重庆市开县镇安中学九年级数学上学期第三次月考试题 新人教版
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、单项选择题(共18分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,点(2,﹣1)关于原点对称的点的坐标是()A.(2,1)B.(﹣2,1)C.(﹣1,2)D.(﹣2,﹣1)3.⊙O的半径为3,点P在⊙O外,点P到圆心的距离为d,则d需要满足的条件()A.d>3B.d=3C.0<d<3D.无法确定4.将一元二次方程x2+6x+3=0化为(x+h)2=k的形式,则k的值为()A.3B.6C.9D.125.关于二次函数y=﹣(x+1)2+3的图象,下列说法错误的是()A.开口向下B.对称轴为直线x=﹣1C.当x<﹣1时,y随x的增大而增大D.当x=﹣1时,函数有最小值,最小值为y=36.如图,AB为⊙O的直径,过圆上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=22.5°,⊙O的半径为2,则BD的长为()A.1B.2C.2﹣2D.3﹣2二、填空题(共18分)7.已知x=﹣1是方程x2﹣ax+1=0的一个根,则a的值为.8.一个不透明的盒子里,装有除颜色外无其他差别的白珠子2颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.2左右,则盒子中黑珠子可能有颗.9.一个圆锥的母线长为5,侧面展开图的面积是20π,则该圆锥的底面半径为.10.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度至少为°.11.东汉时期的数学家赵爽在注解《周髀算经》时,给出的“赵爽弦图”是我国古代数学的瑰宝,如图1,四个直角三角形是全等的,且直角三角形的长直角边与短直角边之比为2:1,现连接四条线段得到图2的新的图案.若随机向该图形内掷一枚针,则针尖落在图2中阴影区域的概率为.12.如图,已知点A从原点O出发,以每秒2个单位长度的速度沿着x轴的正方向运动,经过t(t≥1.5)秒后,以O,A为顶点作菱形OABC,使点B,C都在第一象限内,且∠AOC=60°.若以点P(0,2)为圆心,PC为半径的圆恰好与菱形OABC某一条边所在的直线相切,则t的值为.三、解答题(共84分)13.(1)解方程:x2﹣4x+1=0.(2)如图,E是正方形ABCD的边DC上一点,把△ADE绕点A旋转一定角度后与△ABF重合.若四边形AECF的面积为16,求AD的长.14.如图,抛物线y=ax2+x+c与x轴交于点A(﹣1,0),且对称轴为直线x=1.求抛物线的解析式.15.已知AB是⊙O的直径,DE与⊙O相切于点D,且DE⊥BE,设BE交⊙O于点C,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,作∠ABC的平分线.(2)在图2中,找出BC边上的中点G.16.已知关于x的一元二次方程x2﹣(m+1)x+m=0.(1)求证:无论m为何值,方程总有实数根.(2)设方程的两根均为等腰△ABC的边长,且△ABC的周长为5,求m的值.17.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD.(1)若∠BAD=20°,求∠ACB的度数.(2)若BC平分∠ABD,AD=2,求AC的长.18.江西可谓物华天宝,山清水秀.寒假期间小尹打算去领略江西四大名山的风采,分别为A.明月山;B.武功山;C.庐山;D.三清山.由于时间原因,只能选择其中两个景点,于是小尹决定通过抽签的方式选择,将四张小纸条分别写上四个景点的名字,做出四个签(外表完全相同),然后从中随机抽出两张,每张签抽到的机会均等.(1)抽到“明月山”是事件,抽到“井冈山”是事件(填“不可能”或“必然”或“随机”).(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求“小尹抽到明月山和庐山”的概率.19.如图,△ABC的顶点坐标分别为A(﹣3,5),B(﹣4,2),C(2,3).(1)画出△ABC关于点O中心对称的△A1B1C1.(2)画出△ABC绕点C顺时针旋转90°后的△A2B2C,当点A旋转到A2时,求点A所经过的路径长.20.桑葚被称为“民间圣果”,其营养价值是苹果的5~6倍,是葡萄的4倍,具有降压降脂,健脾养胃等功效.今年某采摘园喜获丰收,经市场调研发现,当桑葚的售价为30元/千克时,每天可销售200千克,若单价每降价1元,销售量可增加50千克.已知该品种的桑葚成本价为15元/千克.(1)若该采摘园每天获利3500元,且尽量增加销售量,桑葚售价应降低多少元?(2)设桑葚售价降低a元,当a为何值时,该采摘园每天的利润最大.21.如图,以△ABC的边BC上一点O为圆心,OB为半径的圆,经过点A,且与边BC交于点E,D为⊙O上一点,连接AE,AD,其中∠CAE=∠ABC.(1)求证:AC是⊙O的切线.(2)若∠ADB=60°,⊙O的半径为3,求阴影部分的面积.(结果保留根号)22.函数图象在探究函数的性质时有非常重要的作用,某同学根据学习函数的经验,探究了函数y=x2﹣2|x|+1的图形和性质.(1)如表给出了部分x,y的取值:x…﹣3﹣2﹣10123…y…m10n014…则m=,n=.(2)在如图所示的平面直角坐标系中画出函数y=x2﹣2|x|+1的图象.(3)根据画出的函数图象,写出该函数的一条性质.(4)若点M(m,y1)在图象上,且y1≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,请直接写出k的取值范围.23.【操作发现】如图1,在等边△ABC中,点B,C在直线MN上,E为BC边上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,则线段CF与BE 的数量关系是,线段CF与直线MN所夹锐角的度数是.【类比探究】如图2,在等边△ABC中,点B,C在直线MN上,若E为BC延长线上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,上述两个结论还成立吗?请说明理由.【拓展应用】如图3,在正方形ABCD中,点B,C在直线MN上,E为直线MN上的任意一点,连接AE,并把线段AE绕点E顺时针旋转90°得到线段EF,连接CF.(1)试探究线段BE与CF的数量关系及线段CF与直线MN所夹锐角的度数,并说明理由.(2)若正方形的边长为2,连接DF,当DF=时,求线段BE的长.参考答案一、单项选择题(共18分)1.解:A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意;故选:A.2.解:点(2,﹣1)关于原点对称的点的坐标是(﹣2,1),故选:B.3.解:∵点P在⊙O外,∴d>3.故选:A.4.解:方程x2+6x+3=0,移项得:x2+6x=﹣3,配方得:x2+6x+9=6,即(x+3)2=6,则k=6,故选:B.5.解:∵二次函数y=﹣(x+1)2+3,∴a=﹣1<0,函数的图象开口向下,故选项A正确,不符合题意;对称轴是直线x=﹣1,故选项B正确,不符合题意;当x<﹣1时,y随x的增大而增大,故选项C正确,不符合题意;当x=﹣1时,函数有最大值y=3,故选项D错误,符合题意;故选:D.6.解:连接OC,∵∠A=22.5°,∴∠COD=2∠A=45°,∵CD是⊙O的切线,∴∠OCD=90°,∴△OCD是等腰直角三角形,∵OC=2,∴OD=,∴BD=OD﹣OB=2﹣2,故选:C.二、填空题(共18分)7.解:由题意得:把x=﹣1代入方程x2﹣ax+1=0中,则(﹣1)2﹣a•(﹣1)+1=0,∴1+a+1=0,∴a=﹣2,故答案为:﹣2.8.解:设有黑色珠子n颗,由题意可得,,解得n=8.故估计盒子中黑珠子大约有8个.故答案为:8.9.解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=20π,∴R=4.故答案为:4.10.解:紫荆花图案可以被中心发出的射线分成5个全等的部分,则旋转的角度至少为360÷5=72度,故答案为:72.11.解:如图2,设直角三角形的长直角边与短直角边分别为2x和x,则AC=x,BD=x,AB=CD,△ABD是直角三角形,则大正方形面积=AC2=5x2,△ADC面积=•x•x=x2,阴影部分的面积S=5x2﹣4×x2=3x2,∴针尖落在阴影区域的概率为=.故答案为:.12.解:∵已知A点从(0,0)点出发,以每秒2个单位长的速度沿着x轴的正方向运动,∴经过t秒后,∴OA=2t,∵四边形OABC是菱形,∴OC=2t,当⊙P与OA,即与x轴相切时,如图所示,则切点为O,此时PC=OP,过P作PE⊥OC,∴OE=CE=OC,∴OE=t,∵∠AOC=60°,∴∠POC=30°,∵A(0,2),∴PE=,∴OE==6,∴t=6.故答案为:6.三、解答题(共84分)13.解:(1)∵x2﹣4x+1=0,∴(x﹣2)2=3,∴x﹣2=±,∴x1=+2,x2=﹣+2;(2)∵把△ADE绕点A旋转一定角度后与△ABF重合,∴△ADE≌△ABF,∴S△ADE=S△ABF,∴四边形AECF的面积等于正方形的面积,∴AD2=16,∴AD=4.14.解:由已知可得:,解得,∴抛物线解析式为y=﹣x2+x+.15.解:(1)如图1,BD为所作;(2)如图2,点G为所作.16.(1)证明:∵a=1,b=﹣(m+1),c=m,∴Δ=b2﹣4ac=[﹣(m+1)]2﹣4×1×m=m2+2m+1﹣4m=m2﹣2m+1=(m﹣1)2≥0,∴无论m为何值,方程总有实数根;(2)解:∵x2﹣(m+1)x+m=0,即(x﹣1)(x﹣m)=0,解得:x1=1,x2=m.当关于x的一元二次方程x2﹣(m+1)x+m=0有两个相等的实数根时,m=1,∴△ABC的三条边长分别为1,1,3,∵1+1=2<3,∴1,1,3不能组成三角形,∴m=1不符合题意,舍去;当关于x的一元二次方程x2﹣(m+1)x+m=0有两个不相等的实数根时,m==2,∴△ABC的三条边长分别为1,2,2,∵1+2=3>2,∴1,2,2能组成三角形.∴m的值为2.17.解:(1)∵AD是⊙O的直径,∴∠ABD=90°,∵∠BAD=20°,∴∠D=90°﹣20°=70°,∴∠ACB=∠D=70°;(2)连接OC,∵BC平分∠ABD,∴∠ABC=ABD=45°,∴∠AOC=2∠ABC=90°,∵AD=2,∴AO=1,∴AC=AO=.18.解:(1)抽到“明月山”是随机事件,抽到“井冈山”是不可能事件,故答案为:随机,不可能;(2)画树状图如下:这次抽签所有等可能的结果共有12种,其中“小尹抽到明月山和庐山”的结果有2种,即AC、CA,∴“小尹抽到明月山和庐山”的概率为=.19.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C即为所求,∵AC==,∴弧长AA2==.20.解:设桑葚售价应降低x元,则每天可售出(200+50x)千克,由题意得,(30﹣15﹣x)(200+50x)=3500,解得x1=1,x2=10,∵采摘园尽量增加销售量,∴x=10,答:桑葚售价应降低10元;(2)设采摘园每天的利润为w元,根据题意得:w=(30﹣15﹣a)(200+50a)=﹣50a2+550a+3000=﹣50(a﹣)2+4512,∵﹣50<0,∴当a=时,w有最大值,最大值为4512.5,答:当a=时,该采摘园每天的利润最大.21.(1)证明:如图,连接OA,∵BE是⊙O的直径,∴∠BAE=90°,∴∠OAB+∠OAE=90°,∵OA=OB,∴∠OBA=∠OAB,∵∠CAE=∠ABC,∴∠CAE=∠OAB,∴∠CAE+∠OAE=90°,∴OA⊥AC,∵OA是⊙O的半径,∴AC是⊙O的切线;(2)解:∵∠ADB=60°,∴∠AEB=∠ADB=60°,∵OA=OE,∴△OAE为等边三角形,∴∠AOC=60°,∴AC=OA=3,∴S阴影部分=S△OAC﹣S扇形AOE=×3×3﹣=﹣π.22.解:(1)将x=﹣3,x=0分别代入函数y=x2﹣2|x|+1,得m=9﹣6+1=4,n=1,故答案为:4,1;(2)画出函数图象如图:(3)该函数的一条性质:函数图象关于y轴对称;(4)由图象得,若点M(m,y1)在图象上,且y1≤1,则﹣1≤m≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,则m+k≤﹣3或m+k≥3,∴k≤﹣3﹣m或k≥3﹣m,∴k的取值范围为k≤﹣4或k≥4.23.解:【操作发现】如图1中,过点E作EK∥AC交AB于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEC=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠ECF=120°,∵BE=EK,∴CF=BE,∠FCN=60°,故答案为:CF=BE,60°;【类比探究】如图2中,结论成立.理由:过点E作EK∥AC交BA的延长线于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEN=∠AEF+∠FEN=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAB=∠FEN,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=60°,∵BE=EK,∴CF=BE;【拓展应用】(1)结论:CF=BE,线段CF与直线MN所夹锐角的度数为45°.理由:在BA上取一点K,使得BK=BE.∵四边形ABCD是正方形,∴∠ABC=90°,∵BK=BE,∴∠BKE=∠BEK=45°,∴∠AKE=135°,∵∠AEN=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=90°,∴∠EAB=∠FEN,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=135°,∴∠FCN=180°﹣135°=45°;(2)如图4﹣1中,过点D作DH⊥CF于点H.当点F在点H上方时,∵△DCH是等腰直角三角形,CD=2,∴CH=DH=,∵DF=,∴FH===2,∴CF=BE=3.如图4﹣2中,当点F在点H的下方时,同法可得FH=2,∴CF=BE=FH﹣CH=,综上所述,BE的长为或3.。
人教版九年级上册数学第三次月考试题及答案
人教版九年级上册数学第三次月考试卷一、单选题1.下列图形是中心对称图形的是()A.B.C.D.2.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.无法确定3.如果-1是方程2x²-x+m=0的一个根,则m值()A.-1B.1C.3D.-34.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°5.在一个不透明的口袋中装有5个白球,若干个黑球,它们除颜色外其它完全相同,已知摸到白球概率为0.2,则袋子中黑球有多少个?()A.15B.10C.5D.206.将抛物线y=(x-1)²+2先向右平移3个单位,再向下平移5个单位得到的抛物线解析式是()A.y=(x-4)²+7B.y=(x-4)²-3C.y=(x+2)²+7D.y=(x+2)²-37.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x,可列方程为()A.50.7(1+x)2=125.6B.125.6(1﹣x)2=50.7C.50.7(1+2x)=125.6D.50.7(1+x2)=125.68.如图,AB是OO的直径,弦CD⊥AB,垂足为P,若CD=8,PB=2,则⊙O直径()A.10B.8C.5D.39.已知二次函数y=ax²+bx+c(a≠0)图象的一部分如图所示,给出以下结论:①abc<0;②当x=-1时,函数有最大值;③方程ax²+bx+c=0的解是x1=1,x2=-3;④4a+2b+c>0,⑤2a-b=0,其中结论正确的个数是()A.1B.2C.3D.410.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD 运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题11.一个盒子内装有大小、形状相同的6个球,其中红球3个、绿球1个、白球2个,任意摸出一个球,则摸到白球的概率是______12.已知圆锥的底面直径为4cm ,母线长为6cm ,则此圆锥的侧面积为____.13.若关于x 的一元二次方程kx²-x-1=0有两个实数根,则k 的取值范围______14.在Rt ABC 中,∠C=90°,BC=3,AC=4,则ABC 的外接圆半径是______15.如图,将△ABC 的绕点A 顺时针旋转得到△AED ,点D 正好落在BC 边上.已知∠C=80°,则∠EAB=____________°.16.如图,正六边形ABCDEF 内接于圆O ,边长AB=2,则正六边形的面积是______17.如图,点C 在以O 为圆心的半圆内一点,直径AB =4,∠BCO=90°,∠OBC=30°,将△BOC 绕圆心逆时针旋转到使点C 的对应点C′在半径OA 上,则边BC 扫过区域(图中阴影部分)面积为______(结果保留π)三、解答题18.解方程:(1)x 2+2x =2(2)4(3x ﹣2)(x +1)=3x +319.某幢建筑物从10米高的窗户A 用水管向外喷水,喷出的水流呈抛物线状(如图),若抛物线最高点M 离墙1米,离地面403米.问:(1)求抛物线的解析式;(2)求水流落地点B 离墙的距离20.已知:在ABC 中,AB AC =.(1)求作:ABC 的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若ABC 的外接圆的圆心O 到BC 边的距离为4,6BC =,则O S = .21.为落实“垃圾分类”,环卫部门要求垃圾要按A 、B 、C 三类分别装袋投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾,甲、乙各投放了一袋垃圾.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求甲乙投放的垃圾恰好是同类垃圾的概率(要求画出树状图)22.已知关于x 的一元二次方程x²-(2k+1)x+k 2+k=0(1)求证:无论k 为任何实数,方程总有两个不相等的实数根;(2)若两个实数根x 1,x 2满足()()121130x x ++=,求k 值.23.如图,已知正方形ABCD 的边长为3,E 、F 分别是边BC 、CD 上的点,∠EAF=45°(1)求证:BE+DF=EF(2)当BE=1时,求EF 的长24.如图:以ABC 的边AB 为直径作⊙O ,点C 在OO 上,BD 是⊙O 的弦,∠A=∠CBD ,过点C 作CF ⊥AB 于点交于点G 过作C ∥BD 交AB 的延长线于点E(1)求证:CG=BG(2)∠BAD=30°,CG=4,求BE 的长25.如图,已知抛物线25y ax bx =++经过A(5-,0),B(4-,3-)两点,与x 轴的另一个交点为C ,顶点为D ,连接CD .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B ,C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求PBC 的面积的最大值及点P 的坐标;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案1.A2.B3.D4.D5.D6.B7.A8.A9.C10.B11.1312.12π13.k≥14-且k≠0.14.52.15.20°.16.17.π18.(1)x 1=﹣1x 2=﹣1+(2)x 1=﹣1,x 2=1112.19.(1)210201033y x x =-++;(2)3米.20.(1)见解析;(2)25π21.(1)13;(2)13,作图见解析22.(1)见详解;(2)17k =-,24k =;23.(1)证明见解析;(2)52.24.(1)见解析;(2)25.(1)265y x x =++;(2)①278,P(52-,154-),②存在,P(32-,74-)或(0,5)。
九年级月考(三)数学(人教新课标版).doc
九年级月考(三)数学(人教新课标版)一、填空题(每小题2分,共20分)1.如果22021y x y x +=++-,则=2.观察下列各式:6415,5314,4213222⨯=-⨯=-⨯=-……试猜想120072-=3.如图所示,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 个平方单位。
4.若一元二次方程)0(02≠=++a c bx ax 有一根是1,则a+b+c= 5.已知代数式)9(-x x 与代数式9x -9的值相等,则x =6.如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm 。
如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm 。
7.一副三角板按如图所示叠放在一起,若固定△AOB ,将△ACD 绕着公共顶点A ,按顺时针方向旋转α度(0<α<180),当△ACD 的边CD 与△AOB 的边AB 平行时,相应的旋转角α的值是8.已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径长 cm .9.如图,已知BC 的等腰三角形纸片ABC 的底边,AD ⊥BC ,∠BAC ≠90°,将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出中心对称图形 个。
10.如图,半径为30cm 的转轮转120°角时,传送带上的物体A 平移的距离为 cm 。
(结果保留π)二、选择题(选择题(每小题3分,共18分) 11.下列计算正确的是( )A .416±=B .12223=-C .41624=÷D .2632=⨯ 12.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A .2cmB .3cmC .23cmD .52cm13.等腰△ABC 的腰AB=AC=4cm ,若以A 的圆心,2cm 为半径的圆与BC 相切,∠BAC的度数为( )A .30°B .60°C .90°D .120°14.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC//QR ,则∠AOQ= ( )A .60°B .65°C .72°D .75°15.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .π23B .π34C .4D .2+π2316.某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x ,根据题意得方程为 ( ) A .50175)1(2=+xB .50+502)1(x +=175C .50(1+x )+502)1(x +=175D .50+50(1+x )+502)1(x +=175三、解答题(每小题5分,共20分)17.计算:.344)311272(--18.如图,某建筑工地上一钢管的横截面是圆环形。
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、单项选择题(共18分)1.下列表示我国古代窗棂样式结构的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.已知关于x的方程x2﹣6x+m=0有两个相等的实数根,则m的值为()A.6B.﹣6C.9D.﹣93.把抛物线y=﹣2x2向上平移1个单位,向右平移2个单位,得到()A.y=﹣2(x+1)2﹣2B.y=﹣2(x+2)2+2C.y=2(x﹣2)2﹣1D.y=﹣2(x﹣2)2+14.下列事件中属于必然事件的是()A.任意买一张电影票,座位号是偶数B.某射击运动员射击1次,命中靶心C.掷一次骰子,向上的一面是6点D.367人中至少有2人的生日相同5.如图,点A、B、C在⊙O上,点D是AB延长线上一点,若∠CBD=55°,则∠AOC 的度数为()A.100°B.105°C.125°D.110°6.如图,点A在反比例函数y=第一象限内的图象上,点B在x轴的正半轴上,OA=AB,△AOB的面积为2,则a的值为()A.B.C.2D.1二、填空题(共24分)7.已知关于x的一元二次方程x2﹣a=0有一个根是x=﹣2,则a的值为.8.如果抛物线y=﹣x2+bx的对称轴为y轴,那么实数b的值为.9.若点(m,3)与点(2,n)关于原点对称,则m+n=.10.小强投一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则向上的一面的点数大于1且小于6的概率为.11.如图,⊙O是正六边形ABCDEF的外接圆,P是劣弧AB上一点,则∠CPD的度数是.12.抛物线y=ax2+bx+c的部分图象如图所示,关于x的方程ax2+bx+c=2的解是.13.已知反比例函数y=图象位于一、三象限,则m的取值范围是.14.如图,扇形OAB是圆锥的侧面展开图,点O、A、B均在小正方形的顶点上,若每个小正方形的边长均为1,则这个圆锥的底面半径为.三、解答题(共78分)15.解方程:(x﹣3)2=3﹣x.16.求抛物线y=x2﹣2x的顶点坐标,并直接写出y随x增大而增大时自变量x的取值范围.17.列方程解应用题:口罩是一种卫生用品,正确佩戴口罩能阻挡有害气体、飞沫、病毒等物质,对进入肺部的空气有一定的过滤作用.据调查,2021年某厂家口罩产量由1月份的125万只增加到3月份的180万只.该厂家口罩产量的月平均增长率是多少?18.已知⊙O中的弦AB=CD,求证:AD=BC.19.如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将△P AC绕点A 逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.20.如图,二次函数y=﹣x2+(k﹣1)x+4的图象与y轴交于点A,与x轴的负半轴交于点B,且△AOB的面积为6.(1)求A,B两点的坐标;(2)求该二次函数的表达式;(3)如果点P在坐标轴上,且△ABP是等腰三角形,直接写出P点坐标.21.如图分别是甲、乙同学手中的扑克牌,在看不到对方牌面的前提下,分别从对方手中随机抽取一张牌;只要两张牌面的数字相同,则可以组成一对.(1)若甲先从乙手中抽取一张,恰好与手中牌面组成一对的概率是;若乙先从甲手中抽取一张,恰好与手中牌面组成一对的概率是.(2)若甲、乙手中的扑克牌不变,丙同学空手加入游戏,在看不到甲、乙牌面的前提下,分别从甲、乙两名同学手中各随机抽取一张牌,恰好组成一对的概率又是多少?(用树状图或列表法解答)22.如图,CD为⊙O的直径,CD⊥AB,垂足为F,AO⊥BC,垂足为E,连接AC.(1)求∠B的度数;(2)若CE=4,求圆O的半径.23.如图,反比例函数的图象与一次函数y=x+b的图象交于点A(1,3),点B(﹣3,n);(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)直接写出反比例函数值大于一次函数值的自变量x的取值范围.24.某服装专卖店在销售中发现,一款衬衫每件进价为70元,销售价为100元时,每天可售出20件,今年受“疫情”影响,为尽快减少库存,商店决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么平均可多售出2件.(1)每件衬衫降价多少元时,平均每天盈利750元?(2)要想平均每天盈利1000元,可能吗?请说明理由.25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P 的坐标.26.已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的逆转点.点C为线段AB关于点A的逆转点的示意图如图1:(1)如图2,在正方形ABCD中,点为线段BC关于点B的逆转点;(2)如图3,在平面直角坐标系xOy中,点P的坐标为(x,0),且x>0,点E是y轴上一点,点F是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H.①补全图;②判断过逆转点G,F的直线与x轴的位置关系并证明;③若点E的坐标为(0,5),连接PF、PG,设△PFG的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围.参考答案一、单项选择题(共18分)1.解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项正确.故选:D.2.解:∵关于x的方程x2﹣6x+m=0有两个相等的实数根,∴Δ=(﹣6)2﹣4×1×m=0,解得:m=9,故选:C.3.解:抛物线y=﹣2x2先向上平移1个单位得到解析式:y=﹣2x2+1,再向右平移2个单位得到抛物线的解析式为:y=﹣2(x﹣2)2+1.故选:D.4.解:任意买一张电影票,座位号可能是奇数,也可能是偶数,因此选项A不符合题意;某射击运动员射击1次,不一定命中靶心,因此不是必然事件,选项B不符合题意;掷一次骰子,向上的一面可能是1、2、3、4、5、6点,因此选项C不符合题意;1年即使有366天,根据抽屉原理可知,367人中至少有2人的生日相同是必然事件,因此选项D符合题意;故选:D.5.解:设点E是优弧AC(不与A,C重合)上的一点,连接AE、CE,如图所示:∵∠CBD=55°.∴∠E=∠CBD=55°.∴∠AOC=2∠E=110°.故选:D.6.解:如图,过A作AC⊥OB与C,设点A的坐标为(m,n),∵AC⊥OB、OA=OB,∴OB=2OC,∵△AOB的面积为2,∴OB•AC=2,∴OB•AC=4,∴2OC•AC=4,∴OC•AC=2,∴S△AOC=mn=OC•AC=1,∴mn=2,∵点A在反比例函数y=第一象限内的图象上,∴n=,∴mn=a=2.故选C.二、填空题(共24分)7.解:将x=﹣2代入方程,得:4﹣a=0,解得a=4,故答案为:4.8.解:∵抛物线y=﹣x2+bx的对称轴为y轴,∴对称轴x=﹣=0,解得:b=0.故答案为0.9.解:∵点(m,3)与点(2,n)关于原点对称,∴m=﹣2,n=﹣3,则m+n=﹣2﹣3=﹣5.故答案为:﹣5.10.解:∵一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,点数大于1且小于6的有2,3,4,5共4个,∴这个骰子向上的一面点数大于1且小于6的概率为.故答案为:.11.解:连接OC,OD,∵六边形ABCDEF是正六边形,∴∠COD==60°,∴∠CPD=∠COD=30°,故答案为:30°.12.解:∵根据图示知,抛物线与y轴的交点是(0,2)对称轴为x=1,∴根据对称性,当y=2时,x=2,∴方程ax2+bx+c=2的解是x1=0,x2=2.故答案是:x1=0,x2=2.13.解:∵反比例函数y=图象位于一、三象限,∴﹣(m﹣6)>0,解得m<6.故答案是:m<6.14.解:设这个圆锥的底面半径为r,OA==2,所以2πr=,解得r=,即这个圆锥的底面半径为.故答案为.三、解答题(共78分)15.解:由原方程,得(x﹣3)2+x﹣3=0,提取公因式,得(x﹣3)(x﹣3+1)=0,∴x﹣3=0或x﹣2=0,解得,x1=3,x2=2.16.解:∵抛物线y=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的顶点坐标为(1,﹣1),y随x增大而增大时自变量x的取值范围是x>1.17.解:从1月份到3月份,该厂家口罩产量的平均月增长率为x,根据题意可得:125(1+x)2=180,解得,x1=0.2,x2=﹣2.2(不符合题意,舍去),答:该厂家口罩产量的月平均增长率是20%.18.解:∵⊙O中的弦AB=CD,∴,∴,∴AD=BC.19.解:(1)连接PP′,由题意可知BP′=PC=10,AP′=AP,∠P AC=∠P′AB,而∠P AC+∠BAP=60°,所以∠P AP′=60度.故△APP′为等边三角形,所以PP′=AP=AP′=6;(2)利用勾股定理的逆定理可知:PP′2+BP2=BP′2,所以△BPP′为直角三角形,且∠BPP′=90°可求∠APB=90°+60°=150°.20.解:(1)由解析式可知,点A的坐标为(0,4),∵S△OAB=×BO×4=6,BO=3.所以B(3,0)或(﹣3,0),∵二次函数与x轴的负半轴交于点B,∴点B的坐标为(﹣3,0);(2)把点B的坐标(﹣3,0)代入y=﹣x2+(k﹣1)x+4,得﹣(﹣3)2+(k﹣1)×(﹣3)+4=0.解得k﹣1=﹣,∴所求二次函数的解析式为y=﹣x2﹣x+4;(3)(Ⅰ)当点P在x轴上时,①如图1,当AB=AP时,则点P和点B关于y轴对称,则点P的坐标为(3,0);②如图2,当AB=BP时,当点P在y轴左侧时,BP=AB=5,则OP=PB+OB=5+3=8,故点P(﹣8,0),当点P在y轴右侧时,则BP′=5,过点P′(2,0),点P的坐标为(2,0)或(﹣8,0);③如图3,当AP=BP时,设点P的坐标为(x,0),根据题意,得=|x+3|.解得x=.∴点P的坐标为(,0);故点P的坐标为(3,0),(2,0),(﹣8,0),(,0).(Ⅱ)当点P在y轴上时,同理可得,点P的坐标为(0,)或(0,9)或(0,﹣1)或(0,﹣4);综上所述,点P的坐标为(3,0),(2,0),(﹣8,0),(,0)或(0,)或(0,9)或(0,﹣1)或(0,﹣4).21.解:(1)∵乙手中有4张牌,∴甲先从乙手中抽取一张共有4种等可能的结果,恰好与手中牌面组成一对的有3种情况,∴恰好与手中牌面组成一对的概率是:;∵乙先从甲手中抽取一张,都能与手中牌面组成一对,∴乙先从甲手中抽取一张,恰好与手中牌面组成一对的概率是:1.故答案为:,1;(2)列表与画树状图得:2678乙甲2(2,2)(2,6)(2,7)(2,8)7(7,2)(7,6)(7,7)(7,8)6(6,2)(69,6)(6,7)(6,8)∴一共有12种等可能的结果,恰好组成一对的概率有3种情况,∴恰好组成一对的概率为:=.22.解:(1)如图,∵AO⊥BC,AO过O,∴CE=BE,∴AB=AC,同理得:AC=BC,∴AB=AC=BC∴△ABC是等边三角形∴∠B=60°;(2)∵△ABC是等边三角形,∴∠ACB=60°,∵AC=BC,CD⊥AB,∴∠BCD=30°,∵CE=4,在Rt△CEO中,OE=4,∴OC=2OE=8,即圆O的半径为8.23.解:(1)∵反比例函数y=的图象经过点A(1,3),∴k=1×3=3,∴反比例函数的关系式为,又∵一次函数y=x+b的图象也经过点A(1,3),∴3=1+b,∴b=2,∴一次函数的关系式为y=x+2,∴一次函数的关系式为y=x+2,反比例函数关系式为y=;(2)把点B(﹣3,n)的坐标代入反比例函数y=得;n==﹣1,∴点B的坐标为(﹣3,﹣1),直线AB与y轴交于点C,当x=0时,y=2,∴C(0,2),则OC=2,∴S△AOB=S△AOC+S△COB=×2×1+×2×3=4;(3)由于一次函数y=x+2与反比例函数y=的交点A(1,3),B(﹣3,﹣1),根据一次函数、反比例函数的增减性可知,当反比例函数值大于一次函数值时,自变量的取值范围为:x<﹣3或0<x<1,答:反比例函数值大于一次函数值的自变量x的取值范围为x<﹣3或0<x<1.24.解:(1)设每件衬衫降价x元,则平均每天可售出(20+2x)件,依题意,得:(100﹣70﹣x)(20+2x)=750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15.∵尽快减少库存,∴x=15.答:每件衬衫降价15元时,平均每天赢利750元.(2)不可能,理由如下:依题意,得:(100﹣70﹣x)(20+2x)=1000,整理,得:x2﹣20x+200=0.∵Δ=(﹣20)2﹣4×1×200=﹣400<0,∴此方程无实数根,∴不可能盈利1000元.25.解:(1),解得:,∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+3)(x﹣1),∴B(﹣3,0),把B(﹣3,0)、C(0,3)分别代入直线y=mx+n得:,解得:,∴直线BC解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3,得y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又B(﹣3,0),C(0,3),BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(t﹣3)2+12=t2﹣6t+10,若B为直角顶点,则:BC2+PB2=PC2,即:18+4+t2=t2﹣6t+10,解得:t=﹣2;若C为直角顶点,则:CB2+PC2=PB2,即:18+t2﹣6t+10=4+t2,解得:t=4;若P为直角顶点,则PB2+PC2=BC2,即:4+t2+t2﹣6t+10=18,解得:t=.综上所述,满足要求的P点坐标为(﹣1,﹣2),(﹣1,4),(﹣1,),(﹣1,)26.解:(1)由题意,点A是线段AB关于点B的逆转点,故答案为A.(2)①图形如图3所示.②结论:GF⊥x轴.理由:∵点F是线段EF关于点E的逆转点,点G是线段EP关于点E的逆转点,∴∠OEF=∠PEG=90°,EG=EP,EF=EO,∴∠GEF=∠PEO,∴△GEF≌△PEO(SAS),∴∠GFE=∠EOP,∵OE⊥OP,∴∠POE=90°,∴∠GFE=90°,∵∠OEF=∠EFH=∠EOH=90°,∴四边形EFHO是矩形,∴∠FHO=90°,∴FG⊥x轴.③如图4﹣1中,当0<x<5时,∵E(0,5),∴OE=5,∵四边形EFHO是矩形,EF=EO,∴四边形EFHO是正方形,∴OH=OE=5,∴y=•FG•PH=•x•(5﹣x)=﹣x2+x.如图4﹣2中,当x>5时,y=•FG•PH=•x•(x﹣5)=x2﹣x.综上所述,.。
人教版2022-2023学年九年级数学上册第三次月考测试题(附答案) (2)
2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(本题共16分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.抛物线y=3(x﹣1)2+2的顶点坐标为()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)3.将一元二次方程x2﹣8x+10=0通过配方转化为(x+a)2=b的形式,下列结果中正确的是()A.(x﹣4)2=6B.(x﹣8)2=6C.(x﹣4)2=﹣6D.(x﹣8)2=54 4.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°5.AB为⊙O的直径,点C在⊙O上,若∠C=15°,则∠BOC=()A.60°B.45°C.30°D.15°6.已知点A(﹣3,y1)B(2,y2)均在抛物线y=﹣2(x﹣1)2+3上,则下列结论正确的是()A.3<y1<y2B.3<y2<y1C.y2<y1<3D.y1<y2<37.已知函数y=﹣x2+bx+c,其中b>0,c<0,此函数的图象可以是()A.B.C.D.8.做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m500100015002000250030004000500026551279310341306155820832598“正面向上”的次数n0.5300.5120.5290.5170.5220.5190.5210.520“正面向上”的频率下面有3个推断:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的试验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是()A.②B.①③C.②③D.①②③二、填空题(本题共16分)9.若关于x的一元二次方程x2+mx﹣2m=0的一根为1,则m的值是.10.请写出一个开口向下,并且与y轴交于点(0,﹣1)的抛物线的表达式:.11.在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是.12.如图,点A在⊙O上,弦BC垂直平分OA,垂足为D.若OA=4,则BC的长为.13.将抛物线y=2x2向上平移b(b>0)个单位长度后,所得新抛物线经过点(1,4),则b的值为.14.如图,P A,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是.15.小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中,为区别口味,他打算制作“**饼干”字样的矩形标签粘贴在盒子侧面.为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90°(如图).已知该款圆柱形盒子底面半径为6cm,则标签长度l应为cm.(π取3.1)16.如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点A(0,2),B(0,8),⊙M为△ABP的外接圆.(1)点M的纵坐标为;(2)当∠APB最大时,点P的坐标为.三、解答题(本题共68分)17.解方程x2﹣3x+1=0.18.已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.19.关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.20.北京世界园艺博览会(以下简称“世园会”)于2019年4月29日至10月7日在北京市延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的游玩路线,如表:A B C D漫步世园会爱家乡•爱园艺清新园艺之旅车览之旅小美和小红都计划去世园会游玩,她们各自在这4条路线中任意选择一条,每条路线被选择的可能性相同.(1)求小美选择路线“清新园艺之旅”的概率;(2)用画树状图或列表的方法,求小美和小红恰好选择同一条路线的概率.21.如图,在⊙O中,直径EF⊥CD,垂足为M,若CD=2,EM=5,求⊙O的半径?22.已知二次函数y=x2﹣6x+8.(1)直接写出二次函数y=x2﹣6x+8图象的顶点坐标;(2)画出这个二次函数的图象;(3)当0<x<4时,y的取值范围是.23.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C逆时针旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当∠BDE=25°时,求∠BEF的度数.24.如图,AB为⨀O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⨀O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,求四边形ACDE面积.25.某景观公园内人工湖里有一组小型喷泉,水柱从垂直于湖面的水枪喷出,水柱落于湖面的路径形状是抛物线.现测量出如下数据,在距水枪水平距离为d米的地点,水柱距离湖面高度为h米.d(米)0.0 1.0 2.0 3.0 4.8…h(米) 1.0 1.75 2.0 1.750.04…请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接.(2)请结合表中所给数据或所画图象,写出水柱最高点距离湖面的高度为米,此时抛物线的解析式为.(3)现公园想通过喷泉设立新的游玩项目,准备通过调节水枪高度,使得公园湖中的4人平顶游船能从喷泉下方通过.已知游船宽度为1.6米,顶棚到水面的高度为2米.要求游船从喷泉水柱中间通过时,为避免游船被喷泉淋到,顶棚到水柱的垂直距离均不小于0.5米.求公园应该将水枪高度调节到多少米以上?(备注:水枪调节过程中所喷出的抛物线的形状相同)26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(0,﹣2),(2,﹣2).(1)直接写出c的值和此抛物线的对称轴;(2)若此抛物线与直线y=﹣6没有公共点,求a的取值范围;(3)点(t,y1),(t+1,y2)在此抛物线上,且当﹣2≤t≤4时,都有|y2﹣y1|<.直接写出a的取值范围.27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.参考答案一、选择题(本题共16分)1.解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.2.解:∵抛物线y=3(x﹣1)2+2是顶点式,∴顶点坐标是(1,2).故选:C.3.解:x2﹣8x=﹣10,x2﹣8x+16=6,(x﹣4)2=6.故选:A.4.解:∵∠B=35°,∠C=90°,∴∠BAC=180°﹣35°﹣90°=55°,∵点C,A,B1在同一条直线上,∴∠BAB1=180°﹣∠BAC=180°﹣55°=125°,即旋转角等于125°.故选:C.5.解:∵OA=OC,∴∠A=∠C=15°;∴∠BOC=2∠A=30°.故选:C.6.解:当x=﹣3时,y1=﹣2(﹣3﹣1)2+3=﹣29,当x=2时,y2=﹣2(2﹣1)2+3=1,所以y1<y2<3.故选:D.7.解:∵a=﹣1<0,b>0,c<0,∴该函数图象的开口向下,对称轴是直线x=﹣>0,与y轴的交点在y轴的负半轴上;故选:D.8.解:①当抛掷次数是1000时,“正面向上”的频率是0.512,但“正面向上”的概率不一定是0.512,本小题推断不合理;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520,本小题推断合理;③若再次做随机抛掷该纪念币的试验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次,本小题推断合理;故选:C.二、填空题(本题共16分)9.解:把1代入方程有:1+m﹣2m=0m=1.故答案为:1.10.解:根据题意得:y=﹣x2﹣2x﹣1(答案不唯一),故答案为:y=﹣x2﹣2x﹣1(答案不唯一)11.解:∵在一个不透明袋子中有3个红球和2个黑球,共5个球,∴取出红球的概率是.故答案为:.12.解:连接OC,∵BC⊥OA,∴∠ODC=90°,BD=CD,∵OD=AD,∴OD=OA==2,∴CD===2,∴BC=2CD=4,故答案为4.13.解:将抛物线y=2x2向上平移b个单位后可得图象y=2x2+b,将(1,4)代入y=2x2+b得4=2+b,解得b=2,故答案为:2.14.解:连接OA、OB,∵P A,PB分别切⊙O于点A,B,∴OA⊥P A,OB⊥PB,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,∴∠Q=∠AOB=×140°=70°,故答案为:70°.15.解:标签长度l==3π=9.3(cm),故答案为:9.3.16.解:(1)∵点A(0,2),B(0,8),∴AB的中点坐标为(0,5),∵⊙M为△ABP的外接圆,∴点M在AB的垂直平分线上,∴点M的纵坐标为5,故答案为:5;(2)由圆周角定理可知,当⊙M与x轴相切于点P时,∠APB最大,连接MA、MP,过点M作MN⊥y轴于点N,∵⊙M与x轴相切于点P,∴MP⊥x轴,∴四边形NOPM为矩形,∴OP=MN,MP=ON,∵AB=6,MN⊥AB,∴AN=3,∴MP=ON=5,在Rt△AMN中,MN===4,∴OP=MN=4,∴点P的坐标为(4,0),故答案为:(4,0).三、解答题(本题共68分)17.解:x2﹣3x+1=0,∵Δ=b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x1=,x2=.18.解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.19.解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴Δ=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.20.解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,小美选择路线“清新园艺之旅”的概率;(2)画树状图如下:共有16种等可能的结果,小美和小红恰好选择同一线路游览的结果有4种,则小美和小红恰好选择同一线路游览的概率为=.21.解:设⊙O的半径为R,∵EF⊥CD,EF过圆心O,CD=2,∴CM=DM=1,∠OCM=90°,由勾股定理得:OC2=OM2+CM2,即R2=(5﹣R)2+12,解得:R=2.6,即⊙O的半径为2.6.22.解:(1)∵y=x2﹣6x+8=(x﹣3)2﹣1,∴抛物线顶点坐标为(3,﹣1).故答案为:(3,﹣1).(2)如图,(3)将x=0代入y=x2﹣6x+8得y=8,∵抛物线顶点坐标为(3,﹣1),∴当0<x<4时,﹣1≤y<8,故答案为:﹣1≤y<8.23.(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CE,∴CD=CE,∠DCE=90°=∠ACB,∴∠ACD=∠BCE,∵∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),(2)解:∵△ACD≌△BCE,∴∠CBE=∠CAD=45°,∴∠ABE=∠ABC+∠CBE=90°,∵∠BDE=25°,∴∠BEF=65°.24.(1)证明:∵ED与⊙O相切于D,∴OD⊥DE,∵F为弦AC中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DO=a,∴AO∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=a,∴平行四边形ACDE面积=a2.25.解:(1)以水枪与湖面的交点为原点,水枪所在的直线为y轴建立平面直角坐标系,如图所示:(2)由图象可知水珠最高点距离湖面的高度为2米,根据图象设二次函数的解析式为y=a(x﹣2)2+2,将(0,1)代入y=a(x﹣2)2+2得a=﹣,∴抛物线的解析式为y=﹣x2+x+1,故答案为:2;y=﹣x2+x+1;(3)设水枪高度至少向上调节m米,由题意知调节后的水枪所喷出的抛物线的解析式为y=﹣x2+x+1+m,当横坐标为2+=2.8时,纵坐标的值大于等于2+0.5=2.5,∴﹣×2.82+2.8+1+m≥2.5,解得:m≥0.66,∴水枪高度至少向上调节0.66米,∴水枪高度调节到1.66米以上.26.解:(1)∵抛物线y=ax2+bx+c经过点(0,﹣2),(2,﹣2),∴,解得:,∴抛物线解析式为y=ax2﹣2ax﹣2,∴抛物线对称轴为直线x=﹣=1,故c的值为﹣2,抛物线的对称轴为直线x=1;(2)把y=﹣6代入y=ax2﹣2ax﹣2,得:ax2﹣2ax﹣2=﹣6,整理得:ax2﹣2ax+4=0,∵抛物线与直线y=﹣6没有公共点,∴Δ=(﹣2a)2﹣4a×4<0,即a(a﹣4)<0,∵a≠0,∴当a<0时,a﹣4>0,即a>4,此时,无解;当a>0时,a﹣4<0,即a<4,∴0<a<4,综上所述,a的取值范围为0<a<4;(3)∵点(t,y1),(t+1,y2)在此抛物线上,∴y1=at2﹣2at﹣2,y2=a(t+1)2﹣2a(t+1)﹣2=at2﹣a﹣2,∴|y2﹣y1|=|(at2﹣a﹣2)﹣(at2﹣2at﹣2)|=|a(2t﹣1)|,∵当﹣2≤t≤4时,都有|y2﹣y1|<,∴﹣<a(2t﹣1)<,∴﹣<at<+,∵a≠0,∴当a<0时,+<t<﹣,∴,解得:<a<0;当a>0时,﹣<t<+,∴,解得:0<a<;综上所述,a的取值范围是<a<0或0<a<.27.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH(AAS),∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.28.解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图像为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;(3)⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,由d(⊙T,△ABC)=1知此时t=﹣4;②当⊙T在△ABC内部时,当点T与原点重合时,d(⊙T,△ABC)=1,知此时t=0;当点T位于T3位置时,由d(⊙T,△ABC)=1知T3M=2,∵AB=BC=8、∠ABC=90°,∴∠C=∠T3DM=45°,则T3D===2,∴t=4﹣2,故此时0≤t≤4﹣2;③当⊙T在△ABC右边时,由d(⊙T,△ABC)=1知T4N=2,∵∠T4DC=∠C=45°,∴T4D===2,∴t=4+2;综上,t=﹣4或0≤t≤4﹣2或t=4+2.。
人教版九年级上册数学第三次月考试题带答案
人教版九年级上册数学第三次月考试卷一、单选题1.下列4个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.如图,⊙O的半径是5,弦AB=6,OE⊥AB于E,则OE的长是()A.2B.3C.4D.53.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣34.若⊙O的半径为8cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定5.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A.2B.3C.4D.56.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25πB.65πC.90πD.130π7.如图,已知C、D在以AB为直径的⊙O上,若∠CAB=30°,则∠D的度数是()A.30°B.70°C.75°D.60°8.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC =5,则△ABC的周长为()A.16B.14C.12D.109.如图,在矩形ABCD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A.4B.214C.5D.25410.如图,点C在以AB为半径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关AC对称,DF⊥DE于点D,并交EC的延长线与点F.下列结论:①CE=CF;②线段EF的最小值为3③当AD=2时,EF与半圆相切;④当点D从点A运动到点B时,线段EF扫过的面积是3.其中正确的结论()A.1个B.2个C.3个D.4个二、填空题11.若点P(a,﹣2)、Q(3,b)关于原点对称,则a﹣b=_____.12,则它的周长是______.13.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为________.14.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径为______.15.如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上.若AB =4,则CN=_____.三、解答题16.如图,⊙O的弦AB与半径OC相交于点P,BC∥OA,∠C=50°,那么∠APC的度数为.17.解方程(1)x2﹣4x=0(2)2x2+3=7x18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).19.如图,AB是⊙O的一条弦,且AB=C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.求OA的长.20.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求 BC的长.21.如图,AB为⊙O的直径,直线l经过⊙O上一点C,过点A作AD⊥l于点D,交⊙O 于点E,AC平分∠DAB.(1)求证:直线l是⊙O的切线;(2)若DC=4,DE=2,求线段AB的长.22.如图,以等边三角形ABC一边AB为直径的⊙O与边AC,BC分别交于点D,E,过点D作D F⊥BC,垂足为点F.(1)求证:D F为⊙O的切线;(2)若等边三角形ABC的边长为4,求D F的长;(3)求图中阴影部分的面积.23.如图直角坐标系中,已知A(-8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.24.已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A,B两点(点A在点B左侧),与y轴交于点C、设直线CM与x轴交于点D.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过A、B两点,且与直线CD相切?若存在,求出P的坐标;若不存在.请说明理由.(3)设直线y=kx+2与抛物线交于Q、R两点,若原点O在以QR为直径的圆外,请直接写出k的取值范围.参考答案1.A2.C3.A4.A5.B6.B7.D8.B9.D10.C 11.-5 12.12 13.240°14.315.6-16.75°.17.(1)x1=0,x2=4;(2)x1=12,x2=318.(1)画图见解析;(2)点B所经过的路径长为5π2.19.4.20.(1)证明过程见解析;(2)π21.(1)详见解析;(2)AB=10.22.(1)证明见解析;(2(3)332 23π-.23.(1)直线OB与⊙M相切.;(2)M的坐标为(-247,247).24.(1)y=﹣x2+2x+3;(2)满足题意的点P存在,其坐标为(1,﹣);(3)213 3 -<k<213 3.。
最新人教版九年级数学上册第三次月考试题
人教版九年级数学上册第三次月考试题一、选择题(共12小题,每小题3分,满分36分)1.在△ABC中,∠C=90°,,则∠B为()A.30°B.45°C.60°D.90°2.如果4x=5y(y≠0),那么下列比例式成立的是()A. =B. =C. =D. =3.如图,在△ABC中,点D、E分别为边AB、AC上的点,且DE∥BC,若AD=5,BD=10,AE=3,则CE的长为()A.3 B.6 C.9 D.124.一只不透明的袋子中装有除颜色外都相同的4个黑球、2个白球,从中任意摸出3个球,下列事件为必然事件的是()A. 至少有1个球是白球B. 至少有1个球是黑球C. 至少有2个球是白球D. 至少有2个球是黑球5.若关于x的一元二次方程022=+-mxx有两个不相等的实数根,则m的值可以是()A.1-B.1C.3D.56.已知反比例函数y=的图象在一、三象限,则一次函数y=kx﹣k的图象大致是()A.B.C.D.7.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为()A.(,1)B.(1,)C.(+1,1) D.(1,+1)8.抛物线y=(x﹣1)2+2的对称轴为()A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣29.已知抛物线y═ax2+bx+c的图象如图,则下列结论正确的是()A.a>0,b>0,c>0 B.a>0,b>0,c=0C.a>0,b<0,c=0 D.a<0,b<0,c<010.如图,一架梯子斜靠在墙上,设梯子AB的中点为O,AB=6米,BC=2米,若梯子B端沿地面向右滑行1米,则点O到点C的距离()A.减小1米B.增大1米C.始终是2米D.始终是3米11.如图,D是△ABC的边AB上的一点,那么下列四个条件不能单独判定△ABC∽△ACD的是()A.∠B=∠ACD B.∠ADC=∠ACBC.D.AC2=AD•ABAOBC12.对于二次函数y=x2﹣2x ﹣3,下列四个结论:①图象开口向上;②顶点坐标为(﹣1,﹣4);③当x>1时,y随x的增大而增大;④当﹣1<x<3时,y<0.其中正确的是()A.①③B.②④C.①②④D.①③④二、填空题(共6小题,每小题3分,满分18分)13.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是.14.已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC =2cm2,则S△DEF= cm2.16.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.17.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O重合,则图中阴影部分的面积是.18.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2017的坐标为.三、解答题(共66分)19、解方程(共10分,各5分)(1)x2-4=3x (2)(x -3)2 = 3-x20、(5分)已知关于x的方程x2+ax+a-2=0,求证:不论a取何实数,该方程都有两个不相等的实数根.21、(7分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(三角形的顶点在格点上)(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下求出点B旋转到B2所经过的路径的长.(结果保留π)22、(8分)近年来,随着百姓生活水平不断攀升,某市家庭轿车拥有量大幅增长,据统计,2015年该市家庭轿车拥有量为48万辆,2017年该市家庭轿车拥有量为69.12万辆.(1)求2015年至2017年该市汽车拥有量的年平均增长率;(2)由于我国汽车购置税减半优惠政策于2018年12月31日结束,因而2018年底该市迎来一轮购车热潮,据权威部门估计,2018年该市家庭轿车拥有量的年增长率比前两年的年平均增长率提高了10个百分点,求2018年该市家庭轿车的拥有量.23、(8分)某人的钱包内有10元钱、20元钱和50元钱的纸币各1张,从中随机取出2张纸币从中随机取出2张纸币.(1)请用树状图或表格列出所有等可能结果;(2)求取出纸币的总额可购买一件60元的商品的概率. 24. (8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每天能卖出300件;若按每件6元的价格销售,每天能卖出200件,假定每天销售件数(件)与价格(元/件)之间满足一次函数关系.(1)试求与之间的函数关系式;(2)当销售价格定为多少时,才能使每天的利润最大?每天的最大利润是多少?25、(10分)如图,在△ABC中,∠ABC=90°,D是AC边上的一点,连接BD,使∠A=2∠1,E 是BC上一点,以BE为直径的⊙O经过点D。
人教版九年级上册数学第三次月考试卷含答案
word 格式-可编辑-感谢下载支持人教版九年级上册数学第三次月考试题一、单项选择题(每小题3分,共30分)。
1.随着人们生活水平的不断提高,汽车越来越普及,在下面的汽车标志图形中,是轴对称图形有( )A .2 个B .3个C .4个D .5个2.把方程2830x x +-=化成2()x m n +=的形式,则,m n 的值分别是( )A .4,13B .-4,19C .-4,13D .4,193.将抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( )A .y=2(x+1)2+3B .y=2(x -1)2-3C .y=2(x+1)2-3D .y=2(x -1)2+34.抛物线y=x 2+6x+8与y 轴交点坐标( )A .(0,8)B .(0,-8)C .(0,6)D .(-2,0)(-4,0) 5.若m 为不等于零的实数,则关于x 的方程x 2+mx ﹣m 2=0的根的情况是( )A .有两个相等的实数根B .有两个不等的实数根C .有两个实数根D .无实数根6.下列旋转对称图形中,旋转角度为60°的是( ).A .等边三角形B .正方形C .正五边形D .正六边形7.如图,PA ,PB 分别是O 的切线,A ,B 分别为切点,点E 是O 上一点,且60AEB ∠=,则P为()A.120B.60C.30D.458.如图,已知⊙O 是正方形ABCD 的外接圆,点E 是弧AD 上任意一点,则⊙BEC 的度数为()A.30°B.45°C.60°D.90°9.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16B.13C.12D.2310.(2017金华)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A、B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.E处B.F处C.G处D.H处word 格式-可编辑-感谢下载支持二、填空题11.写出一个根为-2的一元二次方程_____________..12.近期随着国家抑制房价新政策的出台,某楼盘房价连续两次下跌,由原来的每平方米10000元降至每平方米8100元,设每次降价的百分率相同,则降价百分率为________.13.如图,把⊙ABC 绕点C 按顺时针方向旋转35°,得到⊙A’B’C ,A’B’交AC 于点D ,若⊙A’DC=90°,则⊙A= °.14.如图,已知二次函数y=x 2+bx+c 的图象经过点(﹣1,0),(1,﹣2),当y 随x 的增大而增大时,x 的取值范围是______.15.炮弹从炮口射出后,飞行的高度()h m 与飞行的时间()t s 之间的函数关系是20sin 5h v t t α=+,其中0v 是炮弹发射的初速度,α是炮弹的发射角,当0300/v m s =(), 12α=sin 时,炮弹飞行的最大高度是___________. 16.如图,P 是半圆外一点,PC ,PD 是⊙O 的切线,CD 为切点,过C ,D 分别作直径AB 的垂线,垂足为E ,F ,若12AD BC DC == ,直径AB=10cm ,则图中阴影部分的面积是__________cm 2;17.如图,⊙A 、⊙B 、⊙C 两两不相交,且半径都是2cm ,图中的三个扇形(即三个阴影部分)的面积之和是多少?弧长的和为多少?三、解答题18.解方程(1)2410x x -+=(用配方法) (2)2(1)4x x +=19.已知x=﹣1是方程x 2+mx ﹣5=0的一个根,求m 的值及方程的另一个根.20.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?word格式-可编辑-感谢下载支持21.某校为了解初中生的交通安全知识掌握情况,在本校初中部随机抽取10﹪的学生,进行了交通安全知识测试,得分情况如下两个统计图,并约定85分及以上为优秀;73分~84分为良好;60分~72分为合格;59分及以下为不合格(满分为100分).(1)在抽取的学生中,不合格人数所占的百分比是;(2)若不合格学生的总分恰好等于其他等级的某一个学生的分数,请推测这个学生是什么等级?并估算出该校初中部学生中共有多少人不合格?(3)试求所抽取的学生的平均分..22.观察下列方程及其解的特征:(1)12xx+=的解为121x x==;(2)152xx+=的解为12x=,212x=;(3)1103xx+=的解为13x=,213x=;解答下列问题:()1请猜想:方程1265x x +=的解为________; ()2请猜想:关于x 的方程1x x +=________的解为1x a =,()210x a a=≠; ()3下面以解方程1265x x +=为例,验证()1中猜想结论的正确性. 解:原方程可化为25265x x -=-.(下面请大家用配方法写出解此方程的详细过程)23.如图,已知⊙OAB 的顶点A(6,0),B(0,2),O 是坐标原点.将⊙OAB 绕点O 按逆时针旋转90°得到⊙ODC .(1)写出C 、D 两点的坐标;(2)求过C 、D 、A 三点的抛物线的解析式,并求此抛物线的顶点M 的坐标;(3)在线段AB 上是否存在点N 使得MA=NM ?若存在,请求出点N 的坐标;若不存在,请说明理由.24.如图⊙O 是∆ABC 的外接圆,且AB=AC ,点D 在弧BC 上运动,过点D 作DE//BC ,DE 交AB 的延长线于点E ,连结AD 、BDword格式-可编辑-感谢下载支持(1)求证⊙ADB=⊙E;(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由;(3)当AB=5,BC=6时,求⊙O的半径.25.已知抛物线2122y a x⎛⎫=--⎪⎝⎭,顶点为A,且经过点322B⎛⎫-⎪⎝⎭,,点522C⎛⎫-⎪⎝⎭,.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若⊙OPM=⊙MAF,求⊙POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN⊙y轴,过点E作EN⊙x轴,直线QN与直线EN相交于点N,连接QE,将⊙QEN沿QE翻折得到⊙QEN1,若点N1落在x轴上,请直接写出Q点的坐标.参考答案1.B2.D3.A4.A5.B6.D7.B8.B9.D10.D11.不唯一,如2(2)0x +=.12.10%word 格式-可编辑-感谢下载支持13.55.14.x >1215.1125m16.12.517.面积和2πcm 2,周长和2πcm .18.(1)122,2x x ==;(2)121x x ==19.m=﹣4, 另一根是5.20.(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.21.(1)5%(2)这个学生应是良好等级,;不合格学生共有20人(3)72.122.解:(1)15x =,215x =;(2)21a a+(或1a a +);15x =,22115a x a +=(或1a a +) 23.C (-2,0),D (0,6);(2)21262y x x =-++ ,M(2,8);(3)存在,N (0,2). 24.(1)证明见解析;(2)当点D 是弧BC 的中点时,DE 是⊙O 的切线,理由见解析;(3)258.25.(1)2122y x ⎛⎫=-- ⎪⎝⎭;(2)115或13;(3)(﹣54,32,2,2).。
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、单选题(共30分)1.点P(2,﹣3)关于原点对称的点的坐标是()A.(3,﹣2)B.(﹣2,﹣3)C.(﹣2,3)D.(3,2)2.如图,A,B,C为⊙O上的三个点,∠AOB=72°,则∠ACB的度数为()A.36°B.24°C.48°D.144°3.用配方法解方程x2﹣6x﹣2=0的过程中,应将此方程化为()A.(x﹣3)2=11B.(x﹣3)2=7C.(x﹣6)2=38D.(x﹣6)2=34 4.如图,⊙O的半径为4,弦心距OC=2,则弦AB的长为()A.3B.C.6D.5.下列事件中是必然事件的是()A.打开电视机,正在播放中央电视台的《开学第一课》B.经过有交通信号灯的路口,遇到红灯C.任意画一个三角形,其内角和是180°D.同位角相等6.新冠疫情牵动人心,若有一人感染了新冠,在每轮传染中平均一个人可以传染x个人,经过两轮传染后共有169人感染,若不加以控制,第三轮传染后感染人数为()A.338B.256C.2197D.20287.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.25°B.30°C.35°D.40°8.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2B.x<0或x>2C.x<0或x>4D.0<x<49.如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B 的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论不正确的是()A.△ABC≌△DEC B.∠ADC=45°C.AD=AC D.AE=AB+CD 10.如图,在边长为2的正方形ABCD中,点M在AD边上自A至D运动,点N在BA边上自B至A运动,M,N速度相同,当N运动至A时,运动停止,连接CN,BM交于点P,则AP的最小值为()A.1B.2C.D.二、填空题(共18分)11.抛物线的解析式为y=(x﹣2)2+1,则抛物线的顶点坐标是.12.若关于x的一元二次方程x2+ax=0有两个相等的实数根,则a的值为.13.如图,已知圆锥的底面半径为3,圆锥的母线与高的夹角θ为30°,则圆锥的侧面展开图的面积是.14.如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A'BC'的位置,点C'在AC上,A'C'与AB相交于点D,则C'D=.15.已知⊙O半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对的圆周角度数是.16.商店销售一种进价为20元/个的帽子,经调查发现,该种帽子每天的销售量w(个)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种帽子每天的利润为y(元),则y与x之间的函数关系式为;当销售单价定为元时,每天的利润最大.三、解答题(共72分)17.解一元二次方程:x2﹣2x﹣8=0.18.为了更好地宣传垃圾分类,某校九(1)班学生成立了一个“垃圾分类”宣传小组,其中男生2人,女生3人.(1)若从这5人中选1人进社区宣传,恰好选中女生的概率是;(2)若从这5人中选2人进社区宣传,请用树状图或列表法求恰好选中一男一女的概率.19.如图,AB为⊙O的一条弦.(1)用尺规作图:过点O作OC⊥AB,垂足为点C,交于点D(保留作图痕迹,不写作法);(2)若(1)中的CD的长为2,AB的长为8,求⊙O的半径.20.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点都在格点上.(1)在图中画出将△ABC绕点C按逆时针方向旋转90°后得到的△A1B1C1;(2)在(1)所画的图中,计算线段AC在旋转过程中扫过的图形面积(结果保留π).21.如图1,斜坡与水平面夹角α=30°.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A,喷头A喷出的水柱在空中走过的曲线可以看成抛物线的一部分.如图2,当水柱与A水平距离为4米时,达到最高点D,D与水平线AC的距离为4米.(1)在图2中建立平面直角坐标系,求水柱所在的抛物线的解析式(不需要写出自变量取值的范围);(2)若斜坡上有一棵高2.5米的树,它与喷头A的水平距离为2米,通过计算判断从A 喷出的水柱能否越过这棵树.22.点P是正方形ABCD所在平面内一点,连接CP,将线段CP绕点C顺时针旋转90°,得线段CQ,连接BP,DQ.(1)如图①,当P在CD边上时,直接写出BP与DQ之间的关系是;(2)如图②,当P在正方形内部时,BP与DQ之间有怎样的关系?请说明理由;(3)射线BP交DQ于E,若四边形PCQE是正方形,BC=2,CP=1,直接写出BE=.23.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?24.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.25.已知:⊙O是△ABC的外接圆,且,∠ABC=60°,D为⊙O上一动点.(1)如图1,若点D是的中点,求∠DBA的度数.(2)过点B作直线AD的垂线,垂足为点E.①如图2,若点D在上,求证:CD=DE+AE.②若点D在上,当它从点A向点C运动且满足CD=DE+AE时,求∠ABD的最大值.参考答案一、单选题(共30分)1.解:点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选:C.2.解:∵∠AOB=72°,∴∠ACB=∠AOB=36°,故选:A.3.解:x2﹣6x﹣2=0,x2﹣6x=2,x2﹣6x+9=2+9,(x﹣3)2=11,故选:A.4.解:连接OA,如图所示,∵OC⊥AB,OC=2,OA=4,∴AB=2AC,∵AC===2,∴AB=2AC=4.故选:D.5.解:A、打开电视机,正在播放中央电视台的《开学第一课》,是随机事件;B、经过有交通信号灯的路口,遇到红灯,是随机事件;C、任意画一个三角形,其内角和是180°,是必然事件;D、同位角相等,是随机事件;故选:C.6.解:设在每轮传染中平均一个人可以传染x个人,[x(x+1)+x+1]=169,即(1+x)2=169,解得x1=12,x2=﹣14(舍),∴每轮传染中平均一个人可以传染12个人,∴第三轮传染后感染人数为169+169×12=2197,故选:C.7.解:连接OC,∵CD是⊙O的切线,点C是切点,∴∠OCD=90°.∵∠BAC=25°,∴∠COD=50°,∴∠D=180°﹣90°﹣50°=40°.故选:D.8.解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时x的取值范围是x<0或x>2.故选:B.9.解:由旋转的性质得出CD=CA,∠EDC=∠BAC=135°,AB=DE,∵点A,D,E在同一条直线上,∴∠ADC=45°=∠DAC,△ABC≌△DEC,AD=AC,∴AE=AD+DE=CD+AB,故选项A,B,C正确,D错误,故选:D.10.解:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠A=∠ABC=90°,∴∠BCN+∠BNC=90°,又BN=AM,∴△ABM≌△BCN(SAS),∴∠ABM=∠BCN,∴∠ABM+∠BNC=90°,∴∠BPC=∠BPN=90°,∴点P的运动轨迹为以BC为直径的一段弧,如图所示,连接AO1交弧于点P,此时,AP的值最小,在Rt△ABO1中,,由勾股定理得,,∴,故选:C.二、填空题(共18分)11.解:∵y=(x﹣2)2+1∴抛物线的顶点坐标是(2,1)故答案为:(2,1).12.解:根据题意得Δ=a2﹣4×0=0,解得a1=a2=0,即a的值为0.故答案为:013.解:∵圆锥的母线与高的夹角θ为30°,底面半径为3,∴圆锥的母线长为6,∴圆锥的侧面展开图的面积=×2π×3×6=18π.故答案为18π.14.解:∵∠A=30°,∴BC=AC=×10=5,∠C=90°﹣30°=60°,由旋转的性质,BC=BC′=5,∠C=∠BC'A'=60°,∴△BCC′是等边三角形,∴CC′=BC,∠CBC′=60°,∵∠CBC′=∠A′C′B=60°,∴A′C′∥BC,∴∠ADC'=∠ABC=90°,∴∠ABC'=30°,∴C′D=BC'=×5=2.5,故答案为:2.5.15.解:如图所示,∵OC⊥AB,∴C为AB的中点,即AC=BC=AB=,在Rt△AOC中,OA=1,AC=,根据勾股定理得:OC===,即OC=AC,∴△AOC为等腰直角三角形,∴∠AOC=45°,同理∠BOC=45°,∴∠AOB=∠AOC+∠BOC=90°,∵∠AOB与∠ADB都对,∴∠ADB=∠AOB=45°,∵大角∠AOB=270°,∴∠AEB=135°,∴弦AB所对的圆周角为45°或135°.故答案为:45°或135°.16.解:∵帽子的进价为20元/个,销售单价x(元),∴每件帽子的利润为(x﹣20)元;∴销售这种帽子每天的利润为:y=(x﹣20)(﹣2x+80),(20≤x≤40),∴y=﹣2x2+120x﹣1600(20≤x≤40);配方,得:y=﹣2(x﹣30)2+200,∵a=﹣2<0,∴当x=30时,函数y有最大值200;故答案为:y=﹣2x2+120x﹣1600(20≤x≤40);30.三、解答题(共72分)17.解:x2﹣2x﹣8=0,(x﹣4)(x+2)=0,∴x﹣4=0或x+2=0,∴x1=4,x2=﹣2.18.解:(1)∵共有5人,其中男生2人,女生3人,∴从这5人中选1人进社区宣传,恰好选中女生的概率是;(2)设男生用A表示,女生用B表示,树状图如下所示:由上可得,一共有20种可能性,其中恰好选中一男一女的有12种,所以恰好选中一男一女的概率是=.19.解:(1)图形如图所示.(2)∵OC⊥AB,∴∠DCB=∠OCB=90°,∴BC==4,设OB=OD=r,则有r2=(r﹣2)2+42,∴r=5,∴⊙O的半径为5.20.解:(1)如图,△A1B1C1即为所求;(2)∵AC==,∴线段AC在旋转过程中扫过的图形面积==.21.解:(1)以点A坐标原点,以AC所在的直线为x轴建立平面直角坐标系,如图,依题,A(0,0),最高点即抛物线的顶点D(4,4),设此抛物线的解析式为:y=a(x﹣4)2+4,将A(0,0)代入上式,得0=16a+4,∴,抛物线的解析式为:;(2)∵斜坡上有一棵高2.5米的树,它与喷头A的水平距离为2米,如图,∴AE=2,GF=2.5,在Rt△AEF中,∠AEF=90°,∠BAC=α=30°,设EF=m,则AF=2m,∴(2m)2=m2+22,∴,∴,又当x=2时,y=﹣×(2﹣4)2+4=3<3.5,故从A喷出的水柱不能越过这棵树.22.解:(1)如图①,延长BP交DQ于点E,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,由旋转得CP=CQ,∠PCQ=90°,∵点P在CD边上,∴∠DCQ=∠PCQ=90°,∴∠BCD+∠DCQ=180°,∴B、C、Q三点在同一条直线上,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS),∴BP=DQ,∠CBP=∠CDQ,∴∠CBP+∠Q=∠CDQ+∠Q=90°,∴∠BEQ=90°,∴BP⊥DQ,故答案为:BP=DQ,BP⊥DQ.(2)BP=DQ,BP⊥DQ,理由:如图②,点P在正方形ABCD内部,延长BP分别交DQ、DC于点E、点F,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,由旋转得CP=CQ,∠PCQ=90°,∴∠BCP=∠DCQ=90°﹣∠PCD,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS),∴BP=DQ,∠CBP=∠CDQ,∵∠BFC=∠DFE,∴∠CDQ+∠DFE=∠CBP+∠BFC=90°,∴∠DFE=90°,∴BP⊥DQ.(3)如图③,四边形PCQE是正方形,且点P在正方形ABCD内部,∵BC=2,EP=CP=1,∠CPE=90°,∴∠BPC=180°﹣∠CPE=90°,∴BP===,∴BE=BP+EP=+1;如图④,四边形PCQE是正方形,且点P在正方形ABCD外部,∵BC=2,EP=CP=1,∠P=90°,∴BP===,∴BE=BP﹣EP=﹣1,综上所述,BE=+1或BE=﹣1,故答案为:+1或﹣1.23.(1)证明:连接OD,BD.∵D是圆上一点∴∠ADB=90°,∠BDC=90°则△BDC是Rt△,且已知E为BC中点,∴∠EDB=∠EBD.又∵OD=OB且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE是⊙O的切线.(2)解:连接OD,BD,AE,OE,∵∠EDO=∠ABC=90°,若要AOED是平行四边形,则DE∥AB,D为AC中点,又∵BD⊥AC,∴△ABC为等腰直角三角形,∴∠CAB=45°,所以当∠CAB为45°时,四边形AOED是平行四边形.24.解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).25.解:(1)如图1中,连接BD.∵=,∴∠BCA=∠BAC,∵∠ABC=60°,∴∠BCA=60°,∵D是的中点,∴∠DCA=30°,∵,∴∠DBA=∠DCA=30°.(2)①过B作BH⊥CD于点H,则∠BHC=∠BHD=90°.又∵BE⊥AD于点E,∴∠BED=90°,∴∠BED=∠BHC=∠BHD,又∵,∴∠BAE=∠BCH,∵,∴BA=BC,∴△BEA≌△BHC(AAS),∴EA=CH,又∵四边形ACBD是⊙O的内接四边形,∴∠BDE=∠BCA,又∵,∴∠BCA=∠BDC,∴∠BDE=∠BDC,又∠BED=∠BHD=90°,BD=BD,∴Rt△BED≌Rt△BDH(HL),∴DE=DH,∴DC=DH+HC=DE+AE.(2)②连接BO并延长⊙O交于点I,则点D在上.如图:过B作BH⊥CD于点H,则∠BHC=90°,∠BHD=90°,又∵BE⊥AD于点E,∴∠BED=90°,∴∠BED=∠BHC=∠BHD,又∵四边形ABCD是⊙O的内接四边形,∴∠BAE=∠BCD,又∵,∴BA=BC,∴△BEA≌△BCH(AAS)∴EA=EH,∵,∴∠BDA=∠BDC,又BD=BD.∠BED=∠BHD=90°,∴Rt△BED≌Rt△BHD(HL)∴ED=HD,∴CD=HD+HC=DE+AE,∵BI是⊙O直径,,∴BI垂直平分AC,∴,∴2∠ABI=∠ABC=60°,∴当点D运动到点I时∠ABI取得最大值,此时∠ABD=30°.。
最新人教版九年级上学期第三次月考数学试卷及解析.docx
九年级(上)第三次月考数学试卷一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共24分)1.下列图形中,是中心对称图形,而不是轴对称图形的是()A.菱形B.平行四边形C.正六边形D.矩形2.一元二次方程3x2﹣x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.只有一个实数根3.下列四个点,在反比例函数y=的图象上的是()A.C.4.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有()A.10粒B.160粒C.450粒D.500粒5.某几何体的三种视图如图所示,则该几何体可能是()A.圆锥体B.球体C.长方体D.圆柱体6.以下四个三角形,与如图的三角形相似的是()A.B.C.D.7.已知:点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定8.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分)9.分解因式a3﹣6a2+9a= .10.反比例函数的图象在一、三象限,则k应满足.11.将方程x2+10x+1=0配方后,原方程变形为.12.如图所示,A为反比例函数图象上一点,AB垂直x轴,垂足为B点,若S△AOB=3,则k的值为.13.某商场在促销活动中,将原价100元的商品,连续两次降价m%后现价为81元.根据题意可列方程为.14.如图,D、E分别是△ABC的边AB,AC上的点,DE∥BC,=2,则S△ADE:S△ABC= .15.如图,菱形ABCD周长为8cm,∠BAD=60°,则菱形的面积是.16.如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,则AE的长为.三、解答题:(共72分)17.解方程:(1)x2+2x+1=4(2)x(x﹣3)+x﹣3=0.18.解不等式组:.19.如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为位似中心,画出△A1B1C1缩小一半后的△A2B2C2.20.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?21.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.23.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)24.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=4厘米,AB=3厘米,当AP为何值时,四边形PBQD是菱形,并加以说明.25.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A、B两点,且点A的纵坐标和点B的横坐标都是2.求:(1)分别求出直线AB的表达式;(2)求△AOB的面积;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.26.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?参考答案与试题解析一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共24分)1.下列图形中,是中心对称图形,而不是轴对称图形的是()A.菱形B.平行四边形C.正六边形D.矩形【考点】中心对称图形;轴对称图形.【分析】根据多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:A、是轴对称图形,也是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项正确;C、是轴对称图形,也是中心对称图形,故选项错误;D、是中心对称图形,也是轴对称图形,故选项错误.故选:B.【点评】本题主要考查了中心对称图形与轴对称图形的定义,理解定义是关键.2.一元二次方程3x2﹣x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.只有一个实数根【考点】根的判别式.【分析】首先确定一元二次方程的各项系数及常数项,代入根的判别式进行计算,根据数值的正负判定即可.【解答】解:∵a=3,b=﹣1,c=2,∴b2﹣4ac=(﹣1)2﹣4×3×2=﹣23<0,∴方程没有实数根.故选:C.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.下列四个点,在反比例函数y=的图象上的是()A.C.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征进行判断.【解答】解:∵1×(﹣6)=﹣6,2×4=8,3×(﹣2)=6,(﹣6)×(﹣1)=6,∴点(3,﹣2)在反比例函数y=的图象上.故选D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有()A.10粒B.160粒C.450粒D.500粒【考点】利用频率估计概率.【专题】计算题.【分析】黄豆的频率为,利用大量反复试验时,频率接近于概率,可得,即可求出原黄豆的数量.【解答】解:设原黄豆数为x,则染色黄豆的概率为解得x=450.故选C.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.5.某几何体的三种视图如图所示,则该几何体可能是()A.圆锥体B.球体C.长方体D.圆柱体【考点】由三视图判断几何体.【分析】根据三视图可知主视图和左视图都是矩形,俯视图为一个圆形,故这个几何体为圆柱体.【解答】解:本题中,圆锥体的主视图和俯视图不可能是矩形,球体的三视图中不可能由矩形,长方体的俯视图不可能是圆,故选D.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力,要熟悉特殊几何体的特点.6.以下四个三角形,与如图的三角形相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】分别求出选项中所有三角形的边长,求出与原三角形的比,若对应边的比相同,则相似.【解答】解:原图三边长为,2,;A、三边长分别为2,,3,对应边的比为,=,=,两三角形不相似,故本选项错误;B、三边长分别为2,4,2,对应边的比为,=,=,两三角形相似,故本选项正确;C、三边长分别为2,3,,对应边的比为,,=,两三角形不相似,故本选项错误;D、三边长分别为,,4,对应边的比为,,,两三角形不相似,故本选项错误;故选B.【点评】本题考查了相似三角形的判定,求出三边的比,若三边的比相等,则两三角形相似.7.已知:点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】对y=﹣,由x1<0<x2<x3知,A点位于第二象限,y1最大,第四象限,y随x增大而增大,y2<y3,故y2<y3<y1.【解答】解:∵y=﹣中k=﹣3<0,∴此函数的图象在二、四象限,∵点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3,∴A点位于第二象限,y1>0,B、C两点位于第四象限,∵0<x2<x3,∴y2<y3,∴y2<y3<y1.故选B.【点评】本题考查了反比例函数图象上点的坐标特征,要学会比较图象上点的坐标.8.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题;分类讨论.【分析】因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,﹣k>0,反比例函数y=的图象在二,四象限,一次函数y=kx﹣k 的图象过一、二、四象限,选项C符合;当k>0时,﹣k<0,反比例函数y=的图象在一、三象限,一次函数y=kx﹣k的图象过一、三、四象限,无符合选项.故选C.【点评】本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.二、填空题(每小题3分,共24分)9.分解因式a3﹣6a2+9a= a(a﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:a3﹣6a2+9a=a(a2﹣6a+9)=a(a﹣3)2.故答案为:a(a﹣3)2.【点评】本题考查了提公因式法,公式法分解因式的知识.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.10.反比例函数的图象在一、三象限,则k应满足k>﹣2 .【考点】反比例函数的性质.【分析】由于反比例函数的图象在一、三象限内,则k+2>0,解得k的取值范围即可.【解答】解:由题意得,反比例函数的图象在二、四象限内,则k+2>0,解得k>﹣2.故答案为k>﹣2.【点评】本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k>0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.11.将方程x2+10x+1=0配方后,原方程变形为x+5)2=24 .【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上25配方得到结果即可.【解答】解:方程x2+10x+1=0,移项得:x2+10x=﹣1,配方得:x2+10x+25=24,即(x+5)2=24,故答案为:(x+5)2=24.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.12.如图所示,A为反比例函数图象上一点,AB垂直x轴,垂足为B点,若S△AOB=3,则k的值为 6 .【考点】反比例函数系数k的几何意义.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【解答】解:由于点A是反比例函数图象上一点,则S△AOB=|k|=3;又由于函数图象位于一、三象限,则k=6.故答案为6.【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.13.某商场在促销活动中,将原价100元的商品,连续两次降价m%后现价为81元.根据题意可列方程为100(1﹣m%)2=81 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】利用等量关系:原价×(1﹣降低率)2=25,把相关数值代入即可.【解答】解:第一次降价后的价格为100×(1﹣m%),第二次降价后的价格为100×(1﹣m%)×(1﹣m%)=36×(1﹣m%)2,列方程为100(1﹣m%)2=81.故答案为:100(1﹣m%)2=81.【点评】本题考查由实际问题抽象出一元二次方程,求平均变化率的方法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.如图,D、E分别是△ABC的边AB,AC上的点,DE∥BC,=2,则S△ADE:S△ABC= 4:9 .【考点】平行线分线段成比例;相似三角形的判定与性质.【分析】先根据平行线分线段成比例求出AD:AB的值,即两相似三角形的相似比,再根据相似三角形面积的比等于相似比的平方即可求解.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴AD:DB=2:1,∴AD:AB=2:3∴S△ADE:S△ABC=4:9.【点评】本题是考查比例性质和相似三角形面积比等于相似比的平方.15.如图,菱形ABCD周长为8cm,∠BAD=60°,则菱形的面积是2cm2.【考点】菱形的性质.【分析】根据已知条件和菱形的性质,可推出△ABD为等边三角形,AB=2cm,∠OAB=30°,根据锐角三角函数推出OA的长度,求得AC的长度,再根据菱形面积等于两对角线乘积的一半计算即可求解.【解答】解:∵菱形ABCD周长为8cm,∠BAD=60°,∴AB=AD=BD=2cm,∠OAB=30°,OA=OC,AC⊥BD,∴OA=cm,∴AC=2cm.∴菱形ABCD的面积=ACBD=×2×2=2(cm2).故答案为:2cm2.【点评】本题主要考查菱形的性质、锐角三角函数等知识点,解题的关键是根据有关性质推出边和相关角的度数,解直角三角形.16.如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,则AE的长为.【考点】翻折变换(折叠问题).【分析】先根据折叠的性质得∠C′BD=∠CBD,再利用矩形的性质得AD∥BC,则∠EDB=∠CBD,所以∠EDB=∠C′BD,根据等腰三角形的判定定理得EB=ED,设AE=x,则ED=AD﹣AE=8﹣x,BE=8﹣x,在Rt△ABE中,根据勾股定理得62+x2=(8﹣x)2,然后解方程即可.【解答】解:∵矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,∴∠C′BD=∠CBD,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠C′BD,∴EB=ED,设AE=x,则ED=AD﹣AE=8﹣x,BE=8﹣x,在Rt△ABE中,∵AB2+AE2=BE2,∴62+x2=(8﹣x)2,解得x=,即AE的长为.故答案为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三、解答题:(共72分)17.解方程:(1)x2+2x+1=4(2)x(x﹣3)+x﹣3=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)方程整理得x2+2x﹣3=0,然后分解因式,即可得出两个一元一次方程,求出方程的解即可.(2)利用提取公因式法分解因式求得方程的解即可.【解答】解:(1)x2+2x+1=4,x2+2x﹣3=0(x+3)(x﹣1)=0,∴x﹣1=0,x+3=0,∴x1=1,x2=﹣3(2)x(x﹣3)+x﹣3=0.(x﹣3)(x+1)=0,∴x﹣3=0,x+1=0,∴x1=3,x2=﹣1.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.18.解不等式组:.【考点】解一元一次不等式组.【专题】计算题;压轴题.【分析】分别解两个不等式,再求其公共部分即可.【解答】解:解不等式,由①得x<4,由②得x≤1,∴原不等式组的解集是x≤1.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为位似中心,画出△A1B1C1缩小一半后的△A2B2C2.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)过A作y轴垂线,截取DA1=DA,B1D=BD,过C作y轴垂线,截取C1E=CE,连接A1B1,A1C1,B1C1,△A1B1C1为所求三角形,写出点C1的坐标即可;(2)连接OA1,OB1,OC1,取OA1中点A2,取OB1中点B2,取OC1中点C2,连接A2B2,A2C2,B2C2,△A2B2C2为所求三角形.【解答】解:(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,如图所示,根据题意得:点C1的坐标为(﹣4,﹣1);(2)以原点O为位似中心,画出△A1B1C1缩小一半后的△A2B2C2,如图所示.【点评】此题考查了作图﹣位似变换,作图﹣轴对称变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.20.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?【考点】列表法与树状图法.【专题】压轴题.【分析】(1)画出树状图即可;(2)根据树状图可以直观的得到共有6种情况,选中A的情况有2种,进而得到概率.【解答】解:(1)如图所示:(2)所有的情况有6种,A型器材被选中情况有2中,概率是=.【点评】本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据矩形的性质和DF⊥AE于F,可以得到∠DEC=∠AED,∠DFE=∠C=90,进而依据AAS可以证明△DFE≌△DCE.然后利用全等三角形的性质解决问题.【解答】证明:连接DE.∵有矩形ABCD,∴AD∥BC,∠C=90°.∴∠DEC=∠AED.又∵DF⊥AE,∴∠DFE=∠C=90°.∵DE=DE,(1分)∴△DFE≌△DCE.∴DF=DC.(1分)【点评】此题比较简单,主要考查了矩形的性质,全等三角形的性质与判定,综合利用它们解题.23.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)【考点】一元二次方程的应用.【专题】几何图形问题;数形结合.【分析】本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32﹣x)(20﹣x)米2,进而即可列出方程,求出答案.【解答】解法(1):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:(20﹣x)(32﹣x)=540整理得:x2﹣52x+100=0解得:x1=50(舍去),x2=2答:道路宽为2米.解法(2):解:利用平移,原图可转化为右图,设道路宽为x米,根据题意得:20×32﹣(20+32)x+x2=540整理得:x2﹣52x+100=0解得:x1=2,x2=50(舍去)答:道路宽应是2米.【点评】这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.24.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=4厘米,AB=3厘米,当AP为何值时,四边形PBQD是菱形,并加以说明.【考点】矩形的性质;菱形的性质.【分析】(1)根据矩形性质推出AD∥BC,根据平行线的性质得出∠PDO=∠QBO,根据全等三角形的判定ASA证△PDO≌△BQO,根据全等三角形的性质推出即可.(2)由菱形的性质得出BP=PD,设AP=x厘米,则BP=PD=(4﹣x)厘米,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠PDO=∠QBO,∵O为BD中点,∴OB=OD,在△PDO和△QBO中,,∴△PDO≌△BQO(ASA),∴OP=OQ.(2)解:当AP=时,四边形PBQD是菱形;理由如下:∵OB=OD,OP=OQ,∴四边形PBQD是平行四边形,当四边形PBQD是菱形时,BP=PD,设AP=x厘米,则BP=PD=(4﹣x)厘米,由勾股定理得:X2+32=(4﹣x)2,解得:x=,即当AP为厘米时,四边形PBQD是菱形.【点评】本题考查了矩形的性质,全等三角形的性质和判定,平行四边形的判定,菱形的判定与性质;题目比较好,综合性比较强.25.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A、B两点,且点A的纵坐标和点B的横坐标都是2.求:(1)分别求出直线AB的表达式;(2)求△AOB的面积;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据A、B两点在反比例函数的图象上,且点A的纵坐标和点B的横坐标都是2,求出A、B两点的坐标,运用待定系数法求出直线AB的解析式;(2)求出点M的坐标,根据面积公式求出△AOB的面积;(3)根据图象结合交点坐标即可求得.【解答】解:(1)A、B两点在反比例函数的图象上,A的纵坐标是2,则横坐标为﹣4,A点的坐标(﹣4,2),B的横坐标为2,则纵坐标为﹣4,B点的坐标(2,﹣4),设一次函数解析式为y=kx+b,,解得.故直线AB的解析式为y=﹣x﹣2.(2)设直线AB与y轴的交点为M,则点M的坐标为(0,﹣2),△AOB的面积=△AOM的面积+△BOM的面积=×2×4+×2×2=6.(3)当x<﹣4或0<x<2时,y1>y2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.26.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?【考点】相似形综合题.【分析】(1)先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论;(2)先用t表示出DP,CQ,CP的长,再分PQ⊥CD与PQ⊥AC两种情况进行讨论;(3)根据题意画出图形,分CQ=CP,PQ=PC,QC=QP三种情况进行讨论.【解答】解:(1)∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC=BCAC=ABCD.∴CD===4.8.∴线段CD的长为4.8.(2)由题可知有两种情形,设DP=t,CQ=t.则CP=4.8﹣t.①当PQ⊥CD时,如图a∵△QCP∽△△ABC∴=,即=,∴t=3;②当PQ⊥AC,如图b.∵△PCQ∽△ABC∴=,即=,解得t=,∴当t为3或时,△CPQ与△△ABC相似;(3)①若CQ=CP,如图1,则t=4.8﹣t.解得:t=2.4.②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=.∵△CHP∽△BCA.∴=.∴=,解得t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.【点评】本题考查的是相似形综合题,涉及到相似三角形的判定与性质等知识,在解答此题时要注意进行分类讨论.。
九年级数学上学期第三次月考试题(含解析) 新人教版1
重庆市江津中学2015-2016学年九年级数学上学期第三次月考试题一、选择题(共12小题,每小题4分,满分48分)1.在下列图形中,属于中心对称图形的是()A.锐角三角形B.直角三角形C.钝角三角形D.平行四边形2.二次函数y=(x﹣2)2+5的最小值是()A.2 B.﹣2 C.5 D.﹣53.已知一个一元二次方程的二次项系数是3,常数项是1,则这个一元二次方程可能是()A.3x+1=0 B.x2+3=0 C.3x2﹣1=0 D.3x2+6x+1=04.已知点A(1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)5.如图,⊙O的直径AB经过弦CD的中点,∠BAC=20°,则∠BOD等于()A.10° B.20° C.40° D.80°6.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>1 C.k≠0 D.k>﹣1且k≠07.对抛物线y=2x2判断正确的是()A.抛物线的开口向上 B.抛物线的开口向下C.抛物线经过一、二、三象限 D.抛物线经过二、三、四象限8.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70° B.35° C.40° D.50°9.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1,AB=10,那么直径CD的长为()A.12.5 B.13 C.25 D.2610.用配方法解方程:x2+x﹣1=0,配方后所得方程是()A.B.C.D.11.经过调查研究,某工厂生产一种产品的总利润L(元)与产量x(件)的关系式为L=﹣x2+2000x ﹣10000(0<x<1900),要使总利润达到99万元,则这种产品应生产()A.1000件B.1200件C.2000件D.10000件12.一个正多边形的每个外角都等于30°,那么这个正多边形的中心角为()A.15° B.30° C.45° D.60°二、填空题(本题共6小题,每小题4分,共24分)13.若x+1与x﹣1互为倒数,则x的值是.14.若,则a2﹣a+2= .15.抛物线y=2(x﹣1)2﹣3与y轴的交点坐标是.16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请支球队参加比赛.17.已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a的值为.18.如图:抛物线y=ax2+bx+c的图象交x轴于A(x1,0)、B(2,0),交y轴正半轴于C,且OA=OC.下列结论①>0;②ac=b﹣1;③a=﹣;④2b+c=2,其中正确的是.三、解答题(本题共2小题,第19小题8分,第20小题6分,共14分)19.用适当的方法解方程(1)x2﹣x=0;(2)x2﹣2x﹣1=0.20.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.四、解答题(本题共4小题,每小题10分,共40分)21.已知一元二次方程x2﹣4x+k=0有两个实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.22.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.23.如图,是抛物线形拱桥,当拱顶离水面2米时,水面宽4米.若水面下降1米,则水面宽度将增加多少米?24.某商场采购一种进价为40元的篮球,本月以每个50元价格售出,共销售出500个,根据市场调查,在本月售价的基础上每个篮球单价提高1元,销售量就会相应减少10个.(1)请问:在投入成本最小的情况下,要想使下月利润达到8000元,每个篮球的售价应提高多少元?(2)为获得每月的最大利润,每个篮球的定价应该为多少元?并求出每月的最大利润.五、解答题(共2小题,每小题12分)25.已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.26.已知:m、n是方程x2﹣6x+5=0的两个实数根,且m<n,抛物线y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD 的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.2015-2016学年重庆市江津中学九年级(上)第三次月考数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.在下列图形中,属于中心对称图形的是()A.锐角三角形B.直角三角形C.钝角三角形D.平行四边形【考点】中心对称图形.【分析】直接根据中心对称图形的概念求解.【解答】解:A、锐角三角形,无法确定它是什么图形,故此选项错误;B、直角三角形,无法确定它是什么图形,故此选项错误;C、钝角三角形,无法确定它是什么图形,故此选项错误;D、平行四边形是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.二次函数y=(x﹣2)2+5的最小值是()A.2 B.﹣2 C.5 D.﹣5【考点】二次函数的最值.【分析】根据二次函数的最值问题解答即可.【解答】解:二次函数y=(x﹣2)2+5的最小值是5.故选C.【点评】本题考查了二次函数的最值问题,是基础题,掌握利用二次函数的顶点式求最值问题的方法是解题的关键.3.已知一个一元二次方程的二次项系数是3,常数项是1,则这个一元二次方程可能是()A.3x+1=0 B.x2+3=0 C.3x2﹣1=0 D.3x2+6x+1=0【考点】一元二次方程的一般形式.【专题】计算题.【分析】根据二次项系数及常数项得到结果即可.【解答】解:已知一个一元二次方程的二次项系数是3,常数项是1,则这个一元二次方程可能是3x2+6x+1=0,故选D【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.4.已知点A(1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【考点】坐标与图形变化-旋转.【分析】根据题意画出图形利用旋转的性质即可解答.【解答】解:如图,根据旋转的性质可知,。
人教版九年级上学期数学第三次月考试卷(解析版)
人教版九年级上学期数学第三次月考试卷及答案一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的)1.若关于x的一元二次方程x2+2x+m-1=0有一个根是0,则m的值为( )A. 1B. -1C. 2D. 02.下列图形中,不是中心对称图形的是( )A. B. C. D.3.下列成语所描述的事件是随机事件的是( )A. 水中捞月B. 旭日东升C. 不期而遇D. 海枯石烂4.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()A. 2cmB. 4cmC. 6cmD. 8cm5.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连接OD。
若∠AOD=80°,则∠C 的度数为( )A. 40°B. 50°C. 60°D. 80°6.如图是一次数学活动课上制作的两个转盘,甲转盘被平均分为三部分,上面分别写着9,8,5三个数字,乙转盘被平均分为四部分,上面分别写着1,6,9,8四个数字,同时转动两个转盘,停止转动后两个转盘上指针所指的数字恰好都能被3整除的概率是( )A. 12B. 13C. 14D. 167.有两把不同的钥匙和三把锁,其中两把钥匙分别能打开两把锁,且不能打开第三把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是( )A. 12B. 13C. 14D. 168.如图.抛物线y=ax2+bx+c(a≠0)经过点(-1,0),与y轴交于点(0,2),抛物线的对称轴为直线x=1,下列结论:①a+c=b:②方程ax2+bx+c=0的解为-1和3;③2a+b=0;④abc<0;其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个9.中国美食讲究色香味美,优雅的摆盘造型也会让美食錦上添花。
图1中的摆盘,其形状是扇形的一部分,图2是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是( )A. 80πcm2B. 40πcm2C. 24πcm2D. 2πcm210.如图,PA,PB为⊙O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交⊙O于点D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市开县镇安中学2014-2015学年九年级数学上学期第三次月考试题一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在3,﹣1,0,﹣2这四个数中,最大的数是( )A.0 B.6 C.﹣2 D.32.下列各图中,不是中心对称图形的是( )A.B.C.D.3.计算x2•x3的结果是( )A.x5B.x8C.x6D.x74.下列四种调查中,适合普查的是( )A.登飞机前,对旅客进行安全检查B.估计某水库中每条鱼的平均重量C.了解宁波市八年级学生的视力状况D.了解中小学生的主要娱乐方式5.若有意义,则a的取值范围是( )A.任意实数 B.a≥1 C.a≤1 D.a≥06.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为( )A.50° B.60° C.65° D.70°7.已知反比例函数图象经过点(2,﹣2),(﹣1,n),则n等于( )A.3 B.4 C.﹣3 D.﹣48.已知点(﹣2,y1),(﹣1,y2),(3,y3)都在函数y=x2的图象上,则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y3>y1>y2C.y3>y2>y1D.y2>y1>y39.一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(小时),航行的路程为S(千米),则S与t的函数图象大致是( )A. B.C.D.10.如图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,第10个小房子需要的石子数量为( )A.130 B.140 C.150 D.16011.已知一次函数y=﹣kx+k的图象如图所示,则二次函数y=﹣kx2﹣2x+k的图象大致是( )A.B.C.D.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,并且图象经过点(1,0)、(0,2),对称轴为x=﹣,在下列五个结论中:①abc<0;②4ac﹣b2>0;③a﹣b+c>2;④a<b<0;⑤ac+2=b.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.一元二次方程x2+mx+3=0的一个根为﹣1,则另一个根为__________.14.如图,矩形ABCD中,对角线AC、BD相交于点O,AC=6,则OD=__________.15.为了中考“跳绳”项目能得到满分,小明练习了6次跳绳,每次跳绳的个数如下(单位:个):176,183,187,179,187,188.这6次数据的中位数是__________.16.如图,△ABC中,AB=AC,点D是BC的中点,E是AC上一点,且AE=AD,若∠AED=75°,则∠EDC的度数是__________.17.从﹣1,0,1,2,3这五个数中,随机取出一个数,记为a,那么使关于x的反比例函数y=的图象在二,四象限,且使不等式组无解的概率为__________.18.如图,等腰Rt△ABC中,O为斜边AC的中点,∠CAB的平分线分别交BO,BC于点E,F,BP⊥AF于H,PC⊥BC,AE=1,PG=__________.三、解答题:(本大题共2个小题,每小题7分,共14分)19.计算:﹣22﹣|﹣|+()﹣2×(π﹣)0+(﹣1)2014﹣.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象都经过点A(﹣2,6)和点(4,n).(1)求这两个函数的解析式;(2)直接写出不等式kx+b≤的解集.四、解答题:(本大题共4个小题,每小题10分,共40分)21.先化简,再求值:,其中x是一元二次方程2x2+6x﹣4=0的根.22.为了解我校初三学生体育达标情况,现对初三部分同学进行了跳绳,立定跳远,实心球,三项体育测试,按A(及格),B(良好),C(优秀),D(满分)进行统计,并根据测试的结果绘制了如下两幅不完整的统计图,请你结合所给信息解答下列问题:(1)本次共调查了__________名学生,请补全折线统计图;(2)我校初三年级有2200名学生,根据这次统计数据,估计全年级有多少同学获得满分;(3)在接受测试的学生中,“优秀”中有1名是女生,现从获得“优秀”的学生中选出两名学生交流经验,请用画树状图或列表的方法求出刚好选中两名男生的概率.23.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)求销售单价x(元)为多少时,该文具每天的销售利润W(元)最大?(2)经过试营销后,商场就按(1)中单价销售.为了回馈广大顾客,同时提高该文具知名度,商场营销部决定在11月11日(双十一)当天开展降价促销活动,若每件文具降价m%,则可多售出2m%件文具,结果当天销售额为5250元,求m的值.24.如图,在△ABC中,AB=AC,EF为△ABC的中位线,点G为EF的中点,连接BG,CG.(1)求证:BG=CG;(2)当∠BGC=90°时,过点B作BD⊥AC,交GC于H,连接HF,求证:BH=FH+CF.五、解答题:(本大题2个小题,每小题12分,共24分)25.如图,已知抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,﹣3).(1)求抛物线解析式;(2)点M是(1)中抛物线上一个动点,且位于直线AC的上方,试求△ACM的最大面积以及此时点M的坐标;(3)抛物线上是否存在点P,使得△PAC是以AC为直角边的直角三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.26.如图1,▱ABCD中,对角线BD⊥AB,AB=5,AD边上的高为4,等腰直角△EFG中,EF=4,∠EGF=45°,且△EFG与▱ABCD位于直线AD的同侧,点F与点D重合,GF与AD在一直线上,△EFG从点D发以每秒1个单位的速度沿射线DA方向平移,当点G到点A停止运动;同时点P从点A发,以每秒3个单位的速度沿折线AD→DC方向运动,到达点C停止运动,设运动的时间为.(1)求AD的长度;(2)在△EFG平移的过程中,记△EFG与△ABD相互重叠的面积为s,请直接写出面积s与运动时间的函数关系式,并写出的取值范围;(3)如图2,在运动的过程中,若线段EF与线段BD交于点Q,连接PQ,是否存在这样的时间,使得△DPQ为等腰三角形?若存在,求t的值;若不存在,请说明理由.2014-2015学年重庆市开县镇安中学九年级(上)第三次月考数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在3,﹣1,0,﹣2这四个数中,最大的数是( )A.0 B.6 C.﹣2 D.3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:3>0>﹣2>﹣1,故选:D.【点评】本题考查了有理数大小比较,正数大于0,0大于负数是解题关键.2.下列各图中,不是中心对称图形的是( )A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念:把一个图形绕着某个点旋转180°,能够和原来的图形重合,该图即是中心对称图形即可判断得出答案.【解答】解:A、C、D符合中心对称图形的定义,是中心对称图形,B不符合中心对称图形的定义.故选B.【点评】本题主要考查了中心对称图形的概念,能够根据概念正确判断中心对称图形,特别注意观察组合图形的每一部分的对称性,难度适中.3.计算x2•x3的结果是( )A.x5B.x8C.x6D.x7【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n.【解答】解:x2•x3=x2+3=x5.故选A.【点评】本题主要考查同底数幂相乘的运算性质,熟练掌握性质是解题的关键.4.下列四种调查中,适合普查的是( )A.登飞机前,对旅客进行安全检查B.估计某水库中每条鱼的平均重量C.了解宁波市八年级学生的视力状况D.了解中小学生的主要娱乐方式【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.【解答】解:A、分析登飞机登飞机前,对旅客进行安全检查,精确度要求高、事关重大、往往选用普查.故正确;B、估计某水库中每条鱼的平均重量,操作性不强,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.故错误;C、了解宁波市八年级学生的视力状况,因工作量较大,适合采取抽样调查的方式.故错误;D、了解中小学生的主要娱乐方式,所述的情况因工作量较大,适合采取抽样调查的方式.故错误;故选A.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.5.若有意义,则a的取值范围是( )A.任意实数 B.a≥1 C.a≤1 D.a≥0【考点】二次根式有意义的条件.【专题】计算题.【分析】二次根式有意义:被开方数是非负数.【解答】解:根据题意,得a﹣1≥0,解得,a≥1.故选B.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为( )A.50° B.60° C.65° D.70°【考点】平行线的性质;角平分线的定义.【专题】计算题.【分析】根据平行线的性质和角平分线性质可求.【解答】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG,∴∠BEF=180°﹣50°=130°,又∵EG平分∠BEF,∴∠BEG=∠BEF=65°,∴∠2=65°.故选C.【点评】本题考查了两直线平行,内错角相等和同旁内角互补这两个性质,以及角平分线的性质.7.已知反比例函数图象经过点(2,﹣2),(﹣1,n),则n等于( )A.3 B.4 C.﹣3 D.﹣4【考点】反比例函数图象上点的坐标特征.【分析】首先设反比例函数关系式为y=,根据图象所经过的点可得k=2×(﹣2)=﹣4,进而得到函数解析式,再根据反比例函数图象上点的坐标特点可得n的值.【解答】解:设反比例函数关系式为y=,∵反比例函数图象经过点(2,﹣2),∴k=2×(﹣2)=﹣4,∴反比例函数解析式为y=﹣,∵图象经过(﹣1,n),∴﹣1×n=﹣4,解得:n=4,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8.已知点(﹣2,y1),(﹣1,y2),(3,y3)都在函数y=x2的图象上,则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y3>y1>y2C.y3>y2>y1D.y2>y1>y3【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】把x=﹣2、﹣1、3代入解析式计算出对应的函数值,然后比较大小即可.【解答】解:当x=﹣2时,y1=x2=4;当x=﹣1时,y2=x2=1;当x=3时,y3=x2=9,所以y3>y1>y2.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式.9.一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(小时),航行的路程为S(千米),则S与t的函数图象大致是( )A. B.C.D.【考点】函数的图象.【分析】轮船先从甲地顺水航行到乙地,速度大于静水速度,图象陡一些,停留一段时间,路程没有变化,图象平行于横轴,又从乙地逆水航行返回到甲地,路程逐步增加,速度小于静水速度,图象平缓一些.【解答】解:依题意,函数图象分为三段,陡﹣平﹣平缓,且路程逐渐增大.故选B.【点评】本题考查利用函数的图象解决实际问题.正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.10.如图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,第10个小房子需要的石子数量为( )A.130 B.140 C.150 D.160【考点】规律型:图形的变化类.【分析】要找这个小房子的规律,可以分为两部分来看:第一个屋顶是1,第二个屋顶是3.第三个屋顶是5.以此类推,第n个屋顶是2n﹣1.第一个下边是4.第二个下边是9.第三个下边是16.以此类推,第n个下边是(n+1)2个.两部分相加即可得出第n个小房子用的石子数是(n+1)2+2n﹣1=n2+4n,将n=10代入求值即可.【解答】解:该小房子用的石子数可以分两部分找规律:屋顶:第一个是1,第二个是3,第三个是5,…,以此类推,第n个是2n﹣1;下边:第一个是4,第二个是9,第三个是16,…,以此类推,第n个是(n+1)2个.所以共有(n+1)2+2n﹣1=n2+4n.当n=10时,n2+4n=140,故选B.【点评】本题考查了图形的变化类,分清楚每一个小房子所用的石子个数,主要培养学生的观察能力和空间想象能力.11.已知一次函数y=﹣kx+k的图象如图所示,则二次函数y=﹣kx2﹣2x+k的图象大致是( )A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据一次函数的图象和性质判断k的取值范围,确定抛物线的开口方向、对称轴和顶点坐标,得到答案.【解答】解:从一次函数图象可知,k>1,﹣k<0,抛物线开口向下,﹣>﹣1,对称轴在x=﹣1的右侧,与y轴的交点在(0,1)的上方.故选:B.【点评】本题考查的是一次函数的图象和性质、二次函数的图象和性质,掌握性质、读懂图象从中获取正确的信息是解题的关键,解答二次函数图象问题时,要从开口方向、对称轴和顶点坐标三个方面入手.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,并且图象经过点(1,0)、(0,2),对称轴为x=﹣,在下列五个结论中:①abc<0;②4ac﹣b2>0;③a﹣b+c>2;④a<b<0;⑤ac+2=b.其中正确的个数有( )A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴的公共点的个数可得到b2﹣4ac>0;由抛物线开口向下得a<0,由抛物线的对称轴为直线x=﹣<0得b<0,由抛物线与y轴的交点在x轴上方得c>0,则abc<0;因为对称轴为x=﹣,x=0时,y=2,所以x=﹣时,y=2,由于在对称轴的左侧y随x的增大而增大,则a﹣b+c<2;因为x=﹣=﹣,得出a=2b,由于a<0,所以a<b<0;根据图象经过点(1,0)、(0,2),对称轴为x=﹣,求得a=﹣,b=﹣,c=2,所以ac+2=b;【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣<0,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵抛物线与x轴有公共点,∴b2﹣4ac>0,∴4ac﹣b<0,所以②错误;∵对称轴为x=﹣,x=0时,y=2,∴x=﹣时,y=2,∵在对称轴的左侧y随x的增大而增大,∴当x=﹣1时,a﹣b+c<2,所以③错误;∵x=﹣=﹣,∴a=2b,∵a<0,∴a<b<0所以④正确;∵当x=1时,y=0,∴a+b+c=0,∵x=0时,y=2,∴c=2,∵a=2b,∴2b+b+2=0,∴b=﹣,∴a=﹣,∴ac+2﹣b=0,∴ac+2=b,所以⑤正确;故选C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.一元二次方程x2+mx+3=0的一个根为﹣1,则另一个根为﹣3.【考点】根与系数的关系;一元二次方程的解.【分析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.【解答】解:∵一元二次方程x2+mx+3=0的一个根为﹣1,设另一根为x1,由根与系数关系:﹣1•x1=3,解得x1=﹣3.【点评】本题考查的是一元二次方程的根与系数关系式的合理选择.14.如图,矩形ABCD中,对角线AC、BD相交于点O,AC=6,则OD=3.【考点】矩形的性质.【分析】根据矩形的对角线相等,且互相平分即可求解.【解答】解:∵四边形ABCD是矩形,∴BD=AC=6,OD=BD=3.故答案是:3.【点评】本题考查了矩形的性质:矩形的对角线相等,且互相平分,理解性质定理是关键.15.为了中考“跳绳”项目能得到满分,小明练习了6次跳绳,每次跳绳的个数如下(单位:个):176,183,187,179,187,188.这6次数据的中位数是185.【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:176,179,183,187,187,188,则中位数为:=185.故答案为:185.【点评】本题考查了中位数的概念,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.如图,△ABC中,AB=AC,点D是BC的中点,E是AC上一点,且AE=AD,若∠AED=75°,则∠EDC的度数是15°.【考点】等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,根据等腰三角形两底角相等可得∠ADE=∠AED,然后求解即可.【解答】解:∵AB=AC,点D是BC的中点,∴AD⊥BC,∵AE=AD,∴∠ADE=∠AED=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.【点评】本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.17.从﹣1,0,1,2,3这五个数中,随机取出一个数,记为a,那么使关于x的反比例函数y=的图象在二,四象限,且使不等式组无解的概率为.【考点】概率公式;不等式的解集;反比例函数的性质.【分析】由关于x的反比例函数y=的图象在二,四象限,且使不等式组无解,可求得a的取值范围为:a≤1,然后可得从﹣1,0,1,2,3这五个数中,随机取出一个数,符合条件的有3个,再利用概率公式即可求得答案.【解答】解:∵反比例函数y=的图象在二,四象限,∴a﹣3<0,∴a<3,∵不等式组无解,∴1﹣2a≥a﹣2,解得:a≤1,∴使关于x的反比例函数y=的图象在二,四象限,且使不等式组无解的a的取值范围为:a≤1,∴从﹣1,0,1,2,3这五个数中,随机取出一个数,符合条件的有3个,∴使关于x的反比例函数y=的图象在二,四象限,且使不等式组无解的概率为:.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,等腰Rt△ABC中,O为斜边AC的中点,∠CAB的平分线分别交BO,BC于点E,F,BP⊥AF于H,PC⊥BC,AE=1,PG=﹣1.【考点】全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.【分析】可先证得△AEO∽△AFB,可求得AF和EF,再证明△BCG≌△AEB,可得AE=BG,再证明△BPC≌△ABF,可得BP=AF,可求得PG=EF,可求得答案.【解答】解:∵O为AC中点,∴∠EOA=∠FBA=90°,∵AF平分∠BAC,∴∠OAE=∠FAB,∴△AEO∽△AFB,设OA=x,则AB=x,∴=,即=,∴AF=,∵△ABC为等腰三角形,O为AC中点∴BC=BA,∠BCG=∠EBA=45°,∵BP⊥AF,∴∠CBG+∠PBA=∠EAB+∠PBA=90°,∴∠CBG=∠EAB,在△BCG和△AEB中,,∴△BCG≌△AEB(ASA),∴AE=BG=1,∵PC⊥BC,∴∠PCB=∠ABC=90°,在△PBC和△FAB中,,∴△PBC≌△FAB(ASA),∴PB=AF=,∴PC=PB﹣BG=﹣1,故答案为:﹣1.【点评】本题主要考查相似三角形、全等三角形的判定和性质,掌握相似三角形的边对应成比例、全等三角形的边相等是解题的关键.三、解答题:(本大题共2个小题,每小题7分,共14分)19.计算:﹣22﹣|﹣|+()﹣2×(π﹣)0+(﹣1)2014﹣.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、绝对值、负整数指数幂、乘方、二次根式化简五个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣4﹣+9×1+1﹣3=3﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象都经过点A(﹣2,6)和点(4,n).(1)求这两个函数的解析式;(2)直接写出不等式kx+b≤的解集.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.【专题】计算题.【分析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B 的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标,分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;(2)根据一次函数与反比例函数的图象即可得出答案.【解答】解:(1)∵把A(﹣2,6)代入y=得:m=﹣12,∴y=﹣,∵把(4,n)代入y=﹣得:n=﹣3,∴B(4,﹣3),把A、B的坐标代入y=kx+b得:,解得:k=﹣,b=3,即y=﹣x+3,答:反比例函数的解析式是y=﹣,一次函数的解析式是y=﹣x+3.(2)不等式kx+b≤的解集是﹣2≤x<0或x≥4.【点评】本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.四、解答题:(本大题共4个小题,每小题10分,共40分)21.先化简,再求值:,其中x是一元二次方程2x2+6x﹣4=0的根.【考点】分式的化简求值;一元二次方程的解.【分析】先把括号内通分,再把分子分母因式分解,然后化除法运算为乘法运算后约分得到原式=,再根据一元二次方程解的定义得到2x2+6x=4,最后利用整体代入的方法计算即可.【解答】解:原式=﹣÷=﹣÷=•=,∵x是一元二次方程2x2+6x﹣4=0的根,∴2x2+6x=4,∴原式=.【点评】本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.也考查了一元二次方程的解.22.为了解我校初三学生体育达标情况,现对初三部分同学进行了跳绳,立定跳远,实心球,三项体育测试,按A(及格),B(良好),C(优秀),D(满分)进行统计,并根据测试的结果绘制了如下两幅不完整的统计图,请你结合所给信息解答下列问题:(1)本次共调查了20名学生,请补全折线统计图;(2)我校初三年级有2200名学生,根据这次统计数据,估计全年级有多少同学获得满分;(3)在接受测试的学生中,“优秀”中有1名是女生,现从获得“优秀”的学生中选出两名学生交流经验,请用画树状图或列表的方法求出刚好选中两名男生的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;折线统计图.【分析】(1)用A的人数除以所占的百分比,即可求出调查的学生数,再补全折线统计图即可;(2)计算出20名学生中满分所在的比例,即可估计全年级有多少同学获得满分;(3)列表或画树形图,再根据概率公式进行计算即可.【解答】解:(1)由扇形统计图可知A占35%,由条形统计图可知人数为7人,所以总人数=7÷35=20(人),如图所示:故答案为:20;(2)估计全年级有多少同学获得满分的人数=×100%×2200=440(人);(3)列表得:一二女男1男2女(女,男1)(女,男2)男1(男1,女)(男1,男2)男2(男2,女)(男2,男1)由表可知总共有6种等可能的结果,满足条件的有2种,所以P(刚好选中两名男生)=.【点评】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)求销售单价x(元)为多少时,该文具每天的销售利润W(元)最大?(2)经过试营销后,商场就按(1)中单价销售.为了回馈广大顾客,同时提高该文具知名度,商场营销部决定在11月11日(双十一)当天开展降价促销活动,若每件文具降价m%,则可多售出2m%件文具,结果当天销售额为5250元,求m的值.【考点】二次函数的应用.【分析】(1)首先确定有关利润与售价x之间的二次函数,配方后即可确定最大利润;(2)首先确定原来的销售量,然后销售量×单件利润=总利润列出方程求解即可.【解答】解:(1)∵销售量=250﹣10(x﹣25)=500﹣10x,∴总利润=(x﹣20)(500﹣10x)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250∴当x=35时,最大利润为2250元.(2)原来销售量500﹣10x=500﹣350=150,35(1﹣m%)150(1+2m%)=5250设m%=a,∴(1﹣a)(1+2a)=1,解得:a=0或a=,∵要降价销售,∴a=,∴m=50.【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,二次函数的性质的运用,解答时根据条件建立方程是解答本题的关键.24.如图,在△ABC中,AB=AC,EF为△ABC的中位线,点G为EF的中点,连接BG,CG.(1)求证:BG=CG;(2)当∠BGC=90°时,过点B作BD⊥AC,交GC于H,连接HF,求证:BH=FH+CF.【考点】全等三角形的判定与性质;三角形中位线定理.【专题】证明题.【分析】(1)根据等腰三角形的性质,可得∠ABC=∠ACB,有中位线定理和点G为EF的中点可证明△BEG≌△CFG,从而得出结论;(2)延长BG交AC于M,根据题意可证明△BGH≌CGM,得出BH=CM,GH=GM,还可证明△GMF≌△GHF,则MF=HF,即可证明BH=FH+CF.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,又∵EF为中位线,∴BE=AB=CF,EF∥BC,∴∠1+∠ABC=∠EFC+∠ACB=180°,∴∠1=∠EFC,又∵G为EF的中点,∴EG=GF,∴在△BEG和△CFG中,∴△BEG≌△CFG,∴BG=CG;(2)延长BG交AC于M,∵∠BGC=90°,BD⊥AC,∴∠2=90°﹣∠GHB=90°﹣∠DHC=∠3,在△BGH和CGM中,∴△BGH≌CGM,∴BH=CM,GH=GM又∵EF∥BC,∴∠4=∠GCB=45°,∴∠5=90°﹣∠4=45°=∠4在△GMF和△GHF中,∴△GMF≌△GHF,∴MF=HF,∴BH=CM=MF+FC=FH+FC.【点评】本题考查了全等三角形的判定和性质以及三角形的中位线定理,是中考常见题型,熟练掌握全等三角形的判定方法是解题的关键.五、解答题:(本大题2个小题,每小题12分,共24分)25.如图,已知抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,﹣3).(1)求抛物线解析式;(2)点M是(1)中抛物线上一个动点,且位于直线AC的上方,试求△ACM的最大面积以及此时点M的坐标;(3)抛物线上是否存在点P,使得△PAC是以AC为直角边的直角三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)代入A,C两点,列出方程,解得a,b即可;(2)设M(a,﹣a2+4a﹣3),求出直线直线AC的解析式为:y=1﹣x,过M作x轴的垂线交AC于N,则N(a,1﹣a),即有三角形ACM的面积为△AMN和△CMN的面积之和,化简运用二次函数的最值,即可得到;(3)讨论当∠ACP=90°,当∠CAP=90°,运用直线方程和抛物线方程求交点即可.【解答】解:(1)由于A点的坐标是(1,0),C点坐标是(4,﹣3),则a+b﹣3=0,且16a+4b﹣3=﹣3,解得,a=﹣1,b=4,即抛物线的解析式为:y=﹣x2+4x﹣3;(2)设M(a,﹣a2+4a﹣3),设直线AC的解析式为y=kx+b,根据题意得:,解得:,∴直线AC的解析式为:y=1﹣x,过M作x轴的垂线交AC于N,如图所示:则N(a,1﹣a),即有三角形ACM的面积为△AMN与△CMN的面积之和,即为(a﹣1+4﹣a)(﹣a2+4a﹣3﹣1+a)=(﹣a2+5a﹣4),当a=时,面积取得最大,且为,此时M(,);(3)存在,理由如下:当∠ACP=90°,即有此时CP:y=x﹣7,由CP解析式和抛物线解析式得:,。