空间向量小结与复习培训讲学共23页
空间向量知识点总结简单
空间向量知识点总结简单一、空间向量的概念空间向量是指在空间中既有方向,又有大小的有向线段,它通常用两个端点来确定。
空间向量与数集合相似,但它比数多了方向和长度属性,而且可以进行加法运算。
二、空间向量的表示1. 向量的表示:(1)向量的坐标表示:设 A、B 两个点在空间直角坐标系中的坐标分别为 (x1, y1, z1) 和(x2, y2, z2),则向量 AB 可用有向线段 OA = (x2-x1, y2-y1, z2-z1) 表示。
(2)向量的分量表示:向量的三个分量包括它在 x 轴、y 轴和 z 轴上的投影。
2. 向量的线性运算:(1)向量的加法:两个向量的加法就是将其对应分量相加。
(2)向量的数乘:一个向量的数乘就是将其三个分量都乘以同一个实数。
(3)向量的减法:向量 C 是向量 A 减向量 B 的运算,其方向由 A 指向 B。
3. 向量的模:(1)向量的模长:在空间直角坐标系中,向量 (x, y, z) 的模长公式为√(x^2 + y^2 +z^2) 。
(2)单位向量:模长为 1 的向量称为单位向量。
三、向量的线运算1. 点积(数量积):两个向量的点积定义为:A · B = |A| × |B| × cosθ,其中 |A| 和 |B| 分别为 A 和 B 的模长,θ 为 A 和 B 的夹角。
性质:点积满足交换律、分配律、结合律。
应用:点积可以用来判断两个向量的夹角、求向量的投影、求向量的模等。
2. 叉积(向量积):两个向量的叉积定义为:A × B = |A| × |B| × sinθ × n,其中 |A| 和 |B| 分别为 A 和 B 的模长,θ 为 A 和 B 的夹角,n 为法向量。
性质:叉积不满足交换律,但满足分配律。
应用:叉积可以用来求向量的方向、求平行四边形或平行六面体的面积、求直线、平面的方程等。
四、空间向量的几何应用1. 平面向量的应用:(1)平行四边形面积公式:S = |A × B| = |A| × |B| × sinθ。
空间向量的知识点总结
空间向量的知识点总结空间向量是指空间中的一条具有方向和大小的有向线段,在数学上通常表示为箭头上有一个加粗的字母来表示。
一、空间向量的概念空间向量是指具有方向和大小的有向线段,它是向量的一种特殊形式。
它与平面向量类似,但是空间向量不仅有大小和方向,而且还有位置。
空间向量可以用某个点P到另一个点Q的有向线段来表示,表示为PQ→。
空间向量的大小可以通过计算两点之间的距离来得到,而它的方向可以通过计算两个点之间的夹角来得到。
二、空间向量的基本运算1、空间向量的加法设空间向量a=(x1,y1,z1)和 b=(x2,y2,z2),那么 a+b = (x1+x2, y1+y2, z1+z2)。
这表示a+b等于a与b的x、y、z分量分别相加得到的结果。
2、空间向量的数乘设空间向量a=(x,y,z),k为实数,则ka=(kx,ky,kz)。
这表示空间向量a的每个分量都乘以k得到的结果。
3、空间向量的减法空间向量的减法定义为a-b=a+(-b),即对b取反再进行加法操作。
4、空间向量的数量积设空间向量a=(x1,y1,z1)和 b=(x2,y2,z2),则a·b = x1x2+y1y2+z1z2。
这表示a·b等于a与b的x、y、z分量分别相乘并求和的结果。
5、空间向量的向量积设空间向量a=(x1,y1,z1)和 b=(x2,y2,z2),则a×b = (y1z2-z1y2, z1x2-x1z2, x1y2-y1x2)。
这表示a×b等于a与b按照右手定则进行叉乘得到的结果。
三、空间向量的坐标表示空间向量可以用坐标表示。
设点A(a1,a2,a3)和点B(b1,b2,b3),则AB向量可以表示为AB=(b1-a1,b2-a2,b3-a3)。
四、空间向量的运算律1、给定三个空间向量a,b,c,则有以下运算律:(1)加法交换律:a+b = b+a(2)加法结合律:(a+b)+c = a+(b+c)(3)数乘结合律:k(la) = (kl)a(4)分配律:k(a+b) = ka+kb2、空间向量的数量积定理给定三个空间向量a,b,c以及实数k,则有以下数量积定理:(1)数量积交换律:a·b = b·a(2)数量积结合律:a·(b+c) = a·b+a·c(3)数量积与数乘结合律:k(a·b) = (ka)·b = a·(kb)(4)对于a≠0,b≠0,有a·b=|a|·|b|·cosθ,其中|a|表示a的大小,θ表示a与b的夹角。
教学设计2:《空间向量与立体几何》复习与小结
空间向量与立体几何复习与小结 教案一、教学目标:1、掌握空间向量的概念、运算及其应用;2、掌握利用空间向量解决立体几何问题的方法。
二、重难点:掌握空间向量的概念、运算及其应用及掌握利用空间向量解决立体几何问题的方法。
三、教学方法:探析归纳,讲练结合四、教学过程(一)题型探析1、用已知向量表示未知向量例1. 如图所示,在平行六面体1111D C B A —ABCD 中,设c AD ,b AB ,a AA 1===,M 、N 、P 分别是1AA 、BC 、11D C 的中点,试用a 、b 、c 表示以下各向量:(1)AP ;(2)N A 1;(3)1NC MP +。
分析:根据空间向量加减法及数乘运算的法则和运算律即可。
解析:(1)∵P 是11D C 的中点, ∴P D D A AA AP 1111++=b 21c a AB 21c a C D 21AD a 11++=++=++=(2)∵N 是BC 的中点,∴c 21b a AD 21b a BC 21b a BN AB A A N A 11++-=++-=++-=++= (3)∵M 是1AA 的中点,∴c b 21a 21)b 21c a (a 21AP A A 21AP MA MP 1++=+++-=+=+= 又a c 21AA AD 21AA BC 21CC NC NC 1111+=+=+=+= ∴c 23b 21a 23c 21a c b 21a 21NC MP 1++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+。
点评:用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则,在立体几何中要灵活应用三角形法则;向量加法的平行四边形法则在空间仍然成立.2、共线、共面向量问题例2. 已知A 、B 、C 三点不共线,对平面外一点O ,在下列条件下,点P 是否一定与A 、B 、C 共面?(1)OC 52OB 51OA 52OP ++=;(2)OC OB 2OA 2OP --= 分析:先化简已知等式,观察它能否转化为四点共面的充要条件。
第一章.空间向量与立体几何小结与复习
第一章.空间向量与立体几何小结与复习班级:_____姓名:__________ 编号:_____【预习·基础知识】学习目标1.求距离的常用方法(如:直接法、转化法、向量法).对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计2.掌握直线平面所成角、二面角的计算方法;3.熟练掌握异面直线所成角的求解方法,熟练解决有关问题.自主预习(预习课本自主掌握以下概念和原理)一.课前预习1.空间向量及加减运算(1)空间向量可以看作是平面向量的推广,它们之间有许多共同性质,如_____,_____,_____,_____,等都是一致的。
(2)空间向量的加减运算是用几何方式引入的,向量的加法运算满足_____及_____,对于加法的平行四边形法则和三角形法则,以及减法的三角形法则要注意灵活运用。
2.空间向量的数乘运算(1)空间向量的数乘运算,平行向量的概念,向量平行的充要条件与平面向量的一致。
(2)共面向量基本定理可以判断空间中一向量与不共线向量a ,的关系,特别的,空间一点P 位于平面ABC 内的充要条件是存在有序实数对(y x ,),使__ ___.3.空间向量的数量积(1)空间向量的数量积运算及性质都可以类比平面向量。
(2)空间向量基本定理可以类比平面向量的基本定理来学习。
4.直线的方向向量及应用:(1)确定直线上的点的位置及共线条件(2)判断直线平行或垂直,若m b l //,//a 则 _ ,b a m l ⊥⇔⊥。
5、法向量及其应用21,n n 为平面βα,的法向量,则⇔⊥βα;⇔βα//21//n n ;⇔α//l ;(为L 的方向向量),____⇔⊥βl6、求空间角:设m l ,的方向向量分别为βα,,, 的法向量为21,n n ,两条异面直线m l ,所成的角为θ,则=θc o s ;直线α与平面l 所成角θ,则=θs i n ,两平面βα,的二面角的平面角为θ,=θcos ,取值视具体情况而定。
空间向量知识点归纳总结
空间向量知识点归纳总结知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。
当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。
4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。
6. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。
空间向量知识点总结
空间向量知识点总结空间向量是数学中一个重要的概念,它在解析几何、物理学、工程学等多个领域中都有广泛的应用。
以下是空间向量的一些基础知识点总结:1. 空间向量的定义:空间向量是具有大小和方向的量,通常用一个箭头表示,箭头的起点和终点分别代表向量的起点和终点。
2. 空间向量的表示:空间向量可以用有序的三个实数来表示,即(x, y, z),其中x、y、z分别代表向量在三个正交坐标轴上的分量。
3. 空间向量的运算:- 向量加法:两个向量相加,其结果向量的方向由第一个向量的起点指向第二个向量的终点,分量相加。
- 向量减法:向量减去另一个向量,结果向量的方向由第一个向量的起点指向第二个向量的起点,分量相减。
- 数量乘法:一个向量乘以一个实数,结果向量的方向不变,其长度按实数的倍数缩放。
4. 向量的模:向量的模是向量长度的大小,可以通过勾股定理计算得出,即模长= √(x² + y² + z²)。
5. 向量的单位化:将一个向量除以其模,得到一个长度为1的单位向量。
6. 向量的点积(内积):两个向量的点积是一个标量,其值等于两个向量对应分量乘积的和,即a·b = |a||b|cosθ,其中θ是两个向量之间的夹角。
7. 向量的叉积(外积):两个向量的叉积是一个向量,其方向垂直于原来的两个向量,其大小等于原来两个向量构成的平行四边形的面积,计算公式为a×b = (a_yb_z - a_zb_y, a_zb_x - a_xb_z, a_xb_y -a_yb_x)。
8. 空间向量的坐标变换:在不同的坐标系下,同一个向量的坐标表示可能会不同,坐标变换可以通过旋转矩阵或者变换矩阵来实现。
9. 向量的投影:一个向量在另一个向量上的投影是一个新的向量,其方向与被投影的向量相同,长度是原向量在被投影向量方向上的分量。
10. 向量的线性相关与无关:如果一组向量可以通过线性组合得到零向量,则这些向量是线性相关的;反之,如果无法得到零向量,则这些向量是线性无关的。
空间向量知识点总结讲解
空间向量知识点总结讲解一、向量的基本概念1. 向量的定义:在数学中,向量是具有大小和方向的量,通常表示为有向线段。
向量可以用坐标表示,也可以用行向量或列向量表示。
2. 向量的运算:向量的运算包括加法、数量乘法、点乘、叉乘等。
向量之间的加法和数量乘法可以直接进行,而点乘和叉乘需要通过向量的坐标或分量进行计算。
3. 向量的性质:向量具有大小和方向两个基本属性,同时还具有平行四边形法则,向量共线与共面的性质等。
二、空间向量的概念1. 空间向量的定义:在三维空间中,向量的坐标可以用三个实数表示,即(x, y, z),这就是空间向量。
空间向量通常表示为有向线段,具有大小和方向。
2. 空间向量的运算:空间向量的运算与平面向量相似,可以进行向量的加法、数量乘法、点乘、叉乘等运算。
叉乘是空间向量特有的一种运算,用来得到垂直于两向量所在平面的向量。
3. 空间向量的坐标表示:空间向量的坐标表示为(x, y, z),用来描述向量的起始点和终点在三维空间中的位置。
4. 空间向量的性质:空间向量具有大小和方向的性质,同时还具有与平面向量相似的性质,如共线、共面等。
三、空间向量的线性运算1. 空间向量的线性组合:空间向量的线性组合是指将若干个向量以一定的比例相加得到新的向量的过程。
线性组合在向量空间中有重要的应用,可以通过线性组合来表示向量的线性相关性和线性无关性。
2. 空间向量的线性相关性和线性无关性:当一组向量能够用线性组合的方式得到零向量时,这组向量就是线性相关的;当一组向量不能用线性组合的方式得到零向量时,这组向量就是线性无关的。
线性相关性和线性无关性是向量空间中的重要概念。
3. 空间向量的线性空间:线性空间是指满足一定条件的向量集合,具有向量加法、数量乘法、满足线性组合封闭性、交换性、结合律等性质。
空间向量是线性空间的一个典型例子。
四、空间向量的应用1. 空间向量在几何中的应用:在几何学中,空间向量可以用来描述点、直线、面等几何对象的位置和方向关系,还可以用来解决几何问题,如判定点、线、面的位置关系、计算距离、计算面积等。
空间向量知识点总结
空间向量知识点总结空间向量是高中数学中的重要内容,它为解决立体几何问题提供了一种全新的思路和方法。
下面我们来对空间向量的相关知识点进行一个系统的总结。
一、空间向量的基本概念1、空间向量的定义在空间中,具有大小和方向的量称为空间向量。
2、空间向量的表示空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量通常用小写字母加箭头表示,如\(\vec{a}\)。
3、空间向量的模空间向量\(\vec{a}\)的模(长度)记作\(|\vec{a}|\),其计算公式为\(|\vec{a}|=\sqrt{a_1^2 + a_2^2 + a_3^2}\)(假设\(\vec{a} =(a_1, a_2, a_3)\))。
4、零向量长度为\(0\)的向量称为零向量,记作\(\vec{0}\),其方向是任意的。
5、单位向量模为\(1\)的向量称为单位向量。
若\(\vec{a}\)是非零向量,则与\(\vec{a}\)同向的单位向量为\(\frac{\vec{a}}{|\vec{a}|}\)。
6、相等向量长度相等且方向相同的向量称为相等向量。
7、相反向量长度相等但方向相反的向量称为相反向量。
二、空间向量的运算1、加法空间向量的加法满足三角形法则和平行四边形法则。
设\(\vec{a}\)、\(\vec{b}\)为两个空间向量,则它们的和向量\(\vec{c} =\vec{a} +\vec{b}\)。
2、减法空间向量的减法是加法的逆运算,\(\vec{a} \vec{b} =\vec{a} +(\vec{b})\)。
3、数乘运算实数\(\lambda\)与空间向量\(\vec{a}\)的乘积\(\lambda\vec{a}\)仍然是一个向量。
当\(\lambda > 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)同向;当\(\lambda < 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)反向;当\(\lambda =0\)时,\(\lambda\vec{a} =\vec{0}\)。
空间向量复习课
解:①思路一:几何法 ① 作、证、求
思路二:代数法
② 等体积法
③ 点的迁移
空间向量的应用: 二、空间量的计算
解:②思路一:几何法
① 作、证、求
② 转化为“点到面距离”
思路二:代数法 转化为“方向向量”与“法向量”夹角
空间向量的应用: 二、空间量的计算
解:③思路一:几何法 ① 作、证、求 思路二:代数法 转化为“法向量”与“法向量”夹角
知识点梳理: 一、空间点的坐标:
1. 空间直角坐标系.
知识点梳理: 二、空间向量概念:
1. 定义:在空间,具有大小和方向的量. 模、零向量、单位向量、相等向量、相反向量、共线向量
2. 向量的坐标表示
终点减起点
知识点梳理: 二、空间向量概念:
1.定义:在空间,具有大小和方向的量. 共线向量
②直线的方向向量: 向量与直线平行
解:② 思路二:代数法 利用“向量共面”证明“线面平行” 利用“向量垂直”证明“线面平行”
空间向量的应用: 一、位置关系的判断
解:③思路一:几何法 线线垂直:共面用“勾股定理”、异面用“三垂线定理”、线面垂直 思路二:代数法
空间向量的应用: 二、空间量的计算
空间距离
空间的角
空间向量的应用: 二、空间量的计算
③共面向量:向量与平面平行 向量共面:平行于同一个平面的向量
知识点梳理: 三、空间向量基本定理:
基向量、基底
基向量、基底
知识点梳理: 三、空间向量基本定理:
基向量、基底
位移
知识点梳理: 三、空间向量基本定理: 重要推论
知识 三角形法则,平行四边形法则 减 法: 三角形法则 数 乘: 数量积:
空间向量的应用: 一、位置关系的判断
空间向量小结与复习培训讲学PPT文档共25页
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
空间向量小结与复习培训讲学
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律பைடு நூலகம் ——朱 尼厄斯
空间向量小结与复习培训讲学共25页
Thank you
空间向量小结与复习培训讲学
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
【公开课】空间向量与立体几何 小结与复习
解:建立空间直角坐标系
z
B─xyz(如图),以长度 a 为 y
单位长度,则
x
例 2.已知在四边形 ABCD 中,AD//BC,AD=AB=1,
BCD 45 ,BAD 90°,将△ABD 沿对角线 BD 折起 到如图所示 PBD 的位置,使平面 PBD 平面BCD . ⑴求证: CD PB ; ⑵求二面角 P BC D的余弦值大小; ⑶求点 D 到平面 PBC 的距离.
两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos a b ;
2
ab
直线l 与平面 所成的角为 (0 ≤ ≤ ),sin a u ;
2
au
uv
二面角 ─l ─ 的大小为 ( 0≤ ≤ ), cos
.
uv
(七)空间“距离”问题
点、直线、平面间的距离有七种.点到平面的距离是重点,
VD PBC
1 3
1 2
PD
DC
1 3
1 2
PB
PC
h
PD DC PC h h PD DC 6 PC 3
解: BAD 90 ,AD AB ADB ABD 45° AD// BCBCD 45°
BDC 90°BD DC ,如图所示建立空间直角坐标系 D xyz
则 D(0,0,0),B
2 , 2, 2
2 2
m m
PB PC
0,即 0
x x
z 2
0 yz
0
,
令x
z
1,
y
1
m (1,1,1) cos n ,m
nm
1
3 二面角P BC D的大小 为 arccos
3
| n || m | 1 3 3
空间向量知识点归纳总结(经典)
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a//b 存在实数λ,使a=λb。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。