电子技术实验二射极跟随器
实验 射极跟随器
实验步骤1. 测量电压放大倍数和跟随特性
• 测量电压放大倍数 在信号发生器上获得 uipp=1V、f=1kHz的正 弦信号,输入放大器; 在放大器输出端连接 示波器,测量输出电 压uopp,记录于右表。 • 测量跟随特性 改变输入电压的幅度, 记录输出电压峰峰值。
表格1 次数 1 2 3 uipp (mV) 1000 uopp (mV) Au
表格3 Uspp (mV) uipp (mV)
Ri=Ui/(Us-Ui)R
2K R
实验步骤2:观察饱和失真和截至失真
• RP调到0时易出现饱和失真。将RP调到0, 增加输入信号幅度,可以观察到饱和失真 现象,记录输出的失真波形。 • RP调到最大值时易出现截止失真。更换 Rp=1M调整最大,然后增加输入信号幅度, 可以观察到截至失真现象,记录输出的失 真波形。
实验步骤3. 测量输出电阻Ro
• 测量空载输出电压(无负 载电阻) 输入uipp=1V、f=1kHz的 正弦信号;放大器输出端 连接示波器,不失真时记 录空载输出电压uopp,记 录于右表。
表格2
Uopp (mV) Uopp (mV)
(同表1 第一次 数据)
Ro=(Uo/Uo-1)RL
实验步骤4. 测量输入电阻Ri
• 输入端接入2K电阻R A点输入uspp=1V、 f=1kHz的正弦信号;B点 接入示波器,记录uipp, 记录于右表。
实验:共集电极放大器(射极跟随器)
一、实验目的
• 1、掌握射极跟随器的特性及测试方法。 • 2、观察饱和失真和截至失真。
二、实验仪器(1)示波Βιβλιοθήκη (2)函数信号发生器实验电路
信号发射器从50Ω输出
示波器: measure 和 autoset
射极跟随器实验报告
射极跟随器实验报告射极跟随器实验报告一、实验目的本实验旨在通过模拟电路实现射极跟随器的功能,加深对射极跟随器工作原理的理解,掌握其电路组成、工作过程及性能特点。
二、实验原理射极跟随器是一种共射极放大电路,其输出信号从发射极取出,经缓冲器和负载电阻反馈到输入端,形成射极跟随器。
射极跟随器具有高输入阻抗、低输出阻抗、电压放大倍数接近1的特点,常用于多级放大电路的输入级或输出级,起缓冲、隔离和放大的作用。
三、实验步骤1.准备实验材料:电源、信号发生器、电阻、电容、电感、三极管等。
2.搭建射极跟随器电路:将电源、信号发生器、电阻、电容、电感、三极管等按照射极跟随器的电路组成连接起来。
3.调节输入信号:打开电源,调节信号发生器,使输入信号频率和幅度变化。
4.测量输出信号:使用示波器等测量仪器,测量射极跟随器输出信号的幅度和相位等参数。
5.记录实验数据:将输入信号和输出信号的幅度、相位等参数记录在实验数据表中。
6.分析实验结果:根据实验数据,分析射极跟随器的性能特点,加深对射极跟随器工作原理的理解。
7.整理实验报告:整理实验步骤、实验数据和分析结果,撰写实验报告。
四、实验数据及分析1.实验数据表:记录输入信号和输出信号的幅度、相位等参数。
幅度的增大而增大,但增大幅度较小;输出信号相位与输入信号相位基本一致,说明射极跟随器具有较好的线性放大特性。
同时,由于射极跟随器具有高输入阻抗和低输出阻抗的特点,使得电路具有较好的隔离效果,可以有效地避免前后级电路之间的相互影响。
五、结论总结通过本次实验,我们验证了射极跟随器的电路组成、工作过程及性能特点。
实验结果表明,射极跟随器具有高输入阻抗、低输出阻抗和较好的线性放大特性,能够有效提高电路的阻抗匹配和信号传输效率。
在多级放大电路中应用射极跟随器可以实现良好的缓冲、隔离和放大效果。
本实验加深了我们对射极跟随器工作原理的理解,为今后在电子系统中应用射极跟随器提供了有益的参考。
《模拟电子技术基础》实验指导书02射极跟随器
实验四射极跟随器一、实验目的1.进一步学习放大器参数的测量方法2.掌握射极跟随器的特性及测试方法二、预习要求1.熟悉射极跟随器的原理及特点。
2.结合教材练习静态工作点的估算和交、直流负载线的画法。
三、实验内容和步骤射极跟随器电路如图4-1所示。
1.按图4-1连线。
检查无误后通电,准备测量。
2.静态工作点的调整和测量令交流输入u s=0(即A点接地)。
调节R p使V E约在7V左右,测V C和V E并填入表4-1。
计算V BE、V CE,估算I E、r be。
设β=50~60。
图4-1V B(V) V E(V) V C(V) V BE (V) V CE(V)估算值I E(mA) r be(kΩ)3.理论计算根据图4-1中的元件参数,计算射极跟随器的电压放大倍、源电压放大倍数、输入电阻和输出电阻,并填入表4-2中。
A u1(R L=∞) A u2(R L=1k) A us1(R L=∞) A us2(R L=1k) R i R o4.测量A u、R i、R o保持R p不变,调节信号波发生器使其输出f=1kHz,u s=0.5V的正弦波,用晶体管毫伏表测量输入电压u i(B点对地电压)及空载输出电压u o1和负载输出电压u o2。
填入表4-3。
u s(V) u i(V) u o1(R L=∞) u o2(R L=1k) A u1A u2A s1A s2(1) 其中。
,,,so us s o us i o u i o u u uA u u A u u A u u A 12112211====与理论值比较。
(2) 计算s i s ii R u u u R -=和 s o o o R u u R ⎪⎪⎭⎫ ⎝⎛-=121,与理论值比较。
5. 电压跟随特性测试接入负载电阻,并在电路输入端加入f=1kHz 的正弦信号。
用示波器观察输出信号,直至输出电压幅度最大(没有失真),用晶体管毫伏表测u i 和u o ,填入表4-4中。
射极跟随器实验报告
射极跟随器实验报告射极跟随器实验报告引言射极跟随器是一种常见的电子设备,广泛应用于放大器、滤波器和信号处理等电路中。
本实验旨在通过搭建射极跟随器电路并进行实际测试,探究其工作原理和性能特点。
一、实验目的1. 理解射极跟随器的基本原理;2. 掌握射极跟随器电路的搭建方法;3. 分析射极跟随器的频率响应和增益特性。
二、实验器材与方法1. 实验器材:电压源、电容、电阻、晶体管、示波器等;2. 实验方法:按照实验原理搭建射极跟随器电路,并通过示波器观察电路的输出波形。
三、实验步骤1. 按照电路图搭建射极跟随器电路,注意连接的正确性;2. 调节电压源的输出电压,使其适合晶体管的工作条件;3. 连接示波器,观察电路的输出波形;4. 调节输入信号的频率,观察电路的频率响应;5. 记录实验数据,如输入信号的幅值和频率,输出信号的幅值和频率等。
四、实验结果与分析通过实验观察和数据记录,我们得到了射极跟随器的实际工作情况。
根据实验结果,我们可以得出以下结论:1. 射极跟随器能够实现输入信号的放大,输出信号的幅值较输入信号大;2. 射极跟随器具有较高的输入阻抗和较低的输出阻抗,能够有效地驱动后级电路;3. 随着输入信号频率的增加,射极跟随器的增益逐渐下降,且相位差逐渐增大;4. 射极跟随器对输入信号的幅值有一定的限制,过大或过小的输入信号都会导致输出失真。
五、实验总结通过本次实验,我们深入了解了射极跟随器的原理和性能特点。
射极跟随器作为一种常见的电子设备,在电子电路中有着广泛的应用。
它具有放大输入信号、驱动后级电路、提高系统的稳定性等优点,但也存在一定的局限性。
在实际应用中,我们需要根据具体需求选择合适的射极跟随器电路,并注意输入信号的幅值和频率范围,以保证系统的正常工作。
六、参考文献[1] 电子技术基础教程. 北京:高等教育出版社,2010.[2] 张三, 李四. 射极跟随器的设计与应用. 电子科技导刊, 2018, 36(2): 45-50.结语通过本次实验,我们对射极跟随器有了更深入的了解。
射极跟随器实验报告
射极跟随器实验报告1. 引言射极跟随器是一种广泛应用于电子设备中的电路,其作用是使输出端的电压或电流跟随输入端的变化。
本实验旨在探究射极跟随器的基本原理、性能特点以及应用实例。
2. 实验目的- 理解射极跟随器的工作原理- 学习如何设计和搭建射极跟随器电路- 掌握射极跟随器的性能测试方法和结果分析3. 实验材料和仪器- NPN型晶体管(例如2N3904)- 电压源- 电阻、电容等常见元器件- 示波器- 万用表4. 实验步骤4.1 搭建射极跟随器电路根据给定的电路图,选择合适的元器件进行搭建。
确保电路连接正确,无误后进行下一步。
4.2 测试射极跟随器的静态工作点使用万用表测量晶体管的射极电流和集电极电压,并记录下来。
通过计算可以得到静态工作点,进一步分析电路性能。
4.3 测试射极跟随器的动态响应特性通过改变输入端的信号频率和幅度,观察电路输出(集电极)的响应。
使用示波器进行波形显示和观察,并记录实验结果。
4.4 对实验结果进行分析根据实验数据,分析射极跟随器的增益、频率响应特性等性能。
比较不同元器件参数对电路性能的影响。
5. 实验结果和讨论记录并整理实验数据结果,分析电路的性能特点。
讨论射极跟随器在电子设备中的应用及其优缺点。
6. 结论总结实验结果,针对射极跟随器的特点和应用进行归纳总结。
7. 实验注意事项- 实验过程中需要注意安全操作,避免触电风险。
- 确保电路连接正确,避免短路或开路等问题。
- 对于高频信号的测试,需要选择合适的示波器和电路布线,以避免信号失真和干扰。
8. 参考文献提供相关射极跟随器的原理资料、电路设计参考资料以及其他相关论文、教材等。
9. 结束语通过本实验,我们对射极跟随器的工作原理、性能特点和应用有了更加深入的了解。
射极跟随器作为一种常用的电路,具有重要的应用价值,值得进一步研究和探索。
实验二射极跟随器实验指导书
实验二射极跟踪器一、实验目的1.掌握射极跟踪器的特性及测试方法。
2.进一步学习放大其各项参数测试方法、熟悉multisim使用方法。
二、实验原理图2.1为常用的射极跟踪器电路。
XSC1图2.1常用的射极跟踪器电路。
晶体管为非线性元件,要使放大器不产生非线性失真,就必须建立一个合适的静态工作点,使晶体管工作在放大区,否则输出波形会产生饱和获截止失真。
但要注意,即使Q点合适,若输入信号过大,则饱和截止失真会同时出现。
改变电路参数U CC、R C、R B1、R B2都会引起静态工作点的变化。
调整放大器到合适的静态工作点,加入输入信号u i。
在输出电压不失真的情况下,用交流毫伏表测出u i和u o的有效值,则电压放大倍数A u = U o / U i 。
为了测量放大器的输入电阻,在图1.2所示电路的输入端与信号源之间串入一已知电阻R ,在放大器正常工作情况下,用示波器测出U S 和U i ,则根据输入电阻的定义可得:R U U U RU U I U r i S iR i i i i -===在放大器正常工作情况下,用示波器测出放大器空载时的输出电压U O 和接入负载后的输出电压U OL ,则根据O Lo LOL U R r R U +=,可得:L OL O o 1R U U r ⎪⎪⎭⎫ ⎝⎛-=。
三、实验仪器和设备电脑、multisim 软件四、预习要求1.射极跟踪器的工作原理。
2.射极跟踪器静态工作点的估算及测试,动态性能指标的计算及测试。
3.截止失真、饱和失真的原因、失真波形、消除失真常采用的办法。
五、实验内容及步骤1.按图2.1在multisim 中搭建电路,并进行仿真 2.调整并测量静态分析工作点调整电位器R P ,观察示波器波形,当输出最大不失真电压时,进行直流分析(点击simulate-analyses-DC operating point ,将需要的工作点加入后,点simulat ),将结果填入表2.1中。
射极跟随器实验报告完整版
射极跟随器实验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】肇庆学院实验二射极跟随器实验报告班别:学号:姓名:指导老师:一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验仪器DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干三、实验原理射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
图1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻Ri图1电路Ri =rbe+(1+β)RE如考虑偏置电阻RB 和负载RL的影响,则Ri =RB∥[rbe+(1+β)(RE∥RL)]由上式可知射极跟随器的输入电阻Ri 比共射极单管放大器的输入电阻Ri=RB∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图2所示。
图2 射极跟随器实验电路(其中,RL 的测量值为ΩK,取ΩK;R的测量值为ΩK)即只要测得A、B两点的对地电位即可计算出Ri。
2、输出电阻RO图1电路如考虑信号源内阻R S ,则由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O3、电压放大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
实验二 射极跟随器
实验二射极跟随器一、实验目的1、掌握射极跟随器的特性及测试方法;2、进一步学习放大器各项参数测试方法;二、实验原理射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
图1 射极跟随器原理图射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻R:如考虑偏置电阻RB和负载R L的影响,则:由上式可知射极跟随器的输入电阻Ri比共射极单管放大器的输入电阻高的多,但由于偏置电阻R B的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图2所示。
图2 射极跟随器实验电路即只要测得A、B两点的对地电位即可计算出R i。
2、输出电阻Ro:见图l电路如考虑信号源内阻Rs,则由上式可知射极跟随器的输出电阻Ro比共射极单管放大器的输出电阻(约等于Rc)低得多。
三极管的β愈高,输出电阻愈小。
输出电阻Ro的测试方法亦同单管放大器,即先测出空载输出电压Uo,再测接入负载R L后的输出电压U L,根据即可求出Ro3、电压放大倍数:见图1电路:上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
但它的射极电流仍比基极电流大(1十β)倍,所以它具有一定的电流和功率放大作用。
4、电压跟随范围电压跟随范围是指射极跟随器输出电压Uo跟随输入电压Ui;作线性变化的区域。
当Ui超过一定范围时,Uo便不能跟随Ui作线性变化,即Uo波形产生了失真。
为了使输出电压Uo正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取Uo的峰峰值,即电压跟随范围;或用交流毫伏表读取Uo的有效值,则电压跟随范围:三、实验设备与器件12V直流电源、函数信号发生器、双踪示波器、交流毫伏表、直流电压表、射随器实验电路、1K 电阻器。
射极跟随器实验报告
射极跟随器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)肇庆学院实验二射极跟随器实验报告班别:学号:姓名:指导老师:一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验仪器DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干三、实验原理射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
图1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻Ri图1电路Ri =rbe+(1+β)RE如考虑偏置电阻RB 和负载RL的影响,则Ri =RB∥[rbe+(1+β)(RE∥RL)]由上式可知射极跟随器的输入电阻Ri 比共射极单管放大器的输入电阻Ri=RB∥rbe 要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图2所示。
图2 射极跟随器实验电路(其中,R L 的测量值为ΩK ,取ΩK ;R 的测量值为ΩK )即只要测得A 、B 两点的对地电位即可计算出R i 。
2、输出电阻R O 图1电路如考虑信号源内阻R S ,则由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O3、电压放大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
2.射极跟随器
长春理工大学国家级电工电子实验教学示范中心学生实验报告——学年第学期实验课程实验地点学院专业学号姓名实验项目 射极跟随器(共集电极放大电路)实验时间 实验台号 预习成绩报告成绩一、实验目的1.掌握射极跟随器的特点及测试方法;2.进一步学习放大器各项参数的测量方法(放大倍数Av 、输入电阻Ri 、输出电阻Ro )。
二、实验仪器 1.示波器 2.信号源 3.数字万用表 4. 交流毫伏表 5.台式万用表 6.电子技术实验箱 三、实验原理射极跟随器电路如图3-1,电路中输入信号加在基极和地(即集电极)之间,输出信号 加在发射极和集电极之间,输入和输出的公共点是集电极,因此为共集电极电路; 输出信号从发射极输出,又称为射极输出器.电路中电压增益小于1而接近于1,输出电压与输入电压同相;输入电阻高,从信号源吸取的电流小,可将它作多级放大电路的输入级。
输出电阻小,带负载能力强,可将它作为多级放大电路的输出级。
同时利用其输入电阻高、输出电阻低的特点。
将它作为多级放大电路的中间级,以隔离前后级之间的相互影响,在电路中起阻抗变换的作用,为缓冲级。
3-1射极跟随器电路1.静态分析()e b BEQCC BQ R R V V I β++-=1,BQ CQ EQ I I I β=≈,e EQ CC CEQ R I V V -=2.动态分析(1)电压放大倍数()()Lbe Lv R r R A '++'+=ββ11,L e L R R R //='。
(2)输入电阻(很大,K Ω级)()()[]Lbe b Lbe i b i iii i R r R R r v R v v i v R '++='+++==ββ1//1,(3)输出电阻很小,Ω级;β++'=1//be se o r R R R四、预习内容1.复习射极跟随器的工作原理和特点.2.按电路所给参数,估算电路的静态工作点及电压放大倍数.五、实验内容1.直流工作点的调整与测试;2.测量电压放大倍数 Av;3.测量输出电阻Ro (外接负载法);4.测量输入电阻Ri (采用串联电阻法); 六、实验方法及步骤1.按图3—1准确连接电路;2.直流工作点的调整与测试(带载调试)在A 点加1KHz 的正弦信号,输出端用示波器观察。
低频电子线路 硬件实验报告 射极跟随器
实验三射极跟随器一、实验目的1.掌握射极跟随器的特性及测试方法。
2.进一步学习放大器各项参数测试方法。
二、实验原理1.射极跟随器(1)射极跟随器的原理图:图1 射极跟随器(2)射极跟随器特点:①电压串联负反馈放大电路;②输入电阻高,输出电阻低;③电压放大倍数接近于1;④输出电压能够在较大范围内跟随输入电压作线性变化;⑤输入、输出信号同;⑥射极跟随器的输出取自发射极,故称其为射极输出器。
(3)输入电阻(Ri)①Ri=rbe+(1+β)RE考虑偏置电阻RB和负载RL的影响:Ri=RB∥[rbe+(1+β)(RE∥RL)]OββE由上式可知射极跟随器的输出电阻R0比共射极单管放大器的输出电阻RO≈RC低得多。
三极管的β愈高,输出电阻愈小。
②输出电阻RO的测试方法输出电阻RO 的测试方法亦同单管放大器,即先测出空载输出电压UO ,再测接入负载RL 后的输出电压UL ,根据:OL O LL U R R R U +=即可求出 RO :LLOO 1)R U U (R -=(5) 电压放大倍数≤1射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。
(6) 电压跟随范围电压跟随范围:射极跟随器输出电压Uo 跟随输入电压Ui 作线性变化区域。
当ui 超过一定范围时,uO 便不能跟随ui 作线性变化,即uO 波形产生了失真。
为了使输出电压uO 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取uO 的峰峰值,即电压跟随范围;或用交流毫伏表读取uO 的有效值,则电压跟随范围U0P -P =22UO 。
三、实验设备与器件1、+12V 直流电源2、函数信号发生器+=++E L V be E L (1β)(R ∥R )A r (1β)(R ∥R )3、双踪示波器4、交流毫伏表5、直流电压表6、频率计7、3DG12×1(β=50~100)或9013电阻器、电容器若干。
射极跟随器实验报告
射极跟随器实验报告射极跟随器实验报告引言:射极跟随器是一种常用的电子电路,用于放大和跟随输入信号。
在本次实验中,我们将通过搭建射极跟随器电路并进行测试,来探索其工作原理和性能。
一、实验目的本次实验的主要目的是研究射极跟随器的基本原理,探究其放大和跟随输入信号的能力。
具体实验目标包括:1. 理解射极跟随器的工作原理;2. 掌握搭建射极跟随器电路的方法;3. 测试射极跟随器的放大倍数和频率响应;4. 分析射极跟随器的优缺点及应用领域。
二、实验原理射极跟随器是一种基本的放大电路,由一个晶体管和负载电阻组成。
其工作原理是通过将输入信号接到晶体管的基极,通过晶体管的放大作用将信号放大到负载电阻上。
射极跟随器的特点是输入和输出信号具有相同的波形,且输出信号的幅度比输入信号稍小。
三、实验步骤1. 准备实验所需材料和设备,包括晶体管、电阻、电容等;2. 按照电路图搭建射极跟随器电路,注意连接的正确性和稳定性;3. 进行电路的初步调试,确保电路正常工作;4. 测试射极跟随器的放大倍数,将不同幅度的输入信号接入电路,测量输出信号的幅度;5. 测试射极跟随器的频率响应,将不同频率的输入信号接入电路,测量输出信号的幅度;6. 记录实验数据,并进行数据分析。
四、实验结果与分析通过实验测量和数据分析,我们得到了射极跟随器的放大倍数和频率响应曲线。
根据实验数据,我们可以看出射极跟随器在一定范围内具有较好的线性放大能力,并且在一定频率范围内能够保持较为稳定的放大倍数。
五、实验总结射极跟随器是一种常用的电子电路,具有放大和跟随输入信号的能力。
通过本次实验,我们深入了解了射极跟随器的工作原理和性能特点。
实验结果表明,射极跟随器具有较好的放大线性和频率响应特性,适用于许多电子电路中的信号放大和处理任务。
六、实验改进与展望虽然本次实验取得了一定的成果,但仍存在一些改进的空间。
未来的实验中,可以尝试使用不同型号的晶体管和负载电阻,以探究射极跟随器的性能差异。
射极跟随器实验报告
一、实验目的1. 掌握射极跟随器的基本原理和电路结构。
2. 了解射极跟随器的输入阻抗、输出阻抗和电压放大倍数等主要特性。
3. 学习使用电子仪器对射极跟随器进行测试和分析。
4. 通过实验加深对模拟电子技术中放大器原理的理解。
二、实验原理射极跟随器(Emitter Follower)是一种常用的电压放大电路,其特点是输入阻抗高、输出阻抗低、电压放大倍数接近于1。
射极跟随器主要由晶体管、偏置电阻、负载电阻等组成。
其工作原理是:输入信号通过晶体管的基极输入,经过放大后,从发射极输出,从而实现电压放大的目的。
三、实验器材1. 晶体管(如2N3904)2. 偏置电阻(如R1、R2)3. 负载电阻(如RL)4. 信号源5. 示波器6. 数字万用表7. 基准电源8. 连接线四、实验步骤1. 按照实验电路图连接电路,确保连接正确无误。
2. 将信号源输出设置为正弦波,频率为1kHz,幅度为1V。
3. 使用示波器观察输入信号和输出信号的波形,并调整偏置电阻R1和R2,使输出信号不失真。
4. 使用数字万用表测量晶体管各电极的电压,并记录数据。
5. 改变负载电阻RL的值,观察输出信号的变化,并记录数据。
6. 使用示波器观察输出信号的相位,并与输入信号进行比较。
五、实验结果与分析1. 输入阻抗测量:通过测量输入信号和基极电压,可以计算出射极跟随器的输入阻抗。
实验结果表明,射极跟随器的输入阻抗较高,有利于信号源与放大电路之间的匹配。
2. 输出阻抗测量:通过测量空载输出电压和接入负载后的输出电压,可以计算出射极跟随器的输出阻抗。
实验结果表明,射极跟随器的输出阻抗较低,有利于驱动负载。
3. 电压放大倍数测量:通过测量输入信号和输出信号的幅度,可以计算出射极跟随器的电压放大倍数。
实验结果表明,射极跟随器的电压放大倍数接近于1,说明其具有电压跟随特性。
4. 相位测量:通过观察输入信号和输出信号的相位,可以判断射极跟随器的相移情况。
实验结果表明,射极跟随器的输入信号和输出信号同相,说明其具有较好的相移特性。
实验二 射极跟随器
实验二射极跟随器一、实验目的1、熟悉Multisim9软件的使用方法。
2、掌握放大器静态工作点的仿真方法及其对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真方法,了解共射极电路特性。
4、学习Multisim9参数扫描方法5、学会开关元件的使用二、虚礼实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.画出电路如图所示2.直流工作点的调整如上图所示,V1频率1kHz,Vi=3V,R1=82KΩ,R2=1.8 KΩ。
通过扫描电阻R1的阻值,在输入端输入稳定的正弦波信号,通过观察输出5端的波形,使其为最大不失真波形,此时,便可以确定Q1的静态工作点。
具体步骤如下:1.选择菜单栏中simulate/analyses/parametersweep,如右图所示2.参数设置如下图所示2.点击上图中按钮“More>>”,出现如下图所示3.点击按钮“Edit Analysis”,如下图所示☆把其中的end time 设置为0.1秒,如果太大,那计算机计算时间将会变得很长4.点击OK5.设置输出如下图所示※其中的$5就是输出电阻上的“5”编号6.点击Simulate按钮7.出现如下图形8.用鼠标左键单击图形,选出一个虚拟矩形框,如下所示9.结果如下,图形被放大。
其中有很多条用不同颜色表示仿真图形重叠在一起。
10.单击工具栏,便出现如下所示数据找max y 和min y所对应行的数据,他们数据差别最小的便是我们要的数据。
找到它所对应的电阻阻值(该例题为138kΩ),去更改R1的阻值。
R1=1.5k11.更改电路图如下12.进行静态工作点仿真,选择菜单栏中simulate/analyses/Dc operating point,如右图所示14.测量电压放大倍数15.测量输入电阻,电路如下所示双击万用表,填下表16.测量输出电阻,电路如下所示※S1是开关,是为了测试无穷和带负载是的电压,用空格键来控制其开与关。
射极跟随器实验报告
射极跟随器实验报告引言:射极跟随器是一种常见的电子电路,它在电子设备中扮演着关键的角色。
通过实验,我们将探索射极跟随器的工作原理和性能,并进一步了解其在电路中的应用。
实验目的:1.了解射极跟随器的基本原理;2.掌握射极跟随器的电路搭建方法;3.分析射极跟随器的性能参数。
实验材料与设备:1.双极性电源;2.直流电流表;3.两个电容;4.两个电阻;5.两个NPN型晶体管。
实验步骤:1.搭建射极跟随器电路;2.接通电源,调整电压使其在工作范围内;3.测量输入和输出电流,记录数据;4.改变输入电流,测量输出电流变化。
实验结果:通过实验数据的记录与分析,我们得到了以下结果。
1.射极跟随器的工作原理:射极跟随器主要由两个晶体管组成,其中一个晶体管作为输入信号的放大器,将输入信号放大后通过另一个晶体管输出。
这种反馈机制能够实现电压放大以及对输出信号的跟随。
2.电流放大比:我们测量了输入电流和输出电流的比值,即电流放大比。
实验结果显示,射极跟随器可以实现高达200倍的电流放大,这对许多电子设备的工作稳定性和效率至关重要。
3.频率响应:我们还测试了射极跟随器的频率响应。
结果显示,在大部分频率范围内,射极跟随器都表现出良好的线性程度和稳定性。
然而,在一些高频率下,输出信号会有明显的失真,这对于需要高精度信号处理的应用来说是一个挑战。
4.输入电阻与输出电阻:射极跟随器的输入电阻较高,可以减少输入信号对电路的负载影响。
而输出电阻则相对较低,可以提供较低阻抗的输出信号,方便后续电路的接收和处理。
5.温度效应:从实验中我们注意到射极跟随器对温度比较敏感。
在温度波动的情况下,射极跟随器性能可能会发生变化,因此需要注意在设计中考虑温度补偿技术。
结论:通过本次实验,我们深入了解了射极跟随器的工作原理和性能参数。
射极跟随器在电子电路中具有重要的应用,特别是在放大和信号跟随方面。
然而,尽管射极跟随器具有许多优点,但在高频率和温度波动方面仍然存在一些挑战。
射极跟随器
7.元器件 :
2021/10/10
12
五、预习要求
❖ 1.复习射极输出器的工作原理以及电路 的特点。
❖ 2.进一步复习测试放大电路的静态工 作点、放大倍数及输入、输出电阻的方 法。
❖ 3.掌握射极输出器的几个特点,并了 解其在电子电路中的—般应用。
2021/10/10
13
六、实。
C2 +
RS +
+
U1
+
RE
RL U0
ES - -
_
-
2021/10/10
2
二电路结构特点:
1是集电极直接与电源相连
2是输出电压由发射极电阻Re两端取得。
输出器在接法上是一个共集电极电路; 由于射极电压与基极电压近似相同, 故也称射极(电压)跟随器。
三 分 析 电 路:
(一)电压放大倍数
在射极输出器中,由于输出电压和反馈电
由于射极输出器是电压负反馈电路,能使输出电压 趋20于21/1恒0/10压,因此,输出电阻较小,可估算为: 4
ro=rbe/β
ro通常在几十欧到几百欧的范围内。β 越大,输出电阻越低。
三 射极输出器的实际应用
1、在测量仪器的放大电路中,用射极输出器 作为输入极 ,使输入电阻提高,减少了输入
信号的损耗,从而提高测量的准确性。
❖ 如图1.5.4(a)所示,在信号源与放大电路之间 串人一固定电阻Rs=1kfl(或5.1kΩ),在输出 不失真的条件下,测量Vs及相应的Vi,算出:
ri=Vi/(Vs-Vi) Rs
2021/10/10
8
❖ 5.测量输出电阻ro ❖ 如图1.5.4(b)所示,中加入输入信号后,输
实验二射级跟随器
实验二射极跟随器一、实验目的1.掌握射极跟随器的特性。
2.进一步学习放大器各项参数的测试方法。
二、实验原理图2-1为射极跟随器(共集电极放大电路)实验电路图。
射极跟随器具有输入电阻高、输出电阻低、电压放大倍数小于而接近于1、输出电压能够在较大范围内跟随输入电压作线性变化以及输入和输出信号同相等特点。
常用于多级放大电路的输入级和输出级,也用于在两电路间起缓冲作用。
图1射极跟随器三、实验设备与器件1.天煌教仪DZX-1型电子学综合实验装置(直流稳压电源、TH-SG05P型功率函数信号发生器)2.泰克TBS 1052B-EDU型示波器3.UT52型数字万用表4.射极跟随器电路板5.电阻1K6.一字螺丝刀7.导线若干四、实验步骤(一)1.按图2-1连接实验电路(RL=1K)。
2.启动DZX-1型电子学综合实验装置,将直流电压源调至+12V,并用万用电表测量是否达到+12V。
如果没有便再进行调试是输出电压为直流+12V。
此时,用万用电表测得3.调节TH-SG05P型功率函数信号发生器,使其发出频率约为1KHz正弦信号u s。
4.在在放大器输入端加入输入信号u s,调节TH-SG05P型功率函数信号发生器中的幅度旋钮,尽量使放大器输出波形同时出现削底和缩顶现象。
之后减小输入信号,使输出波形无明显失真。
如图2所示图2 输出波形5.断开电源V CC和输入信号,用万用表测量基极偏置电阻值(考虑到集电结的影响,取万用表黑表笔接基极时的值)R B=137.3K6.重新接上电源V CC和输入信号,在不接负载R L时用示波器测得u o波形。
如图3所示。
图3 u o波形u o=(3*500+500*3.5/5)/(2*√2)≈654.074mV=0.654V7.接上负载RL时,分别用示波器测出输出u L(如图4)、u i(如图5)、u s (如图6)的波形。
图4 u L波形u L=(3*500+500*3.8/5)/(2*√2)≈664.680mV=0.665V图5 u i波形u i=(3*500+500*3.5/5)/(2*√2)≈654.074mV=0.654V图6 u s波形u s=(3*500+500*3.5/5)/(2*√2)≈654.074mV=0.654V8.将数据记入表1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、测量电压放大倍数 Av 接入负载RL=2KΩ,在A点加f=1KHz 正弦波, 调输入信号幅值(此时偏置电位器Rp不能再 旋动),用示波器观察,在输出端最大不失 真情况下用毫伏表测Ui、Uo值,将所测的数 据填入表2—2中。
4、电阻Ro。 在A点加f=1KHz 正弦波,接上负载 RL=2KΩ时,用示波器观察输出波形,测空载输 出电压Uo(RL=∞),有载输出电压Uo’ ( RL=2KΩ)的值。 则Ro=(Uo/ Uo’ -1)RL
实验二 射极跟随器(共集电极放大电路) 一、实验目的
1、掌握射极跟随器的特点及测试方法。 2、进一步学习放大器各项参数测量方法(输 入电阻Ri、输出电阻Ro)
二、实验仪器 1、示波器 2、信号源 3、数字万用表 4、交流毫伏表 5、电子技术实验箱
Hale Waihona Puke 三、实验电路图四、实验内容与步骤
1、按图2—1电路连线。 2、直流工作点的调整。 将电路连接好以后,在A点加1KHz的正弦 信号,输出端用示波器观察,反复调试电 位器Rp及信号源输出幅度,输出端在示波 器上得到一个最大不失真的正弦波。然后 断开输入信号,用万用表测量晶体管各极 对地的电位,即为放大器的静态工作点, 将所测的数据填入表格2—1。
5、测量放大器输入电阻Ri(采用换算法) 在输入端串入5.1KΩ电阻,A点加入f=1KHz 的正弦信号用示波器观察输出波形,用毫伏表分 别测量A、B点对地电压Uo、Ui