高一数学必修全年综合复习题 高一数学指数函数与对数函数测试题

合集下载

高中数学必修一第四章指数函数与对数函数必练题总结(带答案)

高中数学必修一第四章指数函数与对数函数必练题总结(带答案)

高中数学必修一第四章指数函数与对数函数必练题总结单选题1、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12 C .12,13,√3,54,D .13,12,54,√3,答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C .2、基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( ) A .1.2天B .1.8天 C .2.5天D .3.5天答案:B分析:根据题意可得I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天,根据e 0.38(t+t 1)=2e 0.38t ,解得t 1即可得结果. 因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28−16=0.38,所以I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天, 则e 0.38(t+t 1)=2e 0.38t ,所以e 0.38t 1=2,所以0.38t 1=ln2, 所以t 1=ln20.38≈0.690.38≈1.8天.故选:B.小提示:本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题. 3、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.4、已知函数f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞) ,若函数g(x)=f(x)−m 恰有两个零点,则实数m 不可能...是( )A .−1B .0C .1D .2 答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m 的零点,转化为函数y =f(x)与函数y =m 的交点,数形结合即可求出参数m 的取值范围;解:因为f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞),画出函数图象如下所示, 函数g(x)=f(x)−m 的有两个零点,即方程g(x)=f(x)−m =0有两个实数根,即f(x)=m ,即函数y =f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 5、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a3·√a6=(−a)13⋅a16=−a13⋅a16=−a13+16=−a12=−√a.故选:A.6、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.7、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个, 故选:A8、若ln2=a ,ln3=b ,则log 818=( ) A .a+3b a 3B .a+2b 3aC .a+2b a 3D .a+3b 3a答案:B分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B 多选题9、已知函数f (x )=log 3(x 2−1),g (x )=x 2−2x +a ,∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2),则实数a 的可能取值是( )A .12B .1C .52D .3 答案:CD分析:将问题转化为当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min ,然后分别求出两函数的最小值,从而可求出a 的取值范围,进而可得答案∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2)等价于当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min .当x ∈[2,+∞)时,令t =x 2−1,则y =log 3t ,因为t =x 2−1在[2,+∞)上为增函数,y =log 3t 在定义域内为增函数,所以函数f (x )=log 3(x 2−1)在[2,+∞)上单调递增,所以f (x )min =f (2)=1. g (x )=x 2−2x +a 的图象开口向上且对称轴为x =1, ∴当x ∈[13,3]时,g (x )min =g (1)=a −1,∴1≤a −1,解得a ≥2. 故选:CD .10、已知x 1+log 3x1=0,x 2+log 2x2=0,则( )A.0<x2<x1<1B.0<x1<x2<1C.x2lgx1−x1lgx2<0D.x2lgx1−x1lgx2>0答案:BC分析:根据对数函数的性质可判断AB正误,由不等式的基本性质可判断CD正误.由x1=−log3x1>0可得0<x1<1,同理可得0<x2<1,因为x∈(0,1)时,恒有log2x<log3x所以x1−x2=log2x2−log3x1<0,即x1<x2,故A错误B正确;因为0<x1<x2<1,所以lgx1<lgx2<0,即0<−lgx2<−lgx1,由不等式性质可得−x1lgx2<−x2lgx1,即x2lgx1−x1lgx2<0,故C正确D错误.故选:BC小提示:关键点点睛:利用对数函数的真数大于零及对数函数的图象与性质可得0<x1<x2<1是解题的关键,根据不等式的基本性质可判断CD,属于中档题.11、已知函数f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),则()A.函数f(x)+g(x)的定义域为(−1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)−g(x)在区间(0,1)上是减函数答案:AB解析:求出函数f(x)+g(x)和f(x)−g(x)的解析式,再判断函数的定义域、奇偶性、借助复合函数的单调性与最值即可得出结论.解:∵f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),∴f(x)+g(x)=log a(x+1)+log a(1−x),由x+1>0且1−x>0得−1<x<1,故A对;由f(−x)+g(−x)=log a(−x+1)+log a(1+x)=f(x)+g(x)得函数f(x)+g(x)是偶函数,其图象关于y轴对称,B对;∵−1<x<1,∴f(x)+g(x)=log a(1−x2),∵y=1−x2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a(1−0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值;故 C错;∵f(x)−g(x)=log a(x+1)−log a(1−x),当0<a<1时,f(x)=log a(x+1)在(0,1)上单调递减,g(x)=log a(1−x)在(0,1)上单调递增,函数f(x)−g(x)在(0,1)上单调递减;当a>1时,f(x)=log a(x+1)在(0,1)上单调递增,g(x)=log a(1−x)在(0,1)上单调递减,函数f(x)−g(x)在(0,1)上单调递增;故D错;故选:AB.小提示:本题主要考查函数奇偶性与单调性的性质应用,考查逻辑推理能力,属于中档题.填空题12、若f(x)=1+a3x+1(x∈R)是奇函数,则实数a=___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.13、心理学家有时用函数L(t)=A(1−e−kt)测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(ln0.9≈−0.105,ln0.1≈−2.303)______.答案:0.021分析:该生在5min内能够记忆20个单词,将A=200,L(5)=20带入即可得出结论. 由题意可知200(1−e−5k)=20,所以,e−5k=0.9,所以ln e−5k=ln0.9≈−0.105,解得k≈0.021.所以答案是:0.021.14、已知函数f(x)={e x−1,x≥0,ax2+x+a,x<0恰有2个零点,则a=__________.答案:12##0.5分析:先求得f(x)在[0,+∞)上恰有1个零点,则方程ax2+x+a=0有1个负根,a=0时不成立,a≠0时,由一元二次方程的性质分Δ=0和Δ>0讨论求解即可.当x≥0时,令f(x)=e x−1=0,解得x=0,故f(x)在[0,+∞)上恰有1个零点,即方程ax2+x+a=0有1个负根.当a=0时,解得x=0,显然不满足题意;当a≠0时,因为方程ax2+x+a=0有1个负根,所以Δ=1−4a2≥0.当Δ=1−4a2=0,即a=±12时,其中当a=12时,12x2+x+12=0,解得x=−1,符合题意;当a=−12时,−12x2+x−12=0,解得x=1,不符合题意;当Δ=1−4a2>0时,设方程ax2+x+a=0有2个根x1,x2,因为x1x2=1>0,所以x1,x2同号,即方程ax2+x+a=0有2个负根或2个正根,不符合题意.综上,a=12.所以答案是:0.5.解答题15、已知函数f(x)=log2(2x+1).(1)求不等式f(x)>1的解集;(2)若函数g(x)=log2(2x−1)(x>0),若关于x的方程g(x)=m+f(x)在[1,2]有解,求m的取值范围.答案:(1){x|x>0};(2)[log213,log235].分析:(1)由f(x)>1可得2x+1>2,从而可求出不等式的解集,(2)由g(x)=m+f(x),得m=g(x)−f(x)=log2(1−22x+1),再由x∈[1,2]可得log2(1−22x+1)的范围,从而可求出m的取值范围(1)原不等式可化为2x+1>2,即2x>1,∴x>0,所以原不等式的解集为{x|x>0}(2)由g(x)=m+f(x),∴m=g(x)−f(x)=log2(1−22x+1),当1≤x≤2时,25≤22x+1≤23,13≤1−22x+1≤35,m∈[log213,log235]。

高一数学《指数函数与对数函数》测试题(含答案解析)

高一数学《指数函数与对数函数》测试题(含答案解析)

高一数学《指数函数与对数函数》测试题(含答案解析)一、选择题:1、已知(10)xf x =,则(5)f =( ))A 、510 B 、105 C 、lg10 D 、lg 5 2、对于0,1a a >¹,下列说法中,正确的是(,下列说法中,正确的是( ))①若M N =则log log aa M N =; ②若loglog aaM N =则M N =;③若22log log a a M N =则M N =; ④若M N =则22log log a aM N=。

A 、①②③④、①②③④ B 、①③、①③ C 、②④、②④ D 、②、②3、设集合2{|3,},{|1,}xS y y x R T y y x x R ==Î==-Î,则S T 是 ( )) A 、Æ B 、T C 、S D 、有限集、有限集 4、函数22log (1)y x x =+³的值域为(的值域为( ))A 、()2,+¥B 、(),2-¥C 、[)2,+¥D 、[)3,+¥5、设 1.50.90.4812314,8,2y y y -æö===ç÷èø,则(,则( ))A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 6、在(2)log(5)a b a -=-中,实数a 的取值范围是(的取值范围是( )) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()22lg 2lg52lg 2lg5++×等于(等于( ))A 、0B 、1C 、2D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是(表示是( ))A 、52a -B 、2a -C 、23(1)a a -+ D 、231a a -- 9、若21025x=,则10x-等于(等于()) A 、15 B 、15- C 、150 D 、16251010、若函数、若函数2(55)xy a a a =-+×是指数函数,则有(是指数函数,则有( ))A 、1a =或4a =B 、1a =C 、4a =D 、0a >,且1a ¹ 11、当1a >时,在同一坐标系中, 函数xy a -=与log xa y =的图象是图中的(的图象是图中的( ))12、已知1x ¹,则与x 3log 1+x 4log 1+x5log 1相等的式子是(相等的式子是( )) A 、x 60log 1 B 、3451log log log x x x ×× C 、 60log 1x D 、34512log log log x x x ×× 1313、、若函数()l o g (01)af x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( ))A 、24B B、、22C C、、14D D、、121414、下图是指数函数(、下图是指数函数(1)x y a =,(2)x y b =,(3)x y c =x ,(4)x y d =x的图象,则的图象,则a 、b 、c 、d 与1的大小关系是(的大小关系是( ))A 、1a b c d <<<<B B、、1b a d c <<<<C 、1a b c d <<<<D D、、1a b d c <<<< 1515、若函数、若函数my x +=-|1|)21(的图象与x 轴有公共点,轴有公共点,则m 的取值范围是(的取值范围是( ))A 、1m £-B B、、10m -£<C C、、1m ³D D、、01m <£二、填空题:1616、指数式、指数式4532-ba 化为根式是化为根式是 。

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题1、若函数x a a a y ⋅+-=)33(2是指数函数,则有 ( )A 、21==a a 或B 、1=aC 、2=aD 、10≠>a a 且2、下列所给出的函数中,是幂函数的是 ( )A .3x y -=B .3-=x yC .32x y =D .13-=x y3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( )A .log c a =bB .log c b =aC .log a b =cD .log b a =c4、若210,5100==ba ,则b a +2= ( )A 、0B 、1C 、2D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( )A 、0,0>>y xB 、0,0<>y xC 、0,0><y xD 、0,0<<y x6、函数y =)12(log 21-x 的定义域为 ( )A .(21,+∞)B .[1,+∞)C .( 21,1] D .(-∞,1) 7、若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( ) A .⎪⎭⎫ ⎝⎛43,0B .⎪⎭⎫⎢⎣⎡43,0C .⎥⎦⎤⎢⎣⎡43,0D .⎪⎭⎫ ⎝⎛+∞-∞,43]0,( 8、函数34x y =的图象是 ( )第9题 A . B . C . D .9、图中曲线是对数函数y =log a x 的图象,已知a 取4313,,,3510四个值,则相应于C 1,C 2,C 3,C 4的a 值依次为 ( )A .101,53,34,3 B .53,101,34,3 C .101,53,3,34 D .53,101,3,34 10、 函数y =lg (x +12-1)的图象关于 ( ) A .x 轴对称 B .y 轴对称 C .原点对称D .直线y =x 对称 11、若关于x 的方程335-+=a a x 有负根,则实数a 的取值范围是_ ____________. 12、当0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.13、函数1241++=+x x y 的值域是 .14、设1052==b a ,则=+ba 11 。

(易错题)高中数学必修一第三单元《指数函数和对数函数》测试题(包含答案解析)

(易错题)高中数学必修一第三单元《指数函数和对数函数》测试题(包含答案解析)

一、选择题1.2017年5月,世界排名第一的围棋选手柯洁0:3败给了人工智能“阿法狗”.为什么人类的顶尖智慧战胜不了电脑呢?这是因为围棋本身也是一个数学游戏,而且复杂度非常高.围棋棋盘横竖各有19条线,共有1919361⨯=个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限3613M ≈.科学家们研究发现,可观测宇宙中普通物质的原子总数8010N ≈.则下列各数中与MN最接近的是( )(参考数据:lg30.48≈) A .3310B .5310C .7310D .93102.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:35]4[--.=,[]2.12=,已知函数21()12x xe f x e =++,()[()]g x f x =,则下列叙述正确的是( ) A .()g x 是偶函数 B .()f x 在R 上是增函数 C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{1,0,1}-3.已知()()514,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩是(),-∞+∞上的减函数,那么a 的取值范围是( ). A .()0,1B .10,5⎛⎫ ⎪⎝⎭C .11,95⎡⎫⎪⎢⎣⎭D .1,19⎡⎫⎪⎢⎣⎭4.设()|lg |f x x =,且0a b c <<<时,有()()()f a f c f b >>,则( ) A .(1)(1)0a c --> B .1ac >C .1ac =D .01ac <<5.已知0.20.33log 0.2,3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<6.已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈-时,()2f x x =,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点,则实数a 的取值范围为( ) A .()4,+∞ B .()6,+∞ C .()1,4D .()4,67.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<8.函数()212()log 4f x x =-的单调递增区间为( ).A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)9.函数()213log 23y x x =-++的单调递增区间是( )A .(]1,1-B .(1)∞-,C .[) 1,3D .(1)∞,+ 10.已知函数()()()2331log 6log 1y x a a x x =--++在[]0,1x ∈内恒为正值,则实数a 的取值范围是( ) A .133a << B .3a > C .3133a << D .33a >11.函数32ln ||()x x f x x-=的图象大致为( )A .B .C .D .12.对数函数log (0a y x a =>且1)a ≠与二次函数()21y a x x =--在同一坐标系内的图象可能是( )A .B .C .D .二、填空题13.函数f (x )=lg (x 2-3x -10)的单调递增区间是______.14.已知21()1,()log 2xf xg x x m ⎛⎫=+=+ ⎪⎝⎭,若()()1212[1,3],[1,3],x x f x g x ∀∈∃∈≥,则实数m 的取值范围是_______.15.已知()()2log 1f x x =-,若()()f a f b =(ab ),则2a b +的最小值为________.16.已知函数()32log f x x =+,[]1,3x ∈,则函数()()221y f x f x =++的值域为____________.17.已知函数22()log ()f x ax x a =++的值域为R ,则实数a 的取值范围是_________ 18.如图,在面积为2的平行四边形OABC 中,AC CO ⊥,AC 与BO 交于点E .若指数函数()01xy aa a =>≠,经过点E ,B ,则函数()af x x x=-在区间[]1,2上的最小值为________.19.已知函数()()log 21101a y x a a =-+>≠,的图象过定点A ,若点A 也在函数()2x f x b =+的图象上,则()2log 3f =________.20.关于下列命题:①若函数2x y =的定义域是{}|0x x ≤,则它的值域是{}|1y y ≤ ②若函数1y x =的定义域是{}|2x x >,则它的值域是12y y ⎧⎫<⎨⎬⎩⎭ ③若函数2yx 的值域是{}|04y y ≤≤,则它的定义域可能是{}|22x x -≤≤④若函数2log y x =的值域是{}|3y y ≤,则它的定义域是{}|8x x ≤其中不正确的命题的序号是________.(注:把你认为不正确的命题的序号都填上)三、解答题21.已知函数()()()lg 2lg 2f x x x =+--.(1)求()f x 的定义域; (2)判断()f x 的奇偶性并予以证明; (3)求不等式()1f x >的解集.22.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.23.求下列各式的值.(1)7log 23log lg 25lg 47++. (2)()146230.2516248201249-⎛⎫⨯+-⨯+- ⎪⎝⎭.24.已知指数函数()x f x a =(0a >,且1a ≠)的图象过点12,4⎛⎫ ⎪⎝⎭. (1)求函数的解析式;(2)设函数()(1)1g x f x =--,(0)x ≥,求函数()g x 的值域. 25.已知函数121()log 1axf x x -=-的图象关于原点对称,其中0a <. (1)当(1,)x ∈+∞时,12()log (1)f x x m +-<恒成立,求实数m 的取值范围;(2)若关于x 的方程12()log ()f x x k =+在[]2,3上有解,求k的取值范围.26.求函数()log 23=-2-3y x x 的定义域、值域和单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设36180310M x N ==,两边取对数,结合对数的运算性质进行整理,即可求出M N . 【详解】解:设36180310M x N ==,两边取对数36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,故选:D . 【点睛】 关键点睛:本题考查了对数的运算,关键是结合方程的思想令36180310x =,两边取对数后进行化简整理.2.B解析:B 【分析】计算(2),(2)g g -得出()()22g g ≠-判断选项A 不正确;通过分离常数结合复合函数的单调性,可得出()f x 在R 上是增函数,判断选项B 正确;由xy e =的范围,利用不等式的关系,可求出15()22f x <<,进而判断选项CD 不正确,即可求得结果. 【详解】对于A ,根据题意知,2152()1221x x xe f x e e=+=-++. ∵252(2)[(2)]221g f e ⎡⎤==-=⎢⎥+⎣⎦, 2222121(2)[(2)]01212e g f ee --⎡⎤⎡⎤-=-=+=+=⎢⎥⎢⎥++⎣⎦⎣⎦, (2)(2)g g ∴≠-,∴函数()g x 不是偶函数,故A 错误;对于B ,1x y e =+在R 上是增函数,则21xy e =+在R 上是减函数,则52()21xf x e =-+在R 上是增函数,故B 正确; 对于C ,0x e >,11x e ∴+>,2202,20,11x x e e <<-<-<++ 15()22f x ∴<<,即()f x 的值域是15,22⎛⎫⎪⎝⎭,故C 错误; 对于D ,()f x 的值域是15,22⎛⎫⎪⎝⎭,则()g x 的值域是{0,1,2},故D 错误. 故选:B. 【点睛】本题要注意对函数的新定义的理解,研究函数的单调性和值域常用分离常数,属于较难题.3.C解析:C 【分析】由51001514log 1a a a a a -<⎧⎪<<⎨⎪-+≥⎩解得结果即可得解. 【详解】因为()()514,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩是(),-∞+∞上的减函数,所以51001514log 1a a a a a -<⎧⎪<<⎨⎪-+≥⎩,解得1195a ≤<.故选:C 【点睛】易错点点睛:容易忽视两段交界点处函数值的大小关系.4.D解析:D 【分析】作出()f x 的图象,利用数形结合即可得到结论. 【详解】∵函数()|lg |f x x =,作出()f x 的图象如图所示,∵0a b c <<<时,有()()()f a f c f b >>,∴0<a <1,c >1,即f (a )=|lga |=﹣lga ,f (c )=|lgc |=lgc ,∵f (a )>f (c ), ∴﹣lga >lgc ,则lga +lgc =lgac <0,则01ac <<. 故选:D .【点睛】关键点点睛:利用对数函数的图象和性质,根据条件确定a ,c 的取值范围.5.B解析:B 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果 【详解】因为33log 0.2log 10<=,0.20331>=,...030002021<<=,a cb ∴<<.故选:B . 【点睛】比较大小问题,常见思路有两个:一是利用中间变量;二是利用函数的单调性直接解答6.D解析:D 【分析】转化条件为函数()f x 是周期为2的周期函数,且函数()g x 、()f x 的图象均关于1x =-对称,由函数的对称性可得两图象在1x =-右侧有5个交点,画出图象后,数形结合即可得解. 【详解】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x=+的图象可由函数log a y x =的图象向左平移一个单位可得, 所以函数()log 1a g x x =+的图象的对称轴为1x =-,当[)1,1x ∈-时,()2f x x =,所以函数()f x 的图象也关于1x =-对称,在平面直角坐标系中作出函数()y f x =与()y g x =在1x =-右侧的图象,数形结合可得,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点, 则由函数图象的对称性可得两图象在1x =-右侧有5个交点,则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D. 【点睛】关键点点睛:解决本题的关键是函数的周期性、对称性及数形结合思想的应用.7.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<,故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.8.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.9.C解析:C 【分析】由不等式2230x x -++>,求得函数的定义域()1,3-,令()223g x x x =-++,得到()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减,结合复数函数的单调性的判定方法,即可求解. 【详解】由题意,函数213()log 23y x x =-++有意义,则满足2230x x -++>, 即223(3)(1)0x x x x --=-+<,解得13x,即函数的定义域为()1,3-,令()223g x x x =-++,则函数()g x 表示开口向下,对称轴方程为1x =的抛物线, 所以函数()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减, 又由函数13log y x =在定义上是递减函数,结合复数函数的单调性的判定方法,可得函数213()log 23y x x =-++的递增区间为[1,3). 故选:C. 【点睛】函数单调性的判定方法与策略:定义法:一般步骤:设元→作差→变形→判断符号→得出结论;图象法:如果函数()f x 是以图象形式给出或函数()f x 的图象易作出,结合图象可求得函数的单调区间;导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间;复合函数法:先将函数(())y f g x =分解为()y f t =和()t g x =,再讨论这两个函数的单调性,最后根据复合函数“同增异减”的规则进行判定.10.C解析:C 【分析】令()()()22333log 6log 11log g x a a x a ⎡⎤=-++-⎣⎦,由题意得出()()0010g g ⎧>⎪⎨>⎪⎩,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】令()()()22333log 6log 11log g x a a x a ⎡⎤=-++-⎣⎦, 由题意可得()()()()23301log 0126log 0g a g a ⎧=->⎪⎨=->⎪⎩,可得311log 3a -<<,解得13a <<故选:C. 【点睛】思路点睛:求解一次函数不等式在区间上恒成立,一般限制一次函数在区间上的端点函数值符号即可,即可得出关于参数的不等式,求解即可.11.A解析:A【分析】判断奇偶性可排除两个选项,再确定函数值的变化趋势排除一个,得出正确选项. 【详解】解:函数的定义域为{0}xx ≠∣, 因为3322()ln ||ln ||()()()x x x x f x f x x x-----===-,所以()f x 为偶函数,所以排除C ,D,又因为当0x >时,322ln ln ()x x xf x x x x-==-, 当x →+∞时,()f x →+∞,所以排除B故选:A. 【点睛】本题考查由函数解析式选择函数图象,解题方法是排除法,即通过判断函数的性质,特殊的函数值或函数值的变化趋势等,排除错误选项,得出正确答案.12.A解析:A 【分析】由对数函数,对a 分类,01a <<和1a >,在对数函数图象确定的情况下,研究二次函数的图象是否相符.方法是排除法. 【详解】由题意,若01a <<,则log a y x =在()0+∞,上单调递减, 又由函数()21y a x x =--开口向下,其图象的对称轴()121x a =-在y 轴左侧,排除C ,D.若1a >,则log a y x =在()0+∞,上是增函数, 函数()21y a x x =--图象开口向上,且对称轴()121x a =-在y 轴右侧,因此B 项不正确,只有选项A 满足. 故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可按照其中一个函数的图象分类确定另一个函数图象,排除错误选项即可得.二、填空题13.(5+∞)【分析】确定函数的定义域考虑复合函数的单调性即可得出结论【详解】由x2-3x-10>0可得x <-2或x >5∵u=x2-3x-10在(5+∞)单调递增而y=lgu 是增函数由复合函数的同增异减解析:(5,+∞) 【分析】确定函数的定义域,考虑复合函数的单调性,即可得出结论. 【详解】由x 2-3x-10>0可得x <-2或x >5,∵u=x 2-3x-10在(5,+∞)单调递增,而y=lgu 是增函数由复合函数的同增异减的法则可得,函数f (x )=lg (x 2-3x-10)的单调递增区间是(5,+∞)故答案为(5,+∞). 【点睛】本题考查对数函数的单调性和应用,考查学生的计算能力,属于中档题14.【分析】求出函数在上的最值最后根据题意列出不等式进行求解即可【详解】当时因此;当时因此因为所以有即故答案为:【点睛】本题考查了求指数型函数和对数型函数的最小值考查了存在性和任意性的概念的理解考查了数解析:9,8⎛⎤-∞ ⎥⎝⎦【分析】求出函数(),()f x g x 在[1,3]x ∈上的最值,最后根据题意列出不等式进行求解即可. 【详解】当[1,3]x ∈时,11[,1]28x⎛⎫∈ ⎪⎝⎭,因此9()[,2]8f x ∈;当[1,3]x ∈时,22(log )[0,log 3]x ∈,因此2()[,log 3]g x m m ∈+, 因为()()1212[1,3],[1,3],x x f x g x ∀∈∃∈≥,所以有min min ()()f x g x ≥, 即9988m m ≥⇒≤. 故答案为:9,8⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了求指数型函数和对数型函数的最小值,考查了存在性和任意性的概念的理解,考查了数学运算能力.15.【分析】根据求得之间的等量关系再利用均值不等式求得的最小值【详解】因为且不妨设则一定有且即即可得解得因为故可得当且仅当且即时取得最小值故的最小值为故答案为:【点睛】本题考查对数函数的性质以及对数运算解析:3【分析】根据()()f a f b =,求得,a b 之间的等量关系,再利用均值不等式求得2a b +的最小值.【详解】因为()()2log 1f x x =-,且()()f a f b = 不妨设a b <,则一定有12a b <<<, 且()()22log 1log 1a b -=- 即()()22log 1log 1a b --=-, 即可得()()2log 110a b --=, 解得()()111a b --=. 因为10,10a b ->->故可得()()22113a b a b +=-+-+3≥3=当且仅当()211a b -=-,且()()111a b --=,即112a b =+=+.故2a b +的最小值为3.故答案为:3. 【点睛】本题考查对数函数的性质,以及对数运算,涉及均值不等式求最值的问题,属综合性困难题.16.【分析】计算定义域为设代入化简得到计算值域得到答案【详解】函数的定义域满足:解得设故函数在上单调递增当时;当时故答案为:【点睛】本题考查了函数的值域忽略定义域是容易发生的错误解析:417,4⎡⎤⎢⎥⎣⎦【分析】计算定义域为⎡⎣,设()5,2,2f x t t ⎡⎤=∈⎢⎥⎣⎦,代入化简得到()212y t =+-,计算值域得到答案. 【详解】函数()()221y f x f x =++的定义域满足:21313x x ⎧≤≤⎨≤≤⎩,解得1x ≤≤设()5,2,2f x t t ⎡⎤=∈⎢⎥⎣⎦,故()()()2222122112y f x f x t t t =++=+-+=+-.函数在52,2⎡⎤⎢⎥⎣⎦上单调递增,当2t =时,min 7y =;当52t =时,max 414y =. 故答案为:417,4⎡⎤⎢⎥⎣⎦.【点睛】本题考查了函数的值域,忽略定义域是容易发生的错误.17.【分析】设值域为根据题意对分类讨论结合根的判别式即可求解【详解】设值域为函数的值域为当时值域为满足题意;当时须解得综上实数a 的取值范围是故答案为:【点睛】本题考查对数函数的性质复合函数的性质二次函数 解析:10,2⎡⎤⎢⎥⎣⎦【分析】设2()u x ax x a =++值域为A ,根据题意(0,)A +∞⊆,对a 分类讨论,结合根的判别式,即可求解. 【详解】设2()u x ax x a =++值域为A ,函数22()log ()f x ax x a =++的值域为,(0,)R A +∞⊆,当0a =时,2()log f x x =值域为R ,满足题意; 当0a ≠时,须20140a a >⎧⎨∆=-≥⎩,解得102a <≤, 综上,实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦.故答案为:10,2⎡⎤⎢⎥⎣⎦.【点睛】本题考查对数函数的性质,复合函数的性质,二次函数的取值和根的判别式的关系,属于中档题.18.【分析】设点则点B 的坐标为由题意得则再根据平行四边形的面积求得由此得得函数的解析式从而得函数的的单调性与最值【详解】解:设点则点B 的坐标为∵∴∵平行四边形OABC 的面积又平行四边形OABC 的面积为2 解析:3-【分析】设点(),tE t a ,则点B 的坐标为()2,2tt a ,由题意得22tt aa =,则2t a =,再根据平行四边形的面积求得12t =,由此得4a =,得函数()f x 的解析式,从而得函数()f x 的的单调性与最值.【详解】解:设点(),tE t a ,则点B 的坐标为()2,2tt a ,∵22t t a a =,∴2t a =,∵平行四边形OABC 的面积24t S OC AC a t t =⨯⨯==, 又平行四边形OABC 的面积为2,∴42t =,12t =,所以122a =,4a =, ∴()4f x x x=-在[]1,2为增函数,∴函数()f x 的最小值为()4111f =-=3-, 故答案为:3-. 【点睛】本题主要考查指数函数的图象和性质,考查利用函数的单调性求最值,属于中档题.19.2【分析】先利用函数的解析式得出其图象必过哪一个定点再将该定点的坐标代入函数中求出最后即可求出相应的函数值得到结果【详解】因为函数的图象恒过定点将代入得所以所以则故答案为:【点睛】该题考查的是有关函解析:2 【分析】先利用函数log (21)1(0,1)a y x a a =-+>≠的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数()2xf x b =+中求出b ,最后即可求出相应的函数值2(log 3)f ,得到结果. 【详解】因为函数log (21)1(0,1)a y x a a =-+>≠的图象恒过定点(1,1), 将1,1x y ==代入()2xf x b =+,得121b +=,所以1b =-,所以()21xf x =-, 则2log 32(log 3)21312f =-=-=,故答案为:2. 【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有对数型函数图象过定点问题,点在函数图象上的条件,已知函数解析式求函数值,属于简单题目.20.①②④【分析】根据①②③④各个函数的定义域求出各个函数的值域判断正误即可【详解】①中函数的定义域值域;故①不正确;②中函数的定义域是值域;故②不正确;③中函数的值域是则它的定义域可能是故③是正确的;解析:①②④ 【分析】根据①、②、③、④各个函数的定义域,求出各个函数的值域,判断正误即可. 【详解】①中函数2x y =的定义域{}|0x x ≤,值域2(0,1]x y =∈;故①不正确; ②中函数1y x =的定义域是{|2}x x >,值域110,2y x ⎛⎫=∈ ⎪⎝⎭;故②不正确; ③中函数2y x 的值域是{|04}y y ≤≤,则它的定义域可能是{}|22x x -≤≤,故③是正确的;④中函数2log y x =的值域是{|3}y y ≤,∵2log 3,08y x x =≤∴<≤,,故④不正确; 故答案为:①②④. 【点睛】本题考查函数的定义域及其求法,函数的值域,指数函数的定义域和值域,对数函数的值域与最值,考查计算能力,属于基础题.三、解答题21.(1)()2,2-.(2)见解析;(3)18,211⎛⎫⎪⎝⎭. 【详解】试题分析:(1)根据对数函数的定义,列出关于自变量x 的不等式组,求出()f x 的定义域; (2)由函数奇偶性的定义,判定()f x 在定义域上的奇偶性;(3)化简()f x ,根据对数函数的单调性以及定义域,求出不等式()f x >1的解集.试题(1)要使函数()f x 有意义.则20{20x x +>->,解得22x -<<.故所求函数()f x 的定义域为()2,2-.(2)由(1)知()f x 的定义域为()2,2-,设()2,2x ∀∈-,则()2,2x -∈-. 且()()()()lg 2lg 2f x x x f x -=-+-+=-, 故()f x 为奇函数. (3)因为()f x 在定义域()2,2-内是增函数, 因为()1f x >,所以2102x x+>-,解得1811x >. 所以不等式()1f x >的解集是18,211⎛⎫⎪⎝⎭. 22.(1)(5,5)- (2)奇函数,见解析 【分析】(1)若()f x 有意义,则需满足505xx->+,进而求解即可;(2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可. 【详解】 (1)由题,则505xx->+,解得55x -<<,故定义域为()5,5- (2)奇函数,证明:由(1),()f x 的定义域关于原点对称, 因为()()33355log log log 1055x xf x f x x x+--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数 【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明. 23.(1)154;(2)210 【分析】(1)根据对数的运算法则运算求值即可(2)根据指数的运算法则化简求值. 【详解】(1)7log 23log lg 25lg 473+++ 143log 3lg1002-=++1224=-++154= (2)()146230.2516248201249-⎛⎫⨯+-⨯+- ⎪⎝⎭43132334447223(2)42214=⨯⨯+-⨯-⨯+2162721=+--+210=【点睛】本题主要考查了对数的运算,指数的运算,属于中档题.24.(1)1()2xf x ⎛⎫= ⎪⎝⎭;(2)(]1,1-. 【分析】(1)利用待定系数法求出参数a 的值,即可求出函数解析式;(2)由(1)可知11()12x g x -⎛⎫=- ⎪⎝⎭,再结合指数函数的性质计算可得;【详解】解:(1)设()x f x a =(0a >,且1a ≠),因为其图象过点12,4⎛⎫ ⎪⎝⎭,则214a =, 计算得:12a =±,∵0a >,且1a ≠,∴12a =, 所以1()2xf x ⎛⎫= ⎪⎝⎭. (2)依题意可知11()12x g x -⎛⎫=- ⎪⎝⎭,由函数1()2xf x ⎛⎫= ⎪⎝⎭为减函数可知:函数11()12x g x -⎛⎫=- ⎪⎝⎭(0)x ≥为减函数,当0x =时,max 1y =;又1102x -⎛⎫> ⎪⎝⎭,∴11112x -⎛⎫->- ⎪⎝⎭,所以()g x 的值域为(]1,1-.【点睛】本题考查待定系数法求函数解析式,以及指数函数的性质的应用,属于中档题. 25.(1)[)1,-+∞;(2)[]1,1-. 【分析】(1)根据函数的奇偶性,求出a 的值,求出1122()log (1)log (1)f x x x +-=+,根据函数的单调性求出m 的范围即可;(2)问题转化为211k x x =-+-在[]2,3上有解,即2()11g x x x =-+-在[]2,3上递减,根据函数的单调性求出()g x 的值域,从而求出k 的范围即可.【详解】(1)∵函数()f x 的图象关于原点对称,∴函数()f x 为奇函数, ∴()()f x f x -=-, 即111222111log log log 111ax ax x x x ax +--=-=----,解得1a =-或1a =(舍),()()()()111122221log 1log log 1log 11xf x x x x x ++-=+-=+-, 当1x >时,()12log 11x +<-,∵当()1,x ∈+∞时,()()12log 1f x x m +-<恒成立,∴1m ≥-,即m 的取值范围为[)1,-+∞;(2)由(1)知,()()12log f x x k =+即()()11221log log 1x f x x k x +==+-, 即11x x k x +=+-,即211k x x =-+-在[]2,3上有解, ()211g x x x =-+-在[]2,3上单调递减, minmax()(3)1,()(2)1g x g g x g ,∴()g x 的值域为[]1,1-,∴[]1,1k ∈-. 【点睛】本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,如果是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.26.定义域为(,1)(3,)-∞-+∞,函数值域为R ,减区间是(,1)-∞-,增区间是(3,)+∞.【分析】结合对数函数性质求解. 【详解】由2230x x -->得1x <-或3x >,∴定义域为(,1)(3,)-∞-+∞.由2230x x -->得y R ∈,函数值域为R ,223y x x =--在(,1)-∞-上递减,在(3,)+∞上递增,∴()log 23=-2-3y x x 的减区间是(,1)-∞-,增区间是(3,)+∞. 【点睛】本题考查对数型复合函数的性质,掌握对数函数的性质是解题关键.。

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。

(压轴题)高中数学必修一第三单元《指数函数和对数函数》检测题(包含答案解析)

(压轴题)高中数学必修一第三单元《指数函数和对数函数》检测题(包含答案解析)

一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C.y =1y x =-D .lg y x =与21lg 2y x =2.2017年5月,世界排名第一的围棋选手柯洁0:3败给了人工智能“阿法狗”.为什么人类的顶尖智慧战胜不了电脑呢?这是因为围棋本身也是一个数学游戏,而且复杂度非常高.围棋棋盘横竖各有19条线,共有1919361⨯=个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限3613M ≈.科学家们研究发现,可观测宇宙中普通物质的原子总数8010N ≈.则下列各数中与MN最接近的是( )(参考数据:lg30.48≈) A .3310B .5310C .7310D .93103.已知0.20.33log 0.2,3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.已知函数||()2x f x =,记131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .c b a >>B .b a c >>C .a b c >>D .c a b >>5.已知函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1C .-5D .126.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>7.已知函数 ()lg 2x xe ef x --=,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减8.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,x ∈[1,2]与函数.2y x =,[]2,1x ∈--即为同族函数,下面函数解析式中也能够被用来构造“同族函数”的是( )A .y =xB .1y x x=+ C . 22x x y -=- D .y =log 0.5x 9.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c10.已知3log 2a =,那么33log 82log 6-用a 表示是( ) A .52a - B .2a -C .23(1)a a -+D .231a a --11.函数()22x xxf x -=+的大致图象为( ) A . B .C .D .12.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3二、填空题13.函数12()log (2)f x x =-的定义域为______.14.已知()f x 是定义在R 上的奇函数,且当0x 时,2log (1),01,()31,1,x x f x x x +<⎧=⎨--⎩则方程1()2f x =的所有实根之和为________. 15.已知函数log (3)a y ax =-在(1,2)上单调递减,则实数a 的取值范围为___________. 16.已知函数22()log ()f x ax x a =++的值域为R ,则实数a 的取值范围是_________ 17.若函数11x y a+=+()0,1a a >≠恒过点(,)P m n ,则函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是_____.18.函数()()212log 56f x x x =-+的单调递增区...间是__________. 19.设函数()f x =,则()()()()()()543456f f f f f f -+-+-++++=_____.20.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.三、解答题21.已知函数2()46f x ax x =-+.(1)若函数2log ()y f x =的值域为R ,求实数a 的取值范围;(2)若函数log ()a y f x =在区间(1,3)上单调递增,求实数a 的取值范围. 22.设131()log 1axf x x -=-为奇函数,a 为常数. (1)求a 的值.(2)若[2,4]x ∀∈,不等式1()3xf x x m ⎛⎫+>+ ⎪⎝⎭恒成立,求实数m 的取值范围.23.设函数()()1xxf x a k a -=--,(0a >且1a ≠)是定义域为R 的奇函数,且()312f =. (1)求k ,a 的值;(2)求函数()f x 在[)1,+∞上的值域; (3)设()()222xx g x a a m f x -=+-⋅,若()g x 在[)1,+∞上的最小值为2-,求m 的值;(4)对于(3)中函数()g x ,如果()0g x >在[)1,+∞上恒成立,求m 的取值范围. 24.(1)已知12x y +=,9xy =,且x y <,求11221122x y x y-+值;(2)求值:2(lg 2)lg5lg 20+⋅.25.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 26.已知函数()21log 1x f x x +=-, (1)求函数()y f x =的定义域; (2)证明:()y f x =是奇函数; (3)设()()()14h x f x f x =+,求函数()y h x =在[]3,7内的值域;【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数;C .y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.D解析:D 【分析】设36180310M x N ==,两边取对数,结合对数的运算性质进行整理,即可求出M N . 【详解】解:设36180310M x N ==,两边取对数36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,故选:D . 【点睛】 关键点睛:本题考查了对数的运算,关键是结合方程的思想令36180310x =,两边取对数后进行化简整理.3.B解析:B 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果 【详解】因为33log 0.2log 10<=,0.20331>=,...030002021<<=,a cb ∴<<. 故选:B . 【点睛】比较大小问题,常见思路有两个:一是利用中间变量;二是利用函数的单调性直接解答4.A解析:A 【分析】首先判断函数()f x 的性质,再比较133317,log ,log 542⎛⎫ ⎪⎝⎭的大小关系,从而利用单调性比较a ,b ,c 的大小关系. 【详解】()2xf x =是偶函数,并且当0x >时,2x y =是增函数,()133log 5log 5c f f ⎛⎫== ⎪⎝⎭,因为1310()14<<,3371log log 52<<,即1333170log log 542⎛⎫<<< ⎪⎝⎭ 又因为()y f x =在()0,∞+是增函数,所以a b c <<. 故选:A. 【点睛】关键点点睛:本题考查利用函数的单调性和奇偶性比较函数值的大小,本题的关键是判断函数()2xf x =的性质,后面的问题迎刃而解.5.A解析:A 【分析】根据分段函数解析式,依次计算255log 122f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,23log 2f ⎛⎫ ⎪⎝⎭,即可得选项.【详解】因为函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,所以2253log log 2122f ⎛⎫=<= ⎪⎝⎭,23log 2531222222f f⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A. 【点睛】本题考查根据分段函数求解函数值,关键在于根据解析式分段求解,由内到外,准确认清自变量的所在的范围和适用的解析式.6.B解析:B 【分析】将函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.7.A解析:A 【分析】本题考查函数的奇偶性和和单调性的概念及简单复合函数单调性的判定. 【详解】要使函数有意义,需使0,2x x e e -->即21,1,x xx e e e >∴>解得0;x >所以函数()f x 的为(0,);+∞定义域不关于原点对称,所以函数()f x 是非奇非偶函数;因为1,xxx y e y ee-==-=-是增函数,所以2x xe e y --=是增函数,又lg y x =是增函数,所以函数()lg 2x xe ef x --=在定义域(0,)+∞上单调递增.故选:A 【点睛】本题考查对数型复合函数的奇偶性和单调性,属于中档题.8.B解析:B 【分析】由题意,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调,由此判断各个函数在其定义域上的单调性即可.【详解】对A :y x =在定义域R 上单调递增,不能构造“同族函数”,故A 选项不正确;对B :1y x x=+在(),1-∞-递增,在()1,0-递减,在()0,1递减,在()1,+∞递增,能构造“同族函数”,故B 选项正确; 对C :22xxy -=-在定义域上递增,不能构造“同族函数”,故C 选项不正确; 对D :0.5log y x =在定义域上递减,不能构造“同族函数”,故D 选项不正确. 故选:B. 【点睛】本题给出“同族函数”的定义,要求我们判断几个函数能否被用来构造“同族函数”,考查基本初等函数的单调性的知识点,属于基础题.9.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.10.B解析:B 【解析】试题分析:33333333log 82log 6log 22log 233log 22(log 2log 3)-=-⨯=-+3log 222a =-=-,所以答案选B .考点:指数对数的计算11.B解析:B 【分析】根据函数为奇函数排除C ,取特殊值排除AD 得到答案. 【详解】 当()22x xx f x -=+,()()22x x xf x f x ---==-+,函数为奇函数,排除C ; 2221(2)22242f -=<=+,排除A ;3324(3)22536f -==+,4464(4)224257f -==+,故()()34f f >,排除D. 故选:B. 【点睛】 本题考查了函数图象的识别,意在考查学生的计算能力和识图能力,取特殊值排除是解题的关键.12.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.二、填空题13.【分析】根据二次根式和对数式有意义的条件得到不等式组求解函数的定义域即可得结果【详解】根据题意可得:解得所以函数的定义域为故答案为:【点睛】该题考查的是有关求函数的问题涉及到的知识点有求给定函数的定 解析:(2,3]【分析】根据二次根式和对数式有意义的条件,得到不等式组求解函数的定义域即可得结果. 【详解】根据题意可得:1220log (2)0x x ->⎧⎪⎨-≥⎪⎩,解得23x <≤,所以函数()f x =(2,3],故答案为:(2,3]. 【点睛】该题考查的是有关求函数的问题,涉及到的知识点有求给定函数的定义域,在解题的过程中,注意二次根式和对数式需要满足的条件即可得结果.14.【分析】画出分段函数的图像根据图像结合解析式进行求解【详解】根据分段函数的解析式以及函数为奇函数作图如下:由图容易知因为在区间上关于对称且在区间上关于对称故其与直线的所有交点的横坐标之和为0故所有根解析:21-【分析】画出分段函数的图像,根据图像,结合解析式,进行求解. 【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称, 且31y x =---+在区间(],1-∞上,关于3x =-对称, 故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根, 此时()21log 12x +=,解得21x =. 21. 【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应用,属函数综合题.15.【分析】由复合函数的单调性:同增异减由于递减因此必须递增即有还要考虑函数定义域即在时恒成立【详解】∵∴是减函数又在上是减函数所以且∴故答案为:【点睛】本题考查对数型复合函数的单调性掌握复合函数单调性 解析:3(1,]2【分析】由复合函数的单调性:同增异减,由于3u ax =-递减,因此log a y u =必须递增,即有1a >,还要考虑函数定义域,即在(1,2)x ∈时,30ax ->恒成立.【详解】∵0a >,∴3u ax =-是减函数,又log (3)a y ax =-在(1,2)上是减函数,所以1a >, 且320a -≥,∴312a <≤. 故答案为:3(1,]2.【点睛】本题考查对数型复合函数的单调性,掌握复合函数单调性是解题关键,同时要考虑函数的定义域.16.【分析】设值域为根据题意对分类讨论结合根的判别式即可求解【详解】设值域为函数的值域为当时值域为满足题意;当时须解得综上实数a 的取值范围是故答案为:【点睛】本题考查对数函数的性质复合函数的性质二次函数 解析:10,2⎡⎤⎢⎥⎣⎦【分析】设2()u x ax x a =++值域为A ,根据题意(0,)A +∞⊆,对a 分类讨论,结合根的判别式,即可求解. 【详解】设2()u x ax x a =++值域为A ,函数22()log ()f x ax x a =++的值域为,(0,)R A +∞⊆,当0a =时,2()log f x x =值域为R ,满足题意;当0a ≠时,须20140a a >⎧⎨∆=-≥⎩,解得102a <≤, 综上,实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦.故答案为:10,2⎡⎤⎢⎥⎣⎦.【点睛】本题考查对数函数的性质,复合函数的性质,二次函数的取值和根的判别式的关系,属于中档题.17.【分析】先利用指数型函数恒过定点问题求定点得到换元令利用二次函数的单调性即可求解【详解】函数恒过点则区间变为由函数令则利用二次函数的单调性当时则函数在上的最小值是故答案为:【点睛】关键点睛:把指数型解析:34【分析】先利用指数型函数恒过定点问题求定点,得到1,2m n =-=,换元,令11,224xt t ⎛⎫=≤≤ ⎪⎝⎭,利用二次函数的单调性,即可求解. 【详解】 函数11x y a+=+()0,1a a >≠恒过点()1,2-,则1,2m n =-=,区间[],x m n ∈变为[]1,2x ∈-,由函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭, 令11,224xt t ⎛⎫=≤≤ ⎪⎝⎭, 则()2213124f t t t t ⎛⎫=-+=-+ ⎪⎝⎭, 利用二次函数的单调性,当12t =时,()min 34f t =,则函数()11142xxf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是34.故答案为:34. 【点睛】关键点睛:把指数型复合函数求最值问题转化为二次函数求最值问题是解决本题的关键.18.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间. 【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >.所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞.故答案为:(),2-∞. 【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.19.【分析】根据指数的运算律计算出的值由此可计算出所求代数式的值【详解】因此故答案为【点睛】本题考查指数幂的化简计算解题的关键在于观察代数式结构并计算出为定值考查计算能力属于中等题解析:【分析】根据指数的运算律计算出()()1f x f x +-=的值,由此可计算出所求代数式的值. 【详解】()f x =()1122xx f x ∴-====, ()()12x x x f x f x ∴+-=+===,因此,()()()()()()5434566f f f f f f -+-+-++++==.故答案为 【点睛】本题考查指数幂的化简计算,解题的关键在于观察代数式结构并计算出()()1f x f x +-为定值,考查计算能力,属于中等题.20.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可. 【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-, 故()f x 关于1x =对称; 又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-, 故可得()()()()4222f x f x f x f x +=++=-+=, 故函数()f x 是周期为4的函数. 则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-,则()()()()()320191131eff f e f e f e e-=-=--=--=-.故答案为:31e e --. 【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期.三、解答题21.(1)20,3⎡⎤⎢⎥⎣⎦;(2)[)2,+∞.【分析】(1)根据条件分析出2()46f x ax x =-+的值域包含()0,∞+,由此根据a 与0的关系分类讨论,求解出结果;(2)根据1,01a a ><<两种情况结合复合函数单调性的判断方法进行分类讨论,然后求解出a 的取值范围. 【详解】(1)因为()22log 46y ax x =-+的值域为R ,所以246y ax x =-+的值域包含()0,∞+,当0a =时,246y ax x =-+即46y x =-+,此时46y x =-+的值域为R ,满足; 当0a ≠时,则有016240a a >⎧⎨∆=-≥⎩,所以203a <≤,综上可知:20,3a ⎡⎤∈⎢⎥⎣⎦;(2)当1a >时,log a y x =在()0+∞,上单调递增,所以2()46f x ax x =-+在()1,3上递增,所以()2110a f ⎧≤⎪⎨⎪>⎩,所以2a ≥,当01a <<时,log a y x =在()0+∞,上单调递减,所以2()46f x ax x =-+在()1,3上递减,所以()2330a f ⎧≥⎪⎨⎪>⎩,此时a 无解,综上可知:[)2,a ∈+∞. 【点睛】思路点睛:形如()()()2lg 0f x ax bx ca =++≠的函数,若函数的定义域为R ,则有0a >⎧⎨∆<⎩; 若函数的值域为R ,则有0a >⎧⎨∆≥⎩. 22.(1)1a =-;(2)89m <. 【分析】(1)由奇函数的性质()()0f x f x ,代入运算后可得1a =±,代入验证即可得解;(2)转化条件为131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,结合函数的单调性求得()min g x 即可得解.【详解】(1)因为131()log 1axf x x -=-为奇函数, 则1113331111()()log log log 1111ax ax ax ax f x f x x x x x +-⎡+-⎤⎛⎫⎛⎫-+=+= ⎪⎪⎢⎥------⎝⎭⎝⎭⎣⎦ ()21231log 01ax x-==-, 则()22111ax x -=-,所以21a =即1a =±, 当1a =时,()11331()log log 11xf x x -==--,不合题意; 当1a =-时,131()log 1x f x x +=-,由101xx +>-可得1x >或1x <-,满足题意; 故1a =-;(2)由1()3xf x x m ⎛⎫+>+ ⎪⎝⎭可得131log 113xx x m x ⎛⎫>+ +⎪⎭+⎝-,则131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,因为函数12111x y x x +==+--在[2,4]上单调递减,所以函数131log 1xy x +=-在[2,4]上单调递增, 所以()g x 在[2,4]上单调递增,所以()()1min 32log 182993g x g -===+, 所以89m <. 【点睛】关键点点睛:解决本题的关键是将恒成立问题转化为求函数的最值. 23.(1)2a =,2k =;(2)3,2⎡⎫+∞⎪⎢⎣⎭;(3)2m =;(4)17,12⎛⎫-∞ ⎪⎝⎭. 【分析】(1)由奇函数性质求得k ,由3(1)2f =可求得a ; (2)利用函数的单调性得值域;(3)换元,设22x x t -=-,则3,2t ⎡⎫∈+∞⎪⎢⎣⎭,()g x 转化为()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,由二次函数的性质求得最小值,再由最小值为2-可得m , (4)在(3)基础上,由()k t 的最小值大于0可得m 的取值范围.【详解】解:(1)∵函数()()1xxf x a k a -=--,(0a >且1a ≠)是定义域为R 的奇函数,∴()00f =,即()110k --=,2k =, ∵()312f =.∴132a a -=,2a =, ∴2a =,2k =, (2)1()2222xxx x f x -=-=-是增函数,∴1≥x 时,13()222f x ≥-=,即值域中3,2⎡⎫+∞⎪⎢⎣⎭; (3)()()2222222xx x x g x m --=+--,设22xxt -=-,[)1,x ∈+∞,3,2t ⎡⎫∈+∞⎪⎢⎣⎭, ∴()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,∵若()g x 在[)1,+∞上的最小值为2-,∴()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭的最小值为2-,∴23222m m ⎧≥⎪⎨⎪-+=-⎩或3293224m m ⎧<⎪⎪⎨⎪-+=-⎪⎩ 即2m =,或2512m =(舍去), 故2m =;(4)()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭, ∵()0g x >在[)1,+∞上恒成立, ∴()0k t >在3,2t ⎡⎫∈+∞⎪⎢⎣⎭上恒成立,∴23220m m ⎧≥⎪⎨⎪-+>⎩或3293204m m ⎧<⎪⎪⎨⎪-+>⎪⎩, 解不等式得出x ∈∅或1712m <, ∴m 的取值范围为17,12⎛⎫-∞ ⎪⎝⎭.【点睛】方法点睛:本题考查指数函数的性质,考查奇偶性,由奇偶性同函数解析式,由单调性是函数的值域,在求函数()g x 的最值问题,不等式恒成立问题时,解题方法是换元法,即设22x x t -=-,把指数函数转化为二次函数,然后利用二次函数性质求解.24.(1)2)1. 【分析】(1)求出x y -的值,再化简11221122x y x y-+即得解;(2)利用对数的运算法则化简求解. 【详解】(1)因为222()()41249108x y x y xy -=+-=-⨯=,又x y <,所以x y -=-所以1111222221122()3x y x yx yx y--====--+.(2)原式22(lg2)lg5(1lg2)(lg2)lg5lg2lg5=+⋅+=+⋅+lg2(lg2lg5)lg5lg2lg51=++=+=.【点睛】关键点点睛:解答指数对数运算题的关键是通过观察式子的特点,再熟练利用指数对数的运算法则和性质求解.25.(1)1;(2)1010.【分析】(1)根据4()42xxf x=+的表达式,求出()(),1f a f a-的表达式,再进行分式通分运算,可得()()11f a f a+-=.(2)设12320202021202120212021S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S的表达式运用加法交换律改写成20201202120212021202321S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x+-=求出S的值.【详解】(1)4()42xxf x=+,x∈R.∴()()1f a f a+-1144444442424224a a a aa a aa--=+=+++++4214224aa a=+=++,(2)设12320202021202120212021S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则20201202120212021202321S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:202022011 09211,1,,221202120212021202120220101f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,∴220201010S S=⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力. 26.(1)见解析;(2)见解析;(3)[]4,5 【分析】 (1)由不等式101x x +>-即可求出()f x 的定义域; (2)证明()()f x f x -=-可得()f x 为奇函数;(3)先求出()f x 在[]3,7上的值域,令()t f x =,求()14h t t t=+的值域. 【详解】 (1)由101x x +>-得:1x >或1x <-, ()f x ∴的定义域为()(),11,-∞-+∞;(2)()()222111log log log 111x x x f x f x x x x -+-+-===-=---+-, ()f x ∴为奇函数;(3)()22log 11f x x ⎛⎫=+ ⎪-⎝⎭在[]3,7上单调递减,令()t f x =,则24log ,13t ⎡⎤∈⎢⎥⎣⎦, 而()14h t t t=+在10,2⎛⎤ ⎥⎝⎦单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,又()2411log 15,4342h h h h ⎛⎫⎛⎫⎛⎫<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴函数()h x 在[]3,7内的值域为[]4,5.【点睛】本题主要考查了对数型函数的定义域,奇偶性,考查了复合函数的单调性,值域求解,属于中档题.。

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题1、下列函数一定是指数函数的是 ( ) A、12+=x y B 、3x y = C 、x y -=3 D 、x y 23⋅=2、已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg b a =lg a -lg b ③b a b a lg )lg(212= ④lg (ab )=10log 1ab A .0 B .1 C .2 D .33、已知x =2+1,则lo g 4(x 3-x -6)等于 ( )A .23 B .45 C .0 D .21 4、已知m >0时10x =lg (10m )+lg m 1,则x 的值为 ( ) A .2 B .1 C .0 D .-15、下列图像正确的是 ( )A B C D6、若log a b ·log 3a =5,则b 等于 ( )A .a 3B .a 5C .35D .537、5、已知031log 31log >>b a ,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 8、若函数)1,0(1≠>-+=a a m a y x 的图象在第一、三、四象限内,则 ( )A 、1>aB 、1>a 且0<mC 、010><<m a 且D 、10<<a9、函数x y -=1)21(的单调递增区间是 ( ) A 、),(+∞-∞ B 、),0(+∞ C 、),1(+∞ D 、)1,0(10、 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<< 11、下列函数中既是偶函数又是( ) A . B . C . D .12、 函数R x x x y ∈=|,|,满足 ( )A .奇函数是减函数B .偶函数又是增函数C .奇函数又是增函数D .偶函数又是减函数13、若01<<-x ,则下列不等式中成立的是 ( )A 、 x x x 5.055<<-B 、 x x x -<<55.05C 、x x x 5.055<<-D 、 x x x 555.0<<-14、下列命题中正确的是( ) A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限15、若2<x ,则|3|442x x x --+-的值是_____ _____.16、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。

高一数学(必修一)《第四章-指数函数与对数函数》练习题及答案解析-人教版

高一数学(必修一)《第四章-指数函数与对数函数》练习题及答案解析-人教版

高一数学(必修一)《第四章 指数函数与对数函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.某超市宣传在“双十一”期间对顾客购物实行一定的优惠,超市规定:①如一次性购物不超过200元不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去该超市购物分别付款176元和441元,如果他只去一次购买同样的商品,则应付款( )A .608元B .591.1元C .582.6元D .456.8元2.德国天文学家,数学家开普勒(J. Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为( )A .4329dB .30323dC .60150dD .90670d3.函数()f x = )A .()1,0-B .(),1-∞-和()0,1C .()0,1D .(),1-∞-和()0,∞+4.将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90100a <<B .90110a <<C .100110a <<D .80100a <<5.某市工业生产总值2018年和2019年连续两年持续增加,其中2018年的年增长率为p ,2019年的年增长率为q ,则该市这两年工业生产总值的年平均增长率为( )A .2p q +;B .()()1112p q ++-;C ;D 1.6.某污水处理厂为使处理后的污水达到排放标准,需要加入某种药剂,加入该药剂后,药剂的浓度C (单位:3mg/m )随时间t (单位:h )的变化关系可近似的用函数()()()210010419t C t t t t +=>++刻画.由此可以判断,若使被处理的污水中该药剂的浓度达到最大值,需经过( )A .3hB .4hC .5hD .6h7.某同学参加研究性学习活动,得到如下实验数据:以下函数中最符合变量y 与x 的对应关系的是( )A .129y x =+B .245y x x =-+C .112410x y =⨯- D .3log 1y x =+ 8.某种植物生命力旺盛,生长蔓延的速度越来越快,经研究,该一定量的植物在一定环境中经过1个月,其覆盖面积为6平方米,经过3个月,其覆盖面积为13.5平方米,该植物覆盖面积y (单位:平方米)与经过时间x (x ∈N )(单位:月)的关系有三种函数模型x y pa =(0p >,1a >)、log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)可供选择,则下列说法正确的是( )A .应选x y pa =(0p >,1a >)B .应选log a y m x =(0m >,1a >)C .应选y nx α=(0n >,01α<<)D .三种函数模型都可以9.已知函数()21,1,8, 1.x x f x x x ⎧-≤=⎨>⎩若()8f x =,则x =( ) A .3-或1 B .3- C .1 D .310.函数e 1()sin 2e 1x x f x x +=⋅-的部分图象大致为( ) A . B .C .D .二、填空题11.2021年8月30日第九届未来信息通信技术国际研讨会在北京开幕.研讨会聚焦于5G 的持续创新和演进、信息通信的未来技术前瞻与发展、信息通信技术与其他前沿科技的融合创新.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫作信噪比.若不改变信道带宽W ,而将信噪比S N从11提升至499,则最大信息传递速率C 大约会提升到原来的______倍(结果保留1位小数).(参考数据:2log 3 1.58≈和2log 5 2.32≈)12.已测得(,)x y 的两组值为(1,2)和(2,5),现有两个拟合模型,甲21y x =+,乙31y x =-.若又测得(,)x y 的一组对应值为(3,10.2),则选用________作为拟合模型较好.13.半径为1的半圆中,作如图所示的等腰梯形ABCD ,设梯形的上底2BC x =,则梯形ABCD 的最长周长为_________.三、解答题14.如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?15.以贯彻“节能减排,绿色生态”为目的,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (百元)与月处理量x (吨)之间的函数关系可近似地表示为212800200y x x =-+. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(提示:平均处理成本为y x) (2)该单位每月处理成本y 的最小值和最大值分别是多少百元? 16.如图,以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系O xyz -,点P 在线段AB 上,点Q 在线段DC 上.(1)当2PB AP =,且点P 关于y 轴的对称点为M 时,求PM ;(2)当点P 是面对角线AB 的中点,点Q 在面对角线DC 上运动时,探究PQ 的最小值.17.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t ,100150)X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100X ∈,110),则取105X =,且105X =的概率等于需求量落入[100,110)的频率),求T 的分布列.18.为发展空间互联网,抢占6G 技术制高点,某企业计划加大对空间卫星网络研发的投入.据了解,该企业研发部原有100人,年人均投入()0a a >万元,现把研发部人员分成两类:技术人员和研发人员,其中技术人员有x 名(*x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加4x %,技术人员的年人均投入调整为275x a m ⎛⎫- ⎪⎝⎭万元. (1)要使调整后研发人员的年总投入不低于调整前的100人的年总投入,则调整后的技术人员最多有多少人?(2)是否存在实数m 同时满足两个条件:①技术人员的年人均投入始终不减少;②调整后研发人员的年总投入始终不低于调整后技术人员的年总投入?若存在,求出m 的值;若不存在,请说明理由.19.某公司今年年初用81万元收购了一个项目,若该公司从第1年到第x (N x +∈且1x >)年花在该项目的其他费用(不包括收购费用)为()20x x +万元,该项目每年运行的总收入为50万元.(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以56万元的价格卖出;②当年平均盈利最大时,以92万元的价格卖出.假如要在这两种方案中选择一种,你会选择哪一种?请说明理由.20.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ekt P P -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,求正整数n 的最小值.21.某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x (0200x <,N x ∈)台,若年产量不足70台,则每台设备的额外成本为11402y x =+万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为2264002080101y x x =+-万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)写出年利润W (万元)关于年产量x (台)的关系式;(2)当年产量为多少台时,年利润最大,最大值为多少?22.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)a y b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.四、多选题23.函数()()22x x af x a R =+∈的图象可能为( )A .B .C .D .五、双空题24.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt (其中k 为常数;t 表示时间,单位:小时;y 表示病毒个数),则k=____,经过5小时,1个病毒能繁殖为____个.25.已知长为4,宽为3的矩形,若长增加x ,宽减少2x ,则面积最大,此时x =__________,面积S =__________.参考答案与解析1.【答案】B【分析】根据题意求出付款441元时的实际标价,再求出一次性购买实际标价金额商品应付款即可.【详解】由题意得购物付款441元,实际标价为10441=4909元 如果一次购买标价176+490=666元的商品应付款5000.9+1660.85=591.1元.故选:B.2.【答案】B【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r =''2r r '= 结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r土星的公转时间为T ',距离太阳的平均距离为r '由题意知2r r '= 10753T d '= 所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭所以1075310753 2.82830409.484T d '==≈⨯=故选:B.3.【答案】B【分析】分别讨论0x ≥和0x <,利用二次函数的性质即可求单调递减区间.【详解】当0x ≥时()f x 210x -+≥解得11x -≤≤,又21y x =-+为开口向下的抛物线,对称轴为0x =,此时在区间()0,1单调递减当0x <时()f x == ()21y x =+为开口向上的抛物线,对称轴为1x =-,此时在(),1-∞-单调递减综上所述:函数()f x =(),1-∞-和()0,1.故选:B.4.【答案】A【分析】首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据0y >,求x 的取值范围,即可得到a 的取值范围.【详解】设每个涨价x 元,涨价后的利润与原利润之差为y 元则290,(10)(40020)1040020200a x y x x x x =+=+⋅--⨯=-+.要使商家利润有所增加,则必须使0y >,即2100x x -<,得010,9090100x x <<∴<+<,所以a 的取值为90100a <<.故选:A5.【答案】D【分析】设出平均增长率,并根据题意列出方程,进行求解【详解】设该市2018、2019这两年工业生产总值的年平均增长率为x ,则由题意得:()()()2111x p q +=++解得11x =,21x =因为20x <不合题意,舍去 故选D .6.【答案】A【分析】利用基本不等式求最值可得.【详解】依题意,0t >,所以11t +>所以()()()()()()221001100110010010164191012116121t t C t t t t t t t ++===≤==++++++++++ 当且仅当1611t t +=+,即t =3时等号成立,故由此可判断,若使被处理的污水中该药剂的浓度达到最大值,需经过3h .故选:A .7.【答案】D 【分析】结合表格所给数据以及函数的增长快慢确定正确选项.【详解】根据表格所给数据可知,函数的增长速度越来越慢A 选项,函数129y x =+增长速度不变,不符合题意. BC 选项,当3x ≥时,函数245y x x =-+、112410x y =⨯-增长越来越快,不符合题意. D 选项,当3x ≥时,函数3log 1y x =+的增长速度越来越慢,符合题意.故选:D8.【答案】A【解析】根据指数函数和幂函数的增长速度结合题意即可得结果.【详解】该植物生长蔓延的速度越来越快,而x y pa =(0p >,1a >)的增长速度越来越快 log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)的增长速度越来越慢故应选择x y pa =(0p >,1a >).故选:A.9.【答案】B【分析】根据分段函数的解析式,分段求解即可.【详解】根据题意得x ≤1x2−1=8或188x x >⎧⎨=⎩ 解得3,x =-故选:B10.【答案】B【分析】结合图象,先判断奇偶性,然后根据x 趋近0时判断排除得选项.【详解】解:()e 1sin 2e 1x x f x x +=⋅-的定义域为()(),00,∞-+∞()()()e 1e 1sin 2sin 2e 1e 1x x x xf x x x f x --++-=⋅-=⋅=⎡⎤⎣⎦-- ()f x ∴是偶函数,排除A ,C . 又0x >且无限接近0时,101x x e e +>-且sin 20x >,∴此时()0f x >,排除D故选:B .11.【答案】2.5【分析】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,根据题意求出21C C ,再利用指数、对数的运算性质化简计算即可【详解】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,则由题意可知()122log 111log 12C W W =+= ()222log 1499log 500C W W =+= 所以()()232322222222122222log 25log 500log 2log 523log 523 2.328.96 2.5log 12log 2log 32log 32 1.58 3.58log 23C W C W ⨯+++⨯====≈=≈+++⨯所以最大信息传递速率C 会提升到原来的2.5倍.故答案为:2.512.【答案】甲【分析】将3x =分别代入甲乙两个拟合模型计算,即可判断.【详解】对于甲:3x =时23110y =+=,对于乙:3x =时8y =因此用甲作为拟合模型较好.故答案为:甲13.【答案】5【分析】计算得出AB CD ==ABCD 的周长为y,可得出22y x =++()0,1t,可得出224y t =-++,利用二次函数的相关知识可求得y 的最大值.【详解】过点B 、C 分别作BE AD ⊥、CF AD ⊥垂足分别为E 、F则//BE CF ,//BC EF 且90BEF ∠=,所以,四边形BCFE 为矩形所以2EF BC x ==AB CD =,BAE CDF ∠=∠和90AEB DFC ∠=∠= 所以,Rt ABE Rt DCF ≅所以12AD EF AE DF x -===-,则OF OD DF x =-= CF =AB CD ∴===设梯形ABCD 的周长为y ,则2222y x x =++=++其中01x <<令()0,1t =,则21x t =-所以()2222212425y t t t ⎛=+-+=-++=-+ ⎝⎭所以,当t =y 取最大值,即max 5y =. 故答案为:5.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.14.【答案】(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.【分析】(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得(502)S x x =-,根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-由题意得(502)300x x -=解得1215,10x x ==50225x -≤12.5x ∴≥15x ∴=所以,AB 的长为15米时,矩形花园的面积为300平方米;(2)由题意得()()22502250212.5312.5,12.525S x x x x x x =-=-+=--+≤<12.5x ∴=时, S 取得最大值,此时312.5S =所以,当 x 为12.5米时, S 有最大值,最大值是312.5平方米.15.【答案】(1)400吨 (2)最小值800百元,最大值1400百元【分析】(1)求出平均处理成本的函数解析式,利用基本不等式求出最值;(2)利用二次函数单调性求解最值.(1)由题意可知,二氧化碳的每吨平均处理成本为18002200y x x x =+-,显然[]400,600x ∈由基本不等式得:1800222200y x x x =+-≥= 当且仅当1800200x x =,即400x =时,等号成立 故每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)212800200y x x =-+ 对称轴220012200x -=-=⨯ 函数212800200y x x =-+在[400,600]单调递增 当400x =时,则2min 14002400800800200y =⨯-⨯+= 当600x =时,则2max 160026008001400200y =⨯-⨯+= 答:该单位每月处理成本y 的最小值800百元,最大值1400百元.16.【答案】【分析】(1)根据空间直角坐标系写出各顶点的坐标,再由2PB AP =求得121,,33OP ⎛⎫= ⎪⎝⎭,得到P 与M 的坐标,再利用两点距离公式求解即可;(2)由中点坐标公式求得111,,22P ⎛⎫ ⎪⎝⎭,再根据题意设点(,1,)Q a a ,最后利用两点间的距离公式与一元二次函数配方法求PQ 的最小值.(1)所以()22211222131133333PM ⎛⎫⎛⎫=++-++= ⎪ ⎪⎝⎭⎝⎭. (2)因为点P 是面对角线AB 的中点,所以111,,22P ⎛⎫ ⎪⎝⎭,而点Q 在面对角线DC 上运动,故设点(,1,)Q a a[0,1]a ∈则(PQ a ===[0,1]a ∈所以当34a =时,PQ 取得最小值33,1,44Q ⎛⎫ ⎪⎝⎭. 17.【答案】(1)80039000,[100,130)65000,[130,150]X X T X -∈⎧=⎨∈⎩(2)0.7(3)59400 【分析】(1)由题意先分段写出,当[100x ∈,130)和[130x ∈,150)时的利润值,利用分段函数写出即可;(2)由(1)知,利润T 不少于57000元,当且仅当120150x ,再由直方图知需求量[120X ∈,150]的频率为0.7,由此估计得出结论;(3)先求出利润与X 的关系,再利用直方图中的频率计算利润分布列,最后利用公式求其数学期望.(1)解:由题意得,当[100X ∈,130)时500300(130)80039000T X X X =--=-当[130X ∈,150]时50013065000T =⨯=80039000,[100,130)65000,[130,150]X X T X -∈⎧∴=⎨∈⎩(2)解:由(1)知,利润T 不少于57000元,当且仅当120150X .由直方图知需求量[120X ∈,150]的频率为0.7所以下一个销售季度的利润T 不少于57000元的概率的估计值为0.7;(3)解:由题意及(1)可得:所以T 的分布列为:18.【答案】(1)最多有75人 (2)存在 7m =【分析】(1)根据题目要求列出方程求解即可得到结果(2)根据题目要求①先求解出m 关于x 的取值范围,再根据x 的取值范围求得m 的取值范围,之后根据题目要求②列出不等式利用基本不等式求解出m 的取值范围,综上取交集即可 (1)依题意可得调整后研发人员有()100x -人,年人均投入为()14%x a +万元则()()10014%100x x a a -+≥,解得075x ≤≤.又4575x ≤≤,*x ∈N 所以调整后的奇数人员最多有75人.(2)假设存在实数m 满足条件.由条件①,得225x a m a ⎛⎫-≥ ⎪⎝⎭,得2125x m ≥+. 又4575x ≤≤,*x ∈N 所以当75x =时,2125x +取得最大值7,所以7m ≥. 由条件②,得()()210014%25x x x a a m x ⎛⎫-+≥- ⎪⎝⎭,不等式两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥- ⎪⎪⎝⎭⎝⎭,整理得100325x m x ≤++因为10033725x x ++≥=,当且仅当10025x x =,即50x =时等号成立,所以7m ≤. 综上,得7m =.故存在实数m 为7满足条件.19.【答案】(1)第4年 (2)选择方案②,理由见解析【分析】(1)设项目运行到第x 年的盈利为y 万元,可求得y 关于x 的函数关系式,解不等式0y >可得x 的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.(1)解:设项目运行到第x 年的盈利为y 万元则()25020813081=-+-=-+-y x x x x x由0y >,得230810x x -+<,解得327x <<所以该项目运行到第4年开始盈利.(2)解:方案①()22308115144=-+-=--+y x x x当15x =时,y 有最大值144.即项目运行到第15年,盈利最大,且此时公司的总盈利为14456200+=万元方案②818130303012y x x x x x ⎛⎫=-+-=-+≤- ⎪⎝⎭ 当且仅当81x x=,即9x =时,等号成立. 即项目运行到第9年,年平均盈利最大,且此时公司的总盈利为12992200⨯+=万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②.20.【答案】10【分析】由题可得()400180%e k P P --=,求得ln 54k =,再由000.5%e kt P P -≥可求解. 【详解】由题意,前4个小时消除了80%的污染物因为0e kt P P -=⋅,所以()400180%ek P P --= 所以40.2e k -=,即4ln0.2ln5k -==-,所以ln 54k =则由000.5%e kt P P -≥,得ln 5ln 0.0054t ≥- 所以4ln 20013.2ln 5t ≥≈ 故正整数n 的最小值为14410-=.21.【答案】(1)2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩;(2)当年产量为80台时,年利润最大,最大值为1320万元.【分析】(1)根据题意,分段表示出函数模型,即可求解;(2)根据题意,结合一元二次函数以及均值不等式,即可求解.(1)当070x <<,*N x ∈时 211100406006060022W x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭; 当70200x ≤≤,*N x ∈时26400208064001001016001480W x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭. ∴.2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩; (2)①当070x <<,*N x ∈时 221160600(60)120022W x x x =-+-=--+ ∴当60x =时,y 取得最大值,最大值为1200万元.②当70200x ≤≤,*N x ∈时6400148014801320W x x ⎛⎫=-+≤- ⎪⎝⎭ 当且仅当6400x x =,即80x =时,y 取得最大值1320∵13201200>∴当年产量为80台时,年利润最大,最大值为1320万元.22.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元(3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. (1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠ ()log 0,0,1b y a x a b b =≠>≠和(0)a y b a x =+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元.(3)令()()()1701010210f x g x x x x ==-+--(10,)x ∞∈+因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增 ∴当10x =+()g x取得最小值,且最小值为(10g +=∴k ≥23.【答案】ABD【解析】根据函数解析式的形式,以及图象的特征,合理给a 赋值,判断选项.【详解】当0a =时()2x f x =,图象A 满足; 满足;图象C 过点()0,1,此时0a =,故C 不成立.故选:ABD【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.24.【答案】2ln2 1024【详解】当t=0.5时,y=2,∴2=12e k ,∴k=2ln 2,∴y=e 2t ln 2 当t=5时,y=e 10ln 2=210=1 024.25.【答案】1 1212【详解】S =(4+x) 32x ⎛⎫- ⎪⎝⎭=-22x +x +12=-12 (x 2-2x)+12=-12 (x -1)2+252. 当x =1时,S max =252,故填1和252.。

高一数学指数函数和对数函数试题答案及解析

高一数学指数函数和对数函数试题答案及解析

高一数学指数函数和对数函数试题答案及解析1.若,那么满足的条件是()A.B.C.D.【答案】C【解析】即,所以,,故选C。

【考点】本题主要考查对数函数的单调性。

点评:解对数不等式,主要考虑化同底数对数,利用函数的单调性。

2.。

【答案】2【解析】==2lg10=2.【考点】本题主要考查对数运算。

点评:简单题,利用对数运算法则及对数性质。

3.已知函数的定义域为,值域为,求的值。

【答案】【解析】由,得,即∵,即由,得,由根与系数的关系得,解得【考点】本题主要考查对数函数的图象和性质,复合函数。

点评:已知函数定义域、值域,求参数问题,往往从求值域方法入手。

4.函数在上的最大值与最小值的和为3,则.【答案】2;【解析】因为,指数函数是单调函数,所以函数在上的最大值与最小值在区间[0,1]端点处取到,=3,a=2.【考点】本题主要考查指数函数的图象和性质,指数不等式解法。

点评:指数函数是重要函数之一,其图象和性质要牢记。

解答本题的关键是认识到最值在区间端点取到。

5.已知函数,判断的奇偶性和单调性。

【答案】(1)是奇函数;(2)为增函数。

【解析】(1),∴是奇函数(2),且,则,∴为增函数。

【考点】本题主要考查指数函数的图象和性质,复合函数,函数的奇偶性好的东西。

点评:判断函数的奇偶性,其必要条件是定义域关于原点对称。

6.已知函数,(1)求的定义域;(2)判断的奇偶性。

【答案】(1);(2)为非奇非偶函数.【解析】(1)∵,∴,又由得,∴的定义域为。

(2)∵的定义域不关于原点对称,∴为非奇非偶函数。

【考点】本题主要考查对数函数的图象和性质,复合函数,函数的奇偶性。

点评:判断函数的奇偶性,其必要条件是定义域关于原点对称。

7.已知函数的定义域为,值域为,求的值。

【答案】【解析】由,得,即∵,即由,得,由根与系数的关系得,解得【考点】本题主要考查对数函数的图象和性质,复合函数。

点评:已知函数定义域、值域,求参数问题,往往从求值域方法入手。

高一上学期数学(必修一)《第四章 幂函数、指数函数和对数函数》练习题及答案-湘教版

高一上学期数学(必修一)《第四章 幂函数、指数函数和对数函数》练习题及答案-湘教版

高一上学期数学(必修一)《第四章幂函数、指数函数和对数函数》练习题及答案-湘教版第I卷(选择题)一、单选题1. 已知幂函数f(x)的图象过点(16,18),则f(4)=( )A. √ 24B. √ 22C. 14D. 122. 设a=log37,b=21.1,c=0.83.1,则.( )A. b<a<cB. c<a<bC. c<b<aD. a<c<b3. 设a=log54,则b=log1513,c=0.5−0.2则a,b,c的大小关系是( )A. a<b<cB. b<a<cC. c<b<aD. c<a<b4. 方程√ x−lnx−2=0的根的个数为( )A. 0B. 1C. 2D. 35. 已知a>1,则下列命题中正确的是( )A. ∃x0,∀x>x0有a x>x a>log a x成立B. ∃x0,∀x>x0有a x>log a x>x a成立C. ∃x0,∀x>x0有x a>a x>log a x成立D. ∃x0,∀x>x0有x a>log a x>a x成立6. 果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度ℎ与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A. 23天B. 33天C. 43天D. 50天7. 已知函数f(x)={a x−2,x≤−2,x+9,x>−2,(a>0,a≠1)的值域是(7,+∞),则实数a的取值范围是( )A. 13<a<1 B. 0<a≤13C. a>1D. 0<a<138. 已知函数y=log a(x+3)−1(其中a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b 的图象上,则f(log94)的值为( )A. 89B. 79C. 59D. 299. 利用二分法求方程log3x+x−3=0的近似解,可以取的一个区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)10. 深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为L=L0DGG0,其中L表示每一轮优化时使用的学习率,L0表示初始学习率,D表示衰减系数,G表示训练迭代轮数,G0表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.1以下(不含0.1)所需的训练迭代轮数至少为(参考数据:lg2≈0.3010)( )A. 128B. 130C. 132D. 134二、多选题11. 已知幂函数f(x)=(m 2−2m −2)x m 的图象过点(2,12),则( ) A. f(x)=x 3B. f(x)=x −1C. 函数f(x)在(−∞,0)上为减函数D. 函数f(x)在(0,+∞)上为增函数12. 下列说法正确的有( )A. 命题“∀x ∈R ,x 2+x +1>0”的否定为“∃x ∈R 。

(必考题)高中数学必修一第三单元《指数函数和对数函数》测试题(含答案解析)

(必考题)高中数学必修一第三单元《指数函数和对数函数》测试题(含答案解析)

一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C .21y x =-与1y x =-D .lg y x =与21lg 2y x =2.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .4.已知函数()()3,<1log ,1a a x a x f x x x ⎧--=⎨≥⎩的值域..是R ,那么实数a 的取值范围是( ) A .31,2⎛⎤ ⎥⎝⎦B .()1,+∞C .()()0,11,3D .3,32⎡⎫⎪⎢⎣⎭5.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( ) A .5[1,]3B .5(1,]3C .(]5,1(,)3-∞-⋃+∞D .()5,1[1,)3-∞-6.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<7.函数()212()log 4f x x =-的单调递增区间为( ). A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)8.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .129.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--10.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c11.函数2()ln(43)f x x x =+-的单调递减区间是( )A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦12.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③若1log 12a>,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<.14.函数()log 31a y x =+-.(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny ++=上(其中m ,0n >),则12m n+的最小值等于__________. 15.设函数2()ln(1)f x x x =+,若()23(21)0f a f a +-<,则实数a 的取值范围为_____.16.函数()()cos1log sin f x x =的单调递增区间是____________. 17.函数()()212log 56f x x x =-+的单调递增区...间是__________. 18.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.19.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.20.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.三、解答题21.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 22.已知函数122()log 2xf x x-=+. (1)求函数()f x 的定义域,并判断其奇偶性;(2)判断()f x 在其定义域上的单调性,并用单调性定义证明. 23.已知函数()421()x x f x a a R =-+⋅-∈. (1)当1a =时,求()f x 的值域; (2)若()f x 在区间[]1,0-的最大值为14-,求实数a 的值. 24.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.25.已知集合(){}2log 33A x x =+≤,{}213B x m x m =-<≤+. (1)若2m =-,求AB ;(2)若A B A ⋃=,求实数m 的取值范围.26.已知函数()f x 是定义在R 上的奇函数,当0x 时,()121xaf x =++. (1)求实数a 的值及()f x 的解析式; (2)求方程4|(1)|5f x -=的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数; C.y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.A解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤,由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.4.A解析:A 【分析】当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,从而可得答案. 【详解】由题意,()f x 的值域为R ,当0<a <1时,当1≥x 时,log 0a y x =≤,所以当1x <时,()3y a x a =--的值域必须要包含()0,+∞,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 所以不满足()f x 的值域为R .当1a >时,当1≥x 时,[)log 0a y x =∈+∞,, 所以当1x <时,()3y a x a =--的值域必须要包含()0-∞,, 若3a =时,当1x <时,3y a =-=-,不满足()f x 的值域为R .若3a >时,当1x <时,()3y a x a =--单调递减,()332y a x a a =-->- 所以不满足()f x 的值域为R .若13a <<时,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 要使得()f x 的值域为R ,则320a -≥,即32a ≤ 所以满足条件的a 的取值范围是:312a <≤, 故选:A .【点睛】关键点睛:本题考查根据函数的值域求参数的范围,解答本题的关键是当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,属于中档题. 5.A解析:A 【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解 【详解】22()lg[(1)(1)1]f x a x a x =-+++的值域为R令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =± 当1a =时,21y x =+符合题意; 当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤ 513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A 【点睛】转化命题的等价命题是解题关键.6.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<, 故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.7.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.8.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3xf x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4xf f x -=,所以()341mf m m m =+=⇒= 则()31xf x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx =时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.9.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.10.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.11.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭,故选:B 【点睛】本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题12.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断.【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确;④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--, 又1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数, ∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确. 故答案为:①③④【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1);(2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0),解题时注意整体思想的应用.14.8【分析】根据函数平移法则求出点得再结合基本不等式即可求解【详解】由题可知恒过定点又点在直线上故当且仅当时取到等号故的最小值等于8故答案为:8【点睛】本题考查函数平移法则的使用基本不等式中1的妙用属 解析:8【分析】根据函数平移法则求出点A ()2,1--,得21m n +=,再结合基本不等式即可求解【详解】由题可知,()log 31a y x =+-恒过定点()2,1--,又点A 在直线 10mx ny ++=上,故21m n +=,()121242448n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当122n m ==时取到等号,故12m n+的最小值等于8 故答案为:8【点睛】本题考查函数平移法则的使用,基本不等式中“1”的妙用,属于中档题15.【分析】根据已知可得为奇函数且在上单调递增不等式化为转化为关于自变量的不等式即可求解【详解】的定义域为是奇函数设为增函数在为增函数在为增函数在处连续的所以在上单调递增化为等价于即所以实数的取值范围为 解析:1(1,)3- 【分析】根据已知可得()f x 为奇函数且在R 上单调递增,不等式化为()23(12)f a f a <-,转化为关于自变量的不等式,即可求解.【详解】()f x 的定义域为R ,()()))ln10f x f x x x +-=+==,()f x ∴是奇函数,设,[0,)()x u x x =∈+∞为增函数,()f x 在[0,)+∞为增函数,()f x 在(,0)-∞为增函数,()f x 在0x =处连续的,所以()f x 在R 上单调递增,()23(21)0f a f a +-<,化为()23(12)f a f a <-,等价于2312a a <-,即213210,13a a a +-<-<<, 所以实数a 的取值范围为1(1,)3-.故答案为: 1(1,)3-【点睛】本题考查利用函数的单调性和奇偶性解不等式,熟练掌握函数的性质是解题的关键,属于中档题. 16.【分析】根据对数型复合函数单调性列不等式再根据正弦函数性质得结果【详解】单调递增区间为单调递减区间且所以故答案为:【点睛】本题考查对数型复合函数单调性以及正弦函数性质考查基本分析求解能力属基础题 解析:[2,2),()2k k k Z ππππ++∈ 【分析】根据对数型复合函数单调性列不等式,再根据正弦函数性质得结果.【详解】()()cos1cos1(0,1)log sin f x x ∈∴=单调递增区间为sin y x =单调递减区间且sin 0x >, 所以22,()2k x k k Z ππππ+≤<+∈, 故答案为:[2,2),()2k k k Z ππππ++∈【点睛】 本题考查对数型复合函数单调性以及正弦函数性质,考查基本分析求解能力,属基础题. 17.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间.【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >. 所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞. 故答案为:(),2-∞.【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.18.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可.【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-,故()f x 关于1x =对称;又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-,故可得()()()()4222f x f x f x f x +=++=-+=,故函数()f x 是周期为4的函数.则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-, 则()()()()()320191131e f f f e f e f e e -=-=--=--=-.故答案为:31e e --.【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期. 19.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集.【详解】当1x ≤时,1()2x f x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >, 综上,原不等式的解集为[)0,+∞.故答案为:[)0,+∞.【点睛】 本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.20.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题 解析:81,3⎛⎫ ⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+- 31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<, 即8log log 3x x x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭ 故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题三、解答题21.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.22.(1)定义域为(2,2)-,奇函数(2)函数()f x 在(2,2)-上为增函数,证明见解析【分析】(1)根据真数大于0可得定义域,根据奇函数的定义可得函数为奇函数;(2)设1222x x -<<<,根据对数函数的单调性可得12()()f x f x <,再根据定义可证函数()f x 在(2,2)-上为增函数.【详解】(1)由函数有意义得202x x->+,解得22x -<<, 所以函数的定义域为(2,2)-, 因为1112222()log log ()22x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭, 所以函数为奇函数.(2)因为124()log 12f x x ⎛⎫=-+⎪+⎝⎭,所以函数()f x 在(2,2)-上为增函数, 证明:设1222x x -<<<,则120224x x <+<+<,则1244122x x >>++,则124411022x x -+>-+>++, 因为1012<<,所以12()()f x f x <,所以函数()f x 在(2,2)-上为增函数, 【点睛】思路点睛:判断函数的奇偶性的思路:①求出定义域,并判断其是否关于原点对称;②若定义域不关于原点对称,则函数为非奇非偶函数,若定义域关于原点对称,再判断()f x -与()f x 的关系,若()()f x f x -=-,则函数为奇函数;若()()f x f x -=,则函数为偶函数.23.(1)3,4⎛⎤-∞- ⎥⎝⎦;(2)a =【分析】(1)令()20,xt =∈+∞,可得21y t t =-+-,利用二次函数的性质可求出; (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,可得21y t at =-+-,讨论对称轴2a t =的取值范围结合二次函数的性质即可求出.【详解】(1)()2()421221x x x x f x a a =-+⋅-=-+⋅-.令()20,xt =∈+∞,21y t at =-+-,1a =时,2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. ∴当12t =时,max 34y =-,∴3,4y ⎛⎤∈-∞- ⎥⎝⎦, 所以()f x 的值域为3,4⎛⎤-∞- ⎥⎝⎦. (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,22211124a y t at t a ⎛⎫=-+-=---+ ⎪⎝⎭, 其图象的对称轴为2a t =. ①当122a ≤,即1a ≤时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, 当12t =时,max 1111424y a =-+-=-,解得2a =,与1a ≤矛盾; ②当12a ≥,即2a ≥时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增, 当1t =时,max 1114y a =-+-=-,解得74a =,与2a ≥矛盾, ③当1122a <<,即12a <<时,函数y 在1,22a ⎡⎤⎢⎥⎣⎦上单调递增,在,12a ⎡⎤⎢⎥⎣⎦上单调递减.当2a t =时,2max 11144y a =-=-,解得a =,舍去a =综上,a =【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路;(1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b +的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.24.(1)(5,5)- (2)奇函数,见解析【分析】(1)若()f x 有意义,则需满足505x x->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可.【详解】(1)由题,则505x x->+,解得55x -<<,故定义域为()5,5-(2)奇函数,证明:由(1),()f x 的定义域关于原点对称,因为()()33355log log log 1055x x f x f x x x +--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明.25.(1){}31A B x x ⋂=-<≤;(2)[][)1,24,m ∈-+∞ 【分析】(1)计算{}35A x x =-<≤,{}51B x x =-<≤,再计算交集得到答案.(2)A B A ⋃=,故B A ⊆,讨论B =∅和B ≠∅,计算得到答案.【详解】(1)(){}{}2log 3335A x x x x =+≤=-<≤,{}51B x x =-<≤, 故{}31A B x x ⋂=-<≤.(2){}35A x x =-<≤,A B A ⋃=,故B A ⊆, 当B =∅时,213m m -≥+,解得4m ≥;当B ≠∅时,4m <,故21335m m -≥-⎧⎨+≤⎩,解得12m -≤≤. 综上所述:[][)1,24,m ∈-+∞.【点睛】本题考查交集运算,根据集合的包含关系求参数,意在考查学生的计算能力和综合应用能力. 26.(1) 2a =-,()2121x x f x -=+;(2) 212log 3x =+或212log 3x =- 【分析】(1)根据奇函数(0)0f =求解a ,再根据奇函数的性质求解()f x 的解析式即可.(2)根据(1)可得()2121x x f x -=+为奇函数,可先求解4|()|5f t =的根,再求解4|(1)|5f x -=即可. 【详解】(1)因为()f x 是定义在R 上的奇函数,且当0x ≥时,()121x a f x =++,故0(0)1021a f =+=+,即102a +=,解得2a =-.故当0x ≥时,()22112121x x x f x -=-=++. 所以当0x < 时, ()()211221211221x x x x x x f x f x -----=--=-=-=+++.故()2121x x f x -=+ (2) 先求解4|()|5f t =,此时()214215t t f t -==±+. 当()()214421521215t t t t -=⇒+=-+,即29t =解得22log 92log 3t ==. 因为()2121x x f x -=+为奇函数,故当214215t t -=-+时, 22log 3t =-. 故4|(1)|5f x -=的解为212log 3x -=或212log 3x -=-, 解得212log 3x =+或212log 3x =-【点睛】本题主要考查了根据奇函数求解参数的值以及解析式的方法,同时也考查了根据函数性质求解绝对值方程的问题,属于中档题.。

人教版A版(2019)高中数学必修第一册: 第四章 指数函数与对数函数 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第一册: 第四章 指数函数与对数函数 综合测试(附答案与解析)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第四章综合测试
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的)
1.已知集合 M = x | x <3 , N = x | log3 x<1 ,则 M N 等于( )
A.
B.x | 0<x<3

R
上有最大值,则
a

取值范围为( )
A.

2 2
,

1 2
B.
−1,

1 2
C.

2 2
,

1 2
D.

2 2
,
0
0,
1 2
11.某公司为激励创新,计划逐年加大研发资金投入,若该公司 2015 年全年投入研发资金 130 万元,在此基 础上,每年投入的研发资金比上一年增加 12%,则该公司全年投入的研发资金开始超过 200 万元的年份是 (参考数据: lg1.12 0.05,lg1.3 0.11,lg 2 0.30 )( )
【解析】 Q f (x) = log2 (ax −1) 在 (−3, −2) 上为减函数,
a<0 且 ax −1>0 在 (−3, −2) 上恒成立,−2a −1≥0 ,
a≤ − 1 . 2

g(
x)

R
上有最大值,且
g
(x)

−,
1 2
上单调递增,
g
(
x)

1 2
,
+
上单调递减,且
log
,当
log z
x
=

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(满分150分,时间120分钟)班级姓名评价一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )2(3x +1)的定义域为()A.-13,+∞B.-∞,C.-13D.-13,12.设a =log 42.4,b =log 32.9,c =log 32.4,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.c >b >aD.a >c >b3.已知0<m <n <1,则指数函数①y =m x 和②y =n x 的图象为()A.B. C. D.4.已知函数f (x )=log 3(x -1),若f (a )=2,则实数a 的值为()A.3B.8C.9D.105.函数y 2+2的增区间为()A.(-∞,0)B.(-∞,-1]C.[-1,+∞)D.[-2,+∞)6.不论a 为何值,函数y =(a -1)2x-2恒过一定点,则这个定点为()A.1,B.1C.-1,D.-17.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致是()A. B. C. D.8.春末夏初,南京玄武湖公园荷花池中的荷花枝繁叶茂,已知每天新长出的荷叶覆盖水面的面积是前一天的两倍,若荷叶20天可以完全长满荷花池水面,则当荷叶刚好覆盖水面面积18时,荷叶已生长了()A.4天B.15天C.17天D.18天二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列函数中定义域和值域相同的是()A.y = 23B.y = 15C.y =-xD.y =3x10.已知函数f (x )=log 3( -2), >2,3 -1, ≤2,则下列各式正确的是()A.f (5)=1B.f (f (5))=1C.f (3)=9D.f (f (3))=1311.设函数f (x )=(3-2 ) -1, ≤1,, >1,其中a >0且a ≠1,下列关于函数f (x )的说法正确的是()A.若a =2,则f (log 23)=3B.若f (x )在R 上是增函数,则1<a <32C.若f (0)=-1,则a =32D.函数f (x )为R 上的奇函数12.已知函数f (x )=lo g 12x ,下列四个命题正确的是()A.函数f (|x |)为偶函数B.若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C.函数f (-x 2+2x )在(1,3)上为增函数D.若0<a <1,则|f (1+a )|<|f (1-a )|三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分,第二个空3分.13.若幂函数y =f (x 2,则f .14.设函数f (x )=lg x ,若f (2x )<f (2),则实数x 的取值范围是.15.函数f (x )=a 2-x-1(a >0,a ≠1)恒过定点,当0<a <1时,f (x 2)的增区间为.16.已知函数f (x )=x 2+log 2|x |,则不等式f (x -1)-f (1)<0的解集为.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)比较下列各组数的大小:(1)1.8,2.2;(2)0.70.8,0.80.7.18.(12分)已知关于x 的方程5x=15- 有负根,求实数a 的取值范围.19.(12分)已知函数f (x )=log a (-x 2+2x +3)(其中a >0且a ≠1)的值域为[-2,+∞).(1)求实数a 的值;(2)求函数f (x )的单调区间.20.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数.(1)求实数a 的值;(2)求函数g (x )=f (x )+1-2 ( )在0.21.(12分)设函数f (x )=lg (ax )·lg2.(1)当a =0.1时,求f (1000)的值;(2)若f (10)=10,求实数a 的值;(3)若对一切正实数x 恒有f (x )≤98,求实数a 的取值范围.22.(12分)为了预防流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y (单位:mg )与t 时间(单位:h )成正比,药物释放完毕后,y 与t之间的函数关系式为y 2+0.9 +(a 为常数),其图象如图所示,根据图中提供的信息回答下列问题:(1)从药物释放开始,求每立方米空气中的含药量y 与时间t 之间的函数关系式.(2)据测定,当空气中每立方米的含药量降低到116mg 以下时,学生方可进入教室,那么从药物释放开始至少需要经过多少小时,学生才可以回到教室?(第22题)参考答案1.D2.A3.C4.D5.B6.C7.A8.C9.BC 10.ABD 11.AB 12.ABD 13.-214.(0,1)15.(2,0)[0,+∞)16.(0,1)∪(1,2)17.(1)1.82.2(2)0.70.8<0.80.718.方程5x=15- 有负根,即0<15-<1,解得a <4,即a ∈(-∞,4)19.(1)a =12(2)函数f (x )的减区间为(-1,1],增区间为[1,3)20.(1)a =0(2)g (x )=x +1-2 ,x ∈0t =1-2 ,t ∈[0,1],则g (t )=t +1- 22=-12(t -1)2+1,所以12≤g (t )≤121.(1)f (1000)=-14(2)f (10)=lg (10a )·lg 100=(1+lg a )(lg a -2)=(lg a )2-lg a -2=10,即(lg a )2-lg a -12=0,解得lg a =4或-3,即a =104或10-3(3)因为对一切正实数x 恒有f (x )≤98,所以lg (ax )·lg 2≤98在(0,+∞)上恒成立,即(lg a +lg x )(lg a -2lg x )≤98,即2(lg x )2+lg a ·lg x -(lg a )2+98≥0在(0,+∞)上恒成立.因为x >0,所以lg x ∈R .由二次函数的性质可知,Δ=(lg a )2-8-(lg )2+,所以(lg a )2≤1,则-1≤lg a ≤1,所以110≤a ≤1022.(1)当0≤t ≤1时,设y =kt ,将点(0.1,1)代入得k =10,所以y =10t ,再将点(0.1,1)代入y 2+0.9 +,得a =-0.1,所以y 0≤ ≤1,2+0.9 -0.1, >1(2)2+0.9 -0.1≤116,所以( 2+0.9 -0.1),所以5(t 2+0.9t -0.1)≥4,所以10t 2+9t -9≥0,所以t ≥35或t ≤-32(舍去),所以学生要在0.6h 后才可以进入教室。

(压轴题)高中数学必修一第三单元《指数函数和对数函数》测试题(包含答案解析)(3)

(压轴题)高中数学必修一第三单元《指数函数和对数函数》测试题(包含答案解析)(3)

一、选择题1.设a ,b ,c 为正数,且3a =4b =6c ,则有( )A .111c a b =+ B .221c a b =+ C .122c a b =+ D .212c a b =+ 2.设()|lg |f x x =,且0a b c <<<时,有()()()f a f c f b >>,则( )A .(1)(1)0a c -->B .1ac >C .1ac =D .01ac <<3.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a <<4.函数()212()log 4f x x =-的单调递增区间为( ). A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)5.一种放射性元素最初的质量为500g ,按每年10%衰减.则这种放射性元素的半衰期为( )年.(注:剩余质量为最初质量的一半,所需的时间叫做半衰期),(结果精确到0.1,已知lg 20.3010=,lg30.4771=)A .5.2B .6.6C .7.1D .8.36.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .47.设52a -=,5log 2b =,8log 5c =,则( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<8.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现. 比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=( )A .134217728B .268435356C .536870912D .5137658029.已知()243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,那么a 的取值范围是( )A .10,2⎛⎤ ⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .12,23⎡⎤⎢⎥⎣⎦D .2,13⎡⎫⎪⎢⎣⎭10.函数()22x xxf x -=+的大致图象为( ) A . B .C .D .11.如果函数(0,1)x y a a a =>≠的反函数是增函数,那么函数log (1)a y x =-+的图象大致是( )A .B .C .D .12.实数,a b 满足2510a b ==,则下列关系正确的是( ) A .212a b+= B .111a b+= C .122a b+= D .1212a b += 二、填空题13.设函数123910()lg 10x x x x x af x +++++=,其中a 为实数,如果当(,1]x ∈-∞时()f x 有意义,则a 的取值范围是________.14.定义{},,max ,,x x y x y y x y≥⎧=⎨<⎩,设{}()max ,log xa f x a a x=--(),1x R a +∈>.则不等式()2f x ≥的解集是_____________.15.若函数()()20.2log 1f x kx kx =-+的定义域是R ,则实数k 的取值范围是______.16.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.17.若幂函数()2()57m f x m m x =-+在R上为增函数则1log 2log 2lg5lg4mm m+-=_____.18.设实数x 满足01x <<,且2log 4log 1x x -=,则x =______.19.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.20.设函数()122,12log ,1x x f x x x +⎧≤=⎨->⎩,若()()04f f x =则0x ______.三、解答题21.已知函数()x x f x a k a -=-⋅(0a >且1a ≠)是定义域为R 的奇.函数,且3(1)2f =. (1)求k 的值,并判断()f x 的单调性(不要求证明); (2)是否存在实数()2,3mm m >≠,使函数()()22(2)log 1x xm g x a a mf x --⎡⎤=+-+⎣⎦在[]1,2上的最大值为0?如果存在,求出实数m 所有的值;如果不存在,请说明理由.22.已知函数22()log (23).f x x x =-++(1)求函数()f x 的定义域和值域;(2)写出函数()f x 的单调增区间和减区间(不要求证明). 23.已知函数()()()ln 1ln 1f x x k x =++-,0k ≠. (1)当()f x 分别为奇函数和偶函数时,求k 的值;(2)若()f x 为奇函数,证明:对任意的m 、()1,1n ∈-,()()1m n f m f n f mn +⎛⎫+=⎪+⎝⎭.24.(1)已知12x y +=,9xy =,且x y <,求11221122x y x y-+值;(2)求值:2(lg 2)lg5lg 20+⋅.25.已知函数()2()log log 2(0,1)a a f x x x a a =-->≠.(1)当2a =时,求(2)f ; (2)求解关于x 的不等式()0f x >;(3)若[2,4],()4x f x ∀∈≥恒成立,求实数a 的取值范围.26.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据指对互化求出,,a b c ,再根据换底公式表示111,,a b c,最后根据对数运算法则化简. 【详解】设3a =4b =6c =k , 则a =log 3k , b =log 4k , c =log 6k , ∴311log 3log k a k ==, 同理1log 4k b =,1log 6k c=, 而11log 2,log 3log 22k k k b c ==+, ∴1112c a b =+,即221c a b =+. 故选:B 【点睛】本题考查指对数运算,换底公式,以及对数运算的性质,关键是灵活应用对数运算公式,公式1log log a b b a=是关键. 2.D解析:D 【分析】作出()f x 的图象,利用数形结合即可得到结论. 【详解】∵函数()|lg |f x x =,作出()f x 的图象如图所示,∵0a b c <<<时,有()()()f a f c f b >>,∴0<a <1,c >1,即f (a )=|lga |=﹣lga ,f (c )=|lgc |=lgc ,∵f (a )>f (c ),∴﹣lga >lgc ,则lga +lgc =lgac <0,则01ac <<. 故选:D .【点睛】关键点点睛:利用对数函数的图象和性质,根据条件确定a ,c 的取值范围.3.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.4.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-,故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.5.B解析:B 【分析】先根据题意列出关于时间的方程,然后利用指对互化以及对数换底公式并结合所给数据可计算出半衰期. 【详解】设放射性元素的半衰期为x 年,所以()500110%250x-=, 所以()1110%2x-=,所以0.91log 2x =,所以109log 2x =, 所以lg 2lg10lg9x =-,所以lg 212lg 3x =-,所以0.3010120.4771x =-⨯,所以 6.6x ≈,故选:B. 【点睛】思路点睛:求解和对数有关的实际问题的思路: (1)根据题设条件列出符合的关于待求量的等式;(2)利用指对互化、对数运算法则以及对数运算性质、对数换底公式求解出待求量的值.6.C解析:C 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2, 所log a 56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.7.A【分析】由551112,2332log -<<<,8152log >,即可得出a ,b ,c 的大小关系. 【详解】52112243--<=<,11325551152532log log log =<<=,12881582log log >=,a b c ∴<<.故选:A 【点睛】本题主要考查了指数函数、对数函数的单调性,对数的运算性质,还考查了转化求解问题的能力,属于中档题.8.C解析:C 【分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可. 【详解】由已知可知,要计算16384×32768,先查第一行的对应数字: 16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912, 所以有:16384×32768=536870912, 故选C. 【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.9.C解析:C 【分析】判断函数的单调性.利用分段函数解析式,结合单调性列出不等式组求解即可. 【详解】解:243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩()满足对任意12x x ≠,都有()()12120f x f x x x --<成立, 所以分段函数是减函数,所以:0121442a a a a<<⎧⎪≥⎨⎪-≥⎩,解得12,23a ⎡⎤∈⎢⎥⎣⎦.故选C . 【点睛】本题考查分段函数的单调性的应用,函数的单调性的定义的理解,考查转化思想以及计算10.B解析:B 【分析】根据函数为奇函数排除C ,取特殊值排除AD 得到答案. 【详解】当()22x xx f x -=+,()()22x x xf x f x ---==-+,函数为奇函数,排除C ; 2221(2)22242f -=<=+,排除A ;3324(3)22536f -==+,4464(4)224257f -==+,故()()34f f >,排除D.故选:B. 【点睛】本题考查了函数图象的识别,意在考查学生的计算能力和识图能力,取特殊值排除是解题的关键.11.C解析:C 【分析】由题意求得1a >,再结合对数函数的图象与性质,合理排除,即可求解. 【详解】因为函数(0,1)xy a a a =>≠的反函数是增函数,可得函数xy a =为增函数,所以1a >, 所以函数log (1)a y x =-+为减函数,可排除B 、D ; 又由当0x =时,log (01)0a y =-+=,排除A. 故选:C. 【点睛】本题主要考查了指数函数和对数函数的图象与性质的应用,其中解答中熟记指数函数和对数函数的图象与性质,以及指数函数与对数的关系是解答的关键,着重考查推理与运算能力.12.B解析:B 【分析】根据指数式与对数的互化公式,求得11lg2,lg5a b==,再结合对数的运算公式,即可求解. 【详解】因为2510a b ==,可得25log 10,log 10a b ==,所以11lg2,lg5a b==,则11lg 2lg5lg101a b +=+==. 故选:B. 【点睛】本题主要考查指数式与对数的互化,以及对数的运算公式的化简、求值,其中解答中熟记指数式与对数的互化公式,以及对数的运算公式,准确运算是解答的关键,着重考查运算与求解能力.二、填空题13.【分析】由题意可得对任意的恒成立分离变量后利用函数的单调性求得在上的范围即可得解【详解】根据题意对任意的恒成立即恒成立则因为函数在上为增函数所以故答案为:【点睛】本题考查对数函数的定义域指数函数的单 解析:[ 4.5,)-+∞【分析】由题意可得对任意的(,1]x ∈-∞,10210x x a ⋅+⋯++>恒成立,分离变量a 后利用函数的单调性求得981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上的范围,即可得解. 【详解】根据题意对任意的(,1]x ∈-∞,123910010x x x x x a+++++>恒成立,即10210x x a ⋅+⋯++>恒成立,则981101010x x xa ⎛⎫⎛⎫⎛⎫>---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为函数981()101010xxxg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上为增函数,所以111981 4.5101010a ⎛⎫⎛⎫⎛⎫---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:[ 4.5,)-+∞【点睛】本题考查对数函数的定义域,指数函数的单调性,不等式恒成立问题,属于基础题.14.【分析】利用分段函数列出不等式求解即可【详解】解:在上为单调递增函数又当时当时不等式或解得或故答案为:【点睛】本题考查分段函数的应用函数值的求法考查转化思想以及计算能力 解析:21(0,][log (2),)a a a++∞ 【分析】利用分段函数列出不等式求解即可.【详解】解:()log log xxa a a a x a a x ---=-+,1a >,()log xa g x a a x =-+在()0,∞+上为单调递增函数,又1(1)log 10a g a a =-+=, 当()0,1x ∈时,log 0xa a a x -+<,当()1,x ∈+∞时,log 0xa a a x -+>,,1()log ,01x a a a x f x x x ⎧->∴=⎨-<<⎩不等式()2f x ≥,21x a a x ⎧-≥∴⎨>⎩或log 201a x x -≥⎧⎨<<⎩,解得log (2)a x a ≥+或210x a <≤, 故答案为:21(0,][log (2),)a a a ++∞. 【点睛】本题考查分段函数的应用,函数值的求法,考查转化思想以及计算能力.15.【分析】由题可知恒成立再分情况讨论即可【详解】由题可知恒成立当时成立当时当时不等式不恒成立故实数k 的取值范围是故答案为:【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题属于中等题型 解析:[)0,4【分析】由题可知210kx kx -+>恒成立.再分情况讨论即可. 【详解】由题可知210kx kx -+>恒成立.当0k =时成立.当0k >时,24004k k k ∆=-<⇒<<. 当k 0<时,不等式不恒成立. 故实数k 的取值范围是[)0,4. 故答案为:[)0,4 【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题.属于中等题型.16.【分析】根据题意由韦达定理得进而得再结合换底公式得【详解】解:因为、是方程的两个实根所以由韦达定理得所以所以所以故答案为:【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算其中两个公式的转化是解析:37±【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得1log log b acc b a==【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根, 所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-, 所以()()22log log log log 4log log 37c c c c c c a b a b a b -=+-⋅=,所以log log c c b a -=所以11log log log log b c c acc b b a a===-故答案为: 【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.17.3【分析】利用幂函数的定义与性质求得将代入利用对数的运算法则化简得解【详解】在上为增函数解得(舍去)故答案为:3【点睛】正确理解幂函数的定义求得的值和熟练运用对数恒等式是关键解析:3 【分析】利用幂函数的定义与性质求得3m =,将3m =代入,利用对数的运算法则化简得解. 【详解】()()257m f x m m x =-+在R 上为增函数,25710m m m ⎧-+=∴⎨>⎩,解得3,2m m ==(舍去),1log 2log 2lg 5lg 4mm m∴+-=31log 23l l og 3g1003+=故答案为:3.【点睛】正确理解幂函数的定义求得m 的值和熟练运用对数恒等式是关键.18.【分析】利用换底公式和对数运算法则可将方程转化为解方程求得或进而结合的范围求得结果【详解】即解得:或或故答案为:【点睛】本题考查对数方程的求解问题涉及到对数运算法则和换底公式的应用;考查基础公式的应解析:14【分析】利用换底公式和对数运算法则可将方程转化为222log 1log x x-=,解方程求得2log 2x =-或2log 1x =,进而结合x 的范围求得结果.【详解】22log 42log 2log x x x ==2222log 4log log 1log x x x x∴-=-= 即()222log log 20x x +-=,解得:2log 2x =-或2log 1x = 14x ∴=或2x = 01x << 14x ∴=故答案为:14【点睛】本题考查对数方程的求解问题,涉及到对数运算法则和换底公式的应用;考查基础公式的应用能力.19.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题 解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集. 【详解】当1x ≤时,1()2xf x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >, 综上,原不等式的解集为[)0,+∞. 故答案为:[)0,+∞. 【点睛】本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.20.或2【分析】已知复合函数值求自变量从外层求出里层设求出对应的的值再由求出即可【详解】令则当若若当(舍去)故答案为:或【点睛】本题考查由函数值求自变量涉及到简单指数和对数方程考查分类讨论思想和数学计算解析:1-或2 【分析】已知复合函数值求自变量,从外层求出里层,设0()t f x =,求出()4f t =对应的t 的值,再由0()t f x =求出0x 即可. 【详解】令0()t f x =,则()4f t =,当11,24,1tt t +≤==,若010001,()21,1x x f x x +≤===-,若00202001,()2log 1,log 1,2x f x x x x >=-===, 当2211,()2log 4,log 2,4t f t t t t >=-==-=(舍去) 故答案为:1-或2. 【点睛】本题考查由函数值求自变量,涉及到简单指数和对数方程,考查分类讨论思想和数学计算能力,属于中档题.三、解答题21.(1)1k =;()f x 为R 上的增函数;(2)存在,176m =. 【分析】(1)根据奇函数的性质和()312f =,代入求函数的解析式,并判断单调性;(2)由(1)可知()()2(2)2log 22221xx x x m g x m ---=+--+⎡⎤⎣⎦,并通过换元22x x t -=-,转化为()()()22log 3m g t t mt -=-+,讨论底数21m ->,和021m <-<两种情况,并讨论内层函数的对称轴和定义域的关系,结合外层函数的单调性,确定内层函数的最值,最后确定函数的最大值求m . 【详解】(1)∵函数()x xf x a k a -=-⋅(0a >且1a ≠)是定义域为R 的奇函数,0R ∈,∴(0)0f =,10k -=,∴1k =. 因为3(1)2f =,∴132a a -=,22320a a --=,2a =或12a =-, ∵0a >,∴2a =,()22x x f x -=-,因为2x 为增函数,2x -为减函数,所以()f x 为R 上的增函数.(Ⅱ)()()22(2)log 1xx m g x aa mf x --⎡⎤=+-+⎣⎦()22(2)log 22221x x x x m m ---=+--+⎡⎤⎣⎦()()2(2)log 22223x x x x m m ---⎡⎤=---+⎢⎥⎣⎦, 设22x x t -=-,则()()22222233x x x x m t mt -----+=-+,∵[]1,2x ∈,∴315,24⎡⎤∈⎢⎥⎣⎦t ,记()23h t t mt =-+, (1)当021m <-<,即23m <<时,要使()g x 最大值为0,则要min ()1h t =,∵22()()(3)24m m h t t =-+-,312m <<,315,24⎡⎤∈⎢⎥⎣⎦t ,∴()h t 在315,24⎡⎤⎢⎥⎣⎦上单调递增,∴min 3213()()242h t h m ==-,由min ()1h t =,得176m =,因17(2,3)6∈,所以176m =满足题意. (2)当21m ->,即3m >时,要使()g x 最大值为0,则要max ()1h t =,且min ()0h t >. ∵322m >, ①若321228m <≤ ,则max 1522515()()314164h t h m ==-+=,25760m =,又2min ()()3024m m h t h ==->,∴3m <<25760>∴25760m =不合题意. ②若2128m > ,即214m >,则max 32132132121()()02424248h t h m ==-<-⨯=-<,max ()1h t ≠,综上所述,只存在176m =满足题意. 【点睛】关键点点睛:本题考查对数型复合函数根据最值,求参数的取值范围,属于中档题型,本题的第一个关键点是换元化简函数,设22x x t -=-,则()()22222233x x x x m t mt -----+=-+,第二个关键点是需分析外层函数的单调性,并讨论内层函数的对称轴和定义域的关系.22.(1)定义域为(1,3)-,值域为(,2]-∞(2)递增区间为(1,1)-,递减区间为[1,3) 【分析】(1)由2230x x -++>解得结果可得定义域,根据二次函数知识求出真数的值域,根据对数函数的单调性可求得()f x 的值域;(2)在定义域内求出真数的单调区间,根据底数大于1可得函数()f x 的单调区间.【详解】(1)由函数有意义可得2230x x -++>,即2230x x --<, 解得13x ,所以函数()f x 的定义域为(1,3)-, 因为13x,所以2223(1)4x x x -++=--+(0,4]∈,所以()(,2]f x ∈-∞,即函数()f x 的值域为(,2]-∞.(2)因为函数()f x 的定义域为(1,3)-,且函数2y x 2x 3=-++在(1,1)-上递增,在(1,3)上递减,又对数函数的底数为21>,所以函数()f x 的递增区间为(1,1)-,递减区间为[1,3). 【点睛】方法点睛:已知函数解析式,求函数定义域的方法: 有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0; 有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0; 有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1. 23.(1)()f x 为奇函数时,1k =-,()f x 为偶函数时,1k =;(2)证明见解析. 【分析】(1)求出函数的定义域,利用函数的奇偶性的定义列等式即可求得k 的值; (2)根据函数解析式分别求得()()+f m f n ,1m n f mn +⎛⎫⎪+⎝⎭,即可证明结论.【详解】(1)由1010x x +>⎧⎨->⎩,解得11x -<<,得函数()f x 的定义域为()1,1-,当()f x 为奇函数时,()()0f x f x +-=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++-+-++=, 整理可得()()()1ln 1ln 10k x x +-++=⎡⎤⎣⎦, 因为上式恒成立,所以10k +=,所以1k =-; 当()f x 为偶函数时,()()0f x f x --=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++----+=, 整理得()()()1ln 1ln 10k x x -+--=⎡⎤⎣⎦, 因为上式恒成立,所以10k -=,所以1k =.综上,当()f x 为奇函数时,1k =-,当()f x 为偶函数时,1k =;(2)由(1)知,1k =-,()()()1ln 1ln 1ln1xf x x x x+=+--=-, ()()()()()()1111ln ln ln 1111m n m nf m f n m n m n +++++=+=----,()()()()11111ln ln ln 111111m nm n m n mn m n mn f m n mn mn m n m n mn++++++++⎛⎫+=== ⎪+++----⎝⎭-+, 所以()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭.【点睛】方法点睛:已知函数的奇偶性求参数值一般思路是:(1)利用函数的奇偶性的定义转化为()()f x f x -=(偶函数)或()()f x f x -=-(奇函数),从而建立方程,使问题获得解决;(2)取一对互为相反数的自变量的函数值,建立等式求出参数的值,但同时要对此时函数的奇偶性进行验证. 24.(1)3-2)1. 【分析】(1)求出x y -的值,再化简11221122x y x y-+即得解;(2)利用对数的运算法则化简求解. 【详解】(1)因为222()()41249108x y x y xy -=+-=-⨯=,又x y <,所以x y -=-所以1111222221122()3x y x y x y x y--====--+. (2)原式22(lg 2)lg5(1lg 2)(lg 2)lg5lg 2lg5=+⋅+=+⋅+lg2(lg2lg5)lg5lg2lg51=++=+=.【点睛】关键点点睛:解答指数对数运算题的关键是通过观察式子的特点,再熟练利用指数对数的运算法则和性质求解.25.(1)2-;(2)当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭,当01a <<时;()210,,a a ⎛⎫+∞ ⎪⎝⎭(3)(31,2⎫⎤⎪⎦⎪⎣⎭.【分析】(1)将2a =直接代入解析式计算即可.(2)将()2()log log 20a a f x x x =-->整理为()()log 2log 10a a x x -+>,解得log 1<-a x 或log 2a x >,再对a 讨论即可解不等式.(3)将问题转化为min ()4f x ≥,分别分1a >和01a <<讨论,求()f x 最小值,令其大于4,即可求解.【详解】(1)当2a =时,()()222log log 2f x x x =--()21122f ∴=--=-(2)由()0f x >得:()()()2log log 2log 2log 10a a a a x x x x --=-+>log 1a x ∴<-或log 2a x >当1a >时,解不等式可得:10x a<<或2x a > 当01a <<时,解不等式可得:1x a>或20x a << 综上所述:当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭;当01a <<时,()0f x >的解集为()210,,aa ⎛⎫+∞ ⎪⎝⎭(3)由()4f x ≥得:()()()2log log 6log 3log 20a a a a x x x x --=-+≥log 2a x ∴≤-或log 3a x ≥①当1a >时,()max log log 4a a x =,()min log log 2a a x =2log 42log a a a -∴≤-=或3log 23log a a a ≥=,解得:1a <≤②当01a <<时,()max log log 2a a x =,()min log log 4a a x =2log 22log a a a -∴≤-=或3log 43log a a a ≥=1a ≤<综上所述:a 的取值范围为(3,11,22⎫⎤⎪⎦⎪⎣⎭【点睛】本题主要考查了复合函数的单调性、考查函数的最值和恒成立问题、考查分类讨论的思想,属于中档题. 26.(1)1;(2)1010. 【分析】(1)根据4()42xx f x =+的表达式,求出()(),1f a f a -的表达式,再进行分式通分运算,可得()()11f a f a +-=. (2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S 的表达式运用加法交换律改写成20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x +-=求出S 的值.【详解】 (1)4()42xxf x =+,x ∈R . ∴()()1f a f a +-1144444442424224aaaa a a a a--=+=+++++4214224a a a=+=++,(2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则 20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:20202201109211,1,,221202120212021202120220101f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ∴220201010S S =⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力.。

高一数学指数函数与对数函数章节测试卷(含解析)

高一数学指数函数与对数函数章节测试卷(含解析)

高一数学指数函数与对数函数章节测试卷(含解析)一、单选题(本大题共8小题,共40分) 1. 已知函数f(x)=ln(x +3)+3√x−3,则函数f(x)的定义域为( ) A. (3,+∞)B. (−3,3)C. (−∞,−3)D. (−∞,3)2. 记a =log 213,b =20.1,c =log 32,则( )A. a <b <cB. a <c <bC. b <a <cD. c <b <a3. 方程e x +8x −8=0的根所在的区间为( )A. (−2,−1)B. (−1,0)C. (0,1)D. (1,2)4. 为了给地球减负,提高资源利用率,2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2019年全年用于垃圾分类的资金为5000万元,在此基础上,每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1.28亿元的年份是( ) (参考数据:lg1.2≈0.079,lg2≈0.301)A. 2023年B. 2024年C. 2025年D. 2026年5. 函数f(x)=xlog a |x||x|(0<a <1)的图象大致形状是( )A. B. C. D.6. 函数y =ln(2x −x 2)的单调递增区间是( ) A. (0,1) B. (1,2)C. (−∞,1)D. (1,+∞)7. 设函数f (x )={21−x , x >11−log 2x,x ≤1,则不等式f (x )≤2的解集是( )A. [0,+∞)B. [12,+∞)C. [0,1]D. [12,1]8. 若函数f(x)=2⋅a x+m −n(a >0且a ≠1)的图象恒过定点(−1,4),则m +n =( ) A. 3B. 1C. −1D. −2二、多选题(本大题共4小题,共20分)9. 给出下列命题,其中正确的命题有( )A. 函数f (x )=x −3+log 3x 的零点所在区间为(2,3);B. 若关于x 的方程(12)|x |−m =0有解,则实数m 的取值范围是(0,1];C. 函数y =log 2x 2与函数y =2log 2x 是相同的函数;D. 若函数f (x )满足f (x )+f (1−x )=2,则f (110)+f (210)+⋅⋅⋅+f (810)+f (910)=9 10. 下列命题中正确的是( ) A.B.C.D.11. 下列说法正确的有( )A. 命题“∀x ∈R ,x 2+x +1>0”的否定为“∃x ∈R ,x 2+x +1≤0”.B. 若a >b,c >d ,则ac >bdC. 若幂函数y =(m 2−m −1)x m 2−2m−3在区间(0,+∞)上是减函数,则−1<m <2D. 在同一平面直角坐标系中,函数y =2x 与y =log 2x 的图象关于直线y =x 对称 12. 下列命题是假命题的是( ) A. 2log 310+log 30.81=8;B. 函数y =x 2−2x −8的零点是(−2,0)和(4,0);C. “ac =bc ”是“a =b ”成立的充要条件D. 已知a ∈R ,“幂函数f (x )=x a−1在(0,+∞)上为增函数”是“指数函数g (x )=(2a −3)x为增函数”成立的必要不充分条件. 三、填空题(本大题共4小题,共20分)13. 已知函数f(x)={2x ,x ≤1log 13x,x >1,若f(f(x))=12,则x = .14. 函数y =log a (2x −3)+8的图象恒过定点P ,P 在幂函数y =f(x)的图象上,则f(4)=______.15. Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K 1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t 0)=0.95K 时,标志着已初步遏制疫情,则t 0约为__________.(ln19≈3)(答案填整数.....) 16. 关于x 的不等式:(12)log 3(x−1)⩾2的解集为 .四、解答题(本大题共6小题,共70分)17. (本小题12分)(1)化简求值:(18)−13×(−56)0+814×√24+(√23×√3)6;(2)解关于x 的不等式:2(log 2x)2−7log 2x +3≤0.18. (本小题10分)计算:(1)0.064 −13−(−18)0+16 34+0.2512;(2)3log 34−27 23−lg0.01+lne 3.19.(本小题12分)(1)计算(5116)0.5−2×(21027)−23−2×(√2+π)0÷(34)−2(2)计算9log 32−4log 43⋅log 278+13log 68−2log 6−1√3.19.(本小题12分)已知a>0且满足不等式22a+1>25a−2.(1)求实数a的取值范围.(2)求不等式log a(3x+1)<log a(7−5x).(3)若函数y=log a(2x−1)在区间[1,3]有最小值为−2,求实数a值.20. (本小题12分)已知指数函数f(x)=a x(a>0且a≠1)经过点(3,27).(1)求f(x)的解析式及f(−1)的值;(2)若f(x−1)>f(−x),求x的取值范围.21.(本小题12分)已知m>0,a>0且a≠1,函数f(x)=(m2−4m−4)a x是指数函数,且f(2)=4.(1)求m和a的值;(2)求f(2x)−2f(x)−3>0的解集.答案和解析1.解:由题意得:{x +3>0x −3>0,解得:x >3,所以函数f(x)的定义域是(3,+∞).故选:A .2.解:∵log 213<log 21=0,∴a <0,∵20.1>20=1,∴b >1,∵0=log 31<log 32<log 33=1,∴0<c <1,∴a <c <b ,故选:B .3.解:构造函数f (x )=e x +8x −8,可得函数f(x)在R 上单调递增,因为f (−2)=e −2−16−8<0,f(−1)=e −1−8−8<0,f (0)=e 0−8<0,f (1)=e >0, 所以函数f(x)在区间 (0,1)有唯一零点,所以方程e x +8x −8=0的根所在的区间为(0,1).故选C .4.解:设经过n 年之后该市全年用于垃圾分类的资金为y ,则 y =5000×(1+20%)n,由题意可得:y =5000×(1+20%)n>12800,即1.2n >2.56, ∴nlg1.2>lg2.56=lg28−2,∴n >lg28−2lg1.2≈8×0.301−20.079=5.16,∵n ∈N ∗,∴n ≥6,即从2025年开始该市全年用于垃圾分类的资金超过1.28亿元,故选C .5.解:f(x)=xlog a |x||x|={log a x,x >0−log a (−x),x <0,且0<a <1,由题意,f(−x)=−f(x),所以函数f(x)是奇函数,图象关于原点对称,排除B 、D ;x >0时,f(x)=log a x(0<a <1)是单调递减函数,排除A .故选:C .6.解:由2x −x 2>0得到0<x <2,令t =2x −x 2,则y =lnt ,因为当t >0时,y =lnt 为增函数,增区间为(0,+∞),t =2x −x 2(0<x <2)的单调增区间为(0,1); 根据复合函数单调性可得y =ln(2x −x 2)的单调增区间为(0,1).所以增区间为(0,1).故选A .7.解:当x >1时,原不等式等价21−x ≤2=21,即:x ≥0.∴x >1当x ≤1时,1−log 2x ⩽2,即:x ≥12,此时的解集为12⩽x ⩽1,综上所述,原不等式的解集为[12,+∞)故选B .8.解:函数f(x)=2⋅a x+m −n(a >0且a ≠1)的图象恒过定点(−1,4),得:−1+m =0,2−n =4, 解得:m =1,n =−2m +n =−1,故选C .9.解:A.函数f(x)=x −3+log 3x 在(0,+∞)上为增函数,且f(2)=−1+log 32<0,f(3)=log 33>0,f(2)f(3)<0,所以函数f(x)=x −3+log 3x 的零点所在区间为(2,3),故A 正确; B .y =(12)|x|≤(12)0=1,又(12)|x|>0,所以(12)|x|∈(0,1], 当x =0时取到1,当x 趋近于无穷大时函数值趋近于0,∴(12)|x|的值域是(0,1].故要使关于x 的方程(12)|x|−m =0有解,则m =(12)|x|∈(0,1],故B 正确;C .函数y =log 2x 2=2log 2|x|的定义域为{x|x ≠0},而函数y =2log 2x 定义域为(0,+∞),定义域不同,不是相同的函数,故C 错误; D .由f(x)+f(1−x)=2可得f(510)+f(510)=2,f(510)=1,f(110)+f(910) =f(210)+f(810)=f(310)+f(710)=f(410)+f(610)=2,所以f(110)+f(210)+⋯+f(810)+f(910)=2×4+1=9,故D 正确.故选ABD .10.解:由指数函数的性质可知,当x ∈(0,+∞)时,(12)x (13)x =(32)x>1,(12)x >(13)x恒成立,A 正确; 由对数函数的性质可知,当x ∈(0,1)时,log 13x >0,log 12x >0,log 12x log 13x=log 13xlog 1312log 13x=1log 1312=1log 32=log 23>1,log 12x >log 13x 恒成立,B 正确;对于C ,当x =12时,(12)x =√22,x 12=(12)12=√22,当x ∈(0,12)时,(12)x >√22,x 12<√22,则(12)x>x 12,C正确;对于D ,当x =13时,log 13x =1,由对数函数与指数函数的性质可知,当x ∈(0,13)时,(12)x <1<log 13x 恒成立,D 错误.故选:ABC .11.解:对于A 项,由全称量词命题的否定为存在量词命题,即可得知,故A 项正确;对于B 项,若a =1,c =2,b =d =−3,此时满足a >b ,c >d ,但ac <bd ,故B 项错误;对于C 项,依题意得,{m 2−m −1=1m 2−2m −3<0,解得m =2,故C 项错误;对于D 项,函数y =2x 与y =log 2x 互为反函数,显然成立,故D 项正确.故选AD .12.解:2log 310+log 30.81=log 3(102×0.81)=log 334=4,故A 是假命题;二次函数的零点是指其图象与x 轴交点的横坐标,应为−2和4,故B 是假命题; ∵当a =b 时,一定有ac =bc ,当ac =bc 时,若c =0,a ,b 可以不相等, “ac =bc ”是“a =b ”成立的必要不充分条件,故C 是假命题; 幂函数f(x)=x a−1在(0,+∞)上为增函数,则a −1>0,即a >1; 指数函数g(x)=(2a −3)x 为增函数,则2a −3>1,即a >2,由a >1得不到a >2,而由a >2可以推出a >1,故D 是真命题.故选ABC13.解:因为函数f(x)={2x ,x ≤1log 13x,x >1,所以可得当x ≤1时,0<2x ≤2,当x >1时,log 13x <0,所以当f(f(x))=12时,令t =f(x),f(t)=12,所以f(t)=2t =12可解得t =−1,所以f(x)=−1,即log 13x =−1,可解得x =3,故答案是3.14. 解:令2x −3=1得x =2,又log a 1+8=8,∴函数y =log a (2x −3)+8的图象恒过定点P(2,8), 设f(x)=x α,∵P 在函数y =f(x)的图象上,∴8=2α,解得α=3,∴f(x)=x 3,则f(4)=43=64. 故答案为64.15.解:I(t)=K 1+e −0.23(t−53),所以I(t 0)=K1+e −0.23(t 0−53)=0.95K ,则e 0.23(t 0−53)=19,所以0.23(t 0−53)=ln19≈3,解得t 0≈30.23+53≈66.故答案为66. 16.解:∵(12)log 3(x−1)⩾2=(12)−1,y =(12)x 为严格减函数,∴log 3(x −1)⩽−1,又y =log 3x 为严格增函数,∴0<x −1≤13,即1<x ≤43, ∴不等式(12)log 3(x−1)≥2的解集为{x|1<x ≤43}.故答案为{x|1<x ≤43}.17.解:(1)原式=(2−3)−13×1+(23)14×214+(213×312)6=2+234+14+22×33=2+2+108=112;(2)原方程可化为(2log 2x −1)(log 2x −3)≤0,解得12≤log 2x ≤3,解得√2≤x ≤8,所以原不等式的解集是[√2,8].18.解:(1)原式=0.43×(−13)−1+24×34+0.52×12=52−1+8+12=10.(2)原式=4−33×23−lg10−2+3=4−9+2+3=0.19.解:(1)(5116)0.5−2×(21027)−23−2×(√2+π)0÷(34)−2=√8116−2×(6427)−23−2÷(43)2=94−2×(34)2−2×(34)2=0.(2)9log 32−4log 43⋅log 278+13log 68−2log 6−1√3=3log 34−4×12log 23×log 32+log 62+log 63=4−2+log 66=2+1=3.20.解:(1)∵22a+1>25a−2,∴2a +1>5a −2,即3a <3,∴a <1,又∵a >0,∴0<a <1.(2)由(1)知0<a <1,∵log a (3x +1)<log a (7−5x).等价于{3x +1>07−5x >03x +1>7−5x ,即{x >−13x <75x >34,∴34<x <75,即不等式的解集为(34,75). (3)∵0<a <1,∴函数y =log a (2x −1)在区间[1,3]上为减函数, ∴当x =3时,y 有最小值为−2,即log a 5=−2,∴a −2=1a 2=5,解得a =√55或a =−√55(舍去),所以a =√55.21.解:(Ⅰ)因为f(x)=a x (a >0且a ≠1)经过点(3,27),所以a 3=27,所以a =3,所以f(x)=3x ,所以f (−1)=3−1=13;(Ⅱ)因为f(x −1)>f(−x),即3x−1>3−x ,又f(x)=3x 在R 上为增函数, 所以x −1>−x ⇒x >12,∴x 的取值范围为:(12,+∞).22.解:(Ⅰ)由题意得,m 2−4m −4=1,解得m =5或m =−1(不合题意,舍去),由f (2)=a 2=4,a >0且a ≠1,∴a =2;(Ⅱ)由(Ⅰ)得,f (x )=2x ,∴f(2x)−2f(x)−3>0即为22x −2×2x −3>0, 设2x =t (t >0),原不等式化为t 2−2t −3>0,整理得(t −3)(t +1)>0,解得t >3或t <−1,∵t >0,∴t >3, ∴2x >3得,x >log 23,∴原不等式的解集为(log 23,+∞).。

最新人教A版高中数学必修一第四章指数函数与对数函数质量检测试卷及解析

最新人教A版高中数学必修一第四章指数函数与对数函数质量检测试卷及解析

章末质量检测(四) 指数函数与对数函数考试时间:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a>0,则a 14·34a-等于( )A .12a - B .316a - C .a 13D .a2.方程2x -1+x =5的解所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4 3.函数y =lg x +lg (5-3x)的定义域是( )A .⎣⎡⎭⎫0,53B .⎣⎡⎦⎤0,53C .⎣⎡⎭⎫1,53D .⎣⎡⎦⎤1,53 4.设a =log 20.3,b =30.2,c =0.30.2,则a ,b ,c 的大小关系是( ) A .a>c>b B .a>b>c C .c>a>b D .b>c>a5.函数f(x)=211()2x -的单调递增区间为( )A .(]-∞,0B .[)0,+∞C .()-1,+∞D .()-∞,-16.函数f(x)=e x +1|x|(e x -1)(其中e 为自然对数的底数)的图象大致为( )7.1614年纳皮尔在研究天文学的过程中为了简化计算而发明对数;1637年笛卡尔开始使用指数运算;1770年,欧拉发现了指数与对数的互逆关系,指出:对数源于指数,对数的发明先于指数,称为历史上的珍闻.若2x =52,lg 2=0.301 0,则x 的值约为( )A .1.322B .1.410C .1.507D .1.6698.已知函数f(x)=⎩⎨⎧-x 2+2x ,x ≤0ln ()x +1,x>0 ,若|f(x)|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.若a>b>0,0<c<1,则( )A .log c a<log c bB .c a >c bC .a c >b cD .log c (a +b)>0 10.下列说法正确的是( )A .函数f ()x =1x在定义域上是减函数B .函数f ()x =2x -x 2有且只有两个零点C .函数y =2|x|的最小值是1D .在同一坐标系中函数y =2x 与y =2-x 的图象关于y 轴对称11.已知函数f ()x =log a x ()a>0,a ≠1 图象经过点(4,2),则下列命题正确的有( ) A .函数为增函数 B .函数为偶函数 C .若x>1,则f(x)>0D .若0<x 1<x 2,则f (x 1)+f (x 2)2 <f⎝⎛⎭⎫x 1+x 22 .12.已知函数f(x)=2x +log 2x ,且实数a>b>c>0,满足f(a)f(b)f(c)<0,若实数x 0是函数y =f(x)的一个零点,那么下列不等式中可能成立的是( )A .x 0<aB .x 0>aC .x 0<bD .x 0<c三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,2x ,x ≤0, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14 =________. 14.已知3a =5b =A ,且b +a =2ab ,则A 的值是________.15.已知函数f(x)=log a (-x +1)(a>0且a ≠1)在[-2,0]上的值域是[-1,0].若函数g(x)=a x +m -3的图象不经过第一象限,则m 的取值范围为________.16.已知函数f(x)=3|x +a|(a ∈R )满足f (x )=f (2-x ),则实数a 的值为________;若f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.(本题第一空2分,第二空3分)四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)求下列各式的值:(1) 31log 43+2log 92-log 329(2)⎝⎛⎭⎫278 -23 +π0+log 223 -log 416918.(本小题满分12分)已知函数f (x )=log 2(x +3)-2x 3+4x 的图象在[-2,5]内是连续不(2)从上述对应填表中,可以发现函数f (x )在哪几个区间内有零点?说明理由.19.(本小题满分12分)已知函数f (x )=2x ,x ∈R .(1)若函数f (x )在区间[a ,2a ]上的最大值与最小值之和为6,求实数a 的值;(2)若f ⎝⎛⎭⎫1x =3,求3x+3-x 的值.20.(本小题满分12分)已知函数f (x )=log 4(4x -1). (1)求函数f (x )的定义域;(2)若x ∈⎣⎡⎦⎤12,2 ,求f (x )的值域. 21.(本小题满分12分)科技创新在经济发展中的作用日益凸显.某科技公司为实现9 000万元的投资收益目标,准备制定一个激励研发人员的奖励方案:当投资收益达到3 000万元时,按投资收益进行奖励,要求奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金总数不低于100万元,且奖金总数不超过投资收益的20%.(1)现有三个奖励函数模型:①f (x )=0.03x +8,②f (x )=0.8x +200,③f (x )=100log 20x +50,x ∈[3 000,9 000].试分析这三个函数模型是否符合公司要求?(2)根据(1)中符合公司要求的函数模型,要使奖金额达到350万元,公司的投资收益至少要达到多少万元?22.(本小题满分12分)已知函数f (x )=a x (a >0,且a ≠1)的图象经过点⎝⎛⎭⎫12,3 . (1)若函数F (x )=-3f (x )+10-m 在区间(0,2)内存在零点,求实数m 的取值范围; (2)若函数f (x )=g (x )+h (x ),其中g (x )为奇函数,h (x )为偶函数,若x ∈(0,1]时,2ln h (x )-ln g (x )-t ≥0恒成立,求实数t 的取值范围.章末质量检测(四) 指数函数与对数函数1.解析:14a ·34a -=1344a -=12a -. 故选A. 答案:A2.解析: 设f (x )=2x -1+x -5,则由指数函数与一次函数的性质可知,函数y =2x -1与y =x 在R 上都是递增函数,所以f (x )在R 上单调递增,故函数f (x )=2x -1+x -5最多有一个零点,而f (2)=22-1+2-5=-1<0,f (3)=23-1+3-5=2>0,根据零点存在定理可知,f (x )=2x -1+x -5有一个零点,且该零点处在区间(2,3)内.故选C. 答案:C3.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧lg x ≥05-3x >0,解得1≤x <53,则函数的定义域为⎣⎡⎭⎫1,53. 故选C. 答案:C4.解析:a =log 20.3<log 21=0,b =30.2>30=1,c =0.30.2<0.30=1,且0.30.2>0,∴b >c >a . 故选D. 答案:D5.解析:令t =x 2-1,则y =⎝⎛⎭⎫12t,因为y =⎝⎛⎭⎫12t 为单调递减函数,且函数t =x 2-1在(]-∞,0上递减,所以函数f (x )=211()2x -的单调递增区间为(]-∞,0.故选A.答案:A6.解析:由题意,函数f (x )的定义域为(-∞,0)∪(0,+∞),且f (-x )=e -x +1|-x |(e -x -1)=e x (e -x +1)|-x |(e -x -1)e x =e x +1|x |(1-e x )=-f (x ),即f (x )为奇函数,排除A ,B ;当x →+∞时,e x +1e x -1→1,1|x |→0,即x →+∞时,e x +1|x |(e x -1)→0,可排除D , 故选C. 答案:C7.解析:∵2x =52,∴x =log 252=lg 5-lg 2lg 2=1-2lg 2lg 2=1-2×0.301 00.301 0≈1.322.故选A. 答案:A8.解析:作出y =||f (x )的图象如图, 由对数函数图象的变化趋势可知,要使ax ≤|f (x )|,则a ≤0,且ax ≤x 2-2x (x <0),即a ≥x -2对任意x <0恒成立,所以a ≥-2,综上-2≤a ≤0.故选D. 答案:D9.解析:A 中,因为0<c <1,所以y =log c x 为单调递减函数,由a >b >0得log c a <log c b ,故A 正确;B 中,因为0<c <1,所以y =c x 为单调递减函数,由a >b >0,得c a <c b ,故B 错误;C 中,因为a >b >0,0<c <1,所以⎝⎛⎭⎫a b c >1,所以a c >b c,故C 正确;D 项,取c =12,a +b =2,则log c (a +b )=12log 2=-1<0,D 错误.故选AC. 答案:AC10.解析:对于A ,f ()x =1x在定义域上不具有单调性,故命题错误;对于B ,函数f ()x =2x -x 2有三个零点,一个负值,两个正值,故命题错误; 对于C ,∵|x |≥0,∴2|x |≥20=1,∴函数y =2|x |的最小值是1,故命题正确;对于D ,在同一坐标系中,函数y =2x 与y =2-x 的图象关于y 轴对称,命题正确. 故选CD.答案:CD11.解析:由题2=log a 4,a =2,故f (x )=log 2x . 对A ,函数为增函数正确. 对B, f (x )=log 2x 不为偶函数.对C ,当x >1时, f (x )=log 2x >log 21=0成立.对D ,因为f (x )=log 2x 往上凸,故若0<x 1<x 2,则f (x 1)+f (x 2)2<f⎝⎛⎭⎫x 1+x 22成立.故选ACD. 答案:ACD12.解析:易知函数f (x )=2x +log 2x 在(0,+∞)为增函数,由f (a )f (b )f (c )<0, 则f (a ),f (b ),f (c )中为负数的个数为奇数,对于选项A ,B ,C 可能成立.故选ABC. 答案:ABC13.解析:f ⎝⎛⎭⎫14=log 214=-2,又f (-2)=2-2=14, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=14. 答案:1414.解析:由 3a =5b =A ,得a =log 3A ,b =log 5A . 当a =b =0时,A =1,满足条件.当ab ≠0时,由b +a =2ab ,即1a +1b=2,将a ,b 代入得:1log 3A +1log 5A=2,即log A 3+log A 5=log A 15=2,得A =15, 所以A =15或1. 答案:15或115.解析:函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0]. 当a >1时,f (x )=log a (-x +1)单调递减,∴⎩⎪⎨⎪⎧f (-2)=log a 3=0,f (0)=log a 1=-1,无解; 当0<a <1时,f (x )=log a (-x +1)单调递增, ∴⎩⎪⎨⎪⎧f (-2)=log a 3=-1,f (0)=log a 1=0,解得a =13.∵g (x )=⎝⎛⎭⎫13x +m-3的图象不经过第一象限,∴g (0)=⎝⎛⎭⎫13m -3≤0,解得m ≥-1,即m 的取值范围是[-1,+∞).答案:[-1,+∞)16.解析:(1)∵f (x )=f (2-x ),取x =0得,f (0)=f (2),∴3|a |=3|2+a |,即|a |=|2+a |,解得a =-1;(2)由(1)知f (x )=3|x -1|=⎩⎪⎨⎪⎧3x -1,x ≥1,31-x ,x <1,f (x )在(-∞,1)上单调递减, 在[1,+∞)上单调递增.∵f (x )在[m ,+∞)上单调递增, ∴m ≥1,m 的最小值为1. 答案:-1 117.解析:(1)原式=14+(log 32-log 329)=14+2=94;(2)原式=⎝⎛⎭⎫232+1+log 223-log 243 =49+1+log 212 =49. 18.解析:(1)由题意可知a =f (-2)=log 2(-2+3)-2·(-2)3+4·(-2)=0+16-8=8, b =f (1)=log 24-2+4=4.(2)∵f (-2)·f (-1)<0,f (-1)·f (0)<0,f (1)·f (2)<0,∴函数f (x )分别在区间(-2,-1),(-1,0),(1,2)内有零点.19.解析:(1)f (x )=2x 为R 上的增函数,则f (x )在区间[a,2a ]上为增函数, ∴f (x )min =2a ,f (x )max =22a ,由22a +2a =6,得22a +2a -6=0,即2a =-3(舍去),或2a =2,即a =1;(2)若f ⎝⎛⎭⎫1x =3,则21x =3,即1x =log 23=lg 3lg 2=1lg 2lg 3=1log 32,则x =log 32, ∴3x +3-x =3log 32+3-log 32=2+12=52.20.解析:(1)∵f (x )=log 4(4x -1), ∴4x -1>0解得x >0,故函数f (x )的定义域为(0,+∞). (2)令t =4x -1,∵x ∈⎣⎡⎦⎤12,2,∴t ∈[1,15], ∴y =log 4t ∈[0,log 415], ∴f (x )∈[0,log 415],即函数f (x )的值域为[0,log 415].21.解析:(1)由题意符合公司要求的函数f (x )在[3 000,9 000]为增函数,且对∀x ∈[3 000,9 000],恒有f (x )≥100且f (x )≤x5.①对于函数f (x )=0.03x +8,当x =3 000时,f (3 000)=98<100,不符合要求; ②对于函数f (x )=0.8x +200为减函数,不符合要求; ③对于函数f (x )=100log 20x +50在[3 000,10 000 ],显然f (x )为增函数,且当x =3 000时,f (3 000)>100log 2020+50≥100; 又因为f (x )≤f (9 000)=100log 209 000+50<100log 20160 000+50=450;而x 5≥3 0005=600,所以当x ∈[3 000,9 000]时,f (x )max ≤⎝⎛⎭⎫x 5min . 所以f (x )≤x5恒成立;因此,f (x )=100log 20x +50为满足条件的函数模型.(2)由100log 20x +50≥350得:log 20x ≥3,所以x ≥8 000, 所以公司的投资收益至少要达到8 000万元.22.解析:(1)因为函数f (x )=a x (a >0,且a ≠1)的图象经过点⎝⎛⎭⎫12,3, 所以a 12=3,解得a =3,则f (x )=3x ,因为x ∈(0,2),故1<3x <9, 令t =3x ,则1<t <9,函数F (x )=-3f (x )+10-m 在区间(0,2)内存在零点, 即函数G (t )=-3t +10-m 在区间(1,9)内有零点,所以G (1)·G (9)<0,即(7-m )(-17-m )<0,解得-17<m <7, 所以实数m 的取值范围为(-17,7);(2)由题意可得,函数f (x )=g (x )+h (x ),其中g (x )为奇函数,h (x )为偶函数,可得⎩⎪⎨⎪⎧f (x )=g (x )+h (x )=3x f (-x )=g (-x )+h (-x )=3-x ,即⎩⎪⎨⎪⎧g (x )+h (x )=3x -g (x )+h (x )=3-x ,解得⎩⎪⎨⎪⎧g (x )=3x -3-x2h (x )=3x+3-x2,因为2ln h (x )-ln g (x )-t ≥0,所以t ≤ln h 2(x )g (x )=ln ⎝⎛⎭⎫3x+3-x 223x -3-x2=ln (3x -3-x )2+42(3x -3-x ), 设a =3x -3-x ,因为0<x ≤1,且a =3x -3-x 在R 上为单调递增函数,所以0<a ≤83,所以t ≤ln a 2+42a =ln ⎣⎡⎦⎤12⎝⎛⎭⎫a +4a , 因为a +4a ≥2a ·4a=4,当且仅当a =4a,即a =2时取等号,所以t ≤ln 2,故实数t 的取值范围为(-∞,ln 2].。

(典型题)高中数学必修一第三单元《指数函数和对数函数》检测题(答案解析)

(典型题)高中数学必修一第三单元《指数函数和对数函数》检测题(答案解析)

一、选择题1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:35]4[--.=,[]2.12=,已知函数21()12x x e f x e =++,()[()]g x f x =,则下列叙述正确的是( ) A .()g x 是偶函数 B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{1,0,1}-2.已知函数()()2log 23a f x x x =--+,若()00f <,则此函数的单调递增区间是( ) A .(],1-∞-B .[)1,-+∞C .[)1,1-D .(]3,1--3.函数()212()log 4f x x =-的单调递增区间为( ).A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)4.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>5.已知函数()()2ln f x ax bx c =++的部分图象如图所示,则a b c -+的值是( )A .1-B .1C .5-D .56.设函数()21xf x =-,c b a <<,且()()()f c f a f b >>,则22a c +与2的大小关系是( ) A .222a c +> B .222a c +≥ C .222a c +≤D .222a c +<7.已知3log 2a =,那么33log 82log 6-用a 表示是( ) A .52a -B .2a -C .23(1)a a -+D .231a a --8.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .39.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭10.函数()log (3)a f x ax =-在[]13,上单调递增,则a 的取值范围是( ) A .()1+∞, B .()01,C .103⎛⎫ ⎪⎝⎭,D .()3+∞, 11.函数()log 1a f x x =+(且).当(1,0)x ∈-时,恒有()0f x >,有( ).A .()f x 在(,0)-∞+上是减函数B .()f x 在(,1)-∞-上是减函数C .()f x 在(0,)+∞上是增函数D .()f x 在(,1)-∞-上是增函数12.函数2ln 8x y x =-的图象大致为( )A .B .C .D .二、填空题13.已知()(3),1log ,1aa x a x f x x x --<⎧=⎨≥⎩的值域为R ,那么实数a 的取值范围是_________.14.已知常数0a >,函数()22xx f x ax =+的图象经过点65P p ⎛⎫ ⎪⎝⎭,,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______.15.函数x )是_________(奇、偶)函数.16.定义{},,max ,,x x y x y y x y≥⎧=⎨<⎩,设{}()max ,log x a f x a a x =--(),1x R a +∈>.则不等式()2f x ≥的解集是_____________.17.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.18.对于函数()f x 定义域中任意的1x 、()212x x x ≠,有如下结论: ①()()()1212f x x f x f x +=⋅;②()()()1212f x x f x f x ⋅=+;③()()()12120x x f x f x -⋅-<⎡⎤⎣⎦;④()()121222f x f x x x f ++⎛⎫<⎪⎝⎭. 当()2xf x =时;上述结论正确的是__________.(写出所有正确的序号)19.设函数()f x 的定义域为D ,若存在0x D ∈,使得00(1)()(1)f x f x f +=+,则称0x 为函数()f x 的“可拆点”.若函数22()log 1af x x =+在(0,)+∞上存在“可拆点”,则正实数a 的取值范围为____________.20.若函数1log 12a y x ⎛⎫=+ ⎪⎝⎭在区间3,62⎡⎤-⎢⎥⎣⎦有最小值-2,则实数a =_______. 三、解答题21.已知函数()421()x x f x a a R =-+⋅-∈. (1)当1a =时,求()f x 的值域; (2)若()f x 在区间[]1,0-的最大值为14-,求实数a 的值. 22.已知函数()ln(32)f x x =+,()ln(32)g x x =-.设函数()()()F x f x g x =-. (1)求函数()F x 的定义域; (2)判断()F x 奇偶性并证明; (3)若()0F x >成立,求x 的取值范围.23.设函数()()22()log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦.(1)求()y f x =的最大值和最小值,并求出最值时对应的x 值; (2)解不等式()60f x ->.24.已知函数()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=. (1)求函数()f x 的表达式;(2)判断函数()(2)(2)g x f x f x =++-的奇偶性,并说明理由.25.已知函数210(),22,01xx ax a x f x a a x ⎧+--≤<=⎨-≤≤⎩,其中a >0且a ≠1. (1)当12a =时,求f (x )的值域;(2)函数y =f (x )能否成为定义域上的单调函数,如果能,则求出实数a 的范围;如果不能,则给出理由;(3)()2f x -在其定义域上恒成立,求实数a 的取值范围.26.已知222log ()log log x y x y +=+,则x y +的取值范围是__________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】计算(2),(2)g g -得出()()22g g ≠-判断选项A 不正确;通过分离常数结合复合函数的单调性,可得出()f x 在R 上是增函数,判断选项B 正确;由x y e =的范围,利用不等式的关系,可求出15()22f x <<,进而判断选项CD 不正确,即可求得结果. 【详解】对于A ,根据题意知,2152()1221x x xe f x e e =+=-++. ∵252(2)[(2)]221g f e ⎡⎤==-=⎢⎥+⎣⎦, 2222121(2)[(2)]01212e g f e e --⎡⎤⎡⎤-=-=+=+=⎢⎥⎢⎥++⎣⎦⎣⎦, (2)(2)g g ∴≠-,∴函数()g x 不是偶函数,故A 错误;对于B ,1x y e =+在R 上是增函数,则21xy e =+在R 上是减函数,则52()21xf x e =-+在R 上是增函数,故B 正确; 对于C ,0xe >,11x e ∴+>,2202,20,11x x e e <<-<-<++ 15()22f x ∴<<,即()f x 的值域是15,22⎛⎫⎪⎝⎭,故C 错误;对于D ,()f x 的值域是15,22⎛⎫⎪⎝⎭,则()g x 的值域是{0,1,2},故D 错误. 故选:B. 【点睛】本题要注意对函数的新定义的理解,研究函数的单调性和值域常用分离常数,属于较难题.2.C解析:C 【分析】由()00f <求得01a <<,求出函数()f x 的定义域,利用复合函数法可求得函数()f x 的单调递增区间. 【详解】由题意可得()0log 30log 1a a f =<=,01a ∴<<.对于函数()()2log 23a f x x x =--+,2230x x --+>,可得2230x x +-<,解得31x -<<.所以,函数()f x 的定义域为()3,1-.由于内层函数223u x x =--+在区间(]3,1--单调递增,在区间[)1,1-单调递减. 外层函数log a y u =单调递减,由复合函数法可知,函数()f x 的单调递增区间为[)1,1-. 故选:C. 【点睛】方法点睛:函数单调性的判定方法与策略:(1)定义法:一般步骤:设元→作差→变形→判断符号→得出结论;(2)图象法:如果函数()f x 是以图象的形式给出或者函数()f x 的图象易作出,结合图象可得出函数的单调区间;(3)导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间; (4)复合函数法:先将函数()y f g x ⎡⎤=⎣⎦分解为内层函数()u g x =和外层函数()y f u =,再讨论这两个函数的单调性,然后根据复合函数法“同增异减”的规则进行判定. 3.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x=-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.4.B解析:B 【分析】将函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>,故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.5.D解析:D 【分析】由图中函数的单调性可得方程20ax bx c ++=的两根为2和4,利用根与系数的关系结合(1)0f =列式求得,,a b c 的值,则答案可求.【详解】解:由图可知,函数()f x 的减区间为(,2)-∞,增区间为(4,)+∞, ∴内层函数2t ax bx c =++的减区间为(,2)-∞,增区间为(4,)+∞, ∴方程20ax bx c ++=的两根为2和4, 又(1)0f =,68ln()0ba ca abc ⎧-=⎪⎪⎪∴=⎨⎪++=⎪⎪⎩,解得13283a b c ⎧=⎪⎪=-⎨⎪⎪=⎩. 182533a b c ∴-+=++=.故选:D. 【点睛】本题考查函数的图象与图象变换,考查复合函数的单调性,考查数学转化思想方法,是中档题.6.D解析:D 【分析】运用分段函数的形式写出()f x 的解析式,作出()21xf x =-的图象,由数形结合可得0c <且0a >,21c <且21a >,且()()0f c f a ->,去掉绝对值,化简即可得到结论.【详解】()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 作出()21xf x =-的图象如图所示,由图可知,要使c b a <<且()()()f c f a f b >>成立, 则有0c <且0a >, 故必有21c <且21a >,又()()0f c f a ->,即为()12210c a--->,∴222a c +<. 故选:D . 【点睛】本题考查指数函数单调性的应用,考查用指数函数单调性确定参数的范围,本题借助函数图象来辅助研究,由图象辅助研究函数性质是函数图象的重要作用,以形助数的解题技巧必须掌握,是中档题.7.B解析:B 【解析】试题分析:33333333log 82log 6log 22log 233log 22(log 2log 3)-=-⨯=-+3log 222a =-=-,所以答案选B .考点:指数对数的计算8.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.9.C解析:C 【分析】求得函数()y f x =的定义域,利用复合函数法求得函数()y f x =的单调递增区间,根据题意可得出区间的包含关系,由此可求得实数m 的取值范围. 【详解】解不等式2450x x -++>,即2450x x --<,解得15x -<<,内层函数245u x x =-++在区间()1,2-上单调递增,在区间()2,5上单调递减, 而外层函数12log y u =在定义域上为减函数,由复合函数法可知,函数()()212log 45f x x x =-++的单调递增区间为()2,5, 由于函数()()212log 45f x x x =-++在区间()32,2m m -+上单调递增,所以,32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<.因此,实数m 的取值范围是4,23⎡⎫⎪⎢⎣⎭. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,考查计算能力,属于中等题.10.D解析:D 【分析】由题意可得可得1a >,且30a ->,由此求得a 的范围. 【详解】解:函数()log (3)a f x ax =-在[]13,上单调递增,而函数()3t x ax =-在[]13,上单调递增,根据复合函数的单调性可得1a >,且30a ->,解得3a >,即()3a ∈+∞,故选:D . 【点睛】本题主要考查对数函数的定义域、单调性,复合函数的单调性,属于基础题.11.D解析:D 【解析】试题分析:根据题意,当(1,0)x ∈-时,1(0,1)x +∈,而此时log 10a x +>,所以有01a <<,从而能够确定函数在(,1)-∞-上是增函数,在区间(1,)-+∞上是减函数,故选D .考点:函数的单调性.12.D解析:D 【分析】先根据偶函数性质排除B ,再考虑当0x >且0x →时,y →+∞,排除A.再用特殊值法排除C ,即可得答案. 【详解】解:令()2ln 8x f x y x ==-,则函数定义域为{}0x x ≠ ,且满足()()f x f x -=,故函数()f x f (x )为偶函数,排除选项B ; 当0x >且0x →时,y →+∞,排除选项A ;取特殊值x =1ln 1ln 0y e =-<-=,排除选项C. 故选:D. 【点睛】本题考查利用函数解析式选函数图象问题,考查函数的基本性质,是中档题.二、填空题13.【分析】分类讨论和结合已知和对数函数及一次函数的单调性得a 的不等式组求解即可【详解】解:若当时当时此时的值域不为R 不符合题意;若当时当时要使函数的值域为R 需使解得综上所述故答案为:【点睛】本题考查分解析:31,2⎛⎤⎥⎝⎦【分析】分类讨论01a <<和1a >,结合已知和对数函数及一次函数的单调性,得a 的不等式组求解即可. 【详解】 解:若01a <<, 当1≥x 时,log 0a x ≤,当1x <时,()3332a x a a a a --<--=-,此时f x ()的值域不为R ,不符合题意;若1a >,当1≥x 时,log 0a x ≥,当1x <时,要使函数f x ()的值域为R ,需使30log 13a a a a ->⎧⎨≤--⎩,解得332a a <⎧⎪⎨≤⎪⎩,312a ∴<≤, 综上所述,312a <≤,故答案为:31,2⎛⎤ ⎥⎝⎦.【点睛】本题考查分段函数的值域及对数函数的性质,考查分类讨论思想与数学运算能力,是中档题.14.6【分析】直接利用函数的关系式利用恒等变换求出相应的a 值【详解】函数f (x )=的图象经过点P (p )Q (q )则:整理得:=1解得:2p+q=a2pq 由于:2p+q=36pq 所以:a2=36由于a >0故解析:6 【分析】直接利用函数的关系式,利用恒等变换求出相应的a 值. 【详解】函数f (x )=22xx ax+的图象经过点P (p ,65),Q (q ,15-).则:226112255p q pq ap aq +=-=++, 整理得:22222222p q p q p qp qp q aq ap aq ap a pq+++++++++=1, 解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6. 故答案为6 【点睛】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.15.奇【解析】又所以函数f(x)是奇函数点睛:判断函数的奇偶性其中包括两个必备条件:(1)定义域关于原点对称这是函数具有奇偶性的必要不充分条件所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等解析:奇 【解析】210x x x x x x R +->=-≥∴∈又()()))lglglg10f x f x x x -+=+==所以函数f(x) 是奇函数.点睛: 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.16.【分析】利用分段函数列出不等式求解即可【详解】解:在上为单调递增函数又当时当时不等式或解得或故答案为:【点睛】本题考查分段函数的应用函数值的求法考查转化思想以及计算能力 解析:21(0,][log (2),)a a a++∞ 【分析】利用分段函数列出不等式求解即可. 【详解】解:()log log xxa a a a x a a x ---=-+,1a >,()log x a g x a a x =-+在()0,∞+上为单调递增函数,又1(1)log 10a g a a =-+=, 当()0,1x ∈时,log 0xa a a x -+<,当()1,x ∈+∞时,log 0xa a a x -+>,,1()log ,01x a a a x f x x x ⎧->∴=⎨-<<⎩不等式()2f x ≥,21x a a x ⎧-≥∴⎨>⎩或log 201a x x -≥⎧⎨<<⎩,解得log (2)a x a ≥+或210x a <≤, 故答案为:21(0,][log (2),)a a a ++∞. 【点睛】本题考查分段函数的应用,函数值的求法,考查转化思想以及计算能力.17.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值. 【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>,函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =,故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.18.①④【分析】根据指数幂的运算法则判断①;采用举例子的方法判断②;根据指数函数的单调性判断③;利用指数幂的运算并采用作差法判断④【详解】对于①:因为所以故①正确;对于②:取所以所以不恒成立故②错误;对解析:①④ 【分析】根据指数幂的运算法则判断①;采用举例子的方法判断②;根据指数函数的单调性判断③;利用指数幂的运算并采用作差法判断④. 【详解】对于①:因为()()()12121212122,222x x x x x x f x x f x f x +++=⋅=⋅=,所以()()()1212f x x f x f x +=⋅,故①正确;对于②:取121,2x x ==,所以()()()()121224,246f x x f f x f x ⋅==+=+=,所以()()()1212f x x f x f x ⋅=+不恒成立,故②错误;对于③:因为()2xf x =是R 上的增函数,所以()()()12120x x f x f x -⋅->⎡⎤⎣⎦,故③错误;对于④:因为()()121212122222,=222x x x x f x f x x x f ++++⎛⎫= ⎪⎝⎭,且12121212121222222222222422220242x x x x x x x x x x x x ++++⎛⎫⎛⎫⎛⎫++⋅-⋅--==> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()()121222f x f x x x f ++⎛⎫<⎪⎝⎭,故④正确, 所以正确的有:①④, 故答案为:①④. 【点睛】结论点睛:可直接判断函数单调性的几种变形形式:(1)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x -->或()()12120f x f x x x ->- 成立,则()f x 为单调递增函数;(2)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x --<或()()12120f x f x x x -<- 成立,则()f x 为单调递增函数.19.【分析】首先根据定义列出的等式转化为再根据分离常数和换元法求的取值范围【详解】函数为可分拆函数存在实数使得且设当时等号成立即故答案为:【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题解析:[3【分析】首先根据定义,列出()()()0011f x f x f +=+的等式,转化为()()20202111x a x +=++,再根据分离常数和换元法,求a 的取值范围. 【详解】 函数()22log 1af x x =+为“可分拆函数”,∴存在实数00x >,使得()2222200log log log 1211aa a x x =++++且0a >,()()222002111a a x x ∴=+++,()()()2220000002222000000021*********222222211x x x x x x a x x x x x x x +++--++∴====-++++++++, 设0422x t +=>,024t x -∴=, 2161622204204t a t t t t∴=-=-++++ ,20444t t ++≥=,当t =即32a <. 故答案为:)32⎡⎣ 【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题型,首先正确利用新定义,并正确表示()()20202111x a x +=++,利用01x >,转化为求函数的值域,即求a 的取值范围.20.或2【分析】根据复合函数的单调性及对数的性质即可求出的值【详解】当时在为增函数求得即;当时在为减函数求得即故答案为:或【点睛】本题考查复合函数单调性对数方程的解法难度一般解析:12或2 【分析】根据复合函数的单调性及对数的性质即可求出a 的值. 【详解】当1a >时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为增函数,min 33log 1-224a y f ⎛⎫⎛⎫=-=-+= ⎪ ⎪⎝⎭⎝⎭,求得-214a=,即=2a ; 当01a <<时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为减函数,()()min 6log 31-2a y f ==+=,求得-24a =,即1=2a . 故答案为:12或2. 【点睛】本题考查复合函数单调性,对数方程的解法,难度一般.三、解答题21.(1)3,4⎛⎤-∞- ⎥⎝⎦;(2)a =【分析】(1)令()20,xt =∈+∞,可得21y t t =-+-,利用二次函数的性质可求出;(2)令12,12xt ⎡⎤=∈⎢⎥⎣⎦,可得21y t at =-+-,讨论对称轴2at =的取值范围结合二次函数的性质即可求出. 【详解】(1)()2()421221x x xx f x a a =-+⋅-=-+⋅-.令()20,xt =∈+∞,21y t at =-+-,1a =时,2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. ∴当12t =时,max 34y =-,∴3,4y ⎛⎤∈-∞- ⎥⎝⎦,所以()f x 的值域为3,4⎛⎤-∞- ⎥⎝⎦.(2)令12,12xt ⎡⎤=∈⎢⎥⎣⎦,22211124a y t at t a ⎛⎫=-+-=---+ ⎪⎝⎭, 其图象的对称轴为2at =. ①当122a ≤,即1a ≤时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, 当12t =时,max 1111424y a =-+-=-,解得2a =,与1a ≤矛盾;②当12a ≥,即2a ≥时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增, 当1t =时,max 1114y a =-+-=-,解得74a =,与2a ≥矛盾, ③当1122a <<,即12a <<时,函数y 在1,22a ⎡⎤⎢⎥⎣⎦上单调递增,在,12a ⎡⎤⎢⎥⎣⎦上单调递减.当2at =时,2max 11144y a =-=-,解得a =,舍去a =综上,a = 【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路; (1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b+的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解. 22.(1)33,22⎛⎫- ⎪⎝⎭;(2)奇函数,证明见解析;(3)302x <<【分析】(1)由320320x x +>⎧⎨->⎩可解得结果;(2)()F x 是奇函数,根据奇函数的定义可证结论正确; (3)根据对数函数的单调性可解得结果. 【详解】(1)由320320x x +>⎧⎨->⎩,解得3322x -<<,所以函数()F x 的定义域为33(,)22-.(2)()F x 是奇函数. 证明如下:x ∀∈33(,)22-,都有x -∈33(,)22-,因为 ()ln(32)ln(32)()F x x x F x -=--+=-, ∴()F x 是奇函数.(3)由()0F x >可得()()0f x g x ->,得ln(32)ln(32)0x x +-->, 即ln(32)ln(32)x x +>-, 由对数函数的单调性得32320x x ,解得302x <<. 【点睛】易错点点睛:利用对数函数的单调性解对数不等式时,容易忽视函数的定义域.23.(1)当x =时,()f x 取得最小值14-;当4x =时,()f x 取得最大值12;(2){}24x x <≤【分析】(1)令2log t x =,可得[]2,2t ∈-,从而()()22log 4log 2x x ⋅232t t =++,结合二次函数的性质,可求出最大值和最小值,及取得最值时对应的x 值;(2)由(1)知,2()32f x t t =++,[]2,2t ∈-,则不等式可化为2340t t +->,可求出t 的范围,结合2log t x =,可求出x 的范围. 【详解】 (1)由题意,()()()()222222log 4log 2log 4log log 2log x x x x ⋅=+⋅+=()()222log 1log x x +⋅+,令2log t x =,∵1,44x ⎡∈⎤⎢⎥⎣⎦,∴[]2log 2,2t x =∈-则()()22132y t t t t =++=++,根据二次函数的性质,可得当32t =-,即322x -==232y t t =++取得最小值,最小值为233132224⎛⎫⎛⎫-+-+=- ⎪ ⎪⎝⎭⎝⎭; 当2t =时,即224x ==时,232y t t =++取得最大值,最大值为2232212+⨯+=. (2)由(1)知,2()32f x t t =++,[]2,2t ∈-, 则()60f x ->可化为2340t t +->,解得1t >或4t <-, 因为[]2,2t ∈-,所以12t <≤, 则222log 2log log 4x <≤,即24x <≤, 故不等式()60f x ->的解集为{}24x x <≤. 【点睛】关键点点睛:本题考查求复合函数的最值,及函数不等式的解.解决本题的关键是利用换元法,令2log t x =,可将()f x 转化为关于t 的二次函数232y t t =++,进而可求出最值,并解不等式即可,注意不要漏掉[]2,2t ∈-.考查学生的逻辑推理能力,计算求解能力,属于中档题.24.(1)2()log f x x =(2)偶函数.见解析 【分析】(1)根据(4)(2)1f f -=,代入到函数的解析式中可求得2a =,可求得函数()f x 的解析式; (2)由函数()f x 的解析式,求得函数()g x 的解析式,先求得函数()g x 的定义域,再由函数的奇偶性的判断方法证得函数的奇偶性. 【详解】(1)因为()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=,所以log 4log 21a a -=,即log 21a =.,解得2a =,所以2()log f x x =;(2)因为()log a f x x =,所以22()log (2)log (2)g x x x =++-,由2020x x +>⎧⎨->⎩,得22x -<<,所以()g x 的定义域为()22-,, 又因为22()log (2)log (2)()g x x x g x -=-++=, 所以22()log (2)log (2)g x x x =++-为偶函数. 【点睛】本题考查对数函数的函数解析式的求解,函数的奇偶性的证明,属于基础题. 25.(1)()f x 的值域为9[16-,1];(2)能,a 的取值集合为{2};(3)232a -. 【分析】(1)由二次函数和指数函数的值域求法,可得()f x 的值域;(2)讨论1a >,01a <<,结合指数函数的单调性和二次函数的单调性,即可得到所求范围;(3)讨论x 的范围和a 的范围,结合参数分离和对勾函数的单调性、指数函数的单调性,计算可得所求范围. 【详解】(1)当10x -<时,21122y x x =+-,对称轴为1[14x =-∈-,0), 可得y 的最小值为916-,y 的最大值为0; 当01x 时,12?()1[02xy =-∈,1];综上()f x 的值域为9[16-,1];(2)当1a >时,函数22x y a a =-在[0,1]递增, 故二次函数2y x ax a =+-在[1-,0]也要递增,1222aa a⎧--⎪⎨⎪--⎩,故只有2a =符合要求; 当01a <<时,函数22x y a a =-在[0,1]递减, 故二次函数2y x ax a =+-在[1-,0]也要递减,0222aa a⎧-⎪⎨⎪--⎩,无解. 综上,a 的取值集合为{2};(3)①当[1x ∈-,0]时,22x ax a +--恒成立,即有2(1)2a x x ---,即221x a x+-,由221x y x+=-,令1t x =-,[1t ∈,2],可得32232y t t=+--,当且仅当t = 可得232a -;②当[0x ∈,1]时,①当1a >时,22x y a a =-,222x a a --,即有222a -,求得2a ,故12a <; ②当01a <<时,成立, 综上可得a 的范围为232a -. 【点睛】本题考查分段函数的值域和单调性的判断和运用,考查分类讨论思想方法和化简运算能力,以及不等式恒成立问题解法,属于中档题.26.[4,)+∞【分析】利用对数式的运算性质把给出的等式变形,去掉对数符号后利用基本不等式转化为关于(x +y )的二次不等式,求解后即可得到x +y 的取值范围. 【详解】222log ()log log x y x y +=+,x y xy ∴+=,0,0x y >>,2()2x y x y xy +∴+=≤,当且仅当2x y ==时,等号成立。

2023-2024学年高一上数学《指数函数与对数函数》测试卷及答案解析

2023-2024学年高一上数学《指数函数与对数函数》测试卷及答案解析

2023-2024学年高一数学《指数函数与对数函数》一.选择题(共12小题)1.(2022春•鼓楼区校级期中)设,则a,b,c的大小顺序为()A.a<c<b B.c<a<b C.a<b<c D.b<a<c 2.(2022春•鼓楼区校级期中)关于x的不等式e x≤ax(x﹣lnx)只有唯一实数解,则实数a的取值范围是()A.{e}B.[e,+∞)C.{1}D.(0,1] 3.(2022春•福州期中)已知a=lg2,b=log23,c=log34,则a,b,c的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.c<a<b 4.(2022•福州模拟)折纸是我国民间的一种传统手工艺术.现有一张长10cm、宽8cm的长方形的纸片,将纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S1,S2.若S1:S2=1:3,则折痕长的最大值为()A .cm B.10cm C.2cm D.2cm 5.(2021秋•福州期末)已知函数f(x)=(x+3)(x﹣e)+(x﹣e)(x﹣π)+(x﹣π)(x+3)的零点x1,x2(x1<x2),则()A.x1x2>0B .<﹣C.x2﹣x1<e D.x1+x2<π6.(2021秋•福州期末)设a=0.123,b=30.4,c=log0.40.12,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.a<c<b D.c<a<b 7.(2021秋•仓山区校级期末)若方程x2+2x+m2+3m=m cos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2B.﹣2C.4D.﹣4 8.(2021秋•鼓楼区校级期中)某科技有限公司为了鼓励员工创新,打破发达国家的芯片垄断,计划逐年增加研发资金投入,若该公司2018年全年投入的研发资金为200万元,在此基础上,每年投入的研发资金比上一年增加10%,则该公司全年投入的研发资金开始超过400万元的年份是()(参考数据:1.16=1.77,1.17=1.95,1.18=2.14,1.19=2.36)第1页(共23页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数与对数函数同步练习
姓名: 班别: 学号:
一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、已知32a
=,那么33log 82log 6-用a 表示是( )
A 、2a -
B 、52a -
C 、2
3(1)a a -+ D 、 2
3a a - 2、2log (2)log log a a a M N M N -=+,则N
M
的值为( ) A 、
4
1
B 、4
C 、1
D 、4或1 3、已知22
1,0,0x y x y +=>>,且1l o g (1),l o g ,l o g 1y a a
a x m n x
+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1
2
m n -
4、如果方程2
lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg 7 B 、lg35 C 、35 D 、35
1 5、已知732log [log (log )]0x =,那么1
2
x -等于( )
A 、
1
3 B C D 6、函数2lg 11y x ⎛⎫
=-
⎪+⎝⎭
的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称
7、函数(21)log x y -= )
A 、()2,11,3⎛⎫
+∞
⎪⎝⎭
B 、()1,11,2⎛⎫+∞
⎪⎝⎭
C 、2,3⎛⎫+∞
⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭
8、函数212
log (617)y x x =-+的值域是( )
A 、R
B 、[)8,+∞
C 、(),3-∞-
D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )
A 、 1 m n >>
B 、1n m >>
C 、01n m <<<
D 、01m n <<< 10、2
log 13
a <,则a 的取值范围是( ) A 、()20,
1,3⎛⎫+∞ ⎪⎝⎭
B 、2,3⎛⎫+∞
⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫
+∞ ⎪ ⎪⎝⎭⎝⎭
11、下列函数中,在()0,2上为增函数的是( )
A 、12
log (1)y x =+ B 、2
log y =C 、2
1log y x = D 、2
log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1
()x f x a +=是
( )
A 、在(),0-∞上是增加的
B 、在(),0-∞上是减少的
C 、在(),1-∞-上是增加的
D 、在(),0-∞上是减少的
二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m n
a a m n a
+=== 。

14、函数(-1)log (3-)x y x =的定义域是 。

15、2
lg 25lg 2lg 50(lg 2)++= 。

16、函数)
()lg
f x x =是 (奇、偶)函数。

三、解答题:(本题共5小题,共56分,解答应写出文字说明,证明过程或演算步骤.)
17、已知函数x
x x
x e
e e e x
f --+-=)(,判断()f x 的奇偶性和单调性。

18、已知函数f(x)=2+log 3x(1≤x ≤9),求函数y=[f(x)]2+f(x 2)的最大值和最小值,并求出相应x 的值.
19、已知),(,log )(1011≠>-+=a a x
x
x f a
(Ⅰ)求f(x)的定义域;
(Ⅱ)证明f(x)的图象关于原点对称 (Ⅲ)求使f(x)>0的x 取值范围.。

相关文档
最新文档