经典编排-2018届高考数学人教A版(理)二轮复习第十二篇 第2讲 直接证明与间接证明

合集下载

2018版高考数学理一轮复习文档:第十二章 推理证明、算法、复数12-5 含解析 精品

2018版高考数学理一轮复习文档:第十二章 推理证明、算法、复数12-5 含解析 精品

1.条件概率及其性质(1)一般地,设A ,B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ). (2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (A )P (B |A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. 3.二项分布(1)一般地,在相同条件下重复做的几次试验称为n 次独立重复试验.(2)一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 【知识拓展】超几何分布与二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要; (2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)条件概率一定不等于它的非条件概率.( × ) (2)相互独立事件就是互斥事件.( × )(3)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(4)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ )1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 答案 B解析 第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.2.(教材改编)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.427 D.227 答案 A解析 所求概率P =C 13·(13)1·(1-13)3-1=49. 3.(2015·课标全国Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 答案 A解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________. 答案 0.8解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.5.(教材改编)国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 12解析 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A B )=P (A )·P (B )=[1-P (A )][1-P (B )]=(1-13)(1-14)=12,“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”,故所 求概率为1-P (A B )=1-12=12.题型一 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )等于( ) A.18 B.14 C.25 D.12(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”, B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________. 答案 (1)B (2)14解析 (1)P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110,P (B |A )=P (AB )P (A )=14. (2)AB 表示事件“豆子落在△OEH 内”, P (B |A )=P (AB )P (A )=△OEH 的面积正方形EFGH 的面积=14. 引申探究1.若将本例(1)中的事件B :“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25, P (B )=C 23C 25=310,又A ⊇B ,则P (AB )=P (B )=310,所以P (B |A )=P (AB )P (A )=P (B )P (A )=34.2.在本例(2)的条件下,求P (A |B ). 解 由题意知,∠EOH =90°,故P (B )=14,又∵P (AB )=△OEH 的面积圆O 的面积=12×1×1π×12=12π, ∴P (A |B )=P (AB )P (B )=12π14=2π.思维升华 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A )求P (B |A ). (2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).(2016·开封模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A.310 B.29 C.78 D.79答案 D解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P (AB )P (A )=730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.题型二 相互独立事件的概率例2 设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的分布列;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T 的分布列为(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二 P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.思维升华 求相互独立事件同时发生的概率的方法 (1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法主要有: ①利用相互独立事件的概率乘法公式直接求解;②正面计算较繁或难以入手时,可从其对立事件入手计算.(2017·青岛月考)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:现有甲、乙两位乘客,他们乘坐的里程都不超过22千米.已知甲、乙乘车不超过6千米的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.解 (1)由题意可知,甲、乙乘车超过12千米且不超过22千米的概率分别为14,13,则甲、乙两人所付乘车费用相同的概率 P 1=14×13+12×13+14×13=13,所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.(2)由题意可知,ξ=6,7,8,9,10, 则P (ξ=6)=14×13=112,P (ξ=7)=14×13+12×13=14,P (ξ=8)=14×13+14×13+12×13=13,P (ξ=9)=12×13+14×13=14,P (ξ=10)=14×13=112.所以ξ的分布列为题型三 独立重复试验与二项分布 命题点1 根据独立重复试验求概率例3 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827, P (C )=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427. (2)X 的可能取值为0,1,2,3, 则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427, P (X =3)=⎝⎛⎭⎫133+C 23⎝⎛⎭⎫132×23×13=19. 故X 的分布列为命题点2 根据独立重复试验求二项分布例4 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎫121×⎝⎛⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.(2016·沈阳模拟)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖. (1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列.解 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响,∴P (A )=C 23(13)2(23)1+C 33(13)3=727. (2)所含“获奖”和“待定”票票数之和X 的值为0,1,2,3. P (X =0)=(13)3=127,P (X =1)=C 13(23)1(13)2=29, P (X =2)=C 23(23)2(13)1=49, P (X =3)=(23)3=827.因此X 的分布列为18.独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________.(2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________. 错解展示解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14,由A 、B 是相互独立事件,得所求概率为P (A B )+P (A B )+P (AB )=37×34+47×14+37×14=1628=47. (2)所求概率P =C 35×(23)3×(13)2=80243. 答案 (1)47 (2)80243现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A 、B 是互斥事件,∴P (A ∪B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则 P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132×⎝⎛⎭⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”. (2)区分独立事件与n 次独立重复试验.1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.18 答案 A解析 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·长春模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ) A .C 1012(38)10(58)2 B .C 912(38)9(58)2C .C 911(58)9(38)2D .C 911(38)10(58)2 答案 D解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球, 因此P (X =12)=38C 911(38)9(58)2=C 911(38)10(58)2. 3.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( )A .事件A ,B 同时发生 B .事件A ,B 至少有一个发生C .事件A ,B 至多有一个发生D .事件A ,B 都不发生 答案 C解析 P (A )P (B )是指A ,B 同时发生的概率,1-P (A )·P (B )是A ,B 不同时发生的概率,即事件A ,B 至多有一个发生的概率.4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.710答案 A解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14. 故目标被击中的概率P =1-P (A B C )=34.5.(2017·南昌质检)设随机变量X 服从二项分布X ~B (5,12),则函数f (x )=x 2+4x +X 存在零点的概率是( ) A.56 B.45 C.3132 D.12 答案 C解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B (5,12),∴P (X ≤4)=1-P (X =5)=1-125=3132.6.(2016·安徽黄山屯溪一中月考)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .P (B )=25B .事件B 与事件A 1相互独立C .P (B |A 1)=511D .P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关 答案 C解析 由题意A 1,A 2,A 3是两两互斥的事件, P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,由此知,C 正确;P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3) =12×511+15×411+310×411=922. 由此知A ,D 不正确.故选C.7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59, 解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 8.如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.答案 18解析 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件A B C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (A B C )=P (A )P (B )P (C )=12×12×12=18. 9.(2017·广州月考)设事件A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为________.答案964解析 设事件A 发生的概率为p ,由题意知(1-p )3=1-6364=164,解得p =34,则事件A 恰好发生一次的概率为C 13×34×(14)2=964. 10.(2016·荆州质检)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 答案 37解析 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37.11.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲,乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 (1)依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4).则P (A k )=C k 4⎝⎛⎭⎫13k ⎝⎛⎭⎫234-k . 这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎫133×23+C 44⎝⎛⎭⎫134 =19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故 P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是12.(2016·西安模拟)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率. 解 (1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6 元/kg ”,由题设知P (A )=0.5,P (B )=0.4, 因为利润=产量×市场价格-成本. 所以X 所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,故X的分布列为(2)设C i表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×(1-0.8)=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.*13.李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率.解(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)记事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A B∪A B,A,B独立.根据投篮统计数据,P(A)=0.6,P(B)=0.4.P(C)=P(A B)+P(A B)=0.6×0.6+0.4×0.4=0.52.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为0.52.。

2018版高考数学(理)一轮复习文档:第十二章推理证明、算法、复数12.5含解析

2018版高考数学(理)一轮复习文档:第十二章推理证明、算法、复数12.5含解析

1.条件概率及其性质(1)一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=错误!为在事件A发生的条件下,事件B发生的条件概率.在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=错误!。

(2)条件概率具有的性质①0≤P(B|A)≤1;②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件(1)设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A 与事件B相互独立.(2)若A与B相互独立,则P(B|A)=P(B),P(AB)=P(A)P(B|A)=P(A)P(B).(3)若A与B相互独立,则A与错误!,错误!与B,错误!与错误!也都相互独立.3.二项分布(1)一般地,在相同条件下重复做的几次试验称为n次独立重复试验.(2)一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C错误!p k(1-p)n-k,k=0,1,2,…,n。

此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.【知识拓展】超几何分布与二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要;(2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复).【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)条件概率一定不等于它的非条件概率.( ×)(2)相互独立事件就是互斥事件.(×)(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( ×)(4)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b=1-p.( ×)(5)P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B同时发生的概率.(√)1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为()A。

2018版高考数学(理)一轮复习文档:第十二章推理证明、算法、复数12.3含解析

2018版高考数学(理)一轮复习文档:第十二章推理证明、算法、复数12.3含解析

1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型中,事件A的概率的计算公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积。

3.几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=错误!作为所求概率的近似值.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √)(4)随机模拟方法是以事件发生的频率估计概率.( √)(5)与面积有关的几何概型的概率与几何图形的形状有关.(×) (6)从区间[1,10]内任取一个数,取到1的概率是P=错误!。

( ×)1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( )A。

错误! B.错误! C.错误!D.1答案B解析坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为错误!。

2.(2015·山东)在区间[0,2]上随机地取一个数x,则事件“-1≤121 ()2log x+≤1”发生的概率为()A.错误!B。

错误!C。

(人教a版)2018版高考数学(理科)一轮设计:第12章_选修教师用书(word版,有答案)AlAKPK

(人教a版)2018版高考数学(理科)一轮设计:第12章_选修教师用书(word版,有答案)AlAKPK

第1讲合情推理与演绎推理最新考纲 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理类型定义特点归纳推理根据一类事物的部分对象具有某种性质,推出这类事物的全部对象都具有这种性质的推理由部分到整体、由个别到一般类比推理根据两类事物之间具有某些类似(一致)性,推测一类事物具有另一类事物类似(或相同)的性质的推理由特殊到特殊2.(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()解析 (1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确. 答案 (1)× (2)√ (3)× (4)×2.数列2,5,11,20,x ,47,…中的x 等于( ) A.28B.32C.33D.27解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,所以x =32. 答案 B3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确. 答案 C4.(2015·陕西卷)观察下列等式 1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16 ……据此规律,第n 个等式可为________.解析 第n 个等式左边共有2n 项且等式左边分母分别为1,2,…,2n ,分子为1,正负交替出现,即为1-12+13-14+…+12n -1-12n ;等式右边共有n 项且分母分别为n +1,n +2,…,2n ,分子为1,即为1n +1+1n +2+…+12n .所以第n 个等式可为1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n . 答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n5.(选修2-2P84A5改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n(n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则b 1b 2b 3…b n =________.答案 b 1b 2b 3…b 17-n (n <17,n ∈N *)考点一 归纳推理【例1】 (1)(2016·山东卷)观察下列等式: ⎝ ⎛⎭⎪⎫sin π3-2+⎝⎛⎭⎪⎫sin 2π3-2=43×1×2;⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3;⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4;⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2=43×4×5;……照此规律,⎝ ⎛⎭⎪⎫sinπ2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________. (2)(2017·潍坊模拟)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,……,根据上述规律,第n 个不等式应该为________.解析 (1)观察前4个等式,由归纳推理可知⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+…+⎝ ⎛⎭⎪⎫sin2n π2n +1-2=43×n ×(n +1)=4n (n +1)3.(2)根据规律,知不等式的左边是n +1个自然数的平方的倒数的和,右边分母是以2为首项,1为公差的等差数列,分子是以3为首项,2为公差的等差数列,所以第n 个不等式应该为1+122+132+…+1(n +1)2<2n +1n +1.答案 (1)4n (n +1)3(2)1+122+132+…+1(n +1)2<2n +1n +1规律方法 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【训练1】 (1)用火柴棒摆“金鱼”,如图所示,按照下面的规律,第n 个“金鱼”图需要火柴棒的根数为________.(2)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n ,3)=12n 2+12n , 正方形数 N (n ,4)=n 2, 五边形数 N (n ,5)=32n 2-12n , 六边形数 N (n ,6)=2n 2-n ……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.解析 (1)由题意知:图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6,∴第n 条小鱼需要(2+6n )根. (2)三角形数 N (n ,3)=12n 2+12n =n 2+n 2,正方形数 N (n ,4)=n 2=2n 2-0·n2,五边形数 N (n ,5)=32n 2-12n =3n 2-n 2, 六边形数 N (n ,6)=2n 2-n =4n 2-2n2,k 边形数 N (n ,k )=(k -2)n 2-(k -4)n2,所以N (10,24)=22×102-20×102=2 200-2002=1 000.答案 (1)2+6n (2)1 000 考点二 类比推理【例2】 (1)若数列{a n }是等差数列,则数列{b n }⎝ ⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A.d n =c 1+c 2+…+c nnB.d n =c 1·c 2·…·c nnC.d n =n c n 1+c n 2+…+c nnnD.d n =nc 1·c 2·…·c n(2)(2017·南昌二中月考)如图(1)所示,点O 是△ABC 内任意一点,连接AO ,BO ,CO ,并延长交对边于A 1,B 1,C 1,则OA 1AA 1+OB 1BB 1+OC 1CC 1=1,类比猜想:点O 是空间四面体V -BCD 内的任意一点,如图(2)所示,连接VO ,BO ,CO ,DO 并延长分别交面BCD ,VCD ,VBD ,VBC 于点V 1,B 1,C 1,D 1,则有________________.解析 (1)法一 从商类比开方,从和类比积,则算术平均数可以类比几何平均数,故d n 的表达式为d n =nc 1·c 2·…·c n .法二 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d2n+a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n1·q 1+2+…+(n -1)=c n 1·qn (n -1)2,∴d n =nc 1·c 2·…·c n=c 1·q n -12,即{d n }为等比数列,故选D.(2)利用类比推理,猜想应有OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1.用“体积法”证明如下:OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=V O -BCD V V -BCD +V O -VCD V B -VCD +V O -VBD V C -VBD +V O -VBC V D -VBC =V V -BCDV V -BCD =1. 答案 (1)D (2)OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1规律方法 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】 (2017·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定出来x =2,类似地不难得到1+11+11+…=( )A.-5-12B.5-12 C.1+52 D.1-52解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52(x =1-52舍),故1+11+11+…=1+52,故选C.答案 C考点三 演绎推理【例3】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)规律方法 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】 (2016·全国Ⅱ卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”. 答案 1和3[思想方法]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→ 归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行. [易错防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.基础巩固题组(建议用时:30分钟)一、选择题1.(2016·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第()A.22项B.23项C.24项D.25项解析两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项,故选C.答案 C2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误解析由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.答案 C3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案 C5.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“acbc=ab”类比得到“a·cb·c=ab”.以上式子中,类比得到的结论正确的个数是()A.1B.2C.3D.4解析①②正确;③④⑤⑥错误.答案 B6.(2017·宜昌一中月考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考的好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对的两人是()A.甲,丙B.乙,丁C.丙,丁D.乙,丙解析甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为D.答案 D7.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为()A.n+1B.2nC.n2+n+22 D.n2+n+1解析1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域,选C.答案 C8.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( ) A.6 B.7 C.8D.9解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6+6(n -1)2×(n -1)=3n 2-3n +1,由题意得3n 2-3n +1=169,即(n +7)·(n -8)=0,所以n =8,故共有8层. 答案 C 二、填空题9.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14. 答案 1410.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……,根据上述规律,第n 个等式为________.解析 观察所给等式左右两边的构成易得第n 个等式为13+23+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22=n 2(n +1)24. 答案 13+23+…+n 3=n 2(n +1)2411.(2017·重庆模拟)在等差数列{a n }中,若公差为d ,且a 1=d ,那么有a m +a n =a m +n ,类比上述性质,写出在等比数列{a n}中类似的性质:_____________________________________________________________________.解析等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{a n}中,若公比为q,且a1=q,则a m·a n=a m+n.”答案在等比数列{a n}中,若公比为q,且a1=q,则a m·a n=a m+n12.已知点A(x1,ax1),B(x2,ax2)是函数y=a x(a>1)的图象上任意不同两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论ax1+ax22>ax1+x22成立.运用类比思想方法可知,若点A(x1,sin x1),B(x2,sin x2)是函数y=sin x(x∈(0,π))的图象上任意不同两点,则类似地有________成立.解析对于函数y=a x(a>1)的图象上任意不同两点A,B,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论ax1+ax22>a x1+x22成立;对于函数y=sin x(x∈(0,π))的图象上任意不同的两点A(x1,sin x1),B(x2,sinx2),线段AB总是位于A,B两点之间函数图象的下方,类比可知应有sin x1+sin x22<sinx1+x22成立.答案sin x1+sin x22<sinx1+x22能力提升题组(建议用时:15分钟)13.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A.289B.1 024C.1 225D.1 378解析 观察三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1,a 2=a 1+2,a 3=a 2+3,…a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n )⇒a n =1+2+3+…+n =n (n +1)2, 观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有1 225. 答案 C14.(2017·青岛模拟)若数列{a n }的通项公式为a n =1(n +1)2(n ∈N *),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________.解析 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=34⎝ ⎛⎭⎪⎫1-19=23=46,f (3)=(1-a 1)(1-a 2)(1-a 3)=23⎝ ⎛⎭⎪⎫1-116=58,推测f (n )=n +22n +2.答案n +22n +215.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2yb 2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1,这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb 2=1. 答案 x 0x a 2-y 0yb 2=116.(2017·郑州模拟)如图所示,一回形图,其回形通道的宽和OB1的长均为1,且各回形线之间或相互平行、或相互垂直.设回形线与射线OA交于A1,A2,A3,…,从点O到点A1的回形线为第1圈(长为7),从点A1到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈…,依此类推,第8圈的长为________.解析第1圈的长为2(1+2)+1=7,第2圈的长为2(3+4)+1=15,第3圈的长为2(5+6)+1=23,则第n圈的长为2[(2n-1)+2n]+1=8n-1,当n=8时,第8圈的长度为8×8-1=63.答案63第2讲直接证明与间接证明最新考纲 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点;2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.知识梳理1.直接证明内容综合法分析法定义利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止实质由因导果执果索因框图表示P⇒Q1→Q1⇒Q2→…→Q n⇒Q Q⇐P1→P1⇐P2→…→得到一个明显成立的条件文字语言因为……所以……或由……得……要证……只需证……即证……2.间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (2)用反证法证明结论“a >b ”时,应假设“a <b ”.( ) (3)反证法是指将结论和条件同时否定,推出矛盾.( )(4)在解决问题时,常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )解析 (1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件. (2)应假设“a ≤b ”. (3)反证法只否定结论.答案 (1)× (2)× (3)× (4)√2.要证a 2+b 2-1-a 2b 2≤0,只要证明( ) A.2ab -1-a 2b 2≤0 B.a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D.(a 2-1)(b 2-1)≥0解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0. 答案 D3.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2 B.a 2>ab >b 2 C.1a <1bD.b a >a b解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .① 又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2. 答案 B4.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析因为“方程x3+ax+b=0至少有一个实根”等价于“方程x3+ax+b=0的实根的个数大于或等于1”,所以要做的假设是“方程x3+ax+b=0没有实根”.答案 A5.在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c 成等比数列,则△ABC的形状为________.解析由题意2B=A+C,又A+B+C=π,∴B=π3,又b2=ac,由余弦定理得b2=a2+c2-2ac cos B=a2+c2-ac,∴a2+c2-2ac=0,即(a-c)2=0,∴a=c,∴A=C,∴A=B=C=π3,∴△ABC为等边三角形.答案等边三角形考点一综合法的应用【例1】(2017·东北三省三校模拟)已知a,b,c>0,a+b+c=1.求证:(1)a+b+c≤3;(2)13a+1+13b+1+13c+1≥32.证明(1)∵(a+b+c)2=(a+b+c)+2ab+2bc+2ca≤(a+b+c)+(a+b)+(b+c)+(c+a)=3,∴a+b+c≤ 3.(2)∵a>0,∴3a+1>0,∴43a+1+(3a+1)≥243a+1(3a+1)=4,∴43a+1≥3-3a,同理得43b+1≥3-3b,43c+1≥3-3c,以上三式相加得4⎝ ⎛⎭⎪⎫13a +1+13b +1+13c +1≥9-3(a +b +c )=6, ∴13a +1+13b +1+13c +1≥32. 规律方法 用综合法证题是从已知条件出发,逐步推向结论,综合法的适用范围: (1)定义明确的问题,如证明函数的单调性、奇偶性、求证无条件的等式或不等式; (2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.【训练1】 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB . 又AB ∩AD =A , ∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD . ∵BC ∥AD ,BC ⊄平面SAD , ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD . 考点二 分析法的应用 【例2】 已知a >0,证明:a 2+1a 2-2≥a +1a-2.证明 要证a 2+1a 2-2≥a +1a -2,只需证a 2+1a 2≥⎝ ⎛⎭⎪⎫a +1a -(2-2). 因为a >0,所以⎝ ⎛⎭⎪⎫a +1a -(2-2)>0,所以只需证⎝⎛⎭⎪⎫a 2+1a 22≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a -(2-2)2,即2(2-2)⎝ ⎛⎭⎪⎫a +1a ≥8-42,只需证a +1a ≥2.因为a >0,a +1a ≥2显然成立⎝ ⎛⎭⎪⎫a =1a =1时等号成立,所以要证的不等式成立.规律方法 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【训练2】 △ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c . 求证:1a +b +1b +c =3a +b +c. 证明 要证1a +b +1b +c =3a +b +c,即证a +b +c a +b +a +b +c b +c =3也就是c a +b +a b +c =1,只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°, 由余弦定理,得b 2=c 2+a 2-2a cos 60°,即b 2=c 2+a 2-ac , 故c 2+a 2=ac +b 2成立. 于是原等式成立. 考点三 反证法的应用【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. (1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2).(2)证明 由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2).∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎨⎧q 2-pr =0,2q -p -r =0.∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.∴p =r ,与p ≠r 矛盾. ∴数列{b n }中任意不同的三项都不可能成为等比数列.规律方法 (1)当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.(2)用反证法证明不等式要把握三点:①必须否定结论;②必须从否定结论进行推理;③推导出的矛盾必须是明显的.【训练3】 (2017·济南质检)若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值; (2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在.求出a ,b 的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3. (2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎨⎧h (a )=b ,h (b )=a ,即⎩⎪⎨⎪⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.[思想方法]分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.[易错防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直到一个明显成立的结论.2.在使用反证法证明数学命题时,反设必须恰当,如“都是”的否定是“不都是”“至少一个”的否定是“不存在”等.基础巩固题组(建议用时:35分钟)一、选择题1.若a,b∈R,则下面四个式子中恒成立的是()A.lg(1+a2)>0B.a2+b2≥2(a-b-1)C.a2+3ab>2b2D.ab<a+1 b+1解析在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.答案 B2.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设()A.三个内角都不大于60°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°答案 B3.已知m>1,a=m+1-m,b=m-m-1,则以下结论正确的是()A.a>bB.a<bC.a=bD.a,b大小不定解析∵a=m+1-m=1m+1+m,b=m-m-1=1m+m-1.而m+1+m>m+m-1>0(m>1),∴1m+1+m<1m+m-1,即a<b.答案 B4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac<3a”索的因应是()A.a-b>0B.a-c>0C.(a-b)(a-c)>0D.(a-b)(a-c)<0解析由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a2+ac+c2<0⇐2a2-ac-c2>0⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.答案 C5.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下正确的是()A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确解析反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①不正确;对于②,其假设正确.答案 D二、填空题6.6+7与22+5的大小关系为________.解析要比较6+7与22+5的大小,只需比较(6+7)2与(22+5)2的大小,只需比较6+7+242与8+5+410的大小,只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+ 5.答案 6+7>22+ 57.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是__________________.答案 都不能被5整除8.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的序号是________.解析 要使b a +a b ≥2,只需b a >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b ≥2成立.答案 ①③④三、解答题9.若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0.又上述三个不等式中等号不能同时成立.∴a +b 2·b +c 2·c +a 2>abc 成立.上式两边同时取常用对数,得lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg abc , ∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .10.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和.(1)求证:数列{S n }不是等比数列;(2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1·(1+q +q 2),因为a 1≠0,所以(1+q )2=1+q +q 2,即q =0,这与公比q ≠0矛盾,所以数列{S n }不是等比数列.(2)解 当q =1时,S n =na 1,故{S n }是等差数列;当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2),得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.能力提升题组(建议用时:20分钟)11.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A.A ≤B ≤CB.A ≤C ≤BC.B ≤C ≤AD.C ≤B ≤A解析 ∵a +b 2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,∴f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b . 答案 A12.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( )A.都大于2B.都小于2C.至少有一个不大于2D.至少有一个不小于2 解析 ∵a >0,b >0,c >0,∴⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.答案 D13.如果a a +b b >a b +b a ,则a ,b 应满足的条件是________.解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0.∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .答案 a ≥0,b ≥0且a ≠b14.(2015·安徽卷)设n ∈N *,x n 是曲线y =x 2n +2+1在点(1,2)处的切线与x 轴交点的横坐标.(1)求数列{x n }的通项公式;(2)记T n =x 21x 23…x 22n -1,证明:T n ≥14n . (1)解 y ′=(x 2n +2+1)′=(2n +2)x 2n +1,曲线y =x 2n +2+1在点(1,2)处的切线斜率为2n +2,从而切线方程为y -2=(2n +2)(x -1).令y =0,解得切线与x 轴的交点的横坐标x n =1-1n +1=n n +1,所以数列{x n }的通项公式x n =n n +1. (2)证明 由题设和(1)中的计算结果知,T n =x 21x 23…x 22n -1=⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫342…⎝ ⎛⎭⎪⎫2n -12n 2. 当n =1时,T 1=14.当n ≥2时,因为x 22n -1=⎝ ⎛⎭⎪⎫2n -12n 2=(2n -1)2(2n )2>(2n -1)2-1(2n )2=2n -22n =n -1n , 所以T n >⎝ ⎛⎭⎪⎫122×12×23×…×n -1n =14n .综上可得,对任意的n ∈N *,均有T n ≥14n . 第3讲 数学归纳法及其应用最新考纲 1.了解数学归纳法的原理;2.能用数学归纳法证明一些简单的数学命题.知 识 梳 理1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.2.数学归纳法的框图表示诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )(2)所有与正整数有关的数学命题都必须用数学归纳法证明.( )(3)用数学归纳法证明问题时,归纳假设可以不用.( )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )解析 对于(2),有些命题也可以直接证明;对于(3),数学归纳法必须用归纳假设;对于(4),由n =k 到n =k +1,有可能增加不止一项.答案 (1)√ (2)× (3)× (4)×2.(选修2-2P99B1改编)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A.1B.2C.3D.4解析 三角形是边数最少的凸多边形,故第一步应检验n =3.答案 C3.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( ) A.f (n )中共有n 项,当n =2时,f (2)=12+13B.f (n )中共有n +1项,当n =2时,f (2)=12+13+14C.f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D.f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析 f (n )共有n 2-n +1项,当n =2时,1n =12,1n 2=14,故f (2)=12+13+14. 答案 D4.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________. 解析 当n =2时,式子为1+12+13<2.答案 1+12+13<25.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -。

经典编排-2018届高考数学人教A版(理)二轮复习第十篇 第2讲 排列与组合

经典编排-2018届高考数学人教A版(理)二轮复习第十篇 第2讲 排列与组合

第2讲 排列与组合A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1*(·全国)将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )*A *12种B * 18种C * 24种D *36种解析 先排第一列,因为每列的字母互不相同,因此共有A 33种不同的排法*再排第二列,其中第二列第一行的字母共有A 12种不同的排法,第二列第二、三行的字母只有1种排法*因此共有A 33·A 12·1=12(种)不同的排列方法*答案 A2*A 、B 、C 、D 、E 五人并排站成一排,如果B 必须站在A 的右边(A 、B 可以不相邻),那么不同的排法共有( )*A *24种B * 60种C *90种 D *120种解析 可先排C 、D 、E 三人,共A 35种排法,剩余A 、B 两人只有一种排法,由分步计数原理满足条件的排法共A 35=60(种)*答案 B3*如果n 是正偶数,则C 0n +C 2n +…+C n -2n +C n n =( )*A *2nB *2n -1C * 2n -2D *(n -1)2n -1解析 (特例法)当n =2时,代入得C 02+C 22=2,排除答案A 、C ; 当n =4时,代入得C 04+C 24+C 44=8,排除答案D *故选B *答案 B4*某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目*如果将这两个节目插入原节目单中,那么不同插法的种数为 ( )*A *42B * 30C * 20D *12解析 可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有A22A16=12种排法;若两个节目不相邻,则有A26=30种排法*由分类计数原理共有12+30=42种排法(或A27=42)*答案二、填空题(每小题5分,共10分)5*(·汕头调研)如图,电路中共有7个电阻与一个电灯A,若灯A不亮,因电阻断路的可能性共有________种情况*解析每个电阻都有断路与通路两种状态,图中从上到下的三条支线路,分别记为支线a、b、c,支线a,b中至少有一个电阻断路情况都有22-1=3种;支线c中至少有一个电阻断路的情况有23-1=7种,每条支线至少有一个电阻断路,灯A就不亮,因此灯A不亮的情况共有3×3×7=63种情况*答案636*(·郑州模拟)从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同的数字作为二次函数y=ax2+bx+c的系数a,b,c的取值,问共能组成________个不同的二次函数*解析a,b,c中不含0时,有A37个;a,b,c中含有0时,有2A27个*故共有A37+2A27=294个不同的二次函数*答案294三、解答题(共25分)7*(12分)7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种*(1)A,B必须当选;(2)A,B必不当选;(3)A,B不全当选;(4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任*解(1)由于A,B必须当选,那么从剩下的10人中选取3人即可,故有C310=120种选法*(2)从除去的A,B两人的10人中选5人即可,故有C510=252种选法*(3)全部选法有C512种,A,B全当选有C310种,故A,B不全当选有C512-C310=672种选法*(4)注意到“至少有2名女生”的反面是只有一名女生或没有女生,故可用间接C512-C15·C47-C57=596种选法*法进行*所以有(5)分三步进行;第1步,选1男1女分别担任两个职务有C17·C15种选法*第2步,选2男1女补足5人有C26·C14种选法*共有C17C15·C26C14·A33第3步,为这3人安排工作有A33方法*由分步乘法计数原理,=12 600种选法*8*(13分)直线x=1,y=x,将圆x2+y2=4分成A,B,C,D四个区域,如图用五种不同的颜色给他们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?解法一第1步,涂A区域有C1种方法;第2步,涂B区域有C14种方法;第3步,涂C区域和D区域:若C区域涂A区域已填过颜色,则D区域有4种涂法;若C区域涂A、B剩余3种颜色之一,即有C13种涂法,C15·C14·(4+C13·C13)=260则D区域有C13种涂法*故共有种不同的涂色方法*法二共可分为三类:第1类,用五色中两种色,共有C25A22种涂法;第2类,用五色中三种色,共有C35C13C12A22种涂法;第3类,用五色中四种色,共有C45A44种涂法*由分类加法计数原理,共有C25A22+C35C13C12A22+C45A44=260种不同的涂色方法*B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1*在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列方式共有()* A*576种B*720种C*864种D*1 152种解析由题意,先排1,3,5,7,有A44种排法;再排6,由于6不能和3相邻,故6有3种排法;最后排2和4,在不与6相邻的4个空中排上2和4,有A24种排法,所以共有A44×3×A24=864种排法*答案 C2*(·山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张*从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()* A*232 B*252 C*472 D*484解析若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有C14×C14×C14=64种,若2张同色,则有C23×C12×C24×C14=144种;若红色卡片有1张,剩余2张不同色,则有C14×C23×C14×C14=192种,乘余2张同色,则有C14×C13×C24=72种,所以共有64+144+192+72=472种不同的取法*故选C*答案 C二、填空题(每小题5分,共10分)3*(·深圳模拟)某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人不同的出牌方法共有________种*解析出牌的方法可分为以下几类:(1)5张牌全部分开出,有A55种方法;(2)2张2一起出,3张A一起出,有A25种方法;(3)2张2一起出,3张A分3次出,有A45种方法;(4)2张2一起出,3张A分两次出,有C23A35种方法;(5)2张2分开出,3张A一起出,有A35种方法;(6)2张2分开出,3张A分两次出,有C23A45种方法*因此,共有不同的出牌方法A55+A25+A45+C23A35+A35+C23A45=860(种)*答案8604*小王在练习电脑编程,其中有一道程序题的要求如下:它由A,B,C,D,E,F六个子程序构成,且程序B必须在程序A之后,程序C必须在程序B之后,执行程序C后须立即执行程序D,按此要求,小王的编程方法有__________种*解析对于位置有特殊要求的元素可采用插空法排列,把CD看成整体,A,B,C,D产生四个空,所以E有4种不同编程方法,然后四个程序又产生5个空,所以F有5种不同编程方法,所以小王有20种不同编程方法*答案20三、解答题(共25分)分)某医院有内科医生12名,外科医生8名,5现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?解(1)只需从其他18人中选3人即可,共有C318=816(种);(2)只需从其他18人中选5人即可,共有C518=8 568(种);(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C12C418+C318=6 936(种);(4)方法一(直接法):至少有一名内科医生和一名外科医生的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C112C48+C212C38+C312C28+C412C18=14 656(种)*方法二(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C512+C58)=14 656(种)*6*(13分)在m(m≥2)个不同数的排列p1p2…p m中,若1≤i<j≤m时p i>p j(即前面某数大于后面某数),则称p i与p j构成一个逆序,一个排列的全部逆序的总数(n+1)n(n-1)…321的逆序数为a n*如排列21的逆称为该排列的逆序数*记排列序数a 1=1,排列321的逆序数a 2=3,排列4 321的逆序数a 3=6*(1)求a 4、a 5,并写出a n 的表达式;(2)令b n =a n a n +1+a n +1a n,证明:2n <b 1+b 2+…+b n <2n +3,n =1,2,…*(1)解 由已知条件a 4=C 25=10,a 5=C 26=15, 则a n =C 2n +1=n (n +1)2*(2)证明 b n =a n a n +1+a n +1a n =n n +2+n +2n =2+2⎝ ⎛⎭⎪⎫1n -1n +2∴b 1+b 2+…+b n=2n +2⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2=2n +2⎝ ⎛⎭⎪⎫32-1n +1-1n +2, ∴2n <b 1+b 2+…+b n <2n +3*。

精编2018版高考数学人教A版理一轮复习真题集训第十二章推理与证明算法复数125和答案

精编2018版高考数学人教A版理一轮复习真题集训第十二章推理与证明算法复数125和答案

真题演练集训1.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)答案:A解析:由已知,可得⎩⎪⎨⎪⎧ m +3>0m -1<0⇒⎩⎪⎨⎪⎧m >-3m <1⇒-3<m <1.故选A. 2.若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z =( )A .1+2iB .1-2iC .-1+2iD .-1-2i答案:B解析:设z =a +b i(a ,b ∈R ),则2z +z =2(a +b i)+a -b i =3a +b i =3-2i ,∴a =1,b =-2,∴z =1-2i ,故选B.3.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 4答案:A解析:T 3=C 26x 4i 2=-15x 4,故选A. 4.设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( )A .1 B. 2 C. 3 D .2答案:B解析:∵x ,y ∈R ,(1+i)x =1+y i ,∴x +x i =1+y i ,∴⎩⎪⎨⎪⎧x =1y =1,∴|x +y i|=|1+i|=12+12= 2.故选B.5.已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则a b的值为________. 答案:2解析:由(1+i)(1-b i)=a 得1+b +(1-b )i =a ,则⎩⎪⎨⎪⎧ b +1=a 1-b =0,解得⎩⎪⎨⎪⎧ a =2b =1,所以a b=2. 6.设a ∈R ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________. 答案:-1解析:(1+i)(a +i)=(a -1)+(a +1)i ,∵a ∈R ,该复数在复平面内对应的点位于实轴上,∴a +1=0,∴a =-1.课外拓展阅读利用共轭复数的性质解复数方程复数方程是复数学习中的一个重要内容,解题时,不少学生总是迫不及待地将方程中的复数z 设为代数形式a +b i(a ,b ∈R ),将复数方程转化为实数方程解决.这种方法有时候是非常费时费力的.有没有解决此类问题的更简单的方法呢?共轭复数的概念在复数学习中占有极其重要的地位,若能在解复数方程时灵活运用,则可以大大减少运算量,起到事半功倍的效果.共轭复数的性质有很多,在此列举几条供大家参考:(1)z ∈R ⇔z =z ;(2)z 是纯虚数⇔z ≠0且z +z =0或z 2=-|z |2;(3)|z |2=z ·;(4)|z |=|z |.这些性质的应用非常广泛,下面以例题的形式展现上述性质在解复数方程中的应用.在复数集中解下列方程:(1)2z -i z =1;(2)z -λz =ω(λ,ω∈C ,且|λ|≠1).(1)将原方程两边同时取共轭复数可得2z +i z =1,联立方程得⎩⎨⎧ 2z -i z =12z +i z =1,解得z =23+13i. (2)将原方程两边同时取共轭复数可得z -λz =ω,联立方程得⎩⎨⎧ z -λz =ωz -λz =ω,从而(1-λλ)z =λω+ω.因为|λ|≠1,所以1-λλ≠0,所以z =λω+ω1-λλ.求解本题(1)时,常设z =a +b i(a ,b ∈R ),代入原方程,利用复数相等的充要条件建立方程组求a ,b .题(2)若用上述方法求解则非常繁琐.已知z ∈C ,解方程z ·z -3i z =1+3i.原方程可化为-3i z -3i =1-z ·z ,因为z ·z =|z |2∈R ,所以-3i z -3i =-3i z -3i =3i z +3i ,所以(z +z )3i =-6i ,所以z +z =-2.令z=x+y i(x,y∈R),则x=-1.把z=-1+y i代入原方程可得y1=0,y2=-3,所以原方程的解为z1=-1,z2=-1-3i.本题巧妙利用z∈R⇔z=z这一性质完成了解答.本题也可以采用将原方程两边同时取共轭复数的方法解得z+z=-2.。

2018学年高中数学人教A版课件选修1-2 第二章 推理与证明 2.2-2.2.1-第1课时 精品

2018学年高中数学人教A版课件选修1-2 第二章 推理与证明 2.2-2.2.1-第1课时 精品

法二:因为 1=x+y, 所以1+1x1+1y=1+x+x y1+x+y y =2+yx2+xy=5+2xy+yx. 又因为 x>0,y>0,所以xy+yx≥2,当且仅当 x=y 时,取“=”号. 所以1+1x1+1y≥5+2×2=9.
综合法的证明步骤 1.分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定 义、定理等; 2.转化条件,组织过程:将条件合理转化,书写出严密的证明过程. 特别地,根据题目特点选取合适的证法可以简化解题过程.
已知 x>0,y>0,x+y=1,求证:1+1x1+1y≥9. 【精彩点拨】 解答本题可由已知条件出发,结合基本不等式利用综合法 证明.
【自主解答】 法一:因为 x>0,y>0,1=x+y≥2 xy, 所以 xy≤14. 所以1+1x1+1y=1+1x+1y+x1y =1+x+xyy+x1y=1+x2y≥1+8=9.
(2)根据面面垂直的判定定理,欲证明平面 EFC⊥平面 BCD,只需在其中一 个平面内找出一条另一个面的垂线即可.
【自主解答】 (1)因ห้องสมุดไป่ตู้ E,F 分别是 AB,BD 的中点,所以 EF 是△ABD 的中位线,所以 EF∥AD,又 EF⊄平面 ACD,AD⊂平面 ACD,所以直线 EF∥ 平面 ACD.
[再练一题] 2.如图 2-2-2,在长方体 ABCD-A1B1C1D1 中,AA1=AD=a,AB=2a,E, F 分别为 C1D1,A1D1 的中点.
(1)求证:DE⊥平面 BCE; (2)求证:AF∥平面 BDE.
图 2-2-2
【证明】 (1)∵BC⊥侧面 CDD1C1,DE⊂侧面 CDD1C1,∴DE⊥BC. 在△CDE 中,CD=2a,CE=DE= 2a,则有 CD2=DE2+CE2, ∴∠DEC=90°,∴DE⊥EC, 又 BC∩EC=C,∴DE⊥平面 BCE.

2018版高考数学(理)一轮复习文档:第十二章推理证明、算法、复数12.1含解析

2018版高考数学(理)一轮复习文档:第十二章推理证明、算法、复数12.1含解析

1.概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A 出现的比例f n(A)=错误!为事件A出现的频率.(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).2.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)3。

概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1。

(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)事件发生频率与概率是相同的.(×)(2)随机事件和随机试验是一回事.(×)(3)在大量重复试验中,概率是频率的稳定值.( √)(4)两个事件的和事件是指两个事件都得发生.( ×)(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)(6)两互斥事件的概率和为1。

(×)1.从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则b>a的概率是()A。

错误! B.错误! C.错误!D。

2018版高考数学(理)一轮复习文档:第十二章推理证明、算法、复数12.6含解析

2018版高考数学(理)一轮复习文档:第十二章推理证明、算法、复数12.6含解析

1.离散型随机变量的均值与方差一般地,若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)均值称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.(2)方差称D(X)=错误!(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,并称其算术平方根错误!为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b。

(2)D(aX+b)=a2D(X).(a,b为常数)3.两点分布与二项分布的均值、方差(1)若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).4.正态分布(1)正态曲线:函数φμ,σ(x222()x uσ--,x∈(-∞,+∞),其中实数μ和σ为参数(σ〉0,μ∈R).我们称函数φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的性质①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值错误!;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示一般地,如果对于任何实数a,b (a<b),随机变量X满足P(a〈X≤b)=ʃ错误!φμ,σ(x)d x,则称随机变量X服从正态分布,记作X~N(μ,σ2).正态总体在三个特殊区间内取值的概率值①P(μ-σ〈X≤μ+σ)=0。

6826;②P(μ-2σ<X≤μ+2σ)=0。

9544;③P(μ-3σ<X≤μ+3σ)=0。

[配套K12]2018版高考数学一轮复习 第十二章 推理与证明、算法、复数 12.2 直接证明与间接证明真题演练集训

[配套K12]2018版高考数学一轮复习 第十二章 推理与证明、算法、复数 12.2 直接证明与间接证明真题演练集训

2018版高考数学一轮复习 第十二章 推理与证明、算法、复数 12.2直接证明与间接证明真题演练集训 理 新人教A 版1.[2016·新课标全国卷Ⅱ]有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案:1和3解析:由丙所言可能有两种情况.一种是丙持有“1和2”,结合乙所言可知乙持有“2和3”,从而甲持有“1和3”,符合甲所言情况;另一种是丙持有“1和3”,结合乙所言可知乙持有“2和3”,从而甲持有“1和2”,不符合甲所言情况.故甲持有“1和3”.2.[2014·天津卷]已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ;(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .(1)解:当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,可得,A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)qn -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=q --qn -11-q -q n -1=-1<0,所以s <t .课外拓展阅读反证法应用举例反证法的应用是高考的常考内容,题型为解答题,难度适中,为中高档题,考查方向主要有以下几个方面:一 证明否定性命题[典例1] 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2.(1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列.(1)[解] 当n =1时,a 1+S 1=2a 1=2,则a 1=1.又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)[证明] 假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*) 又因为p <q <r ,所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立.所以假设不成立,原命题得证.[解题模板]用反证法证明问题的一般步骤二 证明存在性问题[典例2] 若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值; (2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[解] (1)由已知得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧ h a =b h b =a ,即⎩⎪⎨⎪⎧ 1a +2=b 1b +2=a ,解得a =b ,这与已知矛盾.故不存在.[易错警示] 利用反证法进行证明时,一定要对所要证明的结论进行否定性的假设,并以此为条件进行归谬,得到矛盾,则原命题成立.三 证明唯一性命题[典例3] 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)[证明] 由已知,得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)[解] 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD ,∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.故不存在这样的点F ,使得BF ∥平面SAD .[方法规律] 当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.。

2018版高考数学人教A版理科大一轮复习配套课件:第十

2018版高考数学人教A版理科大一轮复习配套课件:第十
∴不存在这样的点F,使得BF∥平面SAD.
∴a2-ab>0,∴a2>ab.①
又ab-b2=b(a-b)>0,∴ab>b2,②
由①②得a2>ab>b2. 答案 B
4.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0
至少有一个实根”时,要做的假设是(
A.方程x3+ax+b=0没有实根 B.方程x3+ax+b=0至多有一个实根 C.方程x3+ax+b=0至多有两个实根 D.方程x3+ax+b=0恰好有两个实根
2.间接证明 间接证明是不同于直接证明的又一类证明方法,反证法是一种 常用的间接证明方法. 不成立 即在原命题的条件下, (1)反证法的定义:假设原命题_______(
结论不成立),经过正确的推理,最后得出矛盾,因此说明假设
原命题成立的证明方法. 错误,从而证明__________ (2)用反证法证明的一般步骤:①反设——假设命题的结论不成 立;②归谬——根据假设进行推理,直到推出矛盾为止;③结 论——断言假设不成立,从而肯定原命题的结论成立.
)
解析 a2+b2-1-a2b2≤0⇔(a2-1)(b2-1)≥0. 答案 D
3.若 a,b,c 为实数,且 a<b<0,则下列命题正确的是( A.ac2<bc2 1 1 C.a<b B.a2>ab>b2 b a D.a>b
)
解析
a2 - ab = a(a - b) , ∵a<b<0 , ∴a - b<0 ,
1 1 1 43a+1+3b+1+3c+1 ≥9-3(a+b+c)=6,
1 1 1 3 ∴ + + ≥ . 3a+1 3b+1 3c+1 2
规律方法

2018版高考数学人教A版理一轮复习课件:第2章 第12节 导数与函数的极值、最值 精品

2018版高考数学人教A版理一轮复习课件:第2章 第12节 导数与函数的极值、最值 精品

当 x∈(0,9)时,y′>0,当 x∈(9,+∞)时,y′<0,
则当 x=9 时,y 有最大值.
即使该生产厂家获取最大年利润的年产量为 9 万件.]
4.(2016·四川高考)已知 a 为函数 f(x)=x3-12x 的极小值点,则 a=( )
A.-4
B.-2
C.4
D.2
D [由题意得 f′(x)=3x2-12,令 f′(x)=0 得 x=±2,∴当 x<-2 或 x>2 时,
利用导数研究函数的极值问题
☞角度 1 根据函数图象判断极值
设函数 f(x)在 R 上可导,其导函数为 f′(x),且函数 y=
(1-x)f′(x)的图象如图 2-12-2 所示,则下列结论中一定成立的是( ) A.函数 f(x)有极大值 f(2)和极小值 f(1)
B.函数 f(x)有极大值 f(-2)和极小值 f(1)
☞角度 2 求函数的极值 求函数 f(x)=x-aln x(a∈R)的极值.
[解] 由 f′(x)=1-ax=x-x a,x>0 知:
(1)当 a≤0 时,f′(x)>0,函数 f(x)为(0,+∞)上的增函数,函数 f(x)无极值;
5分
(2)当 a>0 时,由 f′(x)=0,解得 x=a.
又当 x∈(0,a)时,f′(x)<0;当 x∈(a,+∞)时,f′(x)>0,
∴g(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 又∵当 x→0 时,g(x)→-∞,当 x→+∞时,g(x)→0, 而 g(x)max=g(1)=1, ∴只需 0<2a<1⇒0<a<12.
(2)由题意知,f(x)的定义域为(-1,+∞), 且 f′(x)=1+1 x-2ax-1=-2ax21-+2xa+1x, 由题意得,f′(1)=0,则-2a-2a-1=0, 得 a=-14,又当 a=-14时, f′(x)=12x12+-x12x=12x1x+-x1, 当 0<x<1 时,f′(x)<0;

2018全国二卷数学理科第12题

2018全国二卷数学理科第12题

2018全国二卷数学理科第12题全文共四篇示例,供您参考第一篇示例:【2018全国二卷数学理科第12题】是高考数学考试中的一道典型题目,它考察了学生对数学知识的理解和运用能力。

对于这道题目,我们将从数学的角度进行深入的解析,帮助考生更好地理解和掌握这一类型的题目。

我们来看一下【2018全国二卷数学理科第12题】的具体题目内容:已知曲线C的参数方程为x=acos⁡t,y=bsin⁡t,a>b>0(1)求曲线C的一般方程;(2)求参数方程的参数t应取何值时,曲线C上的切线垂直于直线x+2y=3。

这道题目可以分为两个小题来进行解答,我们将逐步进行分析和解决。

首先是第一问,求曲线C的一般方程。

首先我们可以根据参数方程得到:x=acos⁡ty=bsin⁡t在笛卡尔平面上绘制这个曲线,我们可以看到它是椭圆的一部分,椭圆的参数方程一般为:x=a*cos(t)y=b*sin(t)其中a,b分别是椭圆在x轴和y轴上的半轴长(a>b)。

所以曲线C的一般方程就是椭圆的一般方程:(x/a)^2 + (y/b)^2 = 1接下来是第二问,求参数方程的参数t应取何值时,曲线C上的切线垂直于直线x+2y=3。

我们知道,曲线C上的切线的斜率即为导数的值。

所以我们需要求解出曲线C的导数,并找出在哪些参数t的值下,导数的值与直线x+2y=3的斜率关系满足互相垂直。

这部分涉及较多的数学公式和原理,需要考生结合导数和直线方程的知识来进行深入的分析和推导。

通过对【2018全国二卷数学理科第12题】的上述解答过程,我们可以看到这道数学题目涉及到了参数方程、一般方程、导数和直线方程等多个数学概念,在解题的过程中考察了考生对这些数学知识的理解和应用能力。

通过深入解析和分析这道题目,我们希望能够帮助考生更好地掌握这类题目的解题思路,提高他们的数学学习水平。

【2018全国二卷数学理科第12题】是一道典型的高考数学题目,对考生的数学能力提出了一定的要求。

2018届高考数学理大一轮复习教师用书:第十二章第二节

2018届高考数学理大一轮复习教师用书:第十二章第二节

第二节直接证明与间接证明、数学归纳法突破点(一) 直接证明Q (结论)⇐P 1→P 1⇐P 2→…→得到一个明显成立的条件综合法是从已知条件出发,逐步推向结论,综合法的适用范围是:(1)定义明确的问题,如证明函数的单调性、奇偶性,求证无条件的等式或不等式; (2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型. [例1] (2017·武汉模拟)已知函数f (x )=(λx +1)ln x -x +1. (1)若λ=0,求f (x )的最大值;(2)若曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直,证明:f (x )x -1>0.[解] (1)f (x )的定义域为(0,+∞). 当λ=0时,f (x )=ln x -x +1.则f ′(x )=1x -1,令f ′(x )=0,解得x =1. 当0<x <1时,f ′(x )>0,故f (x )在(0,1)上是增函数;本节主要包括3个知识点: 1.直接证明; 2.间接证明;数学归纳法.当x >1时,f ′(x )<0,故f (x )在(1,+∞)上是减函数. 故f (x )在x =1处取得最大值f (1)=0.(2)证明:由题可得,f ′(x )=λln x +λx +1x -1. 由题设条件,得f ′(1)=1,即λ=1. ∴f (x )=(x +1)ln x -x +1.由(1)知,ln x -x +1<0(x >0,且x ≠1).当0<x <1时,x -1<0,f (x )=(x +1)ln x -x +1=x ln x +(ln x -x +1)<0,∴f (x )x -1>0.当x >1时,x -1>0,f (x )=(x +1)ln x -x +1=ln x +(x ln x -x +1)=ln x -x ⎝⎛⎭⎫ln 1x -1x +1>0, ∴f (x )x -1>0. 综上可知,f (x )x -1>0.[方法技巧] 综合法证题的思路分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接,或证明过程中需要用到的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,从正面不易推导时,常考虑用分析法.[例2] 已知a >0,证明 a 2+1a2-2≥a +1a -2.[证明] 要证a 2+1a2-2≥a +1a -2,只需证a 2+1a 2≥⎝⎛⎭⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎫a +1a -(2-2)>0, 所以只需证⎝⎛⎭⎫a 2+1a 22≥⎣⎡⎦⎤⎝⎛⎭⎫a +1a -(2-2)2, 即2(2-2)⎝⎛⎭⎫a +1a ≥8-42,只需证a +1a≥2. 因为a >0,a +1a ≥2显然成立当且仅当a =1a =1时,等号成立,所以要证的不等式成立. [方法技巧]分析法证题的思路(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.能力练通 抓应用体验的“得”与“失”1.[考点一]命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:选B 因为证明过程是“从左向右”,即由条件逐步推向结论,故选B. 2.[考点一](2017·广州调研)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1bD.b a >a b解析:选B a 2-ab =a (a -b ), ∵a <b <0,∴a -b <0,∴a (a -b )>0,即a 2-ab >0,∴a 2>ab .① 又∵ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.3.[考点一]已知实数a 1,a 2,…,a 2 017满足a 1+a 2+a 3+…+a 2 017=0,且|a 1-2a 2|=|a 2-2a 3|=…=|a 2 017-2a 1|,证明:a 1=a 2=a 3=…=a 2 017=0.证明:根据条件知:(a 1-2a 2)+(a 2-2a 3)+(a 3-2a 4)+…+(a 2 017-2a 1)=-(a 1+a 2+a 3+…+a 2 017)=0.①另一方面,令|a 1-2a 2|=|a 2-2a 3|=|a 3-2a 4|=…=|a 2 017-2a 1|=m , 则a 1-2a 2,a 2-2a 3,a 3-2a 4,…,a 2 017-2a 1中每个数或为m 或为-m . 设其中有k 个m ,(2 017-k )个-m ,则(a 1-2a 2)+(a 2-2a 3)+(a 3-2a 4)+…+(a 2 017-2a 1)=k ×m +(2 017-k )×(-m )=(2k -2 017)m .②由①②知:(2k -2 017)m =0.③而2k -2 017为奇数,不可能为0,所以m =0.于是知:a 1=2a 2,a 2=2a 3,a 3=2a 4,…,a 2 016=2a 2 017,a 2 017=2a 1. 所以a 1=22 017·a 1,即得a 1=0.从而a 1=a 2=a 3=…=a 2 017=0.命题得证.4.[考点二]已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m .证明:因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )·(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证m (a -b )2≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.突破点(二) 间接证明1.反证法假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.用反证法证明问题的一般步骤[例1] 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中任意三项不可能按原来顺序成等差数列. [解] (1)当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2, 所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n 1.(2)证明:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*)又因为p <q <r , 所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证.[例2] 若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[解] (1)由已知得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3. (2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.[例3] 已知f (x )=ln(1+e x )-mx (x ∈R),对于给定区间(a ,b ),存在x 0∈(a ,b ),使得f (b )-f (a )b -a=f ′(x 0)成立,求证:x 0唯一. [证明] 假设存在x ′0,x 0∈(a ,b ),且x ′0≠x 0,使得f (b )-f (a )b -a =f ′(x 0),f (b )-f (a )b -a =f ′(x ′0)成立,即f ′(x 0)=f ′(x ′0).因为f ′(x )=e x1+e x-m ,记g (x )=f ′(x ),所以g′(x)=e x(1+e x)2>0,f′(x)是(a,b)上的单调递增函数.所以x0=x′0,这与x′0≠x0矛盾,所以x0是唯一的.1.[考点三]用反证法证明命题“设a,b为实数,则方程x3+ax+b=0 至少有一个实根”时,要作的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0 至多有两个实根D.方程x3+ax+b=0 恰好有两个实根解析:选A用反证法证明命题时,应先假设结论的否定成立,而至少有一个实根的否定是没有实根,故作的假设是“方程x3+ax+b=0没有实根”.2.[考点一、三]若a,b,c是不全相等的正数,给出下列判断:①(a-b)2+(b-c)2+(c -a)2≠0;②a>b与a<b及a=b中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数是()A.0 B.1 C.2 D.3解析:选C由于a,b,c不全相等,则a-b,b-c,c-a中至少有一个不为0,故①正确;②显然正确;令a=2,b=3,c=5,满足a≠c,b≠c,a≠b,故③错误.3.[考点三]已知x∈R,a=x2+12,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.证明:假设a,b,c均小于1,即a<1,b<1,c<1,则有a+b+c<3,而a+b+c=x2+12+2-x+x2-x+1=2x2-2x+12+3=2⎝⎛⎭⎫x-122+3≥3,两者矛盾,所以假设不成立,故a,b,c至少有一个不小于1.4.[考点一]设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;(2)设q≠1,证明数列{a n+1}不是等比数列.解:(1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,∴S n=a1(1-q n)1-q,∴S n=⎩⎪⎨⎪⎧na1,q=1,a1(1-q n)1-q,q≠1.(2)证明:假设数列{a n+1}是等比数列,则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k+2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1.∵a1≠0,∴2q k=q k-1+q k+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故数列{a n+1}不是等比数列.5.[考点二]已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=2,SA =1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.解:(1)证明:由已知得SA2+AD2=SD2,故SA⊥AD.同理SA⊥AB.又AB∩AD=A,所以SA⊥平面ABCD.(2)假设在棱SC上存在异于S,C的点F,使得BF∥平面SAD.∵BC∥AD,BC⊄平面SAD.∴BC∥平面SAD.而BC∩BF=B,∴平面FBC∥平面SAD.这与平面SBC和平面SAD有公共点S矛盾,∴假设不成立.故在棱SC上不存在异于S,C的点F,使得BF∥平面SAD.突破点(三)数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.考点贯通 抓高考命题的“形”与“神”用数学归纳法证明等式[例1] 设f (n )=1+12+13+…+1n (n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).[证明] (1)当n =2时,左边=f (1)=1,右边=2⎝⎛⎭⎫1+12-1=1,左边=右边,等式成立. (2)假设n =k (k ≥2,k ∈N *)时,结论成立,即 f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k =(k +1)⎣⎡⎦⎤f (k +1)-1k +1-k=(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1], ∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *). [方法技巧]用数学归纳法证明等式的策略(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.用数学归纳法证明不等式[例2] 用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).[证明] (1)当n =2时,1+122=54<2-12=32,命题成立.(2)假设n =k (k ≥2,k ∈N *)时命题成立, 即1+122+132+ (1)2<2-1k .当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k -1k +1=2-1k +1命题成立. 由(1)(2)知原不等式在n ∈N *,n ≥2时均成立.[方法技巧]用数学归纳法证明不等式的策略(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明.归纳—猜想—证明[例3] 已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n -1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.[解] (1)当n =1时,由已知得a 1=a 12+1a 1-1,即a 21+2a 1-2=0.∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0). 同理可得a 3=7- 5.猜想a n =2n +1-2n -1(n ∈N *).(2)证明:①由(1)知,当n =1时,通项公式成立. ②假设当n =k (k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1. 由于a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式,整理得 a 2k +1+22k +1a k +1-2=0,∴a k +1=2k +3-2k +1, 即n =k +1时通项公式成立.由①②可知对所有n ∈N *,a n =2n +1-2n -1都成立.[方法技巧]归纳—猜想—证明类问题的解题步骤利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理(即演绎推理)论证结论的正确性.能力练通 抓应用体验的“得”与“失”1.[考点一]求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).证明:(1)当n =1时,左边=1-12=12,右边=11+1=12,左边=右边,等式成立. (2)假设n =k (k ∈N *)时等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k, 则当n =k +1时,⎝⎛⎭⎫1-12+13-14+…+12k -1-12k +⎝⎛⎭⎫12k +1-12k +2=⎝⎛⎭⎫1k +1+1k +2+…+12k +⎝⎛⎭⎫12k +1-12k +2 =1k +2+1k +3+…+12k +1+12k +2. 即当n =k +1时,等式也成立.综合(1),(2)可知,对一切n ∈N *,等式成立.2.[考点二]用数学归纳法证明:对一切大于1的自然数n ,不等式⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·⎝⎛⎭⎫1+12n -1>2n +12均成立. 证明:(1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.(2)假设n =k (k ≥2,且k ∈N *)时不等式成立,即⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·⎝⎛⎭⎫1+12k -1>2k +12. 则当n =k +1时,⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·1+12k -1·⎣⎡⎦⎤1+12(k +1)-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12.∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立.3.[考点三](2017·常德模拟)设a >0,f (x )=axa +x ,令a 1=1,a n +1=f (a n ),n ∈N *.(1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论. 解:(1)∵a 1=1, ∴a 2=f (a 1)=f (1)=a 1+a; a 3=f (a 2)=a ·a 1+a a +a 1+a =a2+a; a 4=f (a 3)=a ·a 2+a a +a 2+a =a3+a. 猜想a n =a(n -1)+a(n ∈N *).(2)证明:①易知,n =1时,猜想正确. ②假设n =k (k ∈N *)时猜想正确, 即a k =a (k -1)+a ,则a k +1=f (a k )=a ·a ka +a k=a ·a (k -1)+a a +a (k -1)+a =a (k -1)+a +1=a [(k +1)-1]+a.这说明,n =k +1时猜想正确. 由①②知,对于任何n ∈N *,都有a n =a(n -1)+a.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.用反证法证明命题:“若a ,b ,c ,d ∈R ,a +b =1,c +d =1,且ac +bd >1,则a ,b ,c ,d 中至少有一个负数”的假设为( )A .a ,b ,c ,d 中至少有一个正数B .a ,b ,c ,d 全都为正数C .a ,b ,c ,d 全都为非负数D .a ,b ,c ,d 中至多有一个负数解析:选C 用反证法证明命题时,应先假设结论的否定成立,而“a ,b ,c ,d 中至少有一个负数”的否定是“a ,b ,c ,d 全都为非负数”.2.用数学归纳法证明2n >2n +1,n 的第一个取值应是( ) A .1 B .2 C .3D .4解析:选C ∵n =1时,21=2,2×1+1=3,2n >2n +1不成立; n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立. ∴n 的第一个取值应是3.3.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:选D 由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+14.4.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( ) A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2解析:选D ∵a >0,b >0,c >0,∴⎝⎛⎭⎫a +1b +⎝⎛⎭⎫b +1c +⎝⎛⎭⎫c +1a =⎝⎛⎭⎫a +1a +⎝⎛⎭⎫b +1b + ⎝⎛⎭⎫c +1c ≥6,当且仅当a =b =c =1时,等号成立,故三者不能都小于2,即至少有一个不小于2.5.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是( ) A .a >b >c B .b >c >a C .c >a >bD .a >c >b解析:选A ∵a =3-2=13+2,b =6-5=16+5,c =7-6=17+6,且7+6>6+5>3+2>0,∴a >b >c .[练常考题点——检验高考能力]一、选择题1.已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 为正实数,A =f ⎝⎛⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:选A 因为a +b 2≥ab ≥2ab a +b ,又f (x )=⎝⎛⎭⎫12x 在R 上是单调减函数,故f ⎝⎛⎭⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎫2aba +b ,即A ≤B ≤C .2.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:选A 由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.3.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A ∵c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b .已知两式作差得2b =2+2a 2,即b =1+a 2.∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a .∴b =1+a 2>a .∴c ≥b >a ,故选A. 4.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( )A .n +1B .2n C.n 2+n +22D .n 2+n +1解析:选C 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.5.已知a ,b ∈R ,m =6a 36a +1+1,n =13b 2-b +56,则下列结论正确的是( )A .m ≤nB .m ≥nC .m >nD .m <n解析:选A m =6a 36a +1+1=6a 62a +2+1=1626a +6-a ≤1262=112,n =13b 2-b +56=13⎝⎛⎭⎫b -322+112≥112,所以n ≥m ,故选A. 6.设函数f (x )=e x +x -a (a ∈R ,e 为自然对数的底数).若存在b ∈[0,1]使f (f (b ))=b 成立,则a 的取值范围是( )A .[1,e]B .[1,1+e]C .[e,1+e]D .[0,1]解析:选A 易知f (x )=e x +x -a 在定义域内是增函数,由f (f (b ))=b ,猜想f (b )=b . 反证法:若f (b )>b ,则f (f (b ))>f (b )>b ,与题意不符, 若f (b )<b ,则f (f (b ))<f (b )<b ,与题意也不符, 故f (b )=b ,即f (x )=x 在[0,1]上有解.所以e x +x -a =x ,a =e x -x 2+x ,令g (x )=e x -x 2+x ,g ′(x )=e x -2x +1=(e x +1)-2x , 当x ∈[0,1]时,e x +1≥2,2x ≤2, 所以g ′(x )≥0,所以g (x )在[0,1]上是增函数, 所以g (0)≤g (x )≤g (1), 所以1≤g (x )≤e , 即1≤a ≤e ,故选A. 二、填空题7.用数学归纳法证明1+2+3+…+n 2=n 4+ n 22,则当n =k +1时左端应在n =k 的基础上加上的项为______________.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2, 则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2. 答案:(k 2+1)+(k 2+2)+…+(k +1)28.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.解析:由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,∴c n 随n 的增大而减小,∴c n +1<c n . 答案:c n +1<c n9.对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式kx +a +x +b x +c <0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kxax +1+bx +1cx +1<0的解集为________.解析:不等式kx ax +1+bx +1cx +1<0,可化为ka +1x +b +1xc +1x <0,故得-1<1x <-13或12<1x <1,解得-3<x <-1或1<x <2, 故kx ax +1+bx +1cx +1<0的解集为(-3,-1)∪(1,2). 答案:(-3,-1)∪(1,2)10.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:依题意有f (-1)>0或f (1)>0, 所以-2p 2+p +1>0或-2p 2-3p +9>0, 即2p 2-p -1<0或2p 2+3p -9<0, 得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝⎛⎭⎫-3,32. 答案:⎝⎛⎭⎫-3,32 三、解答题11.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是f (x )=0的一个根;(2)试比较1a 与c 的大小;(3)证明:-2<b <-1.解:(1)证明:∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根, 又x 1x 2=ca ,∴x 2=1a ⎝⎛⎭⎫1a ≠c , ∴1a 是f (x )=0的一个根.(2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0, 知f ⎝⎛⎭⎫1a >0与f ⎝⎛⎭⎫1a =0矛盾, ∴1a ≥c , 又∵1a ≠c ,∴1a >c .(3)证明:由f (c )=0,得ac 2+bc +c =0, 即ac +b +1=0, ∴b =-1-ac . 又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为 x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a ,即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.12.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明.解:(1)当n =1时,f (1)=1,g (1)=32-12×12=1,所以f (1)=g (1);当n =2时,f (2)=1+123=98,g (2)=32-12×22=118,所以f (2)<g (2); 当n =3时,f (3)=1+123+133=251216,g (3)=32-12×32=139,所以f (3)<g (3). (2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1时,不等式显然成立. ②假设当n =k (k ∈N *)时不等式成立. 即1+123+133+143+…+1k 3<32-12k 2,那么,当n =k +1时, f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3, 因为12(k +1)2-⎣⎡⎦⎤12k 2-1(k +1)3 =k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1).由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.。

【步步高】2018版高考数学(文)(人教)大一轮复习文档讲义:第十二章12.2直接证明与间接证明

【步步高】2018版高考数学(文)(人教)大一轮复习文档讲义:第十二章12.2直接证明与间接证明

1.直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件(其中Q表示要证明的结论).③思维过程:执果索因.2.间接证明 反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × )(3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × )(4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( )A .ac 2<bc 2B .a 2>ab >b 2 C.1a <1bD.b a >a b答案 B解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .①又ab -b 2=b (a -b )>0,∴ab >b 2,②由①②得a 2>ab >b 2.2.用反证法证明命题:“a ,b ∈N ,若ab 不能被5整除,则a 与b 都不能被5整除”时,假设的内容应为( )A .a ,b 都能被5整除B .a ,b 不都能被5整除C .a ,b 至少有一个能被5整除D .a ,b 至多有一个能被5整除答案 C解析 “都不能”的否定为“至少有一个能”,故假设的内容应为“a ,b 至少有一个能被5整除”.3.要证a 2+b 2-1-a 2b 2≤0,只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0.∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(2016·青岛模拟)如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.答案 332 解析 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π).∴f (A )+f (B )+f (C )3≤f (A +B +C 3)=f (π3), 即sin A +sin B +sin C ≤3sin π3=332, ∴sin A +sin B +sin C 的最大值为332.题型一 综合法的应用例1 数列{a n }满足a n +1=a n 2a n +1,a 1=1. (1)证明:数列{1a n}是等差数列; (2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >n n +1. (1)证明 ∵a n +1=a n 2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n =2,故数列{1a n }是以1为首项,2为公差的等差数列. (2)解 由(1)知1a n=2n -1, ∴S n =n (1+2n -1)2=n 2. 方法一 1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1. 方法二 1S 1+1S 2+…+1S n =112+122+…+1n 2>1, 又∵1>n n +1, ∴1S 1+1S 2+…+1S n >n n +1. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.若a ,b ,c 是不全相等的正数,求证:lga +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. 由于a ,b ,c 是不全相等的正数,∴上述三个不等式中等号不能同时成立,∴a +b 2·b +c 2·c +a 2>abc >0成立. 上式两边同时取常用对数,得lg(a +b 2·b +c 2·c +a 2)>lg abc , ∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22, 只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2). 由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2,即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立,因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f ⎝⎛⎭⎫x 1+x 22, 即证明1212(32)(32)2x x x x -+-≥12122322x x x x ++-⋅, 因此只要证明12332x x +-(x 1+x 2)≥122123()x x x x +-+, 即证明12332x x +≥1223x x +,因此只要证明12332x x + 由于x 1,x 2∈R 时,13x >0, 23x>0,由基本不等式知12332x x + 思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.(2017·重庆月考)设a >0,b >0,2c >a +b ,求证:(1)c 2>ab ;(2)c -c 2-ab <a <c +c 2-ab .证明 (1)∵a >0,b >0,2c >a +b ≥2ab ,∴c >ab ,平方得c 2>ab .(2)要证c -c 2-ab <a <c +c 2-ab , 只要证-c 2-ab <a -c <c 2-ab ,即证|a -c |<c 2-ab ,即(a -c )2<c 2-ab .∵(a -c )2-c 2+ab =a (a +b -2c )<0成立,∴原不等式成立.题型三 反证法的应用命题点1 证明否定性命题例3 (2016·西安模拟)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列.(1)解 设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n )1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1. (2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *,(a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.命题点2 证明存在性问题例4 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根.证明 由于a ≠0,因此方程至少有一个根x =b a. 假设x 1,x 2是它的两个不同的根,即ax 1=b ,①ax 2=b ,②由①-②得a (x 1-x 2)=0,因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误.所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤: 第一步:分清命题“p ⇒q ”的条件和结论;第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点; (2)试用反证法证明1a>c . 证明 (1)∵f (x )的图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a (1a≠c ), ∴1a是f (x )=0的一个根. 即1a是函数f (x )的一个零点. (2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0, 知f (1a )>0,与f (1a )=0矛盾,∴1a≥c ,又∵1a ≠c ,∴1a>c .23.反证法在证明题中的应用典例 (2分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点. (1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性问题,存在性问题,唯一性问题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分.由于O (0,0),B (0,1),所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分](2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分]设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m 1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k, 因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[12分]1.(2017·泰安质检)用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根B .方程x 2+ax +b =0至多有一个实根C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根答案 A解析 因为“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A.2.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( ) A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0] 答案 D解析 2kx 2+kx -38<0对一切实数x 都成立, 则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0或k =0. 解得-3<k ≤0.3.(2017·上饶月考)设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y( ) A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2 答案 C解析 因为(y x +y z )+(z x +z y )+(x z +x y) =(y x +x y )+(y z +z y )+(z x +x z )≥6,当且仅当x =y =z 时等号成立.所以三个数中至少有一个不小于2,故选C.4.①已知p 3+q 3=2,证明:p +q ≤2.用反证法证明时,可假设p +q ≥2;②若a ,b ∈R ,|a |+|b |<1,求证:方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( )A .①与②的假设都错误B .①的假设正确;②的假设错误C .①与②的假设都正确D .①的假设错误;②的假设正确答案 D解析 对于①,结论的否定是p +q >2,故①中的假设错误;对于②,其假设正确,故选D.5.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( ) A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2答案 C解析 因为a +1b +b +1c +c +1a≤-6, 所以三者不能都大于-2.6.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.7.(2016·全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足题干条件的p 的取值范围为⎝⎛⎭⎫-3,32. 9.已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m. 证明 因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.10.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图象关于y 轴对称,求证:f (x +12)为偶函数.证明 由函数f (x +1)与f (x )的图象关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得 f (x -12+1)=f [-(x -12)], 即f (x +12)=f (-x +12), 由偶函数的定义可知f (x +12)为偶函数. 11.已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴21x x a ->1且1x a >0,∴21x x a a -=121(1)x x x a a ->0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0. 于是f (x 2)-f (x 1)=21x x a a -+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则0x a =-x 0-2x 0+1. ∵a >1,∴0<0xa <1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.12.(2016·浙江)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x , 由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34, 又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34. 综上,34<f (x )≤32. *13.(2015·课标全国Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b > c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b > c +d .②若a +b > c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。

【步步高】2018版高考数学(理)(人教)大一轮复习文档讲义:第十二章12.2古典概型

【步步高】2018版高考数学(理)(人教)大一轮复习文档讲义:第十二章12.2古典概型

1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=mn .4.古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( × )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( × )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( × ) (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( √ )(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( √ )(6)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为nm.( √ )1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16答案 B解析 基本事件的总数为6,构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2, 所以所求概率P =26=13,故选B.2.(2016·北京)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925 答案 B解析 从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为410=25.3.(2015·课标全国Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.310 B.15 C.110 D.120 答案 C解析 从1,2,3,4,5中任取3个不同的数共有C 35=10(个)不同的结果,其中勾股数只有一组,故所求概率为P =110.4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________. 答案 35解析 取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35. 5.(教材改编)同时掷两个骰子,向上点数不相同的概率为________. 答案 56解析 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有 6个,所以点数不同的概率P =1-66×6=56.题型一 基本事件与古典概型的判断例1 (1)有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出:①试验的基本事件;②事件“出现点数之和大于3”包含的基本事件;③事件“出现点数相等”包含的基本事件.(2)袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.①有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?②若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)①这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).②事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).③事件“出现点数相等”包含的基本事件为(1,1),(2,2),(3,3),(4,4).(2)①由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.②由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为3 11,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.思维升华一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.下列试验中,古典概型的个数为()①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A.0 B.1 C.2 D.3答案 B解析①中,硬币质地不均匀,不是等可能事件,所以不是古典概型;②④的基本事件都不是有限个,不是古典概型;③符合古典概型的特点,是古典概型.题型二古典概型的求法例2(1)(2015·广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,则所取的2个球中恰有1个白球,1个红球的概率为()A.521B.1021C.1121D .1 (2)(2015·江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.(3)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木、木克土、土克水、水克火、火克金.”将这五种不同属性的物质任意排成一列,设事件A 表示“排列中属性相克的两种物质不相邻”,则事件A 发生的概率为________. 答案 (1)B (2)56 (3)112解析 (1)从袋中任取2个球共有C 215=105(种)取法,其中恰好1个白球1个红球共有C 110C 15=50(种)取法,所以所取的球恰好1个白球1个红球的概率为50105=1021.(2)基本事件共有C 24=6(种), 设取出两只球颜色不同为事件A ,A 包含的基本事件有C 12C 12+C 11C 11=5(种).故P (A )=56.(3)五种不同属性的物质任意排成一列的所有基本事件数为A 55=120,满足事件A “排列中属性相克的两种物质不相邻”的基本事件可以按如下方法进行考虑:从左至右,当第一个位置的属性确定后,例如:金,第二个位置(除去金本身)只能排土或水属性,当第二个位置的属性确定后,其他三个位置的属性也确定,故共有C 15C 12=10(种)可能,所以事件A 出现的概率为10120=112. 引申探究1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种,所以P (A )=46=23.2.本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率.解 基本事件数为C 14C 14=16, 颜色相同的事件数为C 12C 11+C 12C 12=6,所求概率为616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.(1)(2016·全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56 答案 C解析 从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛,有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),((红紫),(黄白)),((黄白),(红紫)),共6种种法,其中红色和紫色不在一个花坛的种法有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),共4种,故所求概率为P =46=23,故选C. (2)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . ①求“抽取的卡片上的数字满足a +b =c ”的概率; ②求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解 ①由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种. 设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.②设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.题型三 古典概型与统计的综合应用例3 (2015·安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解 (1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4, 所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B 1,B 2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为P =110.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点.概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.六审细节更完善典例(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.(1)基本事件为取两个球↓(两球一次取出,不分先后,可用集合的形式表示)把取两个球的所有结果列举出来↓{1,2},{1,3},{1,4},{2,3},{2,4},{3,4} ↓两球编号之和不大于4(注意:和不大于4,应为小于4或等于4) ↓{1,2},{1,3}↓利用古典概型概率公式求解 P =26=13(2)两球分两次取,且有放回↓(两球的编号记录是有次序的,用坐标的形式表示) 基本事件的总数可用列举法表示 ↓(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)↓(注意细节,m 是第一个球的编号,n 是第2个球的编号) n <m +2的情况较多,计算复杂 ↓(将复杂问题转化为简单问题) 计算n ≥m +2的概率 ↓n ≥m +2的所有情况为(1,3),(1,4),(2,4) ↓P 1=316↓(注意细节,P 1=\f(3,16)是n ≥m +2的概率,需转化为其,对立事件的概率) n <m +2的概率为1-P 1=1316.规范解答解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件有{1,2},{1,3},共2个. 因此所求事件的概率P =26=13.[4分](2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[6分]又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.[10分]故满足条件n <m +2的事件的概率为 1-P 1=1-316=1316.[12分]1.(2016·全国丙卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130 答案 C解析 第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115,故选C.2.(2016·威海模拟)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( ) A.16 B.13 C.14 D.12 答案 A解析 由题意知,向量m 共有C 14C 13=12(个),由m ⊥n ,得m ·n =0,即a =b ,则满足m ⊥n 的m 有(3,3),(5,5),共2个, 故所求概率P =212=16.3.(2015·广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( ) A .0.4 B .0.6 C .0.8 D .1 答案 B解析 从5件产品中任取2件共有取法C 25=10(种),恰有一件次品的取法有C 12C 13=6(种),所以恰有一件次品的概率为610=0.6.4.(2016·哈尔滨模拟)设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( ) A.12 B.58 C.1116 D.34 答案 C解析 由已知f ′(x )=3x 2+a >0,所以f (x )在R 上递增,若f (x )在[1,2]上有零点,则需⎩⎪⎨⎪⎧f (1)=1+a -b ≤0,f (2)=8+2a -b ≥0,经验证有(1,2),(1,4),(1,8),(2,4),(2,8),(2,12),(3,4),(3,8),(3,12),(4,8),(4,12),共11对满足条件,而总的情况有16种, 故所求概率为1116.5.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为( ) A.521 B.27 C.13 D.821 答案 D解析 从编号分别为1,2,3,4,5的5个红球和5个黑球中随机取出4个,有C 410=210(种)不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的.设事件A 为“取出球的编号互不相同”,则事件A 包含了C 15·C 12·C 12·C 12·C 12=80(个)基本事件,所以P (A )=80210=821.故选D.6.如图,三行三列的方阵中有九个数a ij (i =1,2,3;j =1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )⎝ ⎛⎭⎪⎪⎫a 11 a 12 a 13a 21 a 22 a 23a 31 a 32 a 33 A.37 B.47 C.114 D.1314答案 D解析 从九个数中任取三个数的不同取法共有C 39=84(种),因为取出的三个数分别位于不同的行与列的取法共有C 13·C 12·C 11=6(种),所以至少有两个数位于同行或同列的概率为1-684=1314. 7.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15 答案 D解析 如图所示,从正六边形ABCDEF 的6个顶点中随机选4个顶点,可以看作随机选2个顶点,剩下的4个顶点构成四边形,有A 、B ,A 、C ,A 、D ,A 、E ,A 、F ,B 、C ,B 、D ,B 、E ,B 、F ,C 、D ,C 、E ,C 、F ,D 、E ,D 、F ,E 、F ,共15种.若要构成矩形,只要选相对顶点即可,有A 、D ,B 、E ,C 、F ,共3种,故其概率为315=15.8.若A 、B 为互斥事件,P (A )=0.4,P (A ∪B )=0.7,则P (B )=________. 答案 0.3解析 因为A 、B 为互斥事件, 所以P (A ∪B )=P (A )+P (B ),故P (B )=P (A ∪B )-P (A )=0.7-0.4=0.3.9.(2017·成都月考)如图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________.答案 0.3解析 依题意,记题中的被污损数字为x ,若甲的平均成绩不超过乙的平均成绩,则有(8+9+2+1)-(5+3+x +5)≤0,x ≥7,即此时x 的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P =310=0.3.10.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.答案 12解析 从10件产品中取4件,共有C 410种取法,取到1件次品的取法为C 13C 37种,由古典概型概率计算公式得P =C 13C 37C 410=3×35210=12.11.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3). (1)求事件“a ⊥b ”发生的概率; (2)求事件“|a |≤|b |”发生的概率.解 (1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种. 因为a ⊥b ,所以m -3n =0,即m =3n ,有(3,1),(6,2),共2种, 所以事件a ⊥b 发生的概率为236=118. (2)由|a |≤|b |,得m 2+n 2≤10,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种,其概率为636=16.12.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的. (1)求袋中原有白球的个数; (2)求取球2次即终止的概率; (3)求甲取到白球的概率.解 (1)设袋中原有n 个白球,从袋中任取2个球都是白球的结果数为C 2n ,从袋中任取2个球的所有可能的结果数为C 27.由题意知从袋中任取2球都是白球的概率P =C 2nC 27=17,则n (n -1)=6,解得n =3(舍去n =-2),即袋中原有3个白球.(2)设事件A 为“取球2次即终止”.取球2次即终止,即甲第一次取到的是黑球而乙取到的是白球,P (A )=C 14×C 13C 17×C 16=4×37×6=27. (3)设事件B 为“甲取到白球”,“第i 次取到白球”为事件A i ,i =1,2,3,4,5,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.所以P (B )=P (A 1∪A 3∪A 5)=P (A 1)+P (A 3)+P (A 5)=37+4×3×37×6×5+4×3×2×1×37×6×5×4×3=37+635+135=2235. *13.(2016·北京海淀区期末)为了研究某种农作物在特定温度(要求最高温度t 满足:27 ℃≤t ≤30 ℃)下的生长状况,某农学家需要在10月份去某地进行为期10天的连续观察试验.现有关于该地区历年10月份日平均最高温度和日平均最低温度(单位:℃)的记录如下:(1)根据本次试验目的和试验周期,写出农学家观察试验的起始日期;(2)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为D 1,D 2,估计D 1,D 2的大小;(直接写出结论即可)(3)从10月份31天中随机选择连续3天,求所选3天每天日平均最高温度值都在[27,30]之间的概率.解 (1)农学家观察试验的起始日期为7日或8日. (2)最高温度的方差D 1大.(3)设“连续3天平均最高温度值都在[27,30]之间”为事件A ,则基本事件空间可以设为Ω={(1,2,3),(2,3,4),(3,4,5),…,(29,30,31)},共29个基本事件, 由题图可以看出,事件A 包含10个基本事件,所以P (A )=1029,所选3天每天日平均最高温度值都在[27,30]之间的概率为1029.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 直接证明与间接证明A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1*(·中山调研)设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的( )*A * 充分不必要条件B *必要不充分条件C * 充要条件D *既不充分也不必要条件解析 若“a +b =1”,则4ab =4a (1-a )=-4⎝ ⎛⎭⎪⎫a -122+1≤1;若“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;则“a +b =1”是“4ab ≤1”的充分不必要条件*答案 A2*(·金华十校联考)对于平面α和共面的直线m ,n ,下列命题中真命题是( )*A *若m ⊥α,m ⊥n ,则n ∥αB *若m ∥α,n ∥α,则m ∥nC *若m ⊂α,n ∥α,则m ∥nD *若m ,n 与α所成的角相等,则m ∥n解析 对于平面α和共面的直线m ,n ,真命题是“若m ⊂α,n ∥α,则m ∥n ”*答案 C3*要证:a 2+b 2-1-a 2b 2≤0,只要证明( )*A *2ab -1-a 2b 2≤0B *a 2+b 2-1-a 4+b 42≤0C *(a +b )22-1-a 2b 2≤0D *(a 2-1)(b 2-1)≥0解析 因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0,故选D *答案 D4*(·四平二模)设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1*其中能推出:“a,b中至少有一个大于1”的条件是()* A*②③B*①②③C*③D*③④⑤解析若a=12,b=23,则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,即a+b>2,则a,b中至少有一个大于1,反证法:假设a≤1且b≤1,则a+b≤2,与a+b>2矛盾,因此假设不成立,a,b中至少有一个大于1*答案 C二、填空题(每小题5分,共10分)5*用反证法证明命题“a,b∈N,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是________________________*解析“至少有n个”的否定是“最多有n-1个”,故应假设a,b中没有一个能被5整除*答案a,b中没有一个能被5整除6*设a>b>0,m=a-b,n=a-b,则m,n的大小关系是________*解析取a=2,b=1,得m<n*再用分析法证明:a-b<a-b⇐a<b+a-b⇐a<b+2b·a-b+a-b⇐2b·a-b>0,显然成立*答案m<n三、解答题(共25分)7*(12分)若a,b,c是不全相等的正数,求证:lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c*证明∵a,b,c∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c2≥ac >0*又a ,b ,c 是不全相等的正数, 故上述三个不等式中等号不能同时成立*∴a +b 2·b +c 2·c +a2>abc 成立*上式两边同时取常用对数, 得lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc ),∴lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c *8*(13分)(·鹤岗模拟)设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和*(1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2),因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列*(2)解 当q =1时,S n =na 1,故{S n }是等差数列; 当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3, 即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾*B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1*(·漳州一模)设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( )*A * 都大于2B *都小于2C *至少有一个不大于2 D *至少有一个不小于2解析 ∵a >0,b >0,c >0,∴⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c 时,“=”成立,故三者不能都小于2,即至少有一个不小于2*答案 D2*(·滨州期末)如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )*A *△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B *△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C *△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D *△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形*不妨令⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾*所以假设不成立,所以△A 2B 2C 2是钝角三角形*答案 D二、填空题(每小题5分,共10分)3*(·株洲模拟)已知a ,b ,μ∈(0,+∞)且1a +9b =1,则使得a +b ≥μ恒成立的μ的取值范围是________*解析 ∵a ,b ∈(0,+∞)且1a +9b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+⎝ ⎛⎭⎪⎫9a b +b a ≥10+29=16,∴a +b 的最小值为16*∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16*答案 (0,16]4*(·金华一模改编)已知下表中的对数值有且只有一个是错误的**解析 由2a -b =lg 3,得lg 9=2lg 3=2(2a -b )从而lg 3和lg 9正确,假设lg 5=a +c -1错误,则由⎩⎨⎧ 1+a -b -c =lg 6=lg 2+lg 3,3(1-a -c )=lg 8=3lg 2,得⎩⎨⎧lg 2=1-a -c ,lg 3=2a -b ,所以lg 5=1-lg 2=a +c *因此lg 5=a +c -1错误,正确结论是lg 5=a +c *答案 lg 5=a +c 三、解答题(共25分) 5*(12分)已知f (x )=x 2+ax +b *(1)求:f (1)+f (3)-2f (2);(2)求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12*(1)解 ∵f (1)=a +b +1,f (2)=2a +b +4,f (3)=3a +b +9, ∴f (1)+f (3)-2f (2)=2*(2)证明 假设|f (1)|,|f (2)|,|f (3)|都小于12*则-12<f (1)<12,-12<f (2)<12,-12<f (3)<12,∴-1<-2f(2)<1,-1<f(1)+f(3)<1*∴-2<f(1)+f(3)-2f(2)<2,这与f(1)+f(3)-2f(2)=2矛盾*∴假设错误,即所证结论成立*6*(13分)对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数*(1)若函数f(x)为理想函数,求f(0)的值;(2)判断函数g(x)=2x-1(x∈[0,1])是否为理想函数,并予以证明*解(1)取x1=x2=0可得f(0)≥f(0)+f(0),∴f(0)≤0,又由条件①得f(0)≥0,故f(0)=0*(2)显然g(x)=2x-1在[0,1]上满足条件①g(x)≥0;也满足条件②g(1)=1*若x1≥0,x2≥0,x1+x2≤1,则g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=2x1+x2-2x1-2x2+1=(2x2-1)(2x1-1)≥0,即满足条件③,故g(x)是理想函数*。

相关文档
最新文档