初中数学分式_习题
人教版 初中数学八年级上册 第十五章 分式 复习习题 (含答案解析)
人教版初中数学八年级上册第十五章分式复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.使代数式有意义的自变量x的取值范围是()A.x≥3B.x>3且x≠4C.x≥3且x≠4D.x>32.下列说法,你认为正确的是()A.0的倒数是0 B.3-1=-3C.π是有理数D.是有理数3.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠24.分式方程的解为()A.B.C.D.无解5.已知,则的值是A.60B.64C.66D.72在实数范围内有意义,则x的取值范围是( )6.若-A.x<B.x≤C.x≠D.x>7.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是()A.B.C.D.8.若分式的值为0,则x的值为()A.-2B.0C.2D.±29.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=10.若代数式在实数范围内有意义,则x的取值范围为()A . x >0B . x ≥0C . x ≠0D . x ≥0且x ≠1 11.关于x 的分式方程的解为非负数,且使关于x 的不等式组有解的所有整数k 的和为( )A . ﹣1B . 0C . 1D . 212.若x 取整数,则使分式的值为整数的x 值有 A . 3个 B . 4个 C . 6个 D . 8个13.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是 A . 2 B . 3 C . 4 D . 5 14.下列等式正确的是 ( ) ①0.000126=1.26×10-4②3.10×104=31000③1.1×10-5=0.000011 ④12600000=1.26×106A . ①②B . ②④C . ①②③D . ①③④15.若数a 使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a 的值之积为( ) A . 28 B . ﹣4 C . 4 D . ﹣2 16.若关于x 的方程无解,则m 的值为A .B .C .D . 17.如果成立,那么下列各式一定成立的是( )A .B .C .D .18.关于x 则实数m 的取值范围是( ) A . m<-6且m≠2 B . m >6且m≠2 C . m<6且m≠-2 D . m<6且m≠2 19.下列运算正确的是( ) A .11x y x y xy--= B .=-1b aa b b a +-- C . 21111a a a --=--+ D . 2111·1a a a a a--=-+20.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子的最小值是”.其推导方法如下:在面积是的矩形中设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是.模仿张华的推导,你求得式子的最小值是().A.B.C.D.二、填空题21.如果a+b=2,那么代数式(a﹣)÷的值是______.22.已知x为正整数,当时x=________时,分式的值为负整数.23.计算:=__.24.分式方程的解为__________.25.一个铁原子的质量是,将这个数据用科学记数法表示为__________.26.已知,则=_____.27.已知2n+2-n=k(n为正整数),则4n+4-n=____________.(用含k的代数式表示)28.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______________.29.请观察一列分式:﹣,,﹣,,…则第11个分式为_____.30.分式和的最简公分母是____________.31.若关于x的方程有增根,则a的值为________.32.对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=_____.33.要使关于x a的取值范围是___..34.当x 取_____时,分式有意义.35.已知a 1=,a 2=,a 3=,…,a n +1=(n 为正整数,且t≠0,1),则a 2018=______(用含有t 的式子表示). 36.对于正数x ,规定 f (x )=,例如:f (4)== ,f ( )==,则f (2017)+f (2016)+…+f (2)+f (1)+f ()+f ()+…+f ()+f ()= .37.如果关于x 的不等式组(){2432x mx x ->-<-的解集为,且关于的分式方程有非负整数解,则符合条件的所有m 的取值之积为( )A .B .C .D . 15-38.已知(x+3)2 - x =1,则x 的值可能是___________;39.若关于x 的方程=3的解是非负数,则b 的取值范围是_____. 40.若分式方程1x aa x -=+无解,则a =________.三、解答题41.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.) 42.解分式方程:2311xx x x +=--. 43.计算:.44.先化简,再求值:,其中 是不等式组的整数解.45.先化简,再求值:,其中m= +1.46.先化简,再求值:,其中 .47.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?48.计算:(1)3a5÷(6a3)•(﹣2a)2;(2)(3.14﹣π)0+0.254×44﹣()﹣149.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?50.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?51.先化简,再求值:(-其中52.已知,,求()的值.53.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?54.计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|55.(1)计算:;(2)化简并求值:,其中,.56.解方程:57.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A ,B 两种机械设备,每台B 种设备的成本是A 种设备的1.5倍,公司若投入16万元生产A 种设备,36万元生产B 种设备,则可生产两种设备共10台.请解答下列问题: (1)A 、B 两种设备每台的成本分别是多少万元?(2)若A ,B 两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A 种设备至少生产53台,求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A 种设备,航空运输每次运2台B 种设备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数. 58.计算:﹣12018﹣|1﹣ |+()﹣1+(3.14﹣π)0+ .59.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元? 60.计算:(2b ax )2÷(﹣3ax b)×38ab .61.(2017云南省,第18题,6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元. (1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和. 62.解方程(1)﹣1=.(2).63.某校计划在暑假两个月内对现有的教学楼进行加固改造,经调查发现,甲、乙两个工程队都有能力承包这个项目,已知甲队单独完成工程所需要的时间是乙队的2倍,甲、乙两队合作12天可以完成工程的;甲队每天的工作费用为4500元,乙队每天的工作费用为10000元,根据以上信息,从按期完工和节约资金的角度考虑,学校应选择哪个工程队?应付工程队费用多少元?64.我市向民族地区的某县赠送一批计算机,首批270台将于近期启运.经与某物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B型汽车比A型汽车每辆车可多装15台,求A、B两种型号的汽车各能装计算机多少台?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元.若运送这批计算机同时用这两种型号的汽车,其中B型汽车比A型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆运费多少元?65.先化简,再求值:,其中.66.先化简,再求值:,其中x的值从不等式组的整数解中选取.67.解方程:68.先化简,再求值:,其中x满足x2-2x-2=0.69.某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.70.若关于的方程的解为正数,求的取值范围.71.计算题(1)先化简,再求值:÷(1+),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 72.已知关于x 的分式方程.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 73.已知关于x 的方程4433x mm x x---=--无解,求m 的值. 74.计算:(1)a (a +2b )﹣(a ﹣2b )(a +b )(2 75.阅读理解:把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将2131xx --表示成部分分式?设分式=将等式的右边通分得: =得: 3{ 1m n m n +=--=,解得: 1{ 2m n =-=-,(1m = ,n = ;(276.某商厦用8万元购进纪念运动休闲衫,面市后供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种运动休闲衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完. (1)商厦第一批和第二批各购进休闲衫多少件? (2)请问在这两笔生意中,商厦共盈利多少元? 77.先化简,再求值:,其中x=﹣3.78.A ,B 两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A ,B 两地同时出发匀速前往B ,A 45分钟. (1)求甲车速度;(2)乙车到达A 地停留半小时后以来A 地时的速度匀速返回B 地,甲车到达B 地后立即提速匀速返回A 地,若乙车返回到B 地时甲车距A 地不多于30千米,求甲车至少提速多少千米/时?79.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.甲工程队施工一天,需付工程款1万元;乙工程队施工一天,需付工程款0.6万元.根据甲、乙工程队的投标书测算,可有三种施工方案:(A )甲队单独完成这项工程,刚好如期完成; (B )乙队单独完成这项工程要比规定工期多用4天;(C )若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工. 为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由. 80.已知关于x 的分式方程2=+4m x x 与分式方程3121x x =-的解相同,求m 2-2m 的值.81.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?82,其中A 、B 为常数,求42A B -的值. 83.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.84.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?85.化简:.86.化简(+a﹣2)÷.87.先化简,再求值:,其中88.先化简再求值:÷(x﹣1﹣),其中x=(1)2017×(﹣)2018.89.先化简,再求值:﹣÷,其中x=2.90.已知,,,求的值.91.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则;等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.任何一个假分式都可以化成整式与真分式的和;(1)下列分式中,属于真分式的是:________(填序号);(2)________+________;(3)__________________. 92.先化简,再计算: 其中.93.为加快城市群的建设与发展,在A,B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.94.阅读思考:数学课上老师出了一道分式化简求值题目.题目:÷(x+1)·-,其中x=-.“勤奋”小组的杨明同学展示了他的解法:解:原式=- ..................第一步=-................ ..第二步 =..........................第三步=..................................第四步 当x =-时,原式=.......................第五步请你认真阅读上述解题过程,并回答问题:你认为该同学的解法正确吗?如有错误,请指出错误在第几步,并写出完整、正确的解答过程.95.湖州市在2017年被评为“全国文明城市”,在评选过程中,湖州市环卫处每天需负责市区范围420千米城市道路的清扫工作,现有环卫工人直接清扫和道路清扫车两种马路清扫方式.已知20名环卫工人和1辆道路清扫车每小时可以清扫20千米马路,30名环卫工人和3辆道路清扫车每小时可以清扫42千米的马路. (1)1名环卫工人和1辆道路清扫车每小时各能清扫多长的马路?(2)已知2017年环卫处安排了50名环卫工人参与了直接清扫工作,为保证顺利完成每日的420千米清扫工作,需派出多少辆道路清扫车参与工作(已知2017年环卫工人与清扫车每天工作时间为6小时)?(3)为了巩固文明城市创建成果,从2018年5月开始,环卫处新增了一辆清扫车参与工作,同时又增加了若干个环卫工人参与直接清扫,使得每日能够较早的完成清扫工作。
初中数学:分式方程习题精选(附参考答案)
初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。
求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。
甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。
已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。
设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。
(完整版)初中数学分式习题(附答案)
、选择题1 •下列各式中,不是分式方程的是( )2 •如果分式屮 5的值为0,那么x 的值是()x 2 5x1 x 1 1A —B.—(x 1) x 1 x x x 1 x x 1 1 C 1 D.—[ (x 1) 1]10x 2 x 3 2A . 0B . 5C . — 5D . ± 5C . 4个无法确定2ax 3 53•把分式2X 2y 中x ,y 都扩大2倍,则分式的值(x y )A •不变 B .扩大2倍 C .扩大4倍 D •缩小2倍4 .下列分式中,最简分式有( 3a 3x 22 2x y m n ~22,~2 2xy m nm 1 a 2 2ab b 2 m 2 1,a 2 2ab b 2分式方程一x4x 2 9的解是( )A • x= ± 2B • x=2x= — 2D •无解若 2x+y=0 ,x 2xy 2xy2y的值为( B.D .无法确定关于x 的方程x 3k—化为整式方程后,x 3会产生一个解使得原分式方程的最简公分母为 0,则 k 的值为( )使分式笃2x等于0的x 值为( )A . 24D .不存在F 列各式中正确的是(a bA_) a b a b Ca ba b B- a b a b D.-10 .下列计算结果正确的是(A.丄 )2amC.— x2abab)1 ~~2 a9xy 隹5a二、填空题1.若分式| y | 5的值等于0,5 yy=2.在比例式 9:5=4: 3x 中,x=、“ b 1 a 1 b 1 a 1 计算: ga bx>时,分式2的值为正数.1 3x计算1 x .6.当分式亠2与分式x 2 3x 2 2x的值相等时,x 须满足1已知x+】=3, x则 x 2+ — =x&已知分式 2xx=时,分式没有意义;当 x=时,22(x 说:“太复杂了,怎么算呢? ”你能帮小明解决这个问题吗?巧青你写出具体的解题过程.分式的值为0 ;当x= — 2时,分式的值为 _________ . 9.当a= _____________ 时,关于x 的方程2ax 3=-的解是x=1 . a x 410 . 一辆汽车往返于相距 akm 的甲、乙两地,去时每小时行 mkm , ?返回时每小时行 nkm ,则往返一次所用的时间是2a 8 (a2x2 1x2 4x 41)J 3xx 12. (1) (1+」)x 11 11 —---- ),其中x=—一;x 1 2⑵(x 22),其中1x= .23 .解方程:(1)』—=2;2x 1 1 2x4 •课堂上,李老师给大家出了这样一道题:当x=3,5 —2 & , 7+ .3 时,求代数式2x 2x 1x2 12x 2刍二的值.小明一看,x 122(x说:“太复杂了,怎么算呢? ”你能帮小明解决这个问题吗?巧青你写出具体的解题过程.5.对于试题:x 31“先化简,再求值: 2,其中x=2•”小亮写出了如下解答过程:x 3 1 x 3 1 x 2 1 1 x (x 1)(x 1) x 1③•••当x=2时,原式=2 X 2 — 2=2 .④(1) _______________________________________ 小亮的解答在哪一步开始出现错误: (直接填序号) (2) ____________________________ 从②到③是否正确: _____________ ;若不正确,错误的原因是 (3) 请你写出正确的解答过程.6 •小亮在购物中心用12.5元买了若干盒饼干, 但他在一分利超市发现, 同样的饼干,这里要比购物中心每盒便宜 0.5元•因2此当他第二次买饼干时,便到一分利超市去买,如果用去 14元,买的饼干盒数比第一次买的盒数多-,?问他第一次在购5物中心买了几盒饼干?x 3 x 1(x 1)(x 1) (x 1)(x 1)=x — 3-( x+1) =2x — 2,7 .、选择题 1 •下列各式中,不是分式方程的是( 第十六章分式单元复习题及答案1 x 1 A.- x x 1 x x C.1 10 x2 x 1B. —(x 1) x 1 x 1 1D.—[—(x 1) 1] 13 !| x | 5 2 .如果分式打 的值为0,那么x 的值是(B ) x 5x D .土 53.把分式2x 2y 中的x , y 都扩大2倍,则分式的值 x yD .缩小2倍F 列分式中, 最简分式有(分式方程一x若 2x+y=0 ,关于x 的方程 4 x 2 93a x y 2m 2n m 1 a 2 2a b b 23x 2 ,2 x 2 y , 2 m 2 , 2 n m 1,a 2 2a bb 2C.4个D .5个的解是( B ) A . x= ± 2 B .x=2C . x= — 2D .无解A A .不变B .扩大2倍C .扩大4倍 C ) 2x xy2xy x 22y的值为(B )3B.— 5D .无法确定2 —化为整式方程后,会产生一个解使得原分式方程的最简公分母为 x3 0,贝U k 的值为(A )X 2 8 .使分式牛丄等于0的x 值为(D ) A . 2 B . — 2C . ± 2X 4a b a b a b a b A- B-9.下列各式中正确的是(C ) a b a b a b a b a b a b a b a b C.- D.- a b a ba bb aA . 3B . 0C . ± 3D .无法确定 D .不存在A . b a1 2g210 .下列计算结果正确的是(B ) 2a b 2ab C . m n nx x m则 二、填空题1. 若分式|y| 5的值等于0, 5 y B.U (a 2 ab) AaaD.(学)2 9xy 务 5a 5ay=2 .在比例式 9: 5=4 : 3x 中,x=20 27b 1 a 1V gT亍的值是2(a . 4. 当 abx>1 21时,分式 —的值为正数.3 1 3x2 2 . 6 .1 x 2当分式舒与分式3x 222的值相等时,x 须满足 x 工± 1x 1已知x+〔=3,x5 2x 113 8.已知分式,当x= 2时,分式没有意义;当 x= — _ 时,分式的值为0;当x= — 2时,分式的值为x 2 24172ax 3 59 .当a=—时,关于x 的方程=—的解是x=1 .3 a x 4a a.一辆汽车往返于相距 akm 甲、乙两地,去时每小时行 mkm , ?返回时每小时行 nkm ,则往返一次所用时间()h .m n三、解答题(2)从②到③是否正确: 不正确 ■:若不正确,错误的原因是(3)请你写出正确的解答过程. 解:正确的应是:x 2 31=x 3 x 12当 x=2 时,原式二x 2 11 x (x 1)(x 1) (x 1)(x 1) x 13 712.5 146. 解:设他第一次在购物中心买了x 盒,则他在一分利超市买了x 盒.由题意得:=0.55XZx解得 x=5.计算题.⑴ 一 a 2a 8 解:原式 a 24a 4_________ g 1 g (a 2)2(a 2)(a(a 24)ga 2 4x 2 1 / ⑵-(x x 4x 4 (x 1)(x 解:原式(x八 x 23x 2 1)g .x 11) 1 (x 1)(x 2)x 1 F_22 .化简求值. (1)(1+1)1+ (1—),其中 x=x 1x 1t 1 当x=— 时, 原式=1(2)21 x25 x 2 2 x解:原式=(x 1) (x 2)(x 2) 31 '(x 2)(x 1)x 2x1 ; 解:原式 =x 1 1 x 1 1 x x 1 x ;2x 1x 1g x 1 2 x 2(x 2三),1 其中x=-. 2x 211 42—厂.当x =2时,原式=4 .3 .解方程.(1)—=2;2x 1 1 2x x 3x 2 1解:用(x+1) (x — 1)同时乘以方程的两边得,2 (x+1 )—3 (x — 1) =x+3 . 解得x=1 . 经检验,x=1是增根.所以原方程无解.4.解:原式(x 1)2 x 1 1 (x 1)(x 1)g2(x 1)=2由于化简后的代数中不含字母 x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3 , 5— 2 2 , 7+ ..3 时,代数式的值都是5.对于试题:“先化简,再求值:x 3 x 2 1,其中x=2. 小亮写出了如下解答过程:x 3 1 x 3 1x 2 1 1 x (x 1)(x 1) x 1x 3 (x 1)(x 1)X 1 (x 1)(x 1)=x — 3—( x+1) =2x — 2,③•••当 x=2 时,原式=2 X 2— 2=2. (1)小亮的解答在哪一步开始出现错误: ①(直接填序号)把分母去掉了解:x=7 .4经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.5。
初中数学计算专练—分式计算(100题)
七年级下册+分式计算一.解答题(共60小题)1.(2022秋•永城市校级期末)先化简,再求值,其中x=﹣1.2.(2022秋•门头沟区期末)先化简,再求值:,其中.3.(2022秋•泸县校级期末)计算:.4.(2022秋•密山市校级期末)先化简,再求值:(1),其中x=2tan45°.5.(2022秋•平南县期末)先化简,再求值:÷(+x﹣2),其中x=﹣1.6.(2022秋•荆门期末)先化简,再求值:,其中a.b满足.7.(2022秋•番禺区校级期末)先化简,再求值:(1),其中x=5,y=3.5.(2),并从3,2,1,0这四个数中取一个合适的数作为x的值代入求值.8.先化简,再求值:(1+)÷,其中x=﹣1.9.(2020秋•宿城区校级月考)计算:(1);(2).10.化简:(1)÷;(2)()2÷.11.(2020秋•任城区校级月考)计算:(1)+;(2)﹣a﹣1.12.(2022秋•哈巴河县期末)先化简:(﹣)÷,然后从﹣3<m<0的范围内选取一个合适的整数作为m的值代入求值.13.(2022秋•甘井子区校级期末)分式计算:(1);(2).14.(2022秋•和平区校级期末)计算:(1);(2).15.(2022秋•顺义区期末)先化简,再求值:,其中.16.(2022秋•涪陵区月考)计算:(1)(x+y)2﹣x(x+2y);(2).17.(2022秋•单县期中)计算:(1);(2).18.(2021秋•集贤县校级期末)先化简,再求值,其中x=﹣2.19.(2022秋•周村区期中)计算:(1);(2).20.(2022秋•洞口县期中)先化简:÷(a﹣1﹣);再请从﹣2,﹣1,0,1,2中选择一个合适的数值代入求值.21.(2022•南岗区校级开学)先化简,再求值:÷(x﹣1﹣),其中x=+(﹣π)0.22.(2022秋•大兴区期末)计算:﹣.23.(2022秋•大连期末)计算:1+()÷.24.(2022秋•房山区期末)计算:.25.(2022秋•莱州市期末)先化简,然后在2,﹣2,﹣1中选一个你认为合适的a 值,代入求值.26.(2022秋•丰台区期末)计算:.27.(2022秋•朝阳区期末)先化简,再求值:,其中a=.28.(2022秋•昌平区期末)先化简,再求值:,其中.29.(2022秋•和平区校级期末)计算:(1);(2).30.(2022秋•海淀区校级期末)计算:(1);(2).31.(2022秋•海淀区期末)化简:.32.(2022秋•滨海新区校级期末)(1);(2).33.(2022秋•北京期末)求代数式的值,其中a=﹣1.34.(2022秋•河北区期末)先化简,再求值:,其中a是8的立方根.35.(2021秋•荷塘区校级期末)先化简,再求值:()÷,其中a=+1,b=−1.36.(2022秋•河西区期末)计算:(1);(2).37.(2022秋•桂平市期中)先化简,再求值:(﹣)÷,其中x﹣2=0.38.(2022春•庐江县月考)先化简,再求值:,其中m=1.39.(2022春•碑林区校级月考)化简求值,并在﹣3,﹣2,2,3这四个数中取一个合适的数为的a值代入求值.40.(2022秋•巴彦县校级期末)先化简,再求值,其中a=﹣1.41.(2022秋•辛集市校级期末)化简,然后从1,2,3,中选一个你喜欢的数代入求值.42.(2022秋•长春期末)先化简,再求值:÷(1﹣),其中a=3.43.(2022秋•定陶区期中)(1)先化简,再求值,其中x=﹣5.(2)若,求值.44.(2022秋•定陶区期中)化简下列分式:(1);(2).45.(2021秋•雷州市校级期末)先化简,再求值:(a+1﹣)÷,其中a是4的平方根.46.(2022秋•莱西市期末)计算:(1)(+)÷(﹣);(2)÷﹣.47.(2022秋•阳春市校级期末)先化简,再求值:,其中x=3.48.(2022秋•光山县期中)化简:.49.(2022•金华模拟)已知a2+2a﹣1=0,求代数式÷的值.50.(2022春•吴中区校级月考)先化简,再求值:÷(a+2﹣),其中a=﹣.51.(2022秋•绥宁县期中)先化简,再求值:,其中a=﹣3.52.(2021秋•镇安县期末)化简:1﹣.53.(2022•赣州模拟)先化简,再求值:,其中a=3.54.(2022秋•鼓楼区校级期中)先化简,再求值,其中x=﹣2.55.(2022秋•海安市月考)先化简代数式÷﹣1,然后选一个你喜欢的值代入.56.(2021秋•汉川市期末)先化简,再求值:﹣(),其中x=2022.57.(2021秋•普陀区期末)计算:÷.58.(2022春•庐阳区校级月考)先化简,若分式的值是负数,求a的取值范围.59.(2022春•九龙坡区校级月考)先化简,再求值:÷,其中|x﹣2|=1.60.(2022春•碑林区校级月考)先化简(﹣a﹣1)÷然后从﹣1,0,1,2中选一个合适的数a的值代入求值.七年级下册+分式计算参考答案与试题解析一.解答题(共60小题)1.(2022秋•永城市校级期末)先化简,再求值,其中x=﹣1.【解答】解:原式=÷=•=(x+2)(x+3)=x2+5x+6,当x=﹣1时,原式=1﹣5+6=2.2.(2022秋•门头沟区期末)先化简,再求值:,其中.【解答】解:原式=•=•=x2﹣x,∵,∴x2﹣x=,∴原式=.3.(2022秋•泸县校级期末)计算:.【解答】原式=+===.4.(2022秋•密山市校级期末)先化简,再求值:(1),其中x=2tan45°.【解答】解:(1)=[﹣1]•=(﹣1)•=•=•=﹣,当x=2tan45°=2×1=2时,原式=﹣=﹣1.5.(2022秋•平南县期末)先化简,再求值:÷(+x﹣2),其中x=﹣1.【解答】解:÷(+x﹣2)=÷=•=•=,当x=﹣1时,原式==1.6.(2022秋•荆门期末)先化简,再求值:,其中a.b满足.【解答】解:=[﹣]•=()•=•∵.∴a﹣=0,b+1=0,解得a=,b=﹣1,当a=,b=﹣1时,原式==﹣.7.(2022秋•番禺区校级期末)先化简,再求值:(1),其中x=5,y=3.5.(2),并从3,2,1,0这四个数中取一个合适的数作为x的值代入求值.【解答】解:(1)==,当x=5,y=3.5时,原式===﹣;(2)=[﹣]•=(﹣)•=•=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠±2且x≠3,∴当x=1时,原式=1+2=3.8.先化简,再求值:(1+)÷,其中x=﹣1.【解答】解:原式=(+)÷=x﹣2,当x=﹣1时,原式=﹣1﹣2=﹣3.9.(2020秋•宿城区校级月考)计算:(1);(2).【解答】解:(1)原式===.(2)原式====.10.化简:(1)÷;(2)()2÷.【解答】解:(1)原式=•=.(2)原式=•=.11.(2020秋•任城区校级月考)计算:(1)+;(2)﹣a﹣1.【解答】解:(1)原式=﹣=﹣===;(2)原式=﹣(a+1)=﹣===.12.(2022秋•哈巴河县期末)先化简:(﹣)÷,然后从﹣3<m<0的范围内选取一个合适的整数作为m的值代入求值.【解答】解:原式=(﹣)•=•﹣•=2(m﹣2)﹣(m+2)=2m﹣4﹣m﹣2=m﹣6.当m=﹣1时,原式=﹣1﹣6=﹣7.13.(2022秋•甘井子区校级期末)分式计算:(1);(2).【解答】解:(1)原式=÷==;(2)原式====﹣2(3+m)=﹣6﹣2m.14.(2022秋•和平区校级期末)计算:(1);(2).【解答】解:(1)==;(2)=÷=•=﹣.15.(2022秋•顺义区期末)先化简,再求值:,其中.【解答】解:原式=•﹣=﹣===,当x=﹣2时,原式===.16.(2022秋•涪陵区月考)计算:(1)(x+y)2﹣x(x+2y);(2).【解答】解:(1)原式=x2+2xy+y2﹣x2﹣2xy=4xy.(2)原式=••==.17.(2022秋•单县期中)计算:(1);(2).【解答】解:(1)==2x;(2)===1.18.(2021秋•集贤县校级期末)先化简,再求值,其中x=﹣2.【解答】解:==﹣,当x=﹣2时,原式=﹣=﹣4.19.(2022秋•周村区期中)计算:(1);(2).【解答】解:(1)原式=====;(2)原式====.20.(2022秋•洞口县期中)先化简:÷(a﹣1﹣);再请从﹣2,﹣1,0,1,2中选择一个合适的数值代入求值.【解答】解:÷(a﹣1﹣)=﹣÷=﹣•=﹣=﹣=,∵当a=﹣2,﹣1,2时,原分式无意义,∴a=0,1,当a=0时,原式==1.21.(2022•南岗区校级开学)先化简,再求值:÷(x﹣1﹣),其中x=+(﹣π)0.【解答】解:原式===;当x=+(﹣π)0=时,原式=.22.(2022秋•大兴区期末)计算:﹣.【解答】解:﹣=﹣==.23.(2022秋•大连期末)计算:1+()÷.【解答】解:原式=1+•=1+==.24.(2022秋•房山区期末)计算:.【解答】解:原式=••=.25.(2022秋•莱州市期末)先化简,然后在2,﹣2,﹣1中选一个你认为合适的a 值,代入求值.【解答】解:====,∵a﹣2≠0,a+1≠0,∴a≠2,a≠﹣1,∴当a=﹣2时,原式=.26.(2022秋•丰台区期末)计算:.【解答】解:=•=•=.27.(2022秋•朝阳区期末)先化简,再求值:,其中a=.【解答】解:=+•(a﹣2)=+==,当a=时,原式==3.28.(2022秋•昌平区期末)先化简,再求值:,其中.【解答】解:=﹣•=﹣==﹣,当时,原式=﹣=﹣.29.(2022秋•和平区校级期末)计算:(1);(2).【解答】解:(1)原式=;(2)原式=()2•=•=.30.(2022秋•海淀区校级期末)计算:(1);(2).【解答】解:(1)原式=+=+=;(2)原式=÷=•=.31.(2022秋•海淀区期末)化简:.【解答】解:原式=÷=•=x.32.(2022秋•滨海新区校级期末)(1);(2).【解答】解:(1)原式==;(2)原式=====.33.(2022秋•北京期末)求代数式的值,其中a=﹣1.【解答】解:=[+]÷=(+)•a(a﹣1)=•a(a﹣1)=3a,当a=﹣1时,原式=3×(﹣1)=﹣3.34.(2022秋•河北区期末)先化简,再求值:,其中a是8的立方根.【解答】解:==.∵a==2,把a=2代入.35.(2021秋•荷塘区校级期末)先化简,再求值:()÷,其中a=+1,b=−1.【解答】解:原式=(+)•=•=,当a=+1,b=﹣1时,原式===.36.(2022秋•河西区期末)计算:(1);(2).【解答】解:(1)=﹣===﹣;(2)=÷[﹣(a﹣1)]=÷=•=﹣.37.(2022秋•桂平市期中)先化简,再求值:(﹣)÷,其中x﹣2=0.【解答】解:(﹣)÷=[﹣]•=(﹣)•=•=,∵x﹣2=0,∴x=2,当x=2时,原式=.38.(2022春•庐江县月考)先化简,再求值:,其中m=1.【解答】解:=•==﹣m﹣9,当m=1时,原式=﹣1﹣9=﹣10.39.(2022春•碑林区校级月考)化简求值,并在﹣3,﹣2,2,3这四个数中取一个合适的数为的a值代入求值.【解答】解:原式=[﹣]•=(﹣)•=•=a+3,由题意得:a≠2和±3,则当a=﹣2时,原式=﹣2+3=1.40.(2022秋•巴彦县校级期末)先化简,再求值,其中a=﹣1.【解答】解:=•=•=,当a=﹣1时,原式=.41.(2022秋•辛集市校级期末)化简,然后从1,2,3,中选一个你喜欢的数代入求值.【解答】解:=•=•=,由分式有意义的条件可知:x≠2,±3,0,∴x=1,当x=1时,,原式=.42.(2022秋•长春期末)先化简,再求值:÷(1﹣),其中a=3.【解答】解:原式=÷=•=2a,当a=3时,原式=2×3=6.43.(2022秋•定陶区期中)(1)先化简,再求值,其中x=﹣5.(2)若,求值.【解答】解:(1)∵===,∴当x=﹣5时,原式==4;(2)∵,∴b﹣a=4ab,即a﹣b=﹣4ab,∴====.44.(2022秋•定陶区期中)化简下列分式:(1);(2).【解答】解:(1)====;(2)=()÷==x﹣1.45.(2021秋•雷州市校级期末)先化简,再求值:(a+1﹣)÷,其中a是4的平方根.【解答】解:(a+1﹣)÷=÷,=×=,由题意知a==±2,又a≠1且a≠2,∴a=﹣2,则原式==0.46.(2022秋•莱西市期末)计算:(1)(+)÷(﹣);(2)÷﹣.【解答】解:(1)(+)÷(﹣)===;(2)÷﹣=﹣=﹣=.47.(2022秋•阳春市校级期末)先化简,再求值:,其中x =3.【解答】解:=•===x (x +1)=x 2+x ,当x =3时,原式=32+3=12.48.(2022秋•光山县期中)化简:.【解答】解:原式=÷﹣=×﹣=﹣==1.49.(2022•金华模拟)已知a2+2a﹣1=0,求代数式÷的值.【解答】解:原式=[]•a(a﹣1)=(+)•a(a﹣1)=•a(a﹣1)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1.50.(2022春•吴中区校级月考)先化简,再求值:÷(a+2﹣),其中a=﹣.【解答】解:÷(a+2﹣)=÷=•=﹣=﹣,当a=﹣时,原式=﹣=﹣=﹣.51.(2022秋•绥宁县期中)先化简,再求值:,其中a=﹣3.【解答】解:原式===,当a=﹣3时,原式=.52.(2021秋•镇安县期末)化简:1﹣.【解答】解:1﹣=1﹣=1﹣==.53.(2022•赣州模拟)先化简,再求值:,其中a=3.【解答】解:=+•=+==,当a=3时,原式==2.54.(2022秋•鼓楼区校级期中)先化简,再求值,其中x=﹣2.【解答】解:===,当x=﹣2时,原式=.55.(2022秋•海安市月考)先化简代数式÷﹣1,然后选一个你喜欢的值代入.【解答】解:原式=﹣1=x﹣1,∵要使分式有意义,∴x不能取﹣1,1,0,当x=2时,原式=2﹣1=1,(答案不唯一,只要x不取﹣1,1,0均可).56.(2021秋•汉川市期末)先化简,再求值:﹣(),其中x=2022.【解答】解:原式=•﹣(+)=﹣=,当x=2022时,原式==.57.(2021秋•普陀区期末)计算:÷.【解答】解:÷=÷=•==.58.(2022春•庐阳区校级月考)先化简,若分式的值是负数,求a的取值范围.【解答】解:∵=•=•=,∴当a﹣2<0,a≠0,且a﹣1≠0时的值是负数,即a的取值范围是a<2且a≠1,a≠0.59.(2022春•九龙坡区校级月考)先化简,再求值:÷,其中|x﹣2|=1.【解答】解:÷=﹣•=﹣===,∵|x﹣2|=1,∴x﹣2=±1,∴x=3或x=1,∵x2﹣1≠0,x(x﹣2)≠0,∴x≠±1,x≠0,x≠2,∴当x=3时,原式===.60.(2022春•碑林区校级月考)先化简(﹣a﹣1)÷然后从﹣1,0,1,2中选一个合适的数a的值代入求值.【解答】解:(﹣a﹣1)÷=[﹣(a+1)]÷=•=•=a﹣2;∵a≠2且a≠﹣1,∴当a=0时,原式=﹣2,当a=1时,原式=﹣1.。
人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)
一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。
初中数学分式部分题库练习汇总50题(含答案解析)
初中数学分式章节习题练习(50题)一、单选题(共27题;共54分)1.下列运算一定正确的是( )A. a2+a3=a5B. 4a-5a=-aC. 2a-2=D. a10÷a2=a5【答案】B【解析】【解答】解:A. a2和a3不是同类项,不能合并,故选项A错误;B. 4a-5a=-a,故选项B正确;C. 2a-2=,故选项C错误;D. a10÷a2=a8,故选项D错误.故答案为:B.【分析】根据合并同类项法则、负整数指数幂、同底数幂相除的法则,逐项进行判断,即可求解.2.下列各式中,是分式的是( )A. B. C. D.【答案】C【解析】【解答】解:ABD、、、是整式,不符合题意;C、是分式,符合题意.故答案为:C.【分析】分母含有字母的代数式是分式,据此定义判断即可.3.分式和的最简公分母()A. B. C. D.【答案】C【解析】【解答】解:因为,,所以分式和的最简公分母为,故答案为:C.【分析】一般取各分母的所有因式的最高次幂的积作为公分母,它叫最简公分母,据此解答即可.4.当x为任意实数时,下列分式一定有意义的是( )A. B. C. D.【答案】 D【解析】【解答】解:x、x2、|x|的值可能为0,故A、B、C不符合题意,x2+1≥1,故x2+1的值不可能为0,故D选项符合题意.故答案为:D.【分析】分式有意义的条件为分式的分母不为零,判断分式有意义,只需判断分母不可能为0即可.5.若关于x 的分式方程有增根,则m 的值为()A. m=-1B. m=0C. m=3D. m=0或m=3【答案】A【解析】【解答】解:∵∴2-(x+m)=2(x-3)2-x-m=2x-63x-8+m=0∵分式方程有增根∴将x=3代入3x-8+m=0可得m=-1故答案为:A.【分析】根据题意,将分式方程化简为整式方程,根据其有增根,可知x=3,代入方程中,即可得到m 的值。
6.若分式的值为零,则x的值为()A. -1B. 2C. -2D. 2或-2【答案】C【解析】【解答】解:∵分式的值为0∴x2-4=0且x-2≠0∴x=-2故答案为:C.【分析】根据分式为0的条件以及分式有意义的条件,综合考虑得到x的值即可。
初中数学-《分式与分式方程》测试题含解析
初中数学-《分式与分式方程》测试题班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分共36分) 1.在2a b -,x x 1+,5πx +,a ba b+-中,是分式的有( )A .1个B .2个C .3个D .4个2.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( ) A .y x my nx ++元 B .y x ny mx ++元 C .y x n m ++元 D .12x y m n ⎛⎫+ ⎪⎝⎭元3.当x =2时,下列分式中,值为零的是( ) A .2322+--x x x B .942--x x C .21-x D .12++x x4.下列分式是最简分式的是( ) A .11m m -- B .3xy y xy - C .22x y x y -+ D .6132mm -5.若34y x =,则x yx+的值为( ) A .1 B .47 C .54 D .746.计算⎪⎭⎫⎝⎛-÷-x x x x 11所得的正确结论是( ) A.11x - B.1 C. 11x + D.-1 7.a ÷b ×b 1÷c ×c 1÷d ×d1等于( )A .aB .222dc b a C .d a D .ab 2c 2d 28.计算22193m m m --+的结果为: ( ) A .13m + B .-13m - C .-13m + D .13m - 9.分式121x x +-的分子分母都加1,所得的分式22x x +的值比121x x +-( )A .减小了B .不变C .增大了D .不能确定 10.若241()w 1a 42a+⋅=--,则w=( ) A.a 2(a 2)+≠- B.a 2(a 2)-+≠ C.a 2(a 2)-≠ D.a 2(a 2)--≠- 11.关于x 的方式方程232x mx +=-的解是正数,则m 可能是( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 12.如果关于x 的方程2435x a x b++=的解不是负值,那么a 与b 的关系是( ) A . a >35b B . b≥35a C .5a≥3b D .5a=3b 二、填空题:(每小题3分共12分)13.化简:23410ab ba = .14.已知31=+a a ,则221a a +的值是 。
完整版)初中数学分式计算题及答案
完整版)初中数学分式计算题及答案分式计算题精选1.计算 $x+y$。
2.化简 $\dfrac{a^2+4a}{a+2}+\dfrac{2a}{a+2}$,其结果是$\dfrac{a^2+6a}{a+2}$。
3.化简 $\dfrac{x^2-4}{4x-16}$。
4.化简 $\dfrac{3x^2-15x}{6x^2-18x}$。
5.化简 $\dfrac{x^2+4x+4}{x^2-4}$。
6.计算 $\dfrac{2x-1}{x+1}+\dfrac{2x+1}{x-1}$。
7.化简 $\dfrac{a^2-1}{a^2+1}-\dfrac{a}{a+1}$。
8.化简 $\dfrac{3}{2x-2}-\dfrac{2}{3x-3}$。
9.化简 $\dfrac{a^2-4a+4}{a^2-4}-\dfrac{a-2}{a+2}$。
10.计算 $\dfrac{2}{x+1}-\dfrac{3}{x-2}$。
11.计算 $\dfrac{2x^2+5x-3}{x^2-4x+3}\div \dfrac{x^2-3x}{x^2-2x-3}$。
12.解方程$\dfrac{2}{x-1}+\dfrac{3}{x+2}=\dfrac{1}{x}$。
13.解方程 $\dfrac{2x-1}{x-2}+\dfrac{3x+1}{x+1}=4$。
14.解方程$\dfrac{x}{x+1}+\dfrac{x+1}{x}=\dfrac{10}{3}$。
15.解方程 $\dfrac{x-1}{x+2}+\dfrac{2x+1}{x-1}=0$。
16.已知 $a,b,c$ 为实数,且满足 $\dfrac{b-3}{a-b}=\dfrac{c-2}{a-c}$,求 $\dfrac{11a}{b-c}$ 的值。
17.解方程 $\dfrac{x-1}{x+1}+\dfrac{2x+3}{x-2}=\dfrac{2x-1}{x-1}$。
初中数学:《分式》单元测试(有答案)
初中数学:《分式》单元测试一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠05.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.8.akg盐溶于bkg水,所得盐水含盐的百分比是.9.某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧天.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=时,该分式的值为0.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有,分式有(填序号).13.分式所表示的实际意义可以是.14.已知分式的值为0,则x的值是.15.若分式的值为负数,则x的取值范围是.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===,﹣===;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.三、判断正误(正确的打“√”,错误的打“×”)20.=;.(判断对错)21.==;.(判断对错)22.3x﹣2=..(判断对错)四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.25.当a取什么值时,分式的值是正数?26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).《第10章分式》参考答案与试题解析一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.【考点】分式有意义的条件.【专题】计算题.【分析】这几个式子有意义的条件是分式有意义,即分母一定不等于零.【解答】解:A、当x=0时,分母为零,分式没有意义,故选项错误;B、当x=±1时,分母为零,分式没有意义,故选项错误;C、无论x为何值,分母都不为零,分式有意义,故选项正确;D、当x=﹣1时,分母为零,分式没有意义,故选项错误.故选C.【点评】本题考查了分式有意义的条件:分母不为零,分式有意义.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:将分式中的m、n都扩大为原来的3倍可变为==.故选A.【点评】本题考查的是分式的基本性质,熟知分式的基本性质3是解答此题的关键.4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠0【考点】分式的基本性质.【分析】把等式右边的式子与左边相比较即可得出结论.【解答】解:∵等式的左边=,右边=,∴x+2≠0.故选D.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.5.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半【考点】分式的基本性质.【分析】把x,y换为2x,y代入所给分式化简后和原来分式比较即可.【解答】解:新分式为:==4•,∴分式的值是原来的4倍.故选C.【点评】本题考查了分式的基本性质的应用,解决本题的关键是得到把相应字母的值扩大或缩小后新分式的值.6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.【考点】分式的基本性质.【分析】要不改变分式的值,将分子分母中x的最高次项的系数变为正数,即要上下同乘﹣1.【解答】解:依题意得:原式=,故选D.【点评】此题利用分式的性质变形时必须注意所乘的(或所除的)整式上下相同,且不为0.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.【考点】列代数式(分式).【分析】根据题意利用路程÷时间=速度进而得出答案.【解答】解:∵小明th走了skm的路,∴小明走路的速度是:km/h.故答案为:.【点评】此题主要考查了列代数式,根据路程与速度和时间直接的关系得出是解题关键.8.akg盐溶于bkg水,所得盐水含盐的百分比是.【考点】列代数式(分式).【分析】利用盐的质量÷(盐+水)的质量可得答案.【解答】解:由题意得:×100%=,故答案为:.【点评】此题主要考查了由实际问题列出代数式,关键是正确理解题意.9.(2016春•泰兴市校级期中)某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧(﹣)天.【考点】列代数式(分式).【分析】根据“多用的天数=节约后用的天数﹣原计划用的天数”列式整理即可.【解答】解:这些煤可比原计划多用的天数=实际所烧天数﹣原计划所烧天数=(﹣)天.故答案为:(﹣).【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.本题的等量关系为:多用的天数=后来可用的天数﹣原计划用的天数.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.【考点】列代数式(分式);加权平均数.【分析】首先根据题意得出总环数除以总次数得出即可.【解答】解:∵a次投了m环,b次投了n环,∴则小华此次比赛的平均成绩是:.故答案为:.【点评】此题主要考查了列代数式以及加权平均数,正确利用加权平均数得出是解题关键.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=3时,该分式的值为0.【考点】分式的值;分式的定义;分式的值为零的条件.【分析】除法运算中,被除式为分子,除式为分母,即可写成分式的形式,要使分式的值为0,分式的分子为0,分母不能为0.【解答】解:将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为==;当3﹣m=0且m+2≠0,即m=3时,该分式的值为0.故答案为:,;3.【点评】考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有①③④⑥⑦,分式有②⑤(填序号).【考点】分式的定义;整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在式子:①﹣3x;②;③x y﹣7xy;④﹣x;⑤;⑥;⑦中,整式有①③④⑥⑦,分式有②⑤.故答案为:①③④⑥⑦;②⑤.【点评】本题考查整式、分式的概念,要熟记这些概念.13.分式所表示的实际意义可以是如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【考点】分式的定义.【专题】开放型.【分析】根据分式的意义进行解答即可.【解答】解:本题答案不唯一,如:如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【点评】考查了分式的定义,本题属开放性题目,答案不唯一,只要写出的题目符合此分式即可.14.已知分式的值为0,则x的值是﹣1.【考点】分式的值为零的条件.【分析】分式等于零时:分子等于零,且分母不等于零.【解答】解:由分式的值为零的条件得|x|﹣1=0且x2+x﹣2≠0,由|x|﹣1=0,得x=﹣1或x=1,由x2+x﹣2≠0,得x≠﹣2或x≠1,综上所述,分式的值为0,x的值是﹣1.故答案为:﹣1.【点评】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若分式的值为负数,则x的取值范围是x>1.5.【考点】分式的值.【分析】因为分子大于0,整个分式的值为负数,所以让分母小于0列式求值即可.【解答】解:由题意得:3﹣2x<0,解得:x>1.5.故答案为:x>1.5.【点评】考查了分式的值,分式的值为负数,则分式的分子分母异号.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.【考点】分式的值为零的条件;分式有意义的条件.【专题】计算题.【分析】根据分式无意义可以求出a,分式值为0求出b,进而求出a+b.【解答】解:当x=﹣2时,分式无意义,即﹣2+a=0,a=2;当x=4时,分式的值为0,即b=4.则a+b=6.故当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.故答案为6.【点评】分式有意义分母不为0,分式值为0,分子为0,分母不为0.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.【考点】分式的基本性质.【分析】(1)分式的分子、分母同乘以2b;(2)分子、分母同时乘以(x﹣2y);(3)分子、分母同时除以2a.【解答】解:(1)==.故答案是:2(a+b)b;(2)==.故答案是:(x﹣2y);(3)=3a﹣b.故答案是:2a.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.【考点】分式的基本性质.【分析】(1)根据分式的性质,分母的变化,可得分子;(2)根据分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变,分母的变化,可得分子.【解答】解:(1);(2);故答案为:a2+ab,x+y.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===﹣,﹣==﹣=;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.【考点】分式的基本性质.【分析】根据分式的性质,可得分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【解答】解:(2):﹣===﹣,﹣==﹣=;(3)分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【点评】本题考查了分式的性质,分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.三、判断正误(正确的打“√”,错误的打“×”)20.=;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断.【解答】解:分式的分子、分母同时乘以x(x≠0)可以得到.故答案应为“×”.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.21.==;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断即可.【解答】解:根据分式的基本性质得出:原式不正确,即==错误,故答案为:×.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.22.3x﹣2=.×.(判断对错)【考点】约分.【分析】根据分式有意义的条件进而得出.【解答】解:当3x+2≠0时,3x﹣2=,∴原式错误.故答案为:×.【点评】此题主要考查了分式的基本性质,熟练根据分式性质得出是解题关键.四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).【考点】分式的值为零的条件;分式有意义的条件.【分析】分式无意义时:分母等于零;分式有意义时:分母不等于零;分式等于零时:分子等于零,且分母不等于零.【解答】解:(1)当分母x=0时,分式无意义;当分母x≠0时,分式有意义;当分子x+1=0,且分母x≠0时,分式值为0;(2)当分母x﹣1=0,即x=1时,分式无意义;当分母x﹣1≠0,即x≠1时,分式有意义;当分子x+3=0且分母x﹣1≠0,即x=﹣3时,分式值为0.【点评】本题考查了分式的值为零的条件、分式有意义的条件.注意:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.【考点】分式的值.【分析】(1)将a=﹣2代入,列式计算即可求解;(2)先化简,再将x=﹣2,y=2代入化简后的式子,列式计算即可求解.【解答】解:(1)∵a=﹣2,∴==﹣8;(2)==﹣,∵x=﹣2,y=2,∴原式=1.【点评】本题考查了分式的值,约分.分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.25.当a取什么值时,分式的值是正数?【考点】分式的值.【分析】根据分式的值是正数得出不等式组,进而得出x的取值范围.【解答】解:∵分式的值是正数,∴或,解得a<﹣1或a>3.故当a<﹣1或a>3时,分式的值是正数.【点评】此题主要考查了分式的值以及不等式组的解法,得出分子与分母的符号是解题关键.26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).【考点】分式的基本性质.【分析】(1)先将分母按字母a进行降幂排列,添上带负号的括号,再根据分式的符号法则,将分母的负号提到分式本身的前边;(2)先将分子、分母均按字母y进行降幂排列,并且都添上带负号的括号,再根据分式的基本性质,将分子、分母都乘以﹣1.【解答】解:(1)==;(2)==.【点评】本题考查了分式的基本性质及分式的符号法则,解题的关键是正确运用分式的基本性质.规律总结:(1)同类分式中操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式符号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).【考点】分式的基本性质.【分析】(1)先找出各式分子与分母的分母的公因式,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.【解答】解:(1)分式的分子与分母同时乘以6得,原式=.(2)分式的分子与分母同时乘以100得,原式=.【点评】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的数(或整式),分式的值不变.28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).【考点】分式的基本性质.【分析】(1)把分式的分子、分母同时乘以10即可得出结论;(2)把分式的分子、分母同时乘以100,再同时除以5即可.【解答】解:(1)分式的分子、分母同时乘以10得,=;(2)分式的分子、分母同时乘以100得,==.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
骄子教育分式练习题
一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):
1.下列运算正确的是( ) A.x 10÷x 5=x 2 B.x -4·x=x -3 C.x 3·x 2=x 6 D.(2x -2)-3=-8x 6
2. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.1
1
a b + B.1
ab C.1
a b + D.ab
a b +
3.化简a b
a b a b --+等于( ) A.2222a b a b +- B.2
22()a b a b +- C.2222a b a b -+ D.2
22()a b a b +-
4.若分式224
2x x x ---的值为零,则x 的值是( )
A.2或-2
B.2
C.-2
D.4
5.不改变分式5
2223x y
x y
-+的值,把分子、分母中各项系数化为整数,结果是( ) A.2154x y x y -+ B.4523x y x y -+ C.61542x y
x y -+ D.121546x y
x y -
+
6.分式:①223a a ++,②22a b a b --,③412()a a b -,④1
2x -中,最简分式有( )
A.1个
B.2个
C.3个
D.4个
7.计算4222x
x x
x x x ⎛⎫
-÷ ⎪-+-⎝⎭的结果是( ) A. -1
2x + B. 1
2x + C.-1 D.1
8.若关于x 的方程x a
c
b x d -=- 有解,则必须满足条件( )
A. a ≠b ,c ≠d
B. a ≠b ,c ≠-d
C.a ≠-b , c ≠d
D.a ≠-b , c ≠-d
9.若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( )
A.a<3
B.a>3
C.a ≥3
D.a ≤3
10.解分式方程22
3
6
111x x x +=+--,分以下四步,其中,错误的一步是( )
A.方程两边分式的最简公分母是(x-1)(x+1)
B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6
C.解这个整式方程,得x=1
D.原方程的解为x=1
二、填空题:(每小题4分,共20分)
11.把下列有理式中是分式的代号填在横线上 .
(1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5
.023+m . 12.当a 时,分式
321+-a a 有意义. 13.若x=2-1,则x+x -1=__________.
14.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.
15.计算1
201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 16.已知u=
121
s s t -- (u ≠0),则t=___________. 17.当m=______时,方程233x m x x =---会产生增根. 18.用科学记数法表示:12.5毫克=________吨.
19.当x 时,分式x
x --23的值为负数. 20.计算(x+y)·22
22x y x y y x
+-- =____________. 三、计算题:(每小题6分,共12分) 21.23651x x x x x +----; 22.242
4422
x y x y x x y x y x y x y ⋅-÷-+-+.
四、解方程:(6分) 23.21212339
x x x -=+--。
五、列方程解应用题:(10分)
24.甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比是3:2,求甲、 乙两队单独完成此项工程各需多少天?
例1 (1)当_____________=m 时,分式2
3)3)(1(2+---m m m m 的值为零; (2)要使分式x
x
-11有意义,则x 的取值范围是____________________. 例4 已知1)
1(112222-++=--+x C x B x A x x x x ,其中C B A 、、为常数.求C B A ++的值.
1、(1)若使分式a
a a 231142++-没有意义,则a 的值为_____________________; 2、已知511=+y x ,则_________________________2252=+++-y
xy x y xy x . 3、已知
22-+x b x a 与的和等于442-x x ,则_______________,__________==b a 22、已知
3
21)3)(2)(1(60++-++=+-+x C x B x A x x x ,其中C B A 、、为常数,求C B A ++的值.
⑴ 已知 31=-x x ,则221x
x + = . ⑵(08
芜湖)已知113x y -=,则代数式21422x xy y x xy y ----的值为 .
4.把分式)0,0(≠≠+y x y
x x 中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小2倍 C. 改变原来的
41 D. 不改变 9、化简下列各题:
(1)1221422-+∙⎪⎭⎫
⎝⎛---x x x x x ; (2)⎪⎭
⎫ ⎝⎛--+∙+-y x x y x y x x 2121;
(3)请将下面代数式尽可能化简,再选择一个你喜欢的数代入求值:1
1)1(22--++-a a a a .
2、已知
511=+y x ,则_________________________2252=+++-y xy x y xy x 分式四则混合运算
例:1.b b a b a b b a b a a 22222122-÷+-+⋅- 2.
⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛+-+---1111112232x x x x x 3.⎪⎭
⎫ ⎝⎛--+÷--252423x x x x 本节反馈 A:1.)11(x x x -+÷ 2.⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+b a b a 1111 3.a a a a 34)121(22+-⋅++ 4.2222
2822)(,14111y x x x y x y x x a a a a a -÷⎪⎪⎭
⎫ ⎝⎛--+-÷⎪⎪⎭⎫ ⎝⎛+--+附 B: 5.⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+----+x x x x x x x 414412222 6.⎪⎪⎭⎫ ⎝⎛--+÷⎥⎦⎤⎢⎣⎡--+y x y x y x y x 11)(1)(122 C:7.当2,2
1=-=b a 时,求 2
22
22222b a ab b a ab b a b a b a b a b a ++⋅+--+÷+-的值. 6.1
111112---++x x x B:7.x x x x x x 13632++-- 8. 962319222++--+-x x x x x 9.422
52----m m m 11.⎪⎭
⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a 44 12.已知:25)5)(2(14-++=+-+x B x A x x x 求A,B. 13.887
4432284211a x x x a x x a x x a x a -++-+-+--。