2019全国2卷高考理科数学试题及答案解析
2019全国2卷高考数学理科含答案详解(珍藏版)
绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A ={x|x 2﹣5x+6>0},B ={x|x ﹣1<0},则A ∩B =()A .(﹣∞,1)B .(﹣2,1)C .(﹣3,﹣1)D .(3,+∞)2.(5分)设z =﹣3+2i ,则在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知=(2,3),=(3,t ),||=1,则?=()A .﹣3B .﹣2C .2D .34.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:+=(R +r ).设α=.由于α的值很小,因此在近似计算中≈3α3,则r 的近似值为()A .RB .RC .R D .R5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A .中位数B .平均数C .方差D .极差6.(5分)若a >b ,则()A .ln (a ﹣b )>0B .3a<3bC .a 3﹣b 3>0D .|a|>|b|7.(5分)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(5分)若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =()A .2B .3C .4D .89.(5分)下列函数中,以为周期且在区间(,)单调递增的是()A .f (x )=|cos2x|B .f (x )=|sin2x|C .f (x )=cos|x |D .f (x )=sin|x|10.(5分)已知α∈(0,),2sin2α=cos2α+1,则sin α=()A .B .C .D .11.(5分)设F 为双曲线C :﹣=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF |,则C 的离心率为()A .B .C .2D .12.(5分)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理数全国卷2及答案解析
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学本试卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2–56|0A x x x =+>,{}–10|B x x =<,则A B =I( )A .(–1)∞,B .(–2)1,C .(–3)–1,D .(3)+∞,2.设–32z i =+,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.已知()2,3AB =u u u r ,(3)AC t =,uuu r,1BC =uu u r ,则AB BC =⋅uu u r uu u r( ) A .–3 B .–2 C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r满足方程:121223()()M M M R r R r r R +=++.设rR α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 ( ) A .中位数 B .平均数 C .方差 D .极差 6.若a b >,则 ( ) A .0()ln a b -> B .33a b < C .330a b -> D .a b >7.设α,β为两个平面,则αβP 的充要条件是 ( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面 8.若抛物线()220y px p =>的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2 B .3 C .4D .89.下列函数中,以2π为周期且在区间42ππ⎛⎫ ⎪⎝⎭,单调递增的是( )A .()cos 2f x x =B .()sin 2f x x =毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)C .()cos f x x =D .()f x sin x =10.已知π20a ⎛⎫∈ ⎪⎝⎭,),2sin2cos2+1αα=,则sin α=( ) A .15 BCD11.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )ABC .2D12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2019全国2卷理科数学试题及详解
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。
2019年高考全国2卷理科数学及答案
2019年高考全国2卷理科数学及答案1.题目:设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=?答案:B.(-2,1)2.题目:设z=-3+2i,则在复平面内z对应的点位于?答案:B.第二象限3.题目:已知AB=(2,3),AC=(3,t),BC=1,则AB BC=?答案:C.24.题目:2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1M2/(M1+M2)=(R+r)2/r3,设α=3M2/(4M1+12M2),由于α的值很小,因此在近似计算中,则r的近似值为2(1+α)R/M2.答案:B.M2R/2M15.题目:演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是?答案:B.平均数6.若a>b,则……答案:缺少信息,无法回答。
1.ln(a-b)。
02.3a < 3b3.a^3 - b^3.04.|a|。
|b|5.α and β are two planes。
The XXX n for α to be parallel to β is:A。
α has infinitely many lines parallel to β.B。
α has two intersecting lines parallel to β.C。
α and β are parallel to the same line.6.The focus of the parabola y = 2px (p。
2019年高考理科数学(2卷)答案详解
2019年普通高等学校招生全国统一考试理科数学(II 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(集合)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( ) A .(∞-,1) B .(–2,1)C .(–3,–1)D .(3,∞+)【解析】集合A ={x |x 2–5x +6>0}={x |x <2或x >3},集合B ={x |x <1},所以有A ∩B={x |x <1},即A 答案. 【答案】A2.(复数)设i z 23+-=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】i z 23+-=,则z 的共轭复数为i z 23--=,所以在复平面内z 对应的点位于第三象限. 【答案】C3.(平面向量)已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .–3 B .–2C .2D .3【解析】(1,3)=+=-BC BA AC t ,由于||1=BC ,所以03=-t ,即3=t ,(1,0)=BC .所以21302⋅=⨯+⨯=AB BC【答案】C4.(公式推导)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) A .21M R M B .212M R MC .2313M R M D .2313M R M【解析】∵=rR α,∴=r R α,代入121223()()+=++M M M R r R r r R 中得12122222(1)(1)+=++M M M R R R ααα12122(1)(1)+=++M M M ααα33453122333=3(1)++⎛⎫=≈ ⎪+⎝⎭M r M R ααααα所以有 2313=M r R M 【答案】C5.(概率统计)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差D .极差【解析】根据几个数字特征的定义,很容易得出答案:去掉1个最高分、1个最低分,最后中位数不变. 【答案】A6.(函数)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .|a |>|b |【解析】答案A :∵a >b ,∴a -b >0,无法判断ln(a −b )的正负;答案B :∵y =3x 为增函数,∴3a >3b ;答案C :∵y =x 3为增函数,∴a 3>b 3;答案D :当0>a >b 时,|a |<|b |.【答案】C7.(立体几何)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】通过画图,采用排除法,很容易得到正确答案. 【答案】B8.(解析几何)若抛物线y 2=2px (p >0)的焦点是椭圆1322=+py p x 的一个焦点,则p =( ) A .2 B .3 C .4D .8【解析】抛物线y 2=2px (p >0)的焦点为)0,2(p,并且在x 轴上. 所以椭圆1322=+p y p x 的一个焦点为)0,2(p . 所以有p p22=,得p =8. 【答案】D9.(三角函数)下列函数中,以2π为周期且在区间)2,4(ππ单调递增的是( ) A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x |D .f (x )=sin|x |【解析】答案A :函数f (x )=|cos2x |的图像如图A9-1所示,其周期是函数f (x )=cos2x 的一半,即21π=T ,且在区间)2,4(ππ为单调递增的. 答案B :与答案A 类似,函数f (x )=|sin2x |的周期是函数f (x )=sin2x 的一半,即22π=T ,且在区间)2,4(ππ为单调递减的;答案C :函数f (x )=cos|x |为偶函数,其图像如图A9-2所示.由函数f (x )=cos|x |的图像可知,其周期π23=T ;答案D :与答案C 类似,由函数f (x )=sin|x |的图像可知,其不是周期函数. 【答案】A图A9-1 图A9-210.(三角函数)已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( ) A .15B .55C .33D .255【解析】利用三角公式12cos 2sin 2+=αα化简得ααα2cos 2cos sin 4=ααcos sin 2=所以2cot =α,设α所对得边为1,则临边为2,斜边为5,所以55sin =α. 【答案】B11.(解析几何)设F 为双曲线C :22221(0,0)-=>>x y a b a b的右焦点,O 为坐标原点,以OF 为直径的圆与圆222+=x y a 交于P ,Q 两点.若=PQ OF ,则C 的离心率为( ) A .2 B .3C .2D .5【解析】如图A11所示. ∵OF 为直径,=PQ OF ,∴PQ 也是直径.,即点P 、Q 的坐标为)2,2(c c .把)2,2(c c 代入222+=x y a 得,222=c a . ∴22=e ,即2=e .图A11【答案】A12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【解析】由)(2)1(x f x f =+可得Z x x f t x f t∈⋅=+),(2)(,即Z x t x f x f t∈-⋅=),(2)(.∵当(0,1]∈x 时,()(1)=-f x x x ,1()[,0]4∈-f x ∴当(1,2]∈x 时,1(0,1]-∈x ,则)2)(1(2)1(2)(--=-⋅=x x x f x f ,1()[,0]2∈-f x∴当(2,3]∈x 时,2(0,1]-∈x ,则)3)(2(4)2(2)(2--=-⋅=x x x f x f ,()[1,0]∈-f x 函数()f x 的图像如图A12所示. 对任意(,]∈-∞x m ,都有8()9≥-f x ,因此(2,3]∈m 令98)3)(2(4)(-=--=x x x f ,得 37=x 或38=x . 由图A12可知,当37≤m 时,都有8()9≥-f x .图A12【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理科数学全国2卷(附答案)(可编辑修改word版)
C.2
D. 5
12.设函数 f (x) 的定义域为 R,满足 f (x 1) 2 f (x) ,且当
x (0,1] 时, f (x) x(x 1) .若对任意 x (, m] ,都有
f (x) 8 9 ,则 m 的取值范围是
A.
,
9 4
B.
,
7 3
-4-
Hale Waihona Puke 12B-SX-0000020
M2 R A. M1
M2 R B. 2M1
3 3M 2 R C. M1
3 M2 R D. 3M1
5.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,
从 9 个原始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分.7 个有效
评分与 9 个原始评分相比,不变的数字特征是
延长线上.设地球质量为 M1,月球质量为 M2,地月距离为 R, L2 点到月球
的距离为 r,根据牛顿运动定律和万有引力定律,r 满足方程:
M1 M2 (R r) M1
(R r)2 r2
R3 .
设
r R
,由于
3 3 3 4 5 的值很小,因此在近似计算中 (1 )2
3 3
,则
r 的近似值为
三、解答题:共 70 分。解答应写出文字说明、解答过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作 答。
(一)必考题:共 60 分。
14.已知 f (x) 是奇函数,且当 x 0 时, f (x) eax .若 f (ln 2) 8 ,则
C.
,
5 2
D.
,
8 3
2019年高考理科数学全国卷2(附参考答案和详解)
*%$
,%+
-%)
.%4
!一!选!!择!题!本!大!题!共!!!$!小 题!!每!小!题!"!分共 &# 分!在 每
小 题 给 出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
!!设集合 +'!#"#$("#0&)#"#0'!#"#(!##"#则 +$0
'
$! ! %
*%$( A #!%
,%$($#!%
-%$(+#(!%
.%$+#0 A %
$!设%' (+0$/#则 在 复 平 面 内%!对 应 的 点 位 于
$! ! %
*%第 一 象 限
,%第 二 象 限
-%第 三 象 限
.%第 四 象 限
+!已 知++*0' $$#+%#++*.' $+#;%#"0+*."'!#则++*0.0+*.'
#3$##!)时#*$#%'#$#(!%!若 对 任 意 #3 $( A#D)#都
有
*$#%1
(
4 8
#则
D
的取
值
范
围
是
$! ! %
$ ) *% (A#8)
$ ) ,%
(
A
#7 +
$ ) -%
(
A
#" $
$ ) .%
(
A
#4 +
"! $A0B%$
2019年高考理科数学全国2卷(附答案)
-- 12B-SX-0000020- 绝密★启用前__2019 年普通高等学校招生全国统一考试_-__ - 理科数学全国 II 卷___- 本试卷共 23 小题,满分150 分,考试用时120 分钟:号 - (适用地区:内蒙古 / 黑龙江 /辽宁 /吉林 /重庆 /陕西 / 甘肃 /宁夏 /青海 /新疆 / 西藏 /海南 )学-注意事项:_-__1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
_-__2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
__- 如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在___ 答题卡上。
写在本试卷上无效。
_线__封_ 3.考试结束后,将本试卷和答题卡一并交回。
_密__-__12 小题,每小题5 分,共 60 分。
在每个小题给出的四个选:-一、选择题:本题共名- 项中,只有一项是符合题目要求的。
姓- 2- 1.设集合 A={ x|x -5x+6>0} , B={ x|x-1<0} ,则A∩B=班- A . (-∞, 1) B . (-2, 1) C.(-3 , -1) D. (3, +∞)_ _ _-_2.设 z=-3+2i,则在复平面内 z对应的点位于_-__A .第一象限B .第二象限C.第三象限D.第四象限年-____线3.已知 AB =(2,3) , AC =(3 ,t), BC =1,则 ABBC =__封_A.-3 B.-2 C. 2 D. 3_密_-__ 4. 2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,_-___- 我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键___-_技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中__-___-继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2 点的轨道运行. L2 点是平衡点,__-_ M1,月球质量为 M2,地月距离为:-位于地月连线的延长线上.设地球质量为校学--- R, L2点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R, L2点到月球的距离为 r,根据牛顿运动定律和万有引力定律,r 满足方程:M1M 2M1(R r)2r2 (R r )3 .R设r ,由于的值很小,因此在近似计算中 3 33 45 3 3,则R (1 ) 2r的近似值为A .M 2 RB .M 2 R C.33M2R D .3M 2RM 12M 1M 13M 15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉 1 个最高分、 1 个最低分,得到 7 个有效评分 .7 个有效评分与 9 个原始评分相比,不变的数字特征是A .中位数B .平均数C.方差D.极差6.若 a>b,则A . ln(a- b)>0B .3a<3 b C. a3- b3>0 D .│a│ >│b│7.设α,β为两个平面,则α∥ β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C.α,β平行于同一条直线D .α,β垂直于同一平面2 x2y2p=8.若抛物线 y =2px(p>0) 的焦点是椭圆 1 的一个焦点,则3p p-1- -2---12B-SX-0000020A .2B . 3C . 4D . 8 9.下列函数中,以 为周期且在区间( , )单调递增的是 2 4 2A .f(x)= │ cosx2│ B . f(x)= │ sin 2x │C .f(x)=cos│x │ D . f(x)= sin x │10.已知 α∈(0, ), 2sin 2α=cos 2α+1,则 sin α=21B .5 A .5 5C .3 D . 2535x 2y 21(a 0,b 0) 的右焦点, O 为坐标原点, 以 OF11.设 F 为双曲线 C : b 2a 2为直径的圆与圆 x 2y 2a 2交于 P ,Q 两点 .若 PQOF ,则 C 的离心率 为A . 2B. 3C . 2 D. 512.设函数 f ( x) 的定义域为 R ,满足 f (x1) 2 f ( x) ,且当 x (0,1] 时, f (x ) x(x 1) .若对任意 x ( , m] ,都有 f ( x) 8,则 m 的9取值范围是A . 9B .7 , , 43 C .5 D .8 ,,2 3-- 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2019年高考真题——理科数学(全国卷II)附答案解析
)
A. 2
B. 3 C. 2 D. 5
答案 : A 解答:
∵ | PQ | | OF | c ,∴ POQ 90 ,
又 |OP | | OQ | a ,∴ a2 a2 c2
c
解得
a
2 ,即 e 2 .
12. 已知函数的定义域为 x R , f ( x 1) 2 f (x) ,且当 x (0,1] 时, f (x) x( x 1) ,若对任
cos
tan
1 ,所以 cos
2
1 1 tan 2
25
,
5
所以 sin
2
1 cos
5
.
5
x2 y2 11. 设 F 为双曲线 C : a2 b2 1(a 0,b 0) 的右焦点, O 为坐标原点,以 OF 为直径的圆与圆
x2 y2 a2 交于 P,Q 两点,若 | PQ | | OF | ,则 C 的离心率为(
B. 内有两条相交直线与 平行
C. , 平行于同一条直线
D. , 垂直于同一平面
答案: B 解析:
根据面面平行的判定定理易得答案
. 选 B.
8. 若抛物线 y2 2 px( p 0) 的焦点是椭圆 x2 y2 1 的一个焦点,则 p ( ) 3p p
A.2 B.3 C.4 D.8 答案: D 解答:
2. 设 z 3 2i , 则在复平面内 z 对应的点位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 答案: C 解析:
z 3 2i ,对应的点坐标为 ( - 3,- 2), 故选 C.
3.已知 AB (2,3) , AC (3, t) , | BC | 1 ,则 AB BC ( ) A. 3 B. 2 C. 2 D. 3
(完整版)2019年高考理科数学全国2卷(附答案)
学校:___________________________年_______班姓名:____________________学号:________---------密封线---------密封线---------绝密★启用前2019年普通高等学校招生全国统一考试理科数学全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A ∩B=A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z=-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知AB uuu r=(2,3),AC uuu r =(3,t),BC uuu r =1,则AB BC uu u r uuu r =A .-3B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r rR.设r R,由于的值很小,因此在近似计算中34532333(1),则r 的近似值为A .21M RM B .212M RM C .2313M RM D .2313M RM 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差6.若a>b ,则A .ln(a-b)>0B .3a<3bC .a 3-b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若抛物线y 2=2px(p>0)的焦点是椭圆2231xypp的一个焦点,则p=A .2B .3C .4D .89.下列函数中,以2为周期且在区间(4,2)单调递增的是A .f(x)=│cos 2x │B .f(x)=│sin 2x │C .f(x)=cos │x │D .f(x)= sin │x │10.已知α∈(0,2),2sin 2α=cos 2α+1,则sin α=A .15B .55C .33D .25511.设F 为双曲线C :22221(0,0)x ya b ab的右焦点,O为坐标原点,以OF 为直径的圆与圆222xy a交于P ,Q 两点.若PQ OF,则C 的离心率为A .2B .3C .2D .512.设函数()f x 的定义域为R ,满足(1)2 ()f xf x ,且当(0,1]x时,()(1)f x x x .若对任意(,]x m ,都有8()9f x ,则m的取值范围是A .9,4B .7,3C .5,2D .8,3二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)
2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)1.设集合A={x|x^2-5x+6>0},B={x|x-1<0},则A∩B=()A。
(-∞,1) B。
(-2,1) C。
(-3,-1) D。
(3,+∞)解析:将x^2-5x+6=0化为(x-2)(x-3)>0,得到x∈(-∞,2)∪(3,+∞),将x-1<0化为x<1,得到B={x|x<1},所以A∩B=(-∞,1)。
2.设z=-3+2i,则在复平面内对应的点位于()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限解析:实部为-3,虚部为2,所以该点位于第二象限。
3.已知|z-3|=2,|z+(3+ti)|=1,则|z|=()A。
-3 B。
-2 C。
2 D。
3解析:将|z-3|=2化为|z-3|^2=4,得到(z-3)(z-3*)=4,其中z*为z的共轭复数,将|z+(3+ti)|=1化为|z+(3+ti)|^2=1,得到(z+(3+ti))(z*+(3-ti))=1,将z展开得到z=x+yi,代入两式,化简得到x^2+y^2-6x+4=0和x^2+(y+t)^2=4,联立两式,解得x=1,y=-2-t,代入|z|^2=x^2+y^2,得到|z|=2.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就。
实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行。
L2点是平衡点,位于地月连线的延长线上。
设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1M2/(M1+M2)(R+r)^2=G(M1+M2)/r^2.设α=GM2/R^2,由于α的值很小,因此在近似计算中α≈3α^3,则r的近似值为()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2019年普通高等学校招生全国统一考试理科数学
本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项
中,只有一项是符合题目要求的.。