《垂径定理》教学设计课题
九年级数学上册《垂径定理》教案、教学设计
4.通过解决实际问题,使学生认识到数学在生活中的重要作用,增强学生的社会责任感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了圆的基本概念和相关性质,能运用这些知识解决一些简单问题。但在垂径定理这一部分,学生可能会在理解与应用上存在一定的困难。因此,在教学过程中,要注意以下几点:
-在复杂问题中,如何识别和应用垂径定理,以及如何将垂径定理与圆的其他性质相结合解决综合问题。
(二)教学设想
1.教学策略:
-采用探究式教学法,引导学生通过观察、猜想、验证、总结的学习过程,自主发现垂径定理。
-利用多媒体和实物模型辅助教学,增强学生的直观体验,帮助学生建立起对圆的几何直觉。
-设计梯度性问题,由浅入深,逐步引导学生掌握垂径定理的运用,提高学生的解题技巧。
-总结反思:引导学生总结垂径定理的特点和应用方法,反思学习过程中的困惑和收获。
3.教学评价:
-采用形成性评价和终结性评价相结合的方式,关注学生的学习过程和结果。
-通过课堂问答、小组讨论、课后作业、阶段测试等多种形式,全面评估学生对垂径定理的理解和应用水平。
-鼓励学生自我评价和同伴评价,培养学生的自我反思能力和批判性思维。
3.关注学生的情感态度,激发学习兴趣,培养克服困难的意志。
4.突出数学与生活的联系,使学生认识到数学知识在实际生活中的重要性。
在此基础上,教师应制定针对性的教学策略,帮助学生在掌握垂径定理的基础上,提高解决实际问题的能力,培养他们热爱数学、勇于探索的精神。
五、作业布置
为了巩固学生对垂径定理的理解和应用,以及提高他们的解题技能,特此布置以下作业:
1.学生在理解垂径定理时,可能会对定理的证明过程感到困惑决问题时,可能会对如何找出垂径和弦的关系感到迷茫。教师应通过典型例题,帮助学生总结解题方法,提高解题能力。
垂径定理教学设计名师公开课获奖教案百校联赛一等奖教案
垂径定理教学设计一、教学目标:1. 理解垂径定理的定义和几何意义;2. 掌握垂径定理的基本运用;3. 培养学生的几何思维和逻辑推理能力。
二、教学内容:垂径定理是平面几何中的重要定理,它为解决与圆相关的问题提供了有力的工具。
垂径定理是指,如果一个直径的两个端点与圆上的两点相连,并且这两条线段相互垂直,则这两条线段的中点一定在圆上。
三、教学过程:1. 理论讲解(15分钟)a. 引入垂径定理的概念,解释定理的定义和意义;b. 对与垂径定理相关的基本术语进行解释,如直径、垂直等;c. 展示垂径定理的证明过程,说明定理的正确性和普适性。
2. 实例演示(20分钟)a. 通过几个具体的实例,演示垂径定理的运用方法;b. 教师可以将实例分为直接应用和间接应用两种情况,让学生思考不同情况下如何运用垂径定理解决问题;c. 引导学生进行讨论和解答,帮助他们理解垂径定理的应用。
3. 案例分析(25分钟)a. 布置几个与垂径定理相关的问题;b. 学生以小组形式进行分析和解答,并展示他们的思路和解题过程;c. 教师根据学生的表现和分析结果,对解题思路进行点评和指导。
4. 提升拓展(20分钟)a. 强化学生对垂径定理的理解,通过练习题检验学生的掌握程度;b. 针对高阶问题和拓展思考,引导学生运用垂径定理解决更复杂的几何问题;c. 鼓励学生进行思考和讨论,培养他们的逻辑推理能力和创新思维。
四、教学评价:1. 在教学过程中,教师可以通过观察学生的参与度和回答问题的准确度,进行个别或整体评价;2. 在案例分析环节,教师可以根据学生的表现,评价他们的分析能力和解题思路;3. 练习题的考查结果可以用来评价学生对垂径定理掌握的程度。
五、教学反思:垂径定理是一个相对简单但重要的定理,通过教学设计和教学过程的安排,可以提高学生对该定理的理解和应用能力。
在教学中,要注意引导学生进行思辨和探究,并关注学生的自主学习能力的培养。
此外,可增加一些趣味性的教学方法,如游戏、实验等,以激发学生的学习兴趣和主动性。
垂径定理教学设计
垂径定理教学设计一、教学目标:1. 理解垂径定理的概念和基本原理。
2. 熟练运用垂径定理解题。
3. 培养学生的逻辑思维和解题能力。
二、教学重点:1. 垂径定理的概念和基本原理。
2. 基于垂径定理的解题方法。
三、教学难点:基于垂径定理的解题方法。
四、教学过程设计:1. 激发兴趣(5分钟)通过引入一个有趣的问题或故事,激发学生对垂径定理的兴趣,引发学生思考。
2. 理解垂径定理的概念(10分钟)介绍垂径定理的概念,并通过示意图和实例解释清楚概念中的关键要素,确保学生对垂径定理的理解准确。
3. 讲解垂径定理的基本原理(15分钟)通过推导和解释,向学生介绍垂径定理的基本原理,并实际演示如何应用垂径定理解决几何问题。
4. 分组合作讨论(15分钟)将学生分成小组,每组给出一个几何问题,要求使用垂径定理解决。
鼓励学生彼此合作,共同思考解决问题的方法和步骤。
5. 整理归纳(10分钟)让不同小组的学生轮流分享他们的解题思路和答案,通过对比和讨论,整理归纳出解题的一般步骤和技巧。
6. 解题实践(20分钟)分发练习册或工作纸,让学生独立或小组合作解答一些基于垂径定理的练习题。
教师巡视并及时纠正学生的错误,引导他们找到正确的解题思路。
7. 知识拓展(15分钟)进一步引入一些拓展的几何问题,要求学生尝试使用垂径定理进行解题。
通过这些拓展问题,培养学生的创新思维和解决问题的能力。
8. 总结归纳(10分钟)老师对垂径定理的基本原理、解题方法进行总结和归纳,强化学生对垂径定理的理解和掌握。
五、教学评价:1. 参与度评价:观察学生在课堂讨论和小组合作中的积极程度。
2. 表现评价:通过练习题的完成情况评价学生对垂径定理的掌握程度。
3. 思维评价:评价学生解题时的思维逻辑和解题能力的发展程度。
六、教学延伸:1. 在课后布置相关作业,加深学生对垂径定理的理解和应用能力。
2. 鼓励学生自主学习和研究其他几何定理和原理,扩大他们的几何知识面。
人教版数学九年级上册24.1.2《垂径定理》教学设计2
人教版数学九年级上册24.1.2《垂径定理》教学设计2一. 教材分析《垂径定理》是人教版数学九年级上册第24章第1节的内容,本节课主要介绍圆中的垂径定理。
垂径定理是指:圆中,如果一条直线垂直于直径,那么这条直线平分这条直径,并且平分直径所对的圆周角。
教材通过生活中的实例引入垂径定理的概念,然后通过证明和应用来巩固这个定理。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、直径、半径等。
同时,学生也掌握了平行线和相交线的性质。
但是,学生对于圆中的垂径定理可能比较难以理解和证明,因此需要通过生活中的实例和图形的直观展示,帮助学生理解和掌握这个定理。
三. 教学目标1.知识与技能:让学生理解和掌握圆中的垂径定理,能够运用垂径定理解决相关问题。
2.过程与方法:通过观察、操作、证明等过程,培养学生的几何思维和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.教学重点:理解和掌握垂径定理,能够运用垂径定理解决相关问题。
2.教学难点:垂径定理的证明和运用。
五. 教学方法1.情境教学法:通过生活中的实例引入垂径定理,激发学生的学习兴趣。
2.演示法:通过图形的直观展示,帮助学生理解和证明垂径定理。
3.问题驱动法:通过提出问题和解决问题,引导学生主动探索和学习。
4.小组合作学习:鼓励学生分组讨论和合作,培养学生的团队合作意识。
六. 教学准备1.教具准备:多媒体教学设备、圆规、直尺、黑板等。
2.教学素材:教材、课件、练习题等。
七. 教学过程1.导入(5分钟)通过展示生活中的实例,如自行车轮子、时钟等,引导学生观察和思考圆中的垂径定理。
让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)展示垂径定理的定义和性质,通过图形的直观展示,让学生理解和掌握垂径定理。
同时,引导学生思考如何证明这个定理。
3.操练(10分钟)让学生分组讨论和合作,尝试证明垂径定理。
垂径定理教学设计1
问题 & 探究2
在纸上的圆中任意画一条弦AB 作直径CD垂直弦AB于E(垂直于
弦的直径) 垂足为E.想一想:
(1)此图是轴对称图形吗?如果 是对称轴是什么?
(2)你能发现哪些相等的线段和 弧?为什么?
你能得到什么结论?
动动脑筋
已知:在⊙O中,CD是直径, AABE是=弦BE,,CA⌒DC⊥=AB⌒BC,,垂A⌒足D=为B⌒ED。。求证:
∴A⌒C=B⌒D
M
A
E
B
C
D
A
BC
DB
.O
小结:
N
解决有关弦的问题,经常是过圆心作
弦的垂线,或作垂直于弦的直径,连结半 径等辅助线,为应用垂径定理创造条件。
为圆心的两个同心圆中,
O.
大圆的弦AB交小圆于C, D两点。
A
E C
DB
求证:AC=BD。
证明:过O作OE⊥AB,垂足为E, 则AE=BE,CE=DE。
AE-CE=BE-DE。
所以,AC=BD
C A 2、 已知:⊙O中弦 AB∥CD。
求证:A⌒C=B⌒D
M
D B
.O
N 证∴M明N:⊥作C直D径。M则NA⊥⌒MA=BB。⌒M∵,ACB⌒M∥=CDD⌒M, (垂直平分弦的直径平分弦所对的弦) A⌒M-C⌒M=BM⌒ -D⌒M
证明:连结OA、OB,则OA=OB。 A 因为垂直于弦AB的直径CD所在的 直线既是等腰三角形OAB的对称轴 又是⊙ O的对称轴。所以,当把圆 沿着直径CD折叠时,CD两侧的两 个和B⌒DB半重E圆重合⌒重合。合,因,A此AC点、⌒ 和ADB分⌒点别重和合B,CA、E AE=BE,A⌒C=B⌒C,A⌒D=B⌒D
C
24.1.2 垂径定理教案.doc
(探究)圆是轴对称图形吗?它有几条对称轴?分别是什么?
2.垂径定理
(思考)如图:AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足E。
1 这个图形是对称图形吗
2你能发现图中有哪些相等的线段和弧?请说明理由。
3你能用一句话概括这些结论吗?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
(3)这些方法中你又用到了哪些数学思想?
作业布置
(1)教材82页练习第1题88页第11题
分层作业
如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB 的长是多少?
(2)家庭作业练习册
教师提出问题,学生回顾本节课Fra bibliotek学知识,自己进行小结,养成梳理知识的习惯。
板书设计
教师循序渐进地将一个个的问题抛出,引导学生一步步地进行思考和总结,师生一起总结垂径定理并板书。
学生小组讨论,发现垂径定理的证明方法,并由学生代表发言。
学生尝试将文字转变为符号语言,用几何符号表达定理的逻辑关系。教师更正并板书。
教师明确定理中的条件和结论,初步理解“知二得三”口诀的含义。
教师提出问题,引导学生进行思考和讨论。
2.将手中的圆沿直径向上折,你会发现折痕是圆的一条弦,这条弦被直径怎样了?
3.一个残缺的圆形物件,你能找到它的圆心吗?
4.赵州桥是我国古代桥梁史的骄傲,我们能求出主桥拱的半径吗?
前两个问题可以由学生动手操作,并观察结果,得到初步结论。
后两个问题作为问题情境,激发学生学习兴趣,引导学生进一步的学习。
合作交流探究新知
A、 AC=BC B、AN=BN C、OC=CN D、AM=BM
典型应用
如图。在⊙O中弦AB的长为8cm,圆心O到AB的距离OD=3cm,则⊙O的半径为cm
《垂径定理》教学设计教案
《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。
2. 引导学生通过实际问题发现垂径定理。
教学内容:1. 引导学生回顾圆的性质和基本概念。
2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。
2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。
教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。
第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。
2. 培养学生通过几何推理解决问题的能力。
教学内容:1. 引导学生通过几何推理,探索垂径定理。
2. 引导学生验证垂径定理的正确性。
教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。
2. 组织学生进行小组讨论,分享各自的解题思路和方法。
教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。
第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。
2. 培养学生解决实际问题的能力。
教学内容:1. 引导学生学习和掌握垂径定理的应用方法。
2. 引导学生运用垂径定理解决实际问题。
教学活动:1. 引导学生学习和掌握垂径定理的应用方法。
2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。
教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。
第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。
2. 提高学生解决实际问题的能力。
教学内容:1. 引导学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学活动:1. 组织学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。
2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。
第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。
《垂径定理》教学设计教案
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能:让学生掌握垂径定理的内容及其应用。
培养学生运用几何知识解决实际问题的能力。
1.2 过程与方法:通过观察、猜想、证明的过程,让学生体验数学的探究过程。
运用图形计算器或信息技术工具,帮助学生更好地理解垂径定理。
1.3 情感态度与价值观:培养学生对数学的兴趣和自信心。
培养学生合作交流的能力,提高学生的团队协作能力。
第二章:教学内容2.1 教材分析:分析教材中关于垂径定理的定义、证明和应用。
理解垂径定理在圆的性质和几何图形中的应用。
2.2 学情分析:了解学生对圆的基本知识和垂线的概念。
了解学生对几何证明的掌握程度,为学生提供必要的支持。
第三章:教学重难点3.1 教学重点:让学生掌握垂径定理的证明过程和定理的内容。
能够运用垂径定理解决相关的几何问题。
3.2 教学难点:理解并证明垂径定理。
灵活运用垂径定理解决实际问题。
第四章:教学方法与手段4.1 教学方法:采用问题驱动的教学方法,引导学生观察、猜想、证明。
运用小组合作学习,鼓励学生互相交流、讨论。
4.2 教学手段:使用图形计算器或信息技术工具,展示几何图形,帮助学生更好地理解垂径定理。
提供相关的练习题和案例,供学生实践和应用垂径定理。
第五章:教学过程5.1 导入:通过引入实际问题或情境,激发学生的兴趣和好奇心。
引导学生观察和猜想垂径定理的内容。
5.2 探究与证明:引导学生进行小组合作学习,共同探究垂径定理的证明过程。
引导学生运用几何知识和证明方法,进行逻辑推理和证明。
5.3 应用与练习:提供相关的练习题和案例,让学生运用垂径定理解决问题。
引导学生进行自主学习和合作交流,解答练习题和案例。
鼓励学生反思自己的学习过程,提出问题和建议,为后续学习做好准备。
1. 导入新课通过展示实际问题,引入垂径定理的概念和意义。
提供具体的垂径定理案例,让学生观察和分析,引导学生猜想垂径定理的内容。
第五章:垂径定理的证明通过引导学生运用已有知识,尝试证明垂径定理。
北师大版九年级数学下册:3.3《垂径定理》教学设计
北师大版九年级数学下册:3.3《垂径定理》教学设计一. 教材分析《垂径定理》是北师大版九年级数学下册第3章第3节的内容。
本节主要介绍圆中的垂径定理及其应用。
垂径定理是圆的基本性质之一,对于解决与圆相关的问题具有重要意义。
通过学习垂径定理,学生能够更深入地理解圆的性质,提高解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了圆的基本概念和性质,具备了一定的观察、分析和推理能力。
但在学习垂径定理时,学生可能对定理的理解和应用还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解并掌握垂径定理。
三. 教学目标1.理解垂径定理的内容及证明过程。
2.能够运用垂径定理解决与圆相关的问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.重点:垂径定理的理解和应用。
2.难点:垂径定理的证明过程。
五. 教学方法1.引导发现法:教师引导学生观察、分析、推理,发现垂径定理。
2.实例讲解法:教师通过具体例子,讲解垂径定理的应用。
3.合作交流法:学生分组讨论,分享学习心得和解决问题的方法。
六. 教学准备1.教学PPT:包含垂径定理的定义、证明和应用。
2.实例图片:用于讲解垂径定理的应用。
3.练习题:巩固所学内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾圆的基本性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示PPT,介绍垂径定理的定义、证明和应用。
引导学生观察、分析,理解垂径定理的意义。
3.操练(10分钟)教师提出几个与垂径定理相关的问题,让学生分组讨论,共同解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成几道练习题,巩固所学内容。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)教师提出一些拓展问题,引导学生运用垂径定理解决实际问题。
学生分组讨论,分享解题方法。
6.小结(5分钟)教师引导学生总结本节课所学内容,回顾学习过程,分享学习心得。
垂径定理教学设计
垂径定理教学设计教学目标:知识与能力: 1.使学生理解圆的轴对称性2.掌握垂径定理3.学会运用垂径定理解决有关的证明、计算问题。
过程与方法:1.通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力。
2.锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活。
情感、态度与价值观:通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。
教学重点:垂径定理及应用教学难点:垂径定理的理解及其应用教学用具:圆形纸片,小黑板教学过程:一、创设情景:地震造成我们小区的圆柱形供水管道损坏,现在工人师傅要为我们换管道,如图,他测量出管道有积水部分的最大深度是3CM,水面的宽度为6CM,这个工人师傅想了又想,也不知道该用多大的水管来替换,你能帮他解决这个问题吗?二、引入新课---揭示课题:1、运用教具与学具(学生自制的圆形纸片)演示,让每个学生都动手实验,把圆形纸片沿直径对折,观察两部分是否重合,通过实验,引导学生得出结论:(1)圆是轴对称图形(2)经过圆心的每一条直线(注:不能说直径)都是它的对称轴(3)圆的对称轴有无数条(4)圆也是中心对称图形.(出示教具演示)。
2、再请同学们在自己作的圆中作图:(1)任意作一条弦AB;(2)作直径CD垂直弦AB垂足为E。
(出示教具演示)引导学生分析直径CD与弦AB此时的关系,说明直径CD垂直于弦AB的,并设问:垂直于弦的直径它除了上述性质外,是否还有其他性质呢?导出本节课的课题,教师板书课题24.1.2 垂直于弦的直径。
三、讲解新课---探求新知:(1)实验--观察--猜想:让学生将上述作好的圆沿直径CD对折,观察重合部分后,发现有哪些线段相等、弧相等,并得出猜想:在圆O中,CD是直径,AB是弦,CD垂直AB于E.那么AE=BE ,弧AC=弧BC,弧AD=弧BD.(2)证明:引导学生用“叠合法”证明此定理(3)对定理的结构进行分析(4)结合图形用几何语言表述(5)垂径定理的变式四、定理的应用:例1:(2008哈尔滨中考)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB 于点D,交⊙O于点C,且CD=1,则弦AB的长是___________练习1:(08年福州中考)如图,AB是圆O的弦,OC⊥AB于C,若AB=8cm,OC=3cm,则圆O的半径长为多少?归纳:求圆中有关线段的长度时,常借助垂径定理转化为直角三角形,半径r、弦半a/2、弦心距d,三者构造出一个直角三角形,知道两个量可用勾股定理求出第三个量例2:如图,两个圆都以点O为圆心,求证AC=BD练习2:如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB 于D,OE⊥AC于E.求证四边形ADOE是正方形.五、小结与反思:你学习了哪些内容?你有哪些收获?你掌握了哪些思想方法?你还有什么问题?六、课后拓展:1、(09年模拟)如图,已知AB、AC为弦,OM⊥AB于点M,ON⊥AC于点N ,BC=4,则MN= ————.2、你能帮工人师傅解决水管替换问题了吗?3、已知⊙O的半径为10,弦AB∥CD,AB=12,CD=16,则AB和CD的距离为--------。
《垂径定理》教学设计教案
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标理解垂径定理的概念和意义。
学会运用垂径定理解决实际问题。
1.2 过程与方法目标通过观察和实验,发现垂径定理的规律。
学会运用几何画图工具,准确地画出垂直平分线。
1.3 情感态度与价值观目标培养学生的观察能力和思维能力。
培养学生的合作意识和解决问题的能力。
第二章:教学内容2.1 教材分析介绍垂径定理的内容和证明过程。
通过实际例题,展示垂径定理的应用。
2.2 学情分析学生已经掌握了直线、圆的基本概念和性质。
学生具备一定观察和实验的能力。
第三章:教学过程3.1 导入新课通过一个实际问题,引发学生对垂径定理的思考。
引导学生观察和实验,发现垂径定理的规律。
3.2 探究与发现学生分组进行实验,观察垂直平分线与弦的关系。
引导学生总结垂径定理的表述。
3.3 知识讲解讲解垂径定理的证明过程。
通过示例,解释垂径定理的应用。
3.4 练习与巩固学生独立完成一些练习题,巩固对垂径定理的理解。
教师引导学生互相讨论和解答问题。
第四章:教学评价4.1 课堂评价教师通过观察学生的实验和练习情况,评价学生对垂径定理的理解和应用能力。
学生之间互相评价,分享解题经验和思路。
4.2 课后评价教师布置一些相关的课后作业,检验学生对垂径定理的掌握程度。
学生通过完成作业,进一步巩固和提高垂径定理的应用能力。
第五章:教学资源5.1 教材教师使用的教材,包括课本和相关教辅材料。
5.2 实验材料学生分组进行实验所需的材料,如几何画图工具、圆规、直尺等。
5.3 多媒体教学资源利用多媒体课件和教学视频,帮助学生更好地理解和掌握垂径定理。
第六章:教学策略6.1 讲授法教师通过讲解垂径定理的证明过程和应用实例,引导学生理解和掌握知识点。
6.2 实验法学生通过分组实验,观察和验证垂径定理,培养动手能力和观察能力。
6.3 讨论法教师组织学生进行小组讨论,分享解题经验和思路,促进互动交流。
第七章:教学难点与重点7.1 教学难点学生对垂径定理的证明过程的理解和应用。
垂径定理教学设计
垂径定理教学设计教学设计:垂径定理教学目标:1.理解垂径定理的定义和原理;2.掌握应用垂径定理解决问题的方法;3.培养学生的逻辑思维和证明能力。
教学步骤:一、导入(15分钟)1.通过提问的方式,引出垂径定理的概念和作用,激发学生对该定理的兴趣。
2.给学生展示一些实际生活中使用垂径定理的例子,如建筑设计、地理测量等,说明学习垂径定理的重要性。
二、理解垂径定理(30分钟)1.引导学生观察和发现:在一个圆内,以圆心为端点的半径与圆上条切线之间的关系。
2.引导学生总结并给出垂径定理的定义:在一个圆内,以圆心为端点的半径与圆上的切线垂直。
3.通过给出几个具体的案例,帮助学生理解垂径定理的意义和应用。
三、应用垂径定理解决问题(30分钟)1.给学生出示一些具体问题,引导他们应用垂径定理解决问题。
2.阐述解决问题的一般步骤:根据问题条件,确定圆心、半径和切线,应用垂径定理判断是否垂直。
3.给学生分组讨论解决问题的方法,并在黑板上进行总结和讨论。
四、拓展练习(30分钟)1.给学生分发一些练习题,让他们独立或小组完成,并在课堂上进行讲解和讨论。
2.引导学生思考问题的多个解法和证明的不同方法,培养他们的思考能力和证明能力。
3.鼓励学生提出疑问和讨论,引导他们思考如何应用垂径定理解决更复杂的问题。
五、总结(15分钟)1.综合学生的讨论和解答,总结垂径定理的定义、应用和解决问题的方法。
2.提出作业:让学生写一篇500字以上的短文,总结垂径定理的原理和应用,并分析具体案例。
3.回顾整个课堂内容,引导学生思考学习垂径定理的感受和收获。
教学资源:1.教师准备的课件,包括垂径定理的定义、案例和应用;2.练习题,用于课堂练习和讨论;3.学生课本和笔记本,用于记录课堂内容和思考问题。
教学评价:1.在课堂上观察学生的参与情况,检查他们对垂径定理的理解和应用;2.根据学生的讨论和解答,评价他们的思考能力和证明能力;3.根据学生的作业,评价他们对垂径定理的理解和总结能力。
浙教版九年级数学上册 3.3 垂径定理 教学设计 (2课时)
浙教版九年级数学上册 3.3 垂径定理教学设计 (2课时)
一、教学目标
1.理解什么是垂径定理;
2.掌握垂径定理的应用方法和解题思路;
3.培养学生的逻辑思维和分析问题的能力。
二、教学内容
1.垂径定理的概念介绍;
2.垂径定理的常见应用。
三、教学过程
1. 导入 (5分钟)
教师出示一个图形,让学生观察图形并回答以下问题:
•这个图形有哪些特点?
•你能发现图形中有哪些直线?
•你能找出与某个直线相交的直线吗?
通过学生的回答,引导他们思考直线相交的性质,并引入垂径定理。
2. 讲解垂径定理的概念 (15分钟)
•通过示意图,讲解垂径的定义和性质;
•提示学生思考垂径的特点,并引导他们总结出垂径定理的基本内容。
3. 案例分析与解决 (40分钟)
•给出具体案例,让学生分析并解答相关问题;
•引导学生从图形角度、纵横坐标等不同角度入手思考问题,培养他们的分析能力;
•鼓励学生积极讨论,与同学合作解题;
4. 拓展应用 (35分钟)
•提供一些其他类型的垂径问题,让学生运用垂径定理解决;
•引导学生思考如何利用垂径定理解决更复杂的几何问题;
•鼓励学生提出自己的问题,并尝试解决。
四、教学反思
本节课使用了案例分析和问题导向的教学方法,帮助学生深入理解垂径定理的概念和应用。
在教学设计中,通过鼓励学生思考、讨论和合作解题,培养了他们的逻辑思维和分析问题的能力。
同时,通过拓展应用部分的设计,引导学生思考如何运用垂径定理解决更复杂的几何问题,激发了学生的求知欲和探究兴趣。
《垂径定理》教学设计教案完整版
圆的性质包括圆心到圆上任意一点 的距离都等于半径,以及圆上任意 两点间的弧长与这两点间所夹圆心 角的大小成正比。
直径、半径和弧的概念
直径是穿过圆心、连 接圆上任意两点的线 段,其长度等于两倍 的半径。
弧是圆上两点间的部 分,根据圆心角的大 小可分为优弧、劣弧 和半圆。
半径是从圆心到圆上 任意一点的线段,其 长度等于圆的半径。
分享交流探究成果
分享方式
每个小组选派一名代表, 向全班展示他们的探究 过程和成果,可以通过 口头报告、PPT演示、 板书等方式进行。
交流内容
包括问题背景、解决方 法、遇到的困难、取得 的成果以及心得体会等。
互动环节
其他小组可以提问、补 充或发表不同看法,促 进全班范围内的深入交 流和讨论。
教师点评与总结
布置适量练习题,让学生独立完 成,检验学生的学习效果。
课程引入(5分钟)
通过实例引入垂径定理的概念, 激发学生的学习兴趣。
课程总结(5分钟)
回顾本课所学内容,总结垂径定 理及其逆定理的应用方法,鼓励 学生课后继续探究相关问题。
02 基础知识回顾
圆的性质与定义
01
圆是平面上所有与定点(圆心)距 离等于定长(半径)的点的集合。
05 学生自主探究活动
分组探究垂径定理的应用
分组
将全班学生分成若干小组,每组4-6人,确保每组学生具有不同 的数学能力和背景。
探究任务
给每个小组分配一个与垂径定理相关的数学问题或应用场景,例 如求解圆的弦长、判断点与圆的位置关系等。
探究过程
学生小组内进行讨论、分析、尝试解决问题,并记录探究过程和 结果。
垂径定理的表述
在平面内,垂直于弦的直 径平分这条弦,并且平分 弦所对的两条弧。
垂径定理教学设计(共19篇)
垂径定理教学设计〔共19篇〕篇1:垂径定理教学反思垂径定理教学反思本节课的教学目的是使学生理解圆的轴对称性,掌握垂径定理,并学会运用垂径定理解决有关弦、弧、弦心距以及半径之间的证明和计算问题。
垂径定理是圆的轴对称性的重要表达,是今后解决有关计算、证明和作图问题的重要根据,它有着广泛的应用,因此,本节课的教学重点是:垂径定理及其应用。
垂径定理的推导利用了圆的轴对称性,它是一种运动变换,这种证明方法学生不常用到,与严格的逻辑推理比拟,在证明的表述上学生会发生困难,因此垂径定理的推导是本节课的难点。
这节课我通过七个环节来完本钱节课的教学目的,采用了类比,启发等教学方法。
圆是轴对称图形,每一条直径所在的直线都是对称轴。
这点学生理解的很好。
根据这个性质先按课本进展合作学习1.任意作一个圆和这个圆的任意一条直径CD;2.作一条和直径CD的垂线的弦,AB与CD相交于点E.提出问题:把圆沿着直径CD所在的直线对折,你发现哪些点、线段、圆弧重合?在学生探究的根底上,得出结论:〔先介绍弧相等的概念〕①EA=EB;②AC=BC,AD=BD.理由如下:∵∠OEA=∠OEB=Rt∠,根据圆的轴轴对称性,可得射线EA与EB重合,∴点A与点B重合,弧AC和弧BC重合,弧AD和弧BD重合。
∴EA=EB,AC=BC,AD=BD.然后把此结论归纳成命题的形式:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的`弧。
垂径定理的几何语言∵CD为直径,CD⊥AB〔OC⊥AB〕∴EA=EB,AC=BC,AD=BD.在学生掌握了垂径定理后,及时应用定理画图和解决实际问题,练习由根底到进步,层层深化,学生很有兴趣。
做完题目后总计解题的主要方法:〔1〕画弦心距是圆中常见的辅助线;〔2〕半径〔r〕、半弦、弦心距〔d〕组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长本节课缺乏之处是在处理垂径定理的推论时,应归纳相关垂径定理的五个元素:直径、弦中点、垂直、优弧中点、劣弧中点的规律:“知二得三”。
垂径定理的教学设计
垂径定理的教学设计垂径定理是高中数学中的一个重要定理,也是平面几何中的基本定理之一。
教学设计的目的是帮助学生深入理解和掌握垂径定理的概念、性质和应用。
下面是一份针对高中数学教学的垂径定理教学设计,内容包括教学目标、教学过程、教学方法和评估方式。
一、教学目标1. 理解垂径定理的概念和性质。
2. 学会运用垂径定理解决相关几何问题。
3. 培养学生的几何思维能力和证明能力。
二、教学过程1. 导入(10分钟)通过引入“垂径定理”的实际例子(如建筑物中的立柱与地面),激发学生对该定理的兴趣,并询问学生是否了解或听说过垂径定理,并请学生描述该定理的内容。
2. 理解定理(15分钟)教师通过使用动态展示或示意图等形式,引导学生观察和思考,进一步深入理解垂径定理的内涵。
教师可以给出几个实际问题来引导学生思考,并共同探究垂径定理的性质。
3. 探究和发现(30分钟)教师组织学生小组活动,以小组合作的形式让学生们自主探究,发现垂径定理的相关性质。
教师可以引导学生做出以下观察和猜想:观察:a) 直线与平行线的关系;b) 垂直和平行线的关系;c) 任意一条线段和平行线的关系。
猜想:a) 如果两条线段互相垂直,这两段线段的长度是否存在某种关系?b) 如果两条平行线与一条直线相交,这三条线段的长度是否存在某种关系?c) 是否存在一个定理可以总结上述关系?学生小组进行讨论和研究,最后每个小组进行展示和总结。
4.定理的表述和证明(30分钟)通过学生小组的讨论和总结,教师向学生介绍垂径定理的准确表述,并给出该定理的证明过程。
教师可以使用带有图像的演示或幻灯片,以直观的方式向学生展示证明过程。
5. 练习和应用(25分钟)为了巩固学生对垂径定理的理解和掌握,教师提供相关的练习题和应用题,让学生进行个人或小组完成。
练习题可以包括直接运用垂径定理解决问题的计算题,也可以包括应用题例如证明题、选择题或证明前提题等。
6. 总结和拓展(15分钟)教师与学生共同总结垂径定理的概念和性质,对学生的提问进行回答,检查学生对该定理的理解和掌握程度。
3.3垂径定理(教案)
今天我们在课堂上学习了垂径定理,回顾整个教学过程,我觉得有几个方面值得反思和总结。
首先,关于课堂导入,我通过提出与日常生活相关的问题,激发了学生的好奇心和兴趣。这种方法让学生能够更快地进入学习状态,对今天的教学内容产生关注。在今后的教学中,我需要继续探索更多有趣的导入方式,让学生在轻松愉快的氛围中开始学习。
3.弓形面积的计算:利用垂径定理,推导并掌握弓形面积的计算方法。
本节课旨在让学生掌握垂径定理及其应用,培养他们的逻辑思维能力和解决问题的能力,同时为后续学习圆的相关知识打下基础。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的空间观念:通过探究垂径定理,让学生在观察、操作、思考的过程中,形成对圆中弦、直径、弧等几何元素的空间认识和感知能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂径定理的基本概念。垂径定理指的是,在一个圆中,垂直于弦的直径将弦平分,并且平分弦所对的两条弧。这个定理在解决与圆有关的问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过案例分析,展示垂径定理如何帮助我们求解圆中弦长、弧长等问题。
3.3垂径定理(教案)
一、教学内容
本节课选自八年级数学教材第三章第三节“垂径定理”。教学内容主要包括以下三个方面:
1.垂径定理:通过直观演示和实际操作,让学生掌握圆中弦的中垂线性质,即垂直于弦的直径平分弦,并且平分弦所对的两条弧。
2.垂径定理的应用:通过典型例题,让学生学会运用垂径定理解决实际问题,如求圆中弦长、弧长、圆心角等。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“垂径定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
浙教版数学九年级上册《3.3 垂径定理》教学设计2
浙教版数学九年级上册《3.3 垂径定理》教学设计2一. 教材分析《3.3 垂径定理》是浙教版数学九年级上册的一个重要内容。
本节课主要讲述了垂径定理及其应用。
垂径定理是指:圆中,垂直于弦的直径平分弦,并且平分弦所对的两条弧。
这一定理是圆的基本性质之一,对于解决与圆有关的问题具有重要意义。
在本节课中,学生将通过探究垂径定理,培养观察、思考、归纳的能力,同时提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对圆的概念和性质有所了解。
但是,对于垂径定理的证明和应用,他们可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生通过观察、操作、思考、交流等活动,逐步理解和掌握垂径定理。
三. 教学目标1.知识与技能:使学生理解和掌握垂径定理,能够运用垂径定理解决简单的问题。
2.过程与方法:培养学生观察、思考、归纳的能力,提高解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:理解和掌握垂径定理。
2.难点:垂径定理的证明和应用。
五. 教学方法1.情境教学法:通过设置情境,引导学生观察、思考,发现垂径定理。
2.小组合作学习:让学生在小组内进行讨论、交流,共同解决问题。
3.实践操作法:让学生动手操作,加深对垂径定理的理解。
六. 教学准备1.教具:圆规、直尺、彩笔、多媒体设备等。
2.学具:每人一份圆、直线、折纸等。
七. 教学过程1.导入(5分钟)教师通过展示一些与圆有关的生活实例,引导学生思考圆的性质,激发学生的学习兴趣。
2.呈现(10分钟)教师引导学生观察一些圆的图形,让学生发现其中的规律。
学生通过观察、思考,发现垂径定理。
3.操练(10分钟)教师给出一些与垂径定理有关的问题,让学生运用所学的垂径定理进行解答。
学生通过解决问题,巩固对垂径定理的理解。
4.巩固(10分钟)教师学生进行小组讨论,让学生通过合作交流,进一步理解和掌握垂径定理。
24.1垂径定理教学设计课题(定稿子)
24.1.2 垂直于弦的直径授课题目:垂直于弦的直径一、教材分析1、作为《圆》这章的第一个重要性质,它研究的是垂直于弦的直径和这弦的关系。
2、该性质是圆的轴对称性的演绎,也是今后证明圆中线段相等、角相等、弧相等、垂直关系的重要依据,同时为后面圆的计算和作图提供了方法和依据,所以它在教材中处于非常重要的作用。
二、教学目标1、知识目标:〔1〕充分认识圆的轴对称性。
〔2〕利用轴对称探索垂直于弦的直径的有关性质,掌握垂径定理。
〔3〕运用垂径定理进展简单的证明、计算和作图。
2、能力目标:〔1〕让学生经历“实验—观察—猜测—验证—归纳〞的研究过程,培养学生动手实践、观察分析、归纳问题和解决问题的能力。
〔2〕让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
3、情感目标:通过实验操作探索数学规律,激发学生的好奇心和求知欲同时培养学生勇于探索的精神。
三、教学关键:圆的轴对称性的理解四、教学重点:垂直于弦的直径的性质与其应用。
五、教学难点:1、垂径定理的证明。
2、垂径定理的题设与结论的区分。
六、教学辅助:多媒体、可折叠的圆形纸板。
七、教学方法本节课采用的教学方法是“主体探究式〞。
整堂课充分发挥教师的主导作用和学生的主体作用,注重学生探究能力的培养,鼓励学生认真观察、大胆猜测、小心求证。
令学生参与到“实验--观察--猜测--验证--归纳〞的活动中,与教师共同探究新知识最后得出定理。
学生不再是知识的承受者,而是知识的发现者,是学习的主人。
八、教学过程:1、情景创设〔1分钟〕情景问题:赵州桥主桥拱的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?〔ppt〕把一些实际问题转化为数学问题2、回顾旧识〔2分钟〕我们已经学习过对称的有关概念,下面复习两道问题1〕什么是轴对称图形? 2〕我们学习过的轴对称图形有哪些?〔电脑上直观的动画演示,运用几何画板演示沿上述图形对称轴对折图形的动画〕3、引入新课〔4分钟〕问:〔1〕我们所学的圆是不是轴对称图形?〔2〕如果是,它的对称轴是什么?拿出一X圆形纸片,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?:〔1〕圆是轴对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《垂径定理》教学设计
单位:登封市大金店二中
授课教师:唐海广
《垂径定理》教学设计
一、学生起点分析
学生的知识技能基础:学生在七、八年级已经学习过轴对称图形的有关概念和性质,等腰三角形的对称性,以及本节定理的证明要用到的三角形全等的知识,在本章前两节课中也已经初步理解了圆的轴对称性和圆弧的表示等知识,具备探索证明几何定理的基本技能.
学生活动经验基础:在平时的学习中,学生已掌握探究图形性质的不同手段和方法,具备几何定理的分析、探索和证明能力.
二、教学任务分析
该节内容为1课时.圆是一种特殊图形,它是轴对称图形,学生通过类比等腰三角形的轴对称性,能利用圆的轴对称性探索、证明得出圆的垂径定理及其逆
定理.具体地说,本节课的教学目标是:
知识与技能
1.利用圆的轴对称性研究垂径定理及其逆定理;
2.运用垂径定理及其逆定理解决问题.
过程与方法
1.经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法.
情感与态度
1. 培养学生类比分析,猜想探索的能力.
2. 通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神.教学重点:利用圆的轴对称性研究垂径定理及其逆定理.
教学难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线.三、教学设计分析
本节课设计了四个教学环节:
类比引入,猜想探索,知识应用,归纳小结.
第一环节类比引入
活动内容:
1.等腰三角形是轴对称图形吗?
2.如果将一等腰三角形沿底边上的高对折,
3.如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画
圆,得到的图形是否是轴对称图形呢?
活动目的:
通过等腰三角形的轴对称性向圆的轴对称性过渡,引导学生思考,培养学生类比分析的能力.
第二环节猜想探索
活动内容:
1.如图,AB是⊙O的一条弦,作直径CD,使CD
⊥AB,垂足为M.
(1)该图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能图中有哪些等量关系?说一说你的理由.
条件:①CD是直径;②CD⊥AB
结论(等量关系):③AM=BM;
④⌒AC=⌒BC;⑤⌒AD=⌒BD.
证明:连接OA,OB,则OA=OB.
在Rt△OAM和Rt△OBM中,
∵OA=OB,OM=OM,
∴Rt△OAM≌Rt△OBM.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时, 点A与点B重合,
⌒AC和⌒BC重合,⌒AD和⌒BD重合.
∴⌒AC=⌒BC,⌒AD=⌒BD.
2.证明完毕后,让学生自行用文字语言表述这一结论,最后提炼出垂径定理的内容——垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
3.辨析:判断下列图形,能否使用垂径定理?
注意:定理中的两个条件缺一不可——直径(半径),垂直于弦.
通过以上辨析,让学生对垂径定理的两个条件的必要性有更充分的认识.
4.垂径定理逆定理的探索
如图,AB 是⊙O 的弦(不是直径),作一条平分AB 的直径CD ,交AB 于点M .
(1)下图是轴对称图形吗?如果是,其对称轴是什么?
(2)图中有哪些等量关系?说一说你的理由.
条件:① CD 是直径;② AM =BM
结论(等量关系):③CD ⊥AB ; ④⌒AC
=⌒BC ;⑤⌒AD =⌒BD . 让学生模仿垂径定理的证明过程,自行证明逆定理,并表述逆定理的内容 ——平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
5.辨析:“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.”如果该定理少了“不是直径”,是否也能成立?
O C D B A O C D E O C D B
反例:
活动目的:
活动1的主要目的是通过让学生猜想、类比、探索和证明获得新知,从而得到研究数学的多种方法的体会,获取经验;活动2 的主要目的是让学生通过对定理表述反复的语言提炼,锻炼学生的归纳能力和严谨的表述能力,并对定理的条件和结论有更深刻的理解和认识;活动3的主要目的是通过反例使学生对定理的严谨性有更深的认识;活动4的主要目的与活动1相似,并让学生与活动1类比,提高探索能力;活动5的主要目的与活动3相似.
实际教学效果:
在活动1中的证明时,学生对如何证明平分弦,可能会有一定困难,此时应引导学生类比等腰三角形,通过连接OA、OB,构造等腰三角形,并利用三角形全等的知识来证明;另外,在证明直径平分弦所对的弧,也是一个难点,学生会觉得比较难表述,这时应类比等腰三角形的轴对称性,运用圆的轴对称性启发引导;在活动2中,学生的说法可能不够准确、精炼,但教师应该鼓励学生坚持勇于尝试,让学生互相指出说法的不足和缺陷,互相加以修正,在反复的语言提炼中对定理的条件和结论有更深刻的理解和认识,这也是一个自主构建的过程;活动3是通过反例说明定理的条件的必要性和严谨性,要注意让学生学会通过反例找出对应缺失的条件,提高学生对定理的理解;在活动4中,学生已经有了活动1的经验,教师应放手让学生去猜想、类比、探索和证明,增加学生对数学知
识的探索的领悟和经验;活动5与活动3相似.
第三环节 知识应用
活动内容:
讲解例题及完成随堂练习.
1.例:如图,一条公路的转弯处是一段圆弧(即图中⌒CD
,点0是⌒CD 所在圆的圆心),其中CD =600m ,E 为⌒CD
上的一点,且OE ⊥CD ,垂足为F ,EF =90m.求这段弯路的半
径.
解:连接OC ,设弯路的半径为R m,则OF =(R -90)m .
∵OE ⊥CD
3006002
121=⨯==∴CD CF 根据勾股定理,得
OC ²=CF ² +OF ²
即 R ²=300²+(R -90)².
解这个方程,得R =545.
所以,这段弯路的半径为545m.
2.随堂练习1.1400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2米,求桥拱所在圆的半径.(结果精确到0.1米).
O
C D B
A
O
C
D
B
A O
C D
B
A
3.随堂练习2.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?
为什么?
有三种情况:(1)圆心在平行弦外;
(2)圆心在其中一条弦上;
(3)圆心在平行弦内.
活动目的:活动1、2的主要目的是让学生应用新知识构造直角三角形,并通过方程的方法去解决几何问题;活动3的主要目的是让学生通过作垂线段构造符合定理使用的条件,从而运用定理解决问题,以及培养学生解题中的分类思想.
实际教学效果:
在活动4中,对于例题和随堂练习1教师要引导学生如何够造可以应用垂径定理的几何构图,让学生积累如何添加辅助线的经验,以及体会到构造直角三角形并利用勾股定理列方程在解决几何问题中的作用,培养数形结合的思想.对于随堂练习2,教师要引导学生通过自行画图,探索分析符合条件图形有多少种情况:圆心在平行弦外,在其中一条弦上、在平行弦内,并通过添加辅助线构造可以应用垂径定理的条件,以及比较三种构图的共同点,得出说理的思路都是一样的结论.
第四环节归纳小结
活动内容:
学生交流总结
1.利用圆的轴对称性研究了垂径定理及其逆定理.
2.解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连接半径等辅助线,为应用垂径定理创造条件.
活动目的:
通过回顾本节课的各个环节,鼓励学生交流自己的收获和感想,加深对本节课知识和探索方法的理解和掌握,培养学生养成归纳反思的学习习惯.实际教学效果:
学生在互相交流中,对于归纳出来的内容,会有各种表述,大多都是围绕知识本身,教师应引导学生对探索知识的方法也能归纳反思.
四、教学设计反思
1.要从培养学生学习方法的角度使用教材
教材为教师提供了基本的教学素材,但如何使用这些素材,教师完全可以根
据学生的实际情况进行适当调整.学生在探索垂径定理的时候,其中一个难点在于如何证明垂径定理,这时通过类比等腰三角形的轴对称性,可以使学生对证明的思考得到突破,从而寻找出合理的证明方向.这既使学生掌握了新知识,也培养了学生的学习数学的类比思想和观察、猜想的能力.
2.要鼓励学生敢于表述和善于纠错
垂径定理及其逆定理的文字表述是一个难点,教师如果直接给出,则学生就少了一个锻炼表述能力和严谨地分析的机会.因此,应该让学生大胆表述,并对各人的表述严谨分析,找出漏洞,反复提炼,直至得出正确的说法,使学生得到更好的锻炼.
3.注意改进的方面
本节课的另一个难点是如何添加辅助线,这在最后的归纳反思中应该要有足够的时间让学生交流讨论,但是限于本节课的时间,这是一个客观限制,不应该勉强在课堂上完成,效果并不理想,应该留作课后作业,让学生能通过更充分的讨论才得出结论,这样才能起到更好地交流和反思的作用.。