一次函数经典题型

合集下载

一次函数经典例题20题

一次函数经典例题20题

一次函数经典例题20题以下是一些关于一次函数的经典例题,共计20道。

每道题后面会给出解答和解析。

1.若函数y=2x+3,求当x等于5时的y值。

解答:将x=5代入函数,得到y=2(5)+3=13。

2.若函数y=-3x+2,求当y等于7时的x值。

解答:将y=7代入函数,得到-3x+2=7,解方程得到x=-1。

3.若函数y=4x-1,求函数在x轴上的截距。

解答:当y=0时,解方程4x-1=0,得到x=1/4。

所以函数在x轴上的截距为1/4。

4.若函数y=-2x+5,求函数的斜率。

解答:斜率即为函数中x的系数,所以斜率为-2。

5.若函数y=3x+2与函数y=-2x+1相交于点P,求点P的坐标。

解答:将两个函数相等,得到3x+2=-2x+1,解方程得到x=-1/5。

将x=-1/5代入其中一个函数,得到y=3(-1/5)+2=1/5。

所以点P的坐标为(-1/5,1/5)。

6.若函数y=kx+3与函数y=2x-1平行,求k的值。

解答:两个函数平行意味着它们的斜率相等。

所以k=2。

7.若函数y=5x+b与函数y=3x-2垂直,求b的值。

解答:两个函数垂直意味着它们的斜率之积为-1。

所以5*3=-1,解方程得到b=-17。

8.若函数y=ax+2与函数y=-bx+4平行且在点(1,3)相交,求a和b的关系。

解答:两个函数平行意味着它们的斜率相等。

所以a=-b。

将点(1,3)代入其中一个函数,得到a+2=3,解方程得到a=1。

所以b=-1。

9.若函数y=-2x+a与函数y=x-1垂直,求a的值。

解答:两个函数垂直意味着它们的斜率之积为-1。

所以-2*1=-1,解方程得到a=-1。

10.若函数y=4x+3与y轴平行,求函数在x轴上的截距。

解答:与y轴平行意味着函数的斜率为无穷大。

所以在x轴上的截距不存在。

11.若函数y=-3x+2与x轴平行,求函数在y轴上的截距。

解答:与x轴平行意味着函数的斜率为0。

所以在y轴上的截距为2。

一次函数经典题及答案

一次函数经典题及答案

一次函数经典题一.定义型是一次函数,求其解析式。

已知函数1. 例解:由一次函数定义知,。

y=-6x+3,故一次函数的解析式为。

0≠m-3。

如本例中应保证0≠k解析式时,要保证y=kx+b 注意:利用定义求一次函数 . 二点斜型,求这个函数的解析式。

(2, -1)的图像过点y=kx-3已知一次函数2. 例,(2, -1)解:一次函数的图像过点。

y=x-3。

故这个一次函数的解析式为k=1,即,求这个函数的解析式。

y=-1时,x=2,当y=kx-3 变式问法:已知一次函数两点型. 三3.例,则这个函数的(0, 4)、(-2, 0)轴的交点坐标分别是y轴、x已知某个一次函数的图像与。

_____解析式为,由题意得y=kx+b 解:设一次函数解析式为 y=2x+4 故这个一次函数的解析式为,图像型. 四。

__________已知某个一次函数的图像如图所示,则该函数的解析式为4. 例y=kx+b解:设一次函数解析式为(0, 2) 、(1, 0)由图可知一次函数的图像过点 y=-2x+2 故这个一次函数的解析式为有斜截型. 五,则直线的解析式为2轴上的截距为y平行,且在y=-2x与直线y=kx+b已知直线5. 例。

___________时,b≠b,=kk。

当;解析:两条直线2121平行,y=-2x与直线y=kx+b直线。

y=-2x+2 ,故直线的解析式为2轴上的截距为y在y=kx+b直线又平移型. 六。

___________个单位得到的图像解析式为2向下平移y=2x+1把直线6. 例,y=kx+b 解析:设函数解析式为y=2x+1直线平行y=2x+1与直线y=kx+b个单位得到的直线2向下平移,故图像解析式为b=1-2=-1 轴上的截距为y在y=kx+b直线七实际应用型. (升)Q则油箱中剩油量分钟,/升流速为油从管道中匀速流出,升,20某油箱中存油7. 例。

___________(分钟)的函数关系式为t与流出时间 Q=+20 ,即Q= 解:由题意得)(Q=+20 故所求函数的解析式为注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

一次函数整体题型总结

一次函数整体题型总结

一次函数整体题型总结一次函数(或直线函数)是形如f(x) = ax + b的函数形式,其中a 和b是常数,且a ≠ 0。

一次函数的特点是其图像是一条直线,并且其斜率为常数a。

以下是一次函数常见的题型总结:1. 求函数的表达式:已知一次函数的图像上的两个点(x1, y1)和(x2, y2),求一次函数的表达式。

解题步骤:- 计算斜率a:a = (y2 - y1) / (x2 - x1)- 计算常数b:b = y1 - ax1- 得到一次函数的表达式:f(x) = ax + b2. 求函数的性质:已知一次函数的表达式f(x) = ax + b,求该函数的斜率和截距。

- 斜率:斜率a就是函数表达式中的a。

- 截距:截距b就是函数表达式中的b。

3. 求函数图像在x轴和y轴上的截距:已知一次函数的表达式f(x) = ax + b,求该函数图像与x轴和y轴的交点坐标。

- 求x轴截距:令f(x) = 0,解方程ax + b = 0,得x = -b / a,即x 轴截距为(-b / a, 0)。

- 求y轴截距:令x = 0,得到y = b,即y轴截距为(0, b)。

4. 求函数图像的斜率:已知一次函数的表达式f(x) = ax + b,求该函数图像在某个点(x1, y1)处的斜率。

- 斜率公式:斜率a就是函数表达式中的a。

5. 求函数图像的增减性:已知一次函数的表达式f(x) = ax + b,判断该函数在整个定义域上的增减性。

- 当a > 0时,函数递增;- 当a < 0时,函数递减。

6. 求函数图像与坐标轴的交点:已知一次函数的表达式f(x) = ax + b,求该函数与x轴和y轴的交点坐标。

- 求与x轴交点:令f(x) = 0,解方程ax + b = 0,得x = -b / a,即与x轴交点为(-b / a, 0)。

- 求与y轴交点:令x = 0,得到y = b,即与y轴交点为(0, b)。

一次函数练习题(大题30道)

一次函数练习题(大题30道)

1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y ≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.一次函数的图象经过点(2,1)和(-1,-3)(1)求此一次函数表达式;(2)求此一次函数与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形的面积。

4.知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y 轴上的点A (0,1)出发,经过x 轴上点C 反射后经过点B (3,3),求光线从A 点到B 点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.直角坐标系x0y 中,一次函数y=3的图象与x 轴,y 轴,分别交于A 、B 两点,•点C 坐标为(1,0),点D 在x 轴上,且∠BCD=∠ABD ,求图象经过B 、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.10.已知直线y=43x+4与x 轴、y 轴的交点分别为A 、B .又P 、Q 两点的坐标分别为P (•0,-1),Q (0,k ),其中0<k<4,再以Q 点为圆心,PQ 长为半径作圆,则当k 取何值时,⊙Q•与直线AB 相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14. 已知直线1l :45y x =-+和直线2l :142y x =-,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15. 已知正比例函数y =kx 经过点P (1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图像向右平移4个单位,写出在这个平移下,点P 、原点O 的像P '、O '的坐标,并求出平移后的直线的解析式.16. 如图,在直角坐标系中,已知矩形OABC 的两个顶点坐标(30)A ,,(32)B ,,对角线AC 所在直线为l ,求直线l 对应的函数解析式.17. “一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;物资种类食品 药品 生活用品x(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.18. 某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图10所示.(1)第20天的总用水量为多少米3?(2)当x ≥20时,求y 与x 之间的函数关系式.(3)种植时间为多少天时,总用水量达到7000米3?19. 武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨) 120 160 100天)x (分)20. 甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?21. 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按>)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系每吨b元(b a如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元?x>时,y与x之间的函数关系式;(2)求b的值,并写出当10(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?22. 我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:(1)设装运A x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.23. 某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利24. 五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.(1)写出P关于n的函数关系式P= (注明n的取值范围);(2)经研究表明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?25. 某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.、26 .A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W(元),并求W的最大值和最小值.27了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.28.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?29.(宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.30. 某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答.数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值..。

一次函数的题型及解题方法

一次函数的题型及解题方法

一次函数的题型及解题方法
一次函数是数学中常见的一种函数,其形式为 y = kx + b,其中 k 和 b 是
常数,且k ≠ 0。

一次函数在日常生活和科学研究中有着广泛的应用。

一次函数常见的题型包括:
1. 一次函数的图像和性质:这类题目通常要求我们根据给定的k 和b 的值,画出函数的图像,并分析函数的增减性、与坐标轴的交点等性质。

2. 一次函数的解析式:这类题目通常给出一个一次函数的图像或一些点的坐标,要求我们求出函数的解析式。

3. 一次函数的应用题:这类题目通常涉及到生活中的实际问题,如路程、速度、时间等问题,要求我们根据题意建立一次函数模型,并求解。

解题方法:
1. 对于一次函数的图像和性质,我们可以先根据 k 和 b 的值计算出函数的
表达式,然后根据函数的表达式分析其图像和性质。

2. 对于求一次函数的解析式,我们可以使用待定系数法或两点式等方法求解。

3. 对于一次函数的应用题,我们需要仔细审题,理解题意,然后根据题意建立一次函数模型,最后求解模型得出答案。

下面是一个具体的例子:
题目:已知直线 y = kx + b 与 x 轴、y 轴的交点分别为 A(-3,0) 和 B(0,2),求该直线的解析式。

解题方法:
1. 首先,我们可以将点 A(-3,0) 和 B(0,2) 的坐标代入到直线方程 y = kx +
b 中,得到两个方程:
-3k + b = 0
b = 2
2. 解这个方程组,我们可以得到 k = 2/3 和 b = 2。

3. 因此,该直线的解析式为 y = 2x/3 + 2。

一次函数经典题型总结

一次函数经典题型总结

例1、已知变量x 与y 有如下关系:y=x, y=|x|, |y|=x, 0,022=-=-y x y x ,其中y 是x 的函数的有 个。

例3、下列各图象中,y 不是x 函数的是 ( )1、下列各图给出了变量x 与y 之间的函数是: ( )试一试:下列变量之间的关系是不是函数关系?说明理由。

(1)圆的面积S 与半径r 之间的关系;(2)长方形的宽a 一定,其长b 与面积S 之间的关系。

(3)等腰三角形的底边a 和面积S 之间的关系。

(4)汽车以120千米/时的速度行驶,它驶过的路程s (千米)和所用时间t (时)之间的关系。

16、函数y =x 的取值范围是( )。

A 43x -≤≤ B 43x -≤< C 43x -<≤ D 43x -<< 5、已知一次函数kx k y )1(-=+3,则k = .3、若y=(m-2)x+(m 2-4)是正比例函数,则m 的取值是( )A 、2B 、-2C 、±2D 、任意实数9.已知一次函数k x k y )1(-=+3,则k = .1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m xx +=-+-是一次函数;AB D C3、当m_____________时,()21445m y m x x +=-+-是一次函数;8、m 的值为多少时,函数y=(m+2)x |m|-2+m-3.(1)函数是正比例函数?(2)函数是一次函数9. 如果函数y=(m+2)x |m|-1是正比例函数,求m 的值。

10. 当m 为何值时,函数y=-(m-2)x32-m +(m-4)是一次函数?1、对于函数y =5x+6,y 的值随x 值的减小而___________。

2、对于函数1223y x =-, y 的值随x 值的________而增大。

3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。

一次函数经典题及答案

一次函数经典题及答案

一次函数经典题一.定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。

解:一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线;。

当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。

又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。

解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

一次函数常见题型

一次函数常见题型

一次函数常见题型一次函数常见题型常见题型一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。

其中求一次函数解析式就是一类常见题型。

现以部分中考题为例介绍几种求一次函数解析式的常见题型。

希望对大家的学习有所帮助。

一. 定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,故一次函数的解析式为注意:利用定义求一次函数解析式时,要保证。

如本例中应保证二. 点斜型例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。

解:一次函数的图像过点(2,-1) ,即故这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。

三. 两点型已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

解:设一次函数解析式为由题意得故这个一次函数的解析式为四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为由图可知一次函数的图像过点(1,0)、(0,2) 有故这个一次函数的解析式为五. 斜截型例5. 已知直线与直线平行,且在y轴上十. 开放型例10. 已知函数的图像过点A(1,4),B(2,2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。

解:(1)若经过A、B两点的函数图像是直线,由两点式易得 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以是双曲线,解析式为 (3)其它(略)十一. 几何型例11. 如图,在平面直角坐标系中,A、B 是x轴上的两点,,,以AO、BO为直径的半圆分别交AC、BC于E、F两点,若C点的坐标为(0,3)。

(1)求图像过A、B、C三点的二次函数的解析式,并求其对称轴;(2)求图像过点E、F的一次函数的解析式。

解:(1)由直角三角形的知识易得点A( ,0)、B( ,0),由待定系数法可求得二次函数解析式为,对称轴是 (2)连结OE、OF,则、。

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析一、选择题1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地 【答案】C 【解析】 【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地. 【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩即1l 对应的函数解析式为13060y x =-+; 设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩即2l 对应的函数解析式为22010y x =-, 所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B点坐标为(b,-b+2),∴点B在直线y=-x+2上,直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,∵A(2,0),∴∠AQO=45°,∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,∴b的取值范围为b<0或b>2.故选D.【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k<0,y随x的增大而减小解答.【详解】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选A.【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( ) A .图象经过第一、二、四象限 B .y 随x 的增大而减小 C .图象与y 轴交于点()0,b D .当bx k>-时,0y > 【答案】D 【解析】 【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当bx k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>, ∴图象经过第一、二、四象限, A 正确; ∵k 0<,∴y 随x 的增大而减小, B 正确;令0x =时,y b =, ∴图象与y 轴的交点为()0,b , ∴C 正确; 令0y =时,b x k=-, 当bx k>-时,0y <; D 不正确; 故选:D . 【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.6.一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x 千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④. 【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时,根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误; ④由图象知x=t 时,动车到达乙地, ∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误; 故选B. 【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x > B .2x <C .2x ≥D .2x ≤【答案】B 【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集. 【详解】解:把(2,0)代入3y mx =+得:023m =+,解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0), ∴不等式 30mx +>的解集是:2x <, 故选:B . 【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】C 【解析】 【分析】由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案. 【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3), ∴-3=-6+b , 解得:b=3,∴一次函数的解析式为y=-6x+3, ∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴, ∴这个一次函数的图象一定经过一、二、四象限, 故选:C . 【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C 【解析】分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b , 将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元. 故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长; ∵A 的坐标为(-4,5),D 是OB 的中点, ∴D (-2,0),由对称可知A'(4,5), 设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B 【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解. 【详解】解:一次函数y=kx+b 过一、二、四象限, 则函数值y 随x 的增大而减小,因而k <0; 图象与y 轴的正半轴相交则b >0, 因而一次函数y=-bx+k 的一次项系数-b <0, y 随x 的增大而减小,经过二四象限, 常数项k <0,则函数与y 轴负半轴相交, 因而一定经过二三四象限, 因而函数不经过第一象限. 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2 B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A 【解析】 【分析】直接利用一次函数的定义分析得出答案. 【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0, 解得:n=2,m≠2. 故选A . 【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.13.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x=图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】 【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可. 【详解】 当12x =时,2y = ,当2x =时,12y = ,∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.14.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限 【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.15.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.16.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N (﹣1,2),Q (2,7)为G 2的两个临界点,易知一次函数y 1=kx+1﹣2k (k≠0)的图象过定点M (2,1),直线MN 与直线MQ 为G 1与G 2有公共点的两条临界直线,从而当G 1与G 2有公共点时,y 1随x 增大而减小;故①正确;当G 1与G 2没有公共点时,分三种情况:一是直线MN ,但此时k =0,不符合要求;二是直线MQ ,但此时k 不存在,与一次函数定义不符,故MQ 不符合题意; 三是当k >0时,此时y 1随x 增大而增大,符合题意,故②正确;当k =2时,G 1与G 2平行正确,过点M 作MP ⊥NQ ,则MN =3,由y 2=2x+3,且MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN 2+PM 2=MN 2∴(2PN )2+(PN )2=9,∴PN =, ∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

一次函数中考经典题型

一次函数中考经典题型

一次函数中考经典题型
一次函数是中考数学中的重要知识点,以下是几个常见的中考经典题型:
1. 函数的解析式问题:给定两个点,求一次函数的解析式;或者已知函数经过两条直线,求一次函数的解析式。

2. 函数的图象问题:判断给定的两个一次函数图象是否平行,或者求一次函数图象与坐标轴围成的三角形的面积。

3. 与坐标轴的交点问题:求一次函数与x轴、y轴的交点坐标。

4. 与不等式、方程的结合问题:如求解一次函数与一元一次不等式的交点坐标,或已知某一次函数的值大于或小于某个值时,求自变量的取值范围。

5. 函数的增减性问题:判断一次函数的增减性或求函数的最大值或最小值。

6. 实际应用问题:如求最优方案、最佳时机等,通常与路程、时间、价格等实际问题结合。

7. 新定义问题:如新定义一种函数,然后根据新定义进行求解或判断。

以上只是一次函数在中考中可能出现的一些题型,实际上,由于中考的灵活性,可能会出现更多新颖的题目。

建议学生多做真题,熟悉各种题型,提高解题能力。

(完整版)一次函数经典题型+习题(精华,含答案)

(完整版)一次函数经典题型+习题(精华,含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

一次函数经典题型 习题(精华,含答案)

一次函数经典题型 习题(精华,含答案)

一次函数题型一、点的坐标方法:x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第____象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为______________________;3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_______,b=_________;若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;若AB∥x轴,则(,0),(,0)A BA xB x的距离为A Bx x-;若AB∥y轴,则(0,),(0,)A BA yB y的距离为A By y-;点B(2,-2)到x轴的距离是_________;到y轴的距离是____________;1、点C(0,-5)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________;2、点D(a,b)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________;3、已知点P(3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F--,则EF两点之间的距离是__________;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_________;4、两点(3,-4)、(5,a)间的距离是2,则a的值为__________;5、已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为___________.资料资料题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

一次函数题30道计算题

一次函数题30道计算题

一次函数题30道计算题一次函数是数学中非常基础的一个概念,也是初中数学中重点学习的内容之一。

一次函数也被称为一元一次方程,它的一般形式为y=ax+b,其中a和b是已知的常数。

下面将给出30道与一次函数相关的计算题,并附上解答。

1. 计算函数y=3x+2中当x取1、2、3时的y值。

解答:当x=1时,y=3*1+2=5;当x=2时,y=3*2+2=8;当x=3时,y=3*3+2=11。

2. 求一条经过点(2,5)且与直线y=3x+1平行的直线的方程。

解答:平行于y=3x+1的直线的斜率与y=3x+1的斜率相等,所以该直线的斜率也为3。

由已知点(2,5)和斜率3,可以得到方程为y=3x-1。

3. 若函数y=kx-3与直线y=2x+4平行,求直线y=kx-3的斜率k。

解答:平行于y=2x+4的直线的斜率与y=2x+4的斜率相等,所以k=2。

4. 若函数y=3x-2与直线y=4x-5垂直,求直线y=3x-2的斜率。

解答:两条直线垂直时,它们的斜率积为-1,所以3*(4)=-1,解得斜率为-1/3。

5. 已知一次函数y=-2x+1,求函数与x轴的交点。

解答:函数与x轴的交点,即y=0,代入函数方程得-2x+1=0,解得x=1/2。

因此,函数与x轴的交点是(1/2, 0)。

6. 若函数y=2x+3与x轴相交于点(2,0),求函数的截距。

解答:函数与x轴相交时,y=0,代入函数方程得2x+3=0,解得x=-3/2。

因此,函数的截距为-3/2。

7. 已知一次函数y=4x-6与y轴相交于点(0,-6),求函数的截距。

解答:函数与y轴相交时,x=0,代入函数方程得y=-6。

因此,函数的截距为-6。

8. 已知一次函数y=3x-2,求函数与y轴的交点。

解答:函数与y轴相交时,x=0,代入函数方程得y=-2。

因此,函数与y轴的交点是(0, -2)。

9. 求过点(1,3)且平行于x轴的直线的方程。

解答:平行于x轴的直线与x轴的斜率为0,所以方程为y=3。

一次函数的应用的六大类题型

一次函数的应用的六大类题型

一次函数的应用的六大类题型-CAL-FENGHAI.-(YICAI)-Company One1一次函数的应用六大类常见题型一、方案择优问题1.某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费;乙厂提出:每份材料收2元印制费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数关系式;(2)电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制的宣传材料能多一些?(3)怎样选择厂家二、方案调运问题2.A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?三、方案设计问题3、下岗职工王阿姨利用自己的一技之长开办了“爱心服装厂”,计划生产甲、乙、丙三种型号的服装共40套投放到市场销售.已知甲型服装每套成本380元,售价460元;乙型服装每套成本400元,售价500元.丙型服装每套成本360元,售价450元;服装厂预计三种服装的总成本为15120元,且每种服装至少生产6套,设生产甲种服装x套,乙种服装y套。

(1)用含x,y的式子表示生产丙种型号的服装套数(2)求出y与x之间的函数关系式;(3)求服装厂有几种生产方案?(4)按照(3)中方案生产,服装全部售出最多可获得利润多少元?6题四、最大利润问题4.某商场欲购进A 、B 两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示。

设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.⑴求y 关于x 的函数关系式?⑵如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润。

一次函数题型(含解析)

一次函数题型(含解析)

一次函数典型例题精讲分析(解析归纳)类型一:正比例函数与一次函数定义1、当m为何值时,函数y=-(m-2)x+(m-4)是一次函数?思路点拨:某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0.解:∵函数y=-(m-2)x+(m-4)是一次函数,∴ ∴m=-2.∴当m=-2时,函数y=-(m-2)x+(m-4)是一次函数.举一反三:【变式1】如果函数是正比例函数,那么().A.m=2或m=0 B.m=2 C.m=0 D.m=1【答案】:考虑到x的指数为1,正比例系数k≠0,即|m-1|=1;m-2≠0,求得m=0,选C【变式2】已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.解析:(1)由于y-3与x成正比例,所以设y-3=kx.把 x=2,y=7代入y-3=kx中,得7-3=2k,∴ k=2.∴ y与x之间的函数关系式为y-3=2x,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y=4时,4=2x+3,∴x=.类型二:待定系数法求函数解析式2、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.思路点拨:图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解析:由题意可设所求函数表达式为y=2x+b,∵图象经过点( 2,-1),∴ -l=2×2+b.∴ b=-5,∴所求一次函数的表达式为 y=2x-5.总结升华:求函数的解析式常用的方法是待定系数法,具体怎样求出其中的待定系数的值,要根据具体的题设条件求出。

举一反三:【变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7.2cm,求这个一次函数的表达式.分析:题中并没给出一次函数的表达式,因此应先设一次函数的表达式y=kx+b,再由已知条件可知,当x=0时,y=6;当x=4时,y=7.2.求出k,b即可.解:设这个一次函数的表达式为y=kx+b.由题意可知,当 x=0时,y=6;当x=4时,y=7.2.把它们代入y=kx+b中得∴∴这个一次函数的表达式为y=0.3x+6.【变式2】已知直线y=2x+1.(1)求已知直线与y轴交点M的坐标;(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.解析:∵直线 y=kx+b与y=2x+l关于y轴对称,∴两直线上的点关于 y轴对称.又∵直线 y=2x+1与x轴、y轴的交点分别为A(-,0),B(0,1),∴A(-,0),B(0,1)关于y轴的对称点为A′(,0),B′(0,1).∴直线 y=kx+b必经过点A′(,0),B′(0,1).把A′(,0),B′(0,1)代入y=kx+b中得∴∴k=-2,b=1.所以(1)点M(0,1)(2)k=-2,b=1【变式3】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.分析:由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明第三点在此直线上;若不成立,说明不在此直线上.解:设过A,B两点的直线的表达式为y=kx+b.由题意可知,∴∴过A,B两点的直线的表达式为y=x-2.∴当 x=4时,y=4-2=2.∴点 C(4,2)在直线y=x-2上.∴三点 A(3,1), B(0,-2),C(4,2)在同一条直线上.类型三:函数图象的应用3、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,回答下列问题:(1)汽车共行驶了___________ km;(2)汽车在行驶途中停留了___________ h;(3)汽车在整个行驶过程中的平均速度为___________ km/h;(4)汽车自出发后3h至4.5h之间行驶的方向是___________.思路点拨:读懂图象所表达的信息,弄懂并熟悉图象语言.图中给出的信息反映了行驶过程中时间和汽车位置的变化过程,横轴代表行驶时间,纵轴代表汽车的位置.图象上的最高点就是汽车离出发点最远的距离. 汽车来回一次,共行驶了120×2=240(千米),整个过程用时4.5小时,平均速度为240÷4.5= (千米/时),行驶途中1.5时—2时之间汽车没有行驶.解析:(1)240; (2)0.5; (3) ; (4)从目的地返回出发点.总结升华:这类题是课本例题的变式,来源于生活,贴近实际,是中考中常见题型,应注意行驶路程与两地之间的距离之间的区别.本题图象上点的纵坐标表示的是汽车离出发地的距离,横坐标表示汽车的行驶时间.举一反三:【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s 与时间t的函数关系,求它们行进的速度关系。

一次函数的常见题型

一次函数的常见题型

解题技巧之一次函数的常见题型一. 定义型 (0≠k ) x 的次数为1例1. 已知函数3)3(82+-=-m x m y 是一次函数,求其解析式。

解:由一次函数定义知,故一次函数的解析式为注意:利用定义求一次函数解析式时,要保证。

如本例中应保证 二.求出一次函数与坐标轴的交点坐标(所围成的面积) 与x 轴的交点坐标为(k b -,0), 与y 轴的交点坐标为(0,b ) 例2. 已知直线y=2x-4求(1)与两坐标轴的交点坐标 (2)求与坐标轴的交点所围成的三角形面积解:(1)由上面公式知与x 轴的交点坐标为(kb -,0), 与y 轴的交点坐标为(0,b ) 所以与x 轴交点坐标为(2,0) , 与y 轴交点坐标为(0, -4)(2) 由(1)知与x 轴交点坐标为(2,0) , 与y 轴交点坐标为(0, -4)所以所围成的三角形面积S=4221-⨯⨯= 4 三.k ,b 决定的图像性质一般地,一次函数b kx y +=有下列性质:(1)当k>0时,y 随x 的增大而增大,图像经过一、三象限(2)当k<0时,y 随x 的增大而减小,图像经过二、四象限b 是一次函数与y 轴的交点的数值(决定与y 轴的交点在上半轴(+)还是下半轴(-))k的符号b的符号函数图像图像特征k>0 b>0y0 x 图像经过一、二、三象限b<0y0 x 图像经过一、三、四象限K<0 b>0y0 x图像经过一、二、四象限b<0y0 x图像经过二、三、四象限四. 由图像求函数表达式步骤:1.设y=kx+b2.找出两个点的坐标3.代点进去,求出 k和b的值4. 把k和b的值代回y=kx+b例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为由图可知一次函数的图像过点(1,0)、(0,2)有故这个一次函数的解析式为五.求两条直线的交点步骤:1. 求出两条直线的函数表达式2. 联立两条表达式构成一个方程组3. 解方程组得 x 和y 的值4.写出交点坐标 (x 的值,y 的值)例5.(2011•杭州)点A ,B ,C ,D 的坐标如图,求直线AB 与直线CD 的交点坐标. 解:设直线AB 的解析式为11b x k y += ,直线CD 的解析式为 22b x k y +=,则由于直线AB 过A (-3,0),B (0,6)点,直线CD 过C (0,1),D (2,0)点,那么⎨⎧+⋅=+-⋅=111106)3(0b k b k ⎩⎨⎧+⋅=+⋅=22222001b k b k 解得 ⎩⎨⎧==6211b k 以及 ⎪⎩⎪⎨⎧=-=12122b k所以直线AB 的解析式为62+=x y , 直线CD 的解析式为121+-=x y 联立,得⎪⎩⎪⎨⎧+-=+=12162x y x y 解得, ⎩⎨⎧=-=22y x所以交点坐标为(-2,2)例6.如图,表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图像(分别是正比例函数图像和一次函数图像).根据图像解答下列问题:(1)根据图象,轮船比快艇早出发_______小时.(2)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围);(3)通过计算说明快艇出发多长时间赶上轮船?解:(1)2;(2)轮船行驶过程是一条经过原点的直线,由图形可知它还经过(8,160),设函数解析式是kx y =,解得20=k ,所以解析式是x y 20=;快艇的行驶过程经过了两点(2,0),(6,160),设它的解析式是b ax y +=,解得:8040-==b a ,,所以解析式是8040-=x y .(3)求出两条直线的交点就可以知道何时赶上轮船.交点是(4,80),所以快艇出发2个小时后追上轮船.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数经典题型
题型一、点的坐标
方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;
若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;
若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;
2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;
3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_____,b=_____;若A,B 关于y
轴对称,则a=_____,b=_____;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第_____象
限。

题型二、关于点的距离的问题
方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;
任意两点(,),(,)A A B B A x y B x y ;
若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;
点(,)A A A x y
1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;
2、 点C (0,-5)到x 轴的距离是______;到y 轴的距离是_____;到原点的距离是______;
3、 点D (a,b )到x 轴的距离是______;到y 轴的距离是______;到原点的距离是______
4、 已知点P (3,0),Q(-2,0),则PQ=_____,已知点110,,0,22M N ⎛⎫⎛⎫
-
⎪ ⎪⎝⎭⎝⎭
,则MQ=_____;
()()2,1,2,8E F --,则EF 两点之间的距离是_______;已知点G (2,-3)、H (3,4),
则G 、H 两点之间的距离是_________;
5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;
6、 点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标
为_________.
题型三、一次函数与正比例函数的识别
方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次
函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)
1、当k_____________时,()2323y k x x =-++-是一次函数;
2、当m_____________时,()21345m y m x x +=-+-是一次函数;
3、当m_____________时,()21
445m y m x
x +=-+-是一次函数;
4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法:
X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。

2、对于函数1223
y x =-, y 的值随x 值的________而增大。

3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。

4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。

5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。

6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。

7、已知一次函数
(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?
题型五、待定系数法求解析式
方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。

☆ 已知是直线或一次函数可以设y=kx+b (k ≠0); ☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。

1、若函数y=3x+b 经过点(2,-6),求函数的解析式。

2、直线y=kx+b 的图像经过A (3,4)和点B (2,7),求函数的解析式。

3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。

5、若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9,求此函数的解析式。

6、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。

7、已知直线y=kx+b与直线y= -3x+7关于x轴对称,求k、b的值。

8、已知直线y=kx+b与直线y= -3x+7关于原点对称,求k、b的值。

题型六、平移
方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的
平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

1. 直线y=5x-3向左平移2个单位得到直线 。

2. 直线y=-x-2向右平移2个单位得到直线
3. 直线y=
21
x 向右平移2个单位得到直线 4. 直线y=22
3
+-x 向左平移2个单位得到直线
5. 直线y=2x+1向上平移4个单位得到直线
6. 直线y=-3x+5向下平移6个单位得到直线
7. 直线x y 31
=
向上平移1个单位,再向右平移1个单位得到直线 。

8. 直线14
3
+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。

9. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。

10. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.
11.函数y=3x+1图像向右平移2个单位向上平移3个单位,得到图像表示的函数是________;
12.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________; 题型七、交点问题及直线围成的面积问题
方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;
复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形); 往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高; 1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。

2、已知一个正比例函数与一个一次函数
(3,4),且OA=OB(1)
△AOB的面积;
3、已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过
点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;
(1)分别写出两条直线解析式,并画草图;
(2)计算四边形ABCD的面积;
(3)若直线AB与DC交于点E,求△BCE的面积。

4、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA
交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;
(1)求△COP的面积;
(2)求点A的坐标及p的值;
(3)若△BOP与△DOP的面积相等,求直线BD的函数解析式。

5、已知
:经过点(-3,-2),它与x轴,y轴分别交于点B、A,直线经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D
(1)求直线的解析式;
(2)若直线与交于点P,求的值。

6. 如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。

相关文档
最新文档