回首页
(2)移项,得 2x2-7x=-4.
2 7
方程两边都除以 2,得 x -2x=-2.
配方,得
7
2
x
49
17
-2x+16 = 16,即 - 4
7
开平方,得 x-4=±
7+ 17
∴x1=
7 2
4
17
4
7- 17
,x2=
第二章 一元二次方程
第2课时 用配方法解二次项
系数不为1的一元二次方程
核心重难探究
知识点一
用配方法解二次项系数不为1的一元二次方程
【例1】 解方程:(1)2x2-1=3x;
(2)
1
4
x2-x-4=0.
思路点拨:如何把方程转化为二次项系数是1的形式?求解配方时配成的完
全平方式是什么?
返回首页
解 (1)移项,得 2x2-3x=1.
8
9
D.加
64
2.方程2x2+4x-9=0的解是 x1=
22
2
-1,x2=-
22
2
-1
.
返回首页
3.解方程:
(1)2x2+3x-2=0;
(2)2x2-7x+4=0.
解 (1)移项,得 2x2+3x=2.
2+3x=1.
方程两边都除以 2,得 x
2+3x+ 9
配方,得 x
即 +
3 2
北师大版九年级上册数学2章《用配方法求解一元二次方程》教案
2.2用配方法求解一元二次方程第1课时用配方法解二次项系数为1的一元二次方程【学习目标】1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程.【学习重点】会用配方法解二次项系数为1的一元二次方程.【学习难点】用配方法解二次项系数为1的一元二次方程的一般步骤.一、情景导入生成问题1.如果一个数的平方等于4,则这个数是±2.2.已知x2=9,则x=±3.3.填上适当的数,使下列等式成立.(1)x2+12x+36=(x+6)2;x2-6x+9=(x-3)2.二、自学互研生成能力知识模块一探索用配方法解二次项系数为1的一元二次方程的方法先阅读教材P36“议一议”的内容.然后完成下列问题:1.一元二次方程x2=5的解是x1=5,x2=-5.2.一元二次方程2x2+3=5的解是x1=1,x2=-1.3.一元二次方程x2+2x+1=5,左边配方后得(x+1)2=5,此方程两边开平方,得x+1=±5,方程的两个根为x1=-1+5,x2=-1-5.用配方法解二次项系数为1的一元二次方程的一般步骤是:(以解方程x2-2x-3=0为例) 1.移项:将常数项移到右边,得:x2-2x=3;2.配方:两边同时加上一次项系数的一半的平方,得:x2-2x+12=3+12,再将左边化为完全平方形式,得:(x-1)2=4;3.开平方:当方程右边为正数时,两边开平方,得:x-1=±2(注意:当方程右边为负数时,则原方程无解);4.化为一元一次方程:将原方程化为两个一元一次方程,得:x-1=2或x-1=-2;5.解一元一次方程,写出原方程的解:x1=__3__,x2=-1.归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.知识模块二应用配方法求解二次项系数为1的一元二次方程解答下列各题:1.填上适当的数,使等式成立.(1)x2+4x+4=(x+2)2;(2)x2-10x+25=(x-5)2.2.用配方法解方程:x2+2x-1=0.解:①移项,得x2+2x=1;②配方,得x2+2x+1=1+1,即(x+1)2=2;③开平方,得x+1=±2,即x+1=2或x+1=-2;④所以x1=-1+2;x2=-1-2.典例讲解:解方程:x2+8x-9=0.解:可以把常数项移到方程的右边,得:x2+8x=9.两边都加42(一次项系数8的一半的平方),得:即x2+8x+42=9+42,即(x+4)2=25.两边开平方,得:x+4=±5,即x+4=5,或x+4=-5.所以x1=1,x2=-9.对应练习:1.解下列方程:(1)x2-10x+25=7;(2)x2-14x=8;(3)x2+3x=1; (4)x2+2x+2=8x+4.2.用配方法解方程x2-2x-1=0时,配方后得的方程为(D)A.(x+1)2=0B.(x-1)2=0C.(x+1)2=2D.(x-1)2=23.方程(x-2)2=9的解是(A)A.x1=5,x2=-1 B.x1=-5,x2=1C.x1=11,x2=-7 D.x1=-11,x2=7三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索用配方法解二次项系数为1的一元二次方程的方法知识模块二应用配方法求解二次项系数为1的一元二次方程四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_________________________________________2.存在困惑:_____________________________________第2课时用配方法解二次项系数不为1的一元二次方程【学习目标】1.理解配方法的意义,会用配方法解一般一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣. 【学习重点】 用配方法解一般一元二次方程. 【学习难点】 用配方法解一元二次方程的一般步骤. 一、情景导入 生成问题1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( B ) A .加上32 B .加上94 C .减去32 D .减去942.解方程(x -3)2=8,得方程的根是( D )A .x =3+2 2B .x =3-2 2C .x =-3±2 2D .x =3±2 23.方程x 2-3x -4=0的两个根是x 1=4,x 2=-1.二、自学互研 生成能力知识模块一 探索用配方法解一般一元二次方程的方法先阅读教材P 38例2,然后完成下面的填空:用配方法解二次项系数不为1的一元二次方程的一般步骤是:(以解方程2x 2-6x +1=0为例)①系数化1:把二次项系数化为1,得x 2-3x +12=0;②移项:将常数项移到右边,得x 2-3x=-12;③配方:两边同时加上一次项系数的一半的平方,得:x 2-3x +⎝ ⎛⎭⎪⎫322=-12+94.再将左边化为完全平方形式,得:⎝ ⎛⎭⎪⎫x -322=74;;④开平方:当方程右边为正数时,两边开平方,得:x -32=±72(注意:当方程右边为负数时,则原方程无解);⑤解一次方程:得x =32±72,∴x 1=32+72,x 2=32-72.用配方法求解一般一元二次方程的步骤是什么?师生共同归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.知识模块二 应用配方法解一般一元二次方程解答下列各题:1.用配方法解方程3x 2-9x -32=0,先把方程化为x 2+bx +c =0的形式,则下列变形正确的是( D )A .x 2-9x -32=0B .x 2-3x -32=0C .x 2-9x -12=0D .x 2-3x -12=02.方程2x 2-4x -6=0的两个根是x 1=3,x 2=-1.典例讲解:1.解方程3x 2-6x +4=0.解:移项,得3x 2-6x =-4;二次项系数化为1,得x 2-2x =-43;配方,得x 2-2x +12=-43+12;(x -1)2=-13.因为实数的平方不会是负数,所以x 取任何实数时,(x -1)2都是非负数,上式不成立,即原方程无实数根.2.做一做:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?解:根据题意得15t -5t 2=10;方程两边都除以-5,得t 2-3t =-2;配方,得t 2-3t +⎝ ⎛⎭⎪⎫322=-2+⎝ ⎛⎭⎪⎫322;⎝ ⎛⎭⎪⎫t -322=14;t -32=±12;t =2,t 2=1;答:当t =2s 或t =1s 时,小球达到10米的高度. 对应练习:1.解下列方程:(1)3x 2-9x +2=0; (2)2x 2+6=7x ; (3)4x 2-8x -3=0.2.方程3x 2-1=2x 的两个根是x 1=-13,x 2=1.3.方程2x 2-4x +8=0的解是无实数解.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索用配方法解一般一元二次方程的方法知识模块二 应用配方法解一般一元二次方程四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________2.存在困惑:____________________________________________。
第2章 一元二次方程 2.2 用配方法求解一元二次方程 第2课时 用配方法求解一元二次方程(2)
知识点3:配方法的应用
例3如果x,y满足x2+2x+y2-8y+17=0,试求yx的值. 分析:将x2+2x+y2-8y+17=0配方,得(x+1)2+(y-4)2=0,从 而可求出x,y的值,进而可得yx的值.
解:由 x2+2x+y2-8y+17=0,得(x2+2x +1)+(y2-8y+16)=0.解得 x=-1,y=4,所以 yx=4-1=14
等于( C ) A.4,13 B.4,19 C.-4,13 D.-4,19
3.用配方法解下列方程,其中应先在方程左右两边同时加上4的是
(A ) A.x2+4x=5 B.2x2-4x=5 C.x2-2x=5 D.x 2+2x=5 4.二次三项式x2-4x+7的值( C ) A.可以等于0 B.大于3 C.不小于3 D.既可以为正,也可以为负
6.若x2+6x+m2是一个完全平方式,则m的值是(C )
A.3
B.-3
C.±3 D.以上都不对
7.若方程4x2-(m-2)x+1=0的左边是一个完全平方式,则m等于
(B) A.-2 B.-2或6
C.-2或-6 D.2或-6
【概括总结】配方法解一元二次方程的步骤:1.把二次项系数化 为1;2.常数项移到方程右边;3.方程两边都加上一次项系数一半 的平方;4.利用平方根的意义求解.
12.一个小球以 15 m/s 的初速度向上竖直弹出,它在空中的高度 h(m)与时间 t(s)满足关系式 h=15t-5t2,当 t 为( D )时,小球的高度 为 10 m.
A.1.5 s B.2 s C.1 s D.1 s 和 2 s 13.把方程 2x2+4x-1=0 配方后得(x+m)2=k,则 m=_1_,k=_32 _. 14.填空:
解:设道路宽度为x m,由题意得(40- 2x)(26 - x) = 144×6 , 解 得 x1 = 2 , x2 = 44(不合题意,舍去),即道路宽度为2 m
九年级数学上册2.2用配方法求解一元二次方程第2课时用配方法解复杂的一元二次方程同步练习
第2课时 用配方法解复杂的一元二次方程知识点 用配方法解二次项系数不为1的一元二 次方程1.解:6x 2-x -1=0 ――→两边同时除以6第一步x 2-16x -16=0 ――→移项第二步x 2-16x =16 ――→配方第三步(x -19)2=16+19 ――→两边开方第四步x -19=±518――→移项第五步x 1=19+106,x 2=19-106. 上述步骤中,发生第一次错误是在( )A .第一步B .第二步C .第三步D .第四步2.用配方法解方程3x 2-6x +1=0,则方程可变形为( )A .(x -3)2=13B .3(x -1)2=13C .(x -1)2=23D .(3x -1)2=13.方程2x 2+3=7x ,经配方后得(x -74)2=________.4.将2x 2-12x -12=0变形为(x -m)2=n 的形式,则m +n =________. 5.当x =________时,代数式3x 2+2x +5的值是6. 6.用配方法解下列方程: (1)3x 2+4x -4=0;(2)2x 2+1=4x.7.如果一个一元二次方程的二次项是2x 2,经过配方整理得(x +12)2=1,那么它的一次项和常数项分别是( )A .x ,-34B .2x ,-12C .2x ,-32D .x ,-328.2016·贵阳期末已知等腰三角形两边a ,b 满足a 2+b 2-4a -10b +29=0,则此等腰三角形的周长为( )A .9B .10C .12D .9或129.把方程3x 2+4x -1=0配方后得(x +m)2=k ,则m =________,k =________. 10.已知a ,b ,c 是△ABC 的三条边长,且满足a 2+2b 2-2ab -2bc +c 2=0,则该三角形是________三角形.11.证明:关于x 的方程(a 2-8a +20)x 2+2ax +1=0,不论a 为何值,该方程都是一元二次方程.12.已知代数式A=2m2+3m+7,代数式B=m2+5m+5,试比较代数式A与B的大小.13.已知x=4满足方程x2-32mx=m2,试求出所有满足该方程的x和m的值.14.教材习题2.4第3题变式题如图2-2-2所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.点P,Q分别从点A,B同时出发,当其中一点到达终点时,另一点也随之停止移动.(1)经过几秒钟,△PBQ的面积为8 cm2?(2)经过几秒钟,P,Q两点间的距离为53 cm?图2-2-215.请你参考黑板中老师的讲解,完成下列解答:图2-2-3(1)通过上面例题的讲解可知,当x=________时,代数式x2+2x+3有最小值,且最小值是________.(2)对于代数式x4-2x2+5,先用配方法说明不论x为何实数,这个代数式的值总是正数;再求出当x为何实数时,这个代数式的值最小,最小值是多少.(3)设一个边长为a(a>3)的正方形的面积为S1,另一个矩形的面积为S2.若矩形的一边长比该正方形的边长小3,另一边长为4,试比较S1和S2的大小,并说明理由.详解1.C [解析] 开始错误的步骤是第三步:(x -19)2=16+19,等号左边括号内19应为112,等号右边的19应为1144.故选C.2.C 3.25164.185.-1或13 [解析] 解方程3x 2+2x +5=6即可.6.解:(1)方程的各项都除以3, 得x 2+43x -43=0.移项,得x 2+43x =43.配方,得x 2+43x +(23)2=43+(23)2,即(x +23)2=169.直接开平方,得x +23=±43,∴x 1=23,x 2=-2.(2)移项,得2x 2-4x =-1,方程的各项都除以2,得x 2-2x =-12,配方,得x 2-2x +1=1-12,即(x -1)2=12,直接开平方,得x -1=±22,∴x 1=2+22,x 2=2-22.7.C [解析] 将(x +12)2=1展开,得x 2+x +14=1.化为一般形式,得x 2+x -34=0.方程x 2+x -34=0两边同乘2,得2x 2+2x -32=0.故选C.8.C [解析] ∵a 2+b 2-4a -10b +29=0, ∴(a 2-4a +4)+(b 2-10b +25)=0, ∴(a -2)2+(b -5)2=0, ∴a =2,b =5,∴当腰为5时,等腰三角形的周长为5+5+2=12; 当腰为2时,2+2<5,构不成三角形. 故选C. 9.23 79 10.等边11.证明:因为a 2-8a +20=a 2-8a +16+4=(a -4)2+4≥4,所以不论a 为何值,a 2-8a +20的值都不可能等于0,由一元二次方程的定义可知,关于x 的方程(a 2-8a +20)x 2+2ax +1=0必为一元二次方程.12.解:∵A -B =2m 2+3m +7-(m 2+5m +5)=m 2-2m +2=(m -1)2+1>0,∴A >B .13.解:把x =4代入已知方程,得16-6m =m 2, 整理,得m 2+6m =16,配方,得()m +32=25, 解得m 1=-8,m 2=2.当m =-8时,方程为x 2+12x =64,解得x =4或x =-16; 当m =2时,方程为x 2-3x =4,解得x =4或x =-1.14.解:(1)设经过x s ,△PBQ 的面积为8 cm 2. 由题意,得12(6-x )×2x =8,解得x 1=2,x 2=4.所以经过2 s 或4 s ,△PBQ 的面积为8 cm 2. (2)设经过y s ,P ,Q 两点间的距离为53 cm. 由题意得AP =y cm ,BQ =2y cm ,BP =(6-y )cm. 由勾股定理得(6-y )2+(2y )2=(53)2, 解得y 1=3.4,y 2=-1(不合题意,舍去). 所以经过3.4 s ,P ,Q 两点间的距离为53 cm. 15.解:(1)∵x 2+2x +3=x 2+2x +1+2=(x +1)2+2, ∴当x =-1时,代数式x 2+2x +3有最小值,且最小值是2. 故答案为:-1,2. (2)x 4-2x 2+5 =x 4-2x 2+1+4 =(x 2-1)2+4, ∵(x 2-1)2≥0, ∴(x 2-1)2+4>0,∴代数式x 4-2x 2+5的值一定是正数.当x =±1时,这个代数式的值最小,最小值是4.(3)S 1>S 2.理由如下:由题意,得S 1=a 2,S 2=4(a -3)=4a -12, 则S 1-S 2=a 2-(4a -12)=a 2-4a +12=(a -2)2+8. ∵(a -2)2>0,∴(a -2)2+8>0, ∴S 1-S 2>0,∴S 1>S 2.第2课时 相似三角形周长和面积的性质知识点 1 有关周长的计算1.已知△ABC∽△A1B1C1,且AB=4,A1B1=6,则△ABC的周长和△A1B1C1的周长之比是( )A.9∶4 B.4∶9 C.2∶3 D.3∶2图4-7-102.如图4-7-10,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F,则△EDF与△BCF的周长之比是( )A.1∶2 B.1∶3 C.1∶4 D.1∶53.2016·贵阳期末如果△ABC∽△DEF,其相似比为3∶1,且△ABC的周长为27,那么△DEF的周长为( )A.9 B.18 C.27 D.814.如图4-7-11,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC 的延长线于点F,BG⊥AE于点G,BG=4 2,求△FCE的周长.图4-7-11知识点 2 有关面积的计算5.2017·重庆已知△ABC∽△DEF,且相似比为1∶2,则△ABC与△DEF的面积比为( )A.1∶4 B.4∶1 C.1∶2 D.2∶1图4-7-126.2017·永州如图4-7-12,在△ABC中,D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )A.1 B.2 C.3 D.47.教材例2变式题如图4-7-13,把△ABC沿AB边平移到△A′B′C′的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的14,若AB=2,则△ABC平移的距离是________.4-7-134-7-148.如图4-7-14,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则AB的长为________.9.如图4-7-15所示,在▱ABCD中,AE∶EB=1∶2.(1)求△AEF与△CDF的周长的比;(2)若S△AEF=6 cm2,求S△CDF.图4-7-1510.若两个相似三角形的面积之比为1∶4,则它们的周长之比为( )A.1∶2 B.1∶4 C.1∶5 D.1∶1611.如图4-7-16,DE是△ABC的中位线,延长DE至点F,使EF=DE,连接CF,则S ∶S四边形BCED的值为( )△CEFA.1∶3 B.2∶3 C.1∶4 D.2∶54-7-164-7-1712.2017·贵阳期末(教材综合与实践——制作视力表的应用)我们在制作视力表时发现,每个“E”形图的长和宽相等(即每个“E”形图近似于正方形),如图4-7-17,小明在制作视力表时,测得l1=14 cm,l2=7 cm,他选择了一张面积为4 cm2的正方形卡纸,刚好可以剪得第②个小“E”形图.那么下面四张正方形卡纸中,能够刚好剪得第①个大“E”形图的是( )A.面积为8 cm2的卡纸B.面积为16 cm2的卡纸C.面积为32 cm2的卡纸D.面积为64 cm2的卡纸13.如图4-7-18,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为6,求△ABD的面积.图4-7-1814.如图4-7-19所示,M是△ABC内一点,过点M分别作三条直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49,求△ABC 的面积.图4-7-1915.某社区拟筹资金2000元,计划在一块上、下底长分别是10 m、20 m的梯形空地上种植花草.如图4-7-20,他们想在△AMD和△CMB地带种植单价为10元/m2的太阳花,当△AMD地带种满花后,已经花了500元,请你预算一下,若继续在△CMB地带种植同样的太阳花,资金是否够用,并说明理由.图4-7-2016.如图4-7-21,在△ABC中,AB=5,BC=3,CA=4,PQ∥AB,点P在CA上(与点A,C不重合),点Q在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长.(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长.(3)试问:在AB上是否存在一点M,使得△PQM为等腰直角三角形?若存在,请求出PQ 的长;若不存在,请简要说明理由.图4-7-211.C 2.A3.A [解析] ∵△ABC ∽△DEF ,其相似比为3∶1,∴△ABC 的周长△DEF 的周长=31,∴△DEF 的周长=13×27=9.故选A.4.解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,∴∠BAE =∠F ,∠EAD =∠AEB . ∵AE 平分∠BAD , ∴∠BAE =∠EAD , ∴∠BAE =∠AEB , ∴BE =AB =6, ∴CE =BC -BE =3.∵∠AEB =∠FEC ,∠BAE =∠F , ∴△ABE ∽△FCE , ∴△ABE 的周长△FCE 的周长=BECE=2.∵BG ⊥AE ,∴AE =2AG =2 AB 2-BG 2=4, ∴△ABE 的周长=AB +BE +AE =16, ∴△FCE 的周长=12×△ABE 的周长=8.5.A6.C [解析] ∵∠ACD =∠B ,∠A =∠A , ∴△ACD ∽△ABC ,∴S △ACD S △ABC =(AD AC )2=14.∵S △ACD =1,∴S △ABC =4,∴S △BCD =S △ABC -S △ACD =3.7.1 [解析] 如图,∵把△ABC 沿AB 边平移到△A ′B ′C ′的位置,∴AC ∥A ′C ′,∴△ABC ∽△A ′BD .∵S △ABC ∶S △A ′BD =4,∴AB ∶A ′B =2.∵AB =2,∴A ′B =1,∴AA ′=2-1=1. 8.3 [解析] ∵∠AED =∠B ,∠A 是公共角, ∴△ADE ∽△ACB ,∴S △ADE S △ACB =(AE AB)2. ∵△ADE 的面积为4,四边形BCED 的面积为5,∴△ABC 的面积为9. ∵AE =2,∴49=(2AB )2,解得AB =3.9.解:(1)∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠FAE =∠FCD , ∴△AEF ∽△CDF . ∵AE ∶EB =1∶2, ∴AE ∶AB =AE ∶CD =1∶3,∴△AEF 与△CDF 的周长的比为1∶3. (2)由(1)知,△AEF ∽△CDF ,相似比为1∶3, ∴它们的面积比为1∶9. ∵S △AEF =6 cm 2, ∴S △CDF =54 cm 2. 10.A 11.A12.B [解析] ∵每个“E ”形图近似于正方形,∴P 2D 2∥P 1D 1,∴∠PP 2D 2=∠PP 1D 1,∠P 2D 2P =∠P 1D 1P , ∴△PP 2D 2∽△PP 1D 1. ∵l 1=14 cm ,l 2=7 cm , ∴P 2D 2∶P 1D 1=1∶2.∵第②个小“E ”形图是面积为4 cm 2的正方形卡纸, ∴第①个大“E ”形图的面积=4×4=16(cm 2). 故选B.13.解:(1)证明:∵DC =AC ,CF 是∠ACB 的平分线,∴CF 是△ACD 的中线, ∴F 是AD 的中点. 又∵E 是AB 的中点, ∴EF ∥BD ,即EF ∥BC . (2)由(1)知,EF ∥BD , ∴△AEF ∽△ABD ,∴S △AEF S △ABD =⎝ ⎛⎭⎪⎫AE AB 2. 又∵AE =12AB ,S △AEF =S △ABD -S 四边形BDFE =S △ABD -6, ∴S △ABD -6S △ABD =⎝ ⎛⎭⎪⎫122,∴S △ABD =8.14.解:根据题意,容易得到△1∽△2∽△3∽△ABC .因为△1、△2、△3的面积分别是4,9和49,所以它们之间的相似比为2∶3∶7,即BC 边被分成的三段从左到右的比为2∶7∶3,则△1与△ABC 的相似比为2∶12=1∶6,所以它们的面积比为1∶36,求得△ABC 的面积是144.15.解:不够用.理由如下: 在梯形ABCD 中,∵AD ∥BC , ∴△AMD ∽△CMB , ∴S △AMD S △CMB =(AD BC)2. ∵AD =10 m ,BC =20 m , ∴S △AMD S △CMB =(1020)2=14. ∵S △AMD =500÷10=50(m 2). ∴S △CMB =50×4=200(m 2). 还需要资金200×10=2000(元),而剩余资金为2000-500=1500(元)<2000元, ∴资金不够用.16.解:(1)∵PQ ∥AB ,∴△PQC ∽△ABC . ∵S △PQC =S 四边形PABQ , ∴S △PQC ∶S △ABC =1∶2, ∴CP CA =12=22, ∴CP =22·CA =2 2. (2)∵△PQC ∽△ABC , ∴CP CA =CQ CB =PQ AB ,即CP 4=CQ3,∴CQ =34CP .同理:PQ =54CP ,∴C △PQC =CP +PQ +CQ =CP +54CP +34CP =3CP ,C 四边形PABQ=PA +AB +BQ +PQ =4-CP +AB +3-CQ +PQ =4-CP +5+3-34CP +54CP =12-12CP .由C △PQC =C 四边形PABQ ,得3CP =12-12CP ,∴72CP =12,∴CP =247.(3)存在.∵CA =4,AB =5,BC =3, ∴△ABC 中AB 边上的高为125.①如图(a)所示,当∠MPQ =90°且PM =PQ 时,∵△CPQ ∽△CAB ,∴PQ AB =△CPQ 中PQ 上的高△CAB 中AB 上的高, ∴PQ 5=125-PQ 125,∴PQ =6037; ②当∠PQM =90°时与①相同;③如图(b)所示,当∠PMQ =90°且PM =MQ 时,过点M 作ME ⊥PQ ,则ME =12PQ ,∴△CPQ 中PQ 上的高为125-ME =125-12PQ .∵PQ AB =△CPQ 中PQ 上的高△CAB 中AB 上的高,∴PQ 5=125-12PQ 125,∴PQ =12049. 综上可知,存在点M ,使得△PQM 为等腰直角三角形,此时PQ 的长为6037或12049.。
2.2用配方法求解一元二次方程(2)
第2节 用配方法求解一元二次方程(二)
用配方法解二次项系数为1的一元二次方程的一般 步骤: 1、移:移项,使方程左边为二次项和一次项,右 边为常数项; 2、配:配方,方程两边都加上一次项系数一半 的平方,使原方程变为(x+m)2=n的形式;
3、开:如果方程的右边是非负数,即n≥0,就 可以左右两边开平方得 x m n;
3 2
57 6
,
x2
3 2
57 ; 6
3 (2)x1 2, x2 2 ;
(3)x1 1
7 2
,
x2
1
7. 2
2.解下列方程: (1)6x2 -7x+1=0; (3)4x2-3x=52;
1x1
1;
x2
1; 6
(2) x1
6 5
,
x2
3;
3x1
4;
x2
13; 4
(2)5x2-18=9x; (4)5x2 =4-2x.
另外,如果是解决实际问题,还要注意判断求得的 结果是否合理.
做一做
一个小球从地面以15m/s的初速度竖直向上弹出,它
在空中的高度h(m)与时间t(s)满足关系:
h=15t-5t2 .小球何时能达到10m高?
解 : 根据题意得 :10 15t 5t 2.
即t 2 3t 2.
t2
3t
3
2
2
3
8
猴子总数是多少?
解:设总共有x只猴子,根据题意,得
(1 x)2 12 x. 8
即x2-64x+768=0.
解这个方程,得 x1=48,x2=16.
答:一共有猴子48只或16只.
4.如图,A,B,C,D是矩形的四个顶点,AB=16cm,
湘教版九年级数学上册作业课件 第2章 一元二次方程 第2课时 用配方法解二次项系数为1的一元二次方程
以配方成下列的( B )
A.(x-p)2=5 B.(x-p)2=9
C.(x-p+2)2=9 D.(x-p+2)2=5
13.已知x,y为实数,且x2+y2+4x-6y+13=0,运用配方法可以求得
x,y的值分别为( C )
A.4,6 B.-2,-3 C.-2,3 D.2,-3
14.若方程x2-2x+m=0可以配方成(x-n)2=5, 则该方程的解是_x_=__1_±_____.
解:x2-2x-45 =0,(x-1)2=94 ,∴x1=25 ,x2=-21 .当 x=52 是方程 x2
-(k+2)x+49 =0 的一根时,k=75 ;当 x=-12 是方程 x2-(k+2)x+49 =0 的一根时,k=-7.∴k 的值为-7 或57 .
18.(9分)在高尔夫球比赛中,某运动员打出的球在空中飞行的高度h(m) 与打出后飞行时间t(s)之间的关系是h=7t-t2.经过多少秒,球飞出的高度 为10 m?
C.x-23
2
=59
,x1=23
+
5 3
,x2=23
-
5 3
D.x-13 2 =1,x1=43 ,x2=-32
11.把方程x2-8x+3=0化成(x+m)2=n的形式,则m,n的值是( C )
A.4,13
B.-4,19
C.-4,13
D.4,19
12.方程x2-6x+q=0可以配方成(x-p)2=7的形式,则x2-6x+q=2可
A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=9 D.(x-2)2=9
5.(3 分)用配方法解方程 x2+x=2,应把方程的两边同A时( )
A.加14
B.加12
C.减14
北师版九年级数学上册第2章2用配方法求解一元二次方程
再在方程的两边同时加上一次项系数一半的平方.
特别提醒
知2-讲
1.用配方法解方程时,在方程两边同时加上“一次项系数
一半的平方”,这里“一次项系数”是指在二次项系数
化为1后的一次项系数.另外,要注意是在方程“两边”
都加,不是“一边”加.
知3-练
3-1. 关爱儿童健康,创建育人环境. 如图,某幼儿园教室 矩形地面的长为8 m,宽为5 m,现准备在地面正中间 铺设一块面积为18 m2的地毯. 四周未铺地毯的条形区 域的宽度相同, 求四周未铺地毯的条形区域的宽度.
知3-练
解:设四周未铺地毯的条形区域的宽度是 x m. 根据题意,得(8-2x)(5-2x)=18. 整理,得 x2-123x=-121. 配方,得 x2-123x+-1432=-121+-1432, 即x-1432=8116.
知3-练
思路导引:
知3-练
解:设AD=x m(0 < x ≤ 20),则AB=1002-xm. 根据题意,得x·1002-x=450 . 整理,得x2-10 0x+900=0. 配方,得(x-50)2=1600, 解得x1=10,x2=90(舍去). 所以,所利用旧墙AD 的长为10 m.
知3-练
知1-讲
知1-练
例 1 用直接开平方法解下列方程: 解题秘方::紧扣“直接开平方法”的步骤求解.
知1-练
(1)9x2-81=0;
解:移项,得9x2=81. 系数化为1,得x2=9. 开平方,得x =±3 . ∴ x1=3,x2=-3 .
将方程变成左边是完 全平方的形式,且系数为1, 右边是非负数的形式(如果 方程右边是负数,那么这 个方程无实数根).
最新北师大版九年级数学上册2.2_用配方法求解一元二次方程教案(教学设计)
2.2 用配方法求解一元二次方程第1课时用配方法求解二次项系数为1的一元二次方程1.能根据平方根的意义解形如(x+m)2=n(n≥0)的方程.2.理解配方法,会用配方法求解二次项系数为1的一元二次方程.(重点)3.会用转化的数学思想解决有关问题.(难点)阅读教材P36~37,完成下列问题:(一)知识探究1.解一元二次方程的思路是将方程转化为(x+m)2=n的形式,它的一边是一个________,另一边是一个________,当n________时,两边同时开平方,转化为一元一次方程,便可得到方程的根是x1=________,x2=________.2.通过配成____________的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.3.用配方法求解二次项系数为1的一元二次方程的步骤:(1)移——移项,使方程左边为二次项和一次项,右边为________;(2)配——________,方程两边都加上________________的平方,使原方程变为(x+m)2=n的形式;(3)开——如果方程的右边是非负数,即n≥0,就可左右两边开平方得________;(4)解——方程的解为x=________.(二)自学反馈1.填上适当的数,使下列等式成立:(1)x2+12x+________=(x+6)2;(2)x2-4x+________=(x-________)2;(3)x2+8x+________=(x+________)2.2.(1)若x2=4,则x=________.(2)若(x+1)2=4,则x=________.(3)若x2+2x+1=4,则x=________.(4)若x2+2x=3,则x=________.3.解方程:x2-36x+70=0.活动1 小组讨论例1解下列方程:(1)x2=5; (2)2x2+3=5;(3)x2+2x+1=5; (4)(x+6)2+72=102.解:(1)方程两边同时开平方,得x1=5,x2=- 5.(2)移项,得2x2=2,即x2=1.方程两边同时开平方,得x1=1,x2=-1.(3)配方,得(x+1)2=5.方程两边同时开平方,得x+1=± 5.∴x1=-1+5,x2=-1- 5.(4)移项,得(x +6)2=102-72,即(x +6)2=51.方程两边同时开平方,得x +6=±51.∴x 1=-6+51,x 2=-6-51.例2 解方程:x 2+8x -9=0.解:可以把常数项移到方程的右边,得x 2+8x =9.两边都加上42(一次项系数8的一半的平方),得x 2+8x +42=9+42,即(x +4)2=25.两边开平方,得x +4=±5,即x +4=5,或x +4=-5.所以x 1=1,x 2=-9.活动2 跟踪训练1.用配方法解方程x 2-2x -1=0时,配方后得到的方程为( )A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=22.填空:(1)x 2+10x +________=(x +________)2;(2)x 2-12x +________=(x -________)2;(3)x 2+5x +________=(x +________)2;(4)x 2-23x +________=(x -________)2. 3.用直接开平方法解下列方程:(1)4x 2=81; (2)36x 2-1=0;(3)(x +5)2=25; (4)x 2+2x +1=4.4.用配方法解下列关于x 的方程:(1)x 2+2x -35=0; (2)x 2-8x +7=0;(3)x 2+4x +1=0; (4)x 2+6x +5=0.活动3 课堂小结1.用直接开平方法解形如(x +m)2=n(n ≥0)的方程可以达到降次转化的目的.2.用配方法解二次项系数为1的一元二次方程的步骤.3.用配方法解二次项系数为1的一元二次方程的注意事项.【预习导学】(一)知识探究1.完全平方式 常数 ≥0 -m +n -m -n 2.完全平方式 3.(1)常数项 (2)配方 一次项系数一半 (3)x +m =±n (4)-m ±n(二)自学反馈1.(1)36 (2)4 2 (3)16 42.(1)2,-2 (2)1,-3 (3)1,-3 (4)1,-33.可以把常数项移到方程的右边,得x 2-36x =-70.两边都加上(-18)2(一次项系数-36的一半的平方),得x 2-36x +(-18)2=-70+(-18)2,即(x -18)2=254.两边开平方,得x -18=±254,即x -18=254,或x -18=-254.所以x 1=18+254,x 2=18-254.【合作探究】活动2 跟踪训练1.D 2.(1)25 5 (2)36 6 (3)254 52 (4)19 133.(1)x 1=92,x 2=-92.(2)x 1=16,x 2=-16.(3)x 1=0,x 2=-10.(4)x 1=1,x 2=-3. 4.(1)x 1=5,x 2=-7.(2)x 1=1,x 2=7.(3)x 1=-2+3,x 2=-2- 3.(4)x 1=-1,x 2=-5.第2课时 用配方法求解二次项系数不为1的一元二次方程1.会用配方法求解二次项系数不为1的一元二次方程.(重点)2.会用转化的数学思想解决有关问题.(难点)阅读教材P38~39,完成下列问题:(一)知识探究1.用配方法求解二次项系数不为1的一元二次方程的步骤:(1)化——化二次项系数为________;(2)配——________,使原方程变为(x +m)2-n =0的形式;(3)移——移项,使方程变为(x +m)2=n 的形式;(4)开——如果n ≥0,就可左右两边开平方得________;(5)解——方程的解为x =________.(二)自学反馈1.某学生解方程3x 2-x -2=0的步骤如下:解:3x 2-x -2=0→x 2-13x -23=0,①→x 2-13x =23,②→(x -23)2=23+49,③→x -34=±103,④→x 1=2+103,x 2=2-103,上述解题过程中,最先发生错误的是( ) A .第①步 B .第②步C .第③步D .第④步2.解方程:2x 2+5x +3=0.活动1 小组讨论例 解方程:3x 2+8x -3=0.解:两边同除以3,得x 2+83x -1=0. 配方,得x 2+83x +(43)2-(43)2-1=0,即 (x +43)2-259=0. 移项,得(x +43)2=259. 两边开平方,得x +43=±53,即 x +43=53,或x +43=-53. 所以x 1=13,x 2=-3. 活动2 跟踪训练1.用配方法解下列方程时,配方有错误的是( )A .x 2-4x -1=0可化为(x -2)2=5B .x 2+6x +8=0可化为(x +3)2=1C .2x 2-7x -6=0可化为(x -74)2=9716D .9x 2+4x +2=0可化为(3x +2)2=22.将方程2x 2-4x -6=0化为a(x +m)2=k 的形式为____________.3.用配方法解方程:2x 2-4x -1=0.①方程两边同时除以2,得________;②移项,得________;③配方,得________;④方程两边开方,得________;⑤x 1=________,x 2=________.4.解下列方程:(1)3x 2+6x -5=0;(2)9y 2-18y -4=0.活动3 课堂小结1.用配方法解二次项系数不为1的一元二次方程的步骤.2.用配方法解二次项系数不为1的一元二次方程的注意事项.【预习导学】(一)知识探究1.(1)1 (2)配方 (4)x +m =±n (5)-m ±n(二)自学反馈1.B 2.两边同除以2,得x 2+52x +32=0.配方,得x 2+52x +(54)2-(54)2+32=0,即(x +54)2-116=0.移项,得(x +54)2=116.两边开平方,得x +54=±14,即x +54=14或x +54=-14.所以x 1=-1,x 2=-32. 【合作探究】活动2 跟踪训练1.D 2.2(x -1)2=8 3.①x 2-2x -12=0 ②x 2-2x =12 ③(x -1)2=32 ④x -1=62或x -1=-62 ⑤1+621-62 4.(1)x 1=263-1,x 2=-263-1.(2)y 1=1+133,y 2=1-133.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 用配方法解复杂的一元二次方程
知识点 用配方法解二次项系数不为1的一元二 次方程
1.解:6x 2
-x -1=0 ――→两边同时除以6第一步x 2-16x -1
6=0 ――→移项第二步x 2-16x =16 ――→配方第三步(x -19)2=16+19 ――→两边开方第四步x -19
=±5
18
――→移项
第五步x 1=19+106,x 2=19-106. 上述步骤中,发生第一次错误是在( )
A .第一步
B .第二步
C .第三步
D .第四步
2.用配方法解方程3x 2
-6x +1=0,则方程可变形为( )
A .(x -3)2=13
B .3(x -1)2=13
C .(x -1)2=2
3
D .(3x -1)2=1
3.方程2x 2
+3=7x ,经配方后得(x -74
)2=________.
4.将2x 2
-12x -12=0变形为(x -m)2
=n 的形式,则m +n =________. 5.当x =________时,代数式3x 2
+2x +5的值是6. 6.用配方法解下列方程: (1)3x 2
+4x -4=0;
(2)2x 2
+1=4x.
7.如果一个一元二次方程的二次项是2x 2
,经过配方整理得(x +12)2=1,那么它的一次
项和常数项分别是( )
A .x ,-34
B .2x ,-12
C .2x ,-32
D .x ,-32
8.2016·贵阳期末已知等腰三角形两边a ,b 满足a 2
+b 2
-4a -10b +29=0,则此等腰三角形的周长为( )
A .9
B .10
C .12
D .9或12
9.把方程3x 2
+4x -1=0配方后得(x +m)2
=k ,则m =________,k =________. 10.已知a ,b ,c 是△ABC 的三条边长,且满足a 2
+2b 2
-2ab -2bc +c 2
=0,则该三角形是________三角形.
11.证明:关于x 的方程(a 2
-8a +20)x 2
+2ax +1=0,不论a 为何值,该方程都是一元二次方程.
12.已知代数式A=2m2+3m+7,代数式B=m2+5m+5,试比较代数式A与B的大小.
13.已知x=4满足方程x2-3
2
mx=m2,试求出所有满足该方程的x和m的值.
14.教材习题2.4第3题变式题如图2-2-2所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边
向点C以2 cm/s的速度移动.点P,Q分别从点A,B同时出发,当其中一点到达终点时,另一点也随之停止移动.
(1)经过几秒钟,△PBQ的面积为8 cm2?
(2)经过几秒钟,P,Q两点间的距离为53 cm?
图2-2-2
15.请你参考黑板中老师的讲解,完成下列解答:
图2-2-3
(1)通过上面例题的讲解可知,当x=________时,代数式x2+2x+3有最小值,且最小值是________.
(2)对于代数式x4-2x2+5,先用配方法说明不论x为何实数,这个代数式的值总是正数;再求出当x为何实数时,这个代数式的值最小,最小值是多少.
(3)设一个边长为a(a>3)的正方形的面积为S1,另一个矩形的面积为S2.若矩形的一边长比该正方形的边长小3,另一边长为4,试比较S1和S2的大小,并说明理由.
详解
1.C [解析] 开始错误的步骤是第三步:(x -19)2=16+19,等号左边括号内19应为1
12,
等号右边的19应为1
144
.故选C.
2.C 3.25
16
4.18
5.-1或13 [解析] 解方程3x 2
+2x +5=6即可.
6.解:(1)方程的各项都除以3, 得x 2
+43x -43=0.
移项,得x 2
+43x =43
.
配方,得x 2
+43x +(23)2=43+(23)2,
即(x +23)2=16
9
.
直接开平方,得x +23=±43,
∴x 1=2
3
,x 2=-2.
(2)移项,得2x 2
-4x =-1,
方程的各项都除以2,得x 2
-2x =-12,
配方,得x 2
-2x +1=1-12,
即(x -1)2
=12,
直接开平方,得x -1=±
22
,
∴x 1=2+22,x 2=2-22
.
7.C [解析] 将(x +12)2=1展开,得x 2+x +14=1.化为一般形式,得x 2
+x -34=0.方
程x 2+x -34=0两边同乘2,得2x 2
+2x -32
=0.故选C.
8.C [解析] ∵a 2
+b 2
-4a -10b +29=0, ∴(a 2
-4a +4)+(b 2-10b +25)=0, ∴(a -2)2
+(b -5)2
=0, ∴a =2,b =5,
∴当腰为5时,等腰三角形的周长为5+5+2=12; 当腰为2时,2+2<5,构不成三角形. 故选C. 9.23 79 10.等边
11.证明:因为a 2
-8a +20=a 2
-8a +16+4=(a -4)2
+4≥4,所以不论a 为何值,a 2-8a +20的值都不可能等于0,由一元二次方程的定义可知,关于x 的方程(a 2
-8a +20)x 2
+2ax +1=0必为一元二次方程.
12.解:∵A -B =2m 2
+3m +7-(m 2
+5m +5)=
m 2-2m +2=(m -1)2+1>0,
∴A >B .
13.解:把x =4代入已知方程,得16-6m =m 2
, 整理,得m 2
+6m =16,
配方,得()m +32
=25, 解得m 1=-8,m 2=2.
当m =-8时,方程为x 2
+12x =64,解得x =4或x =-16; 当m =2时,方程为x 2
-3x =4,解得x =4或x =-1.
14.解:(1)设经过x s ,△PBQ 的面积为8 cm 2
. 由题意,得1
2(6-x )×2x =8,
解得x 1=2,x 2=4.
所以经过2 s 或4 s ,△PBQ 的面积为8 cm 2
. (2)设经过y s ,P ,Q 两点间的距离为53 cm. 由题意得AP =y cm ,BQ =2y cm ,BP =(6-y )cm. 由勾股定理得(6-y )2
+(2y )2
=(53)2
, 解得y 1=3.4,y 2=-1(不合题意,舍去). 所以经过3.4 s ,P ,Q 两点间的距离为53 cm. 15.解:(1)∵x 2
+2x +3=x 2
+2x +1+2=(x +1)2
+2, ∴当x =-1时,代数式x 2
+2x +3有最小值,且最小值是2. 故答案为:-1,2. (2)x 4
-2x 2
+5 =x 4
-2x 2
+1+4 =(x 2
-1)2
+4, ∵(x 2
-1)2
≥0, ∴(x 2
-1)2
+4>0,
∴代数式x 4
-2x 2
+5的值一定是正数.
当x =±1时,这个代数式的值最小,最小值是4.
(3)S 1>S 2.理由如下:由题意,得S 1=a 2
,S 2=4(a -3)=4a -12, 则S 1-S 2=a 2
-(4a -12)=a 2
-4a +12=(a -2)2
+8. ∵(a -2)2
>0,∴(a -2)2
+8>0, ∴S 1-S 2>0,∴S 1>S 2.。