数学分析习题及答案 (13)

合集下载

微积分(数学分析)练习题及答案doc

微积分(数学分析)练习题及答案doc

统计专业和数学专业数学分练习题 计算题1. 试求极限.42lim)0,0(),(xyxy y x +-→2. 试求极限.)()cos(1lim 222222)0,0(),(y x y x ey x y x ++-→3. 试求极限.1sin 1sin )(lim )0,0(),(yx y x y x +→4. 试讨论.lim 422)0,0(),(y x xy y x +→5. 试求极限.11lim2222)0,0(),(-+++→y x y x y x6. ),(xy y x f u +=,f 有连续的偏导数,求 .,yu x u ∂∂∂∂ 7. ,arctan xy z =,xe y = 求.dxdz 8. 求抛物面 222y x z +=在点 )3,1,1(M 处的切平面方程与法线方程.9. 求5362),(22+----=y x y xy x y x f 在)2,1(-处的泰勒公式.10. 求函数)2(),(22y y x e y x f x++=的极值. 11. 叙述隐函数的定义.12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容.14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线0333=-+axy y x所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程0),,(323=-++=z y x xyz z y x F在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23(,,)f x y z xy z =, 方程2223x y z xyz ++=.(1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组⎩⎨⎧=+-+-==--+=01),,,(,0),,,(222xy v u v u y x G y x v u v u y x F 在点)2,1,1,2(0P 近旁能确定怎样的隐函数组,并求其偏导数。

数学分析习题集答案13

数学分析习题集答案13

。再令
⎧x
⎨ ⎩
y
= =
u u
− +
v v
,则
∂(x, ∂(u,
y) v)
=2,
{ } S = ∫∫ 2dxdy = ∫∫ 4dudv ,其中 D'= (u, v) (u + 2a)2 + 3v2 ≤ 6a2 。
D
D'
(3) (2 − 2)πa 2 ;
(4) 2a2 ,提示: S = ∫∫ a dzdx , D = {(z, x) − x ≤ z ≤ x, 0 ≤ x ≤ a}。 D a2 − x2
∫∫Σ f (ax + by + cz)dS = ∫∫Σ f ( a2 + b2 + c2 z')dS 。
计算这一曲面积分,令 x' = sin ϕ cosθ , y' = sin ϕ sinθ , z' = cosϕ 。
11.需要 100 小时. 提示:设在时刻 t 雪堆的体积为V (t) ,雪堆的侧面积为 S (t) ,
此得到
∫∫
Σ
z ρ(x, y,
dS z)
=
3π 2

10. 提示:将 xyz − 坐标系保持原点不动旋转成 x' y' z'− 坐标系,使 z' 轴上的单位
向量为
1
(a,b, c) ,则球面 Σ 不变,面积元 dS 也不变。设球面 Σ 上一
a2 + b2 + c2
点 (x, y, z) 的新坐标为 (x', y', z') ,则 ax + by + cz = a 2 + b2 + c2 z' ,于是

数学分析课后习题答案

数学分析课后习题答案

习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时,y 的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数解 由推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。

因此每一个含有第一类间断点的函数都没有原函数。

5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷ ⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22⑻ C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2⑼ C x x dx x x dx xx xx dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀ C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁ C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂ C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(习题1.应用换元积分法求下列不定积分:⑴ C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹ C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼ C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇ C x dx x xxdx +==⎰⎰|sin |ln sin cos cot(21) ⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴ C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵ C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln ⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸ C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻ ⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼ ⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以 C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n m习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得31=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材 例9或关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵ ]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷ ⎰⎰⎰⎰===x x x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sinC x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸ C x e C e u e du u e u x dx ex u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿ ⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄ ⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。

数学分析课后习题答案

数学分析课后习题答案

数学分析课后习题答案数学分析课后习题答案数学分析是大学数学的重要分支之一,它研究的是数学函数的性质、极限、连续性、可导性等等。

在学习数学分析的过程中,课后习题是巩固和拓展知识的重要途径。

然而,有时候我们会遇到一些难题,不知道如何下手。

为了帮助大家更好地学习数学分析,本文将提供一些常见习题的答案和解析。

一、极限与连续性1. 求极限:lim(x→0) (sinx/x)。

解析:利用极限的性质,我们可以得到lim(x→0) (sinx/x) = 1。

这是因为当x趋近于0时,sinx/x的值趋近于1。

2. 证明函数f(x) = x^2在点x = 3处连续。

解析:要证明函数f(x) = x^2在点x = 3处连续,我们需要证明lim(x→3) f(x) = f(3)。

根据函数的定义,f(3) = 3^2 = 9。

而lim(x→3) f(x) = lim(x→3) x^2 = 3^2 = 9。

因此,函数f(x) = x^2在点x = 3处连续。

二、导数与微分1. 求函数f(x) = x^3的导数。

解析:根据导数的定义,导数f'(x) = lim(h→0) (f(x+h) - f(x))/h。

对于函数f(x) = x^3,我们可以得到f'(x) = lim(h→0) ((x+h)^3 - x^3)/h。

化简后,我们得到f'(x) = 3x^2。

2. 求函数f(x) = sinx的微分。

解析:微分的定义是df(x) = f'(x)dx。

对于函数f(x) = sinx,我们已经知道它的导数f'(x) = cosx。

因此,函数f(x) = sinx的微分为df(x) = cosxdx。

三、积分与级数1. 求函数f(x) = x^2在区间[0,1]上的定积分。

解析:根据定积分的定义,函数f(x) = x^2在区间[0,1]上的定积分为∫[0,1] x^2 dx。

计算这个积分,我们得到∫[0,1] x^2 dx = [x^3/3]0^1 = 1/3。

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。

12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。

数学分析上学期期末考试试题(及答案)

数学分析上学期期末考试试题(及答案)

数学分析上学期期末考试试题(及答案)一、选择题(每小题2分,共20分)1. 下列哪个不是测度论中的重要定理?A. 开集的性质B. 测度的可贸易性C. 有限可加性定理D. 外测度的定义2. 设函数f(x)在[a, b]上可导,下列关于f(x)的结论中正确的是:A. f(x)在[a, b]上一定为增函数B. f(x)在[a, b]上一定为减函数C. f(x)在[a, b]上既可以是增函数也可以是减函数D. f(x)在[a, b]上一定为周期函数3. 以下哪个不是级数收敛的充要条件?A. 极限一致有界B. 积分收敛C. 极限值为零D. 部分和有界4. 若函数序列fn(x)在[a, b]上一致收敛于f(x),则f(x)在[a, b]上一定是A. 递增的B. 递减的C. 周期函数D. 连续函数5. 下列哪个不是积分的线性性质?A. ∫[a, b](f+g)(x)dx = ∫[a, b]f(x)dx + ∫[a, b]g(x)dxB. ∫[a, b]cf(x)dx = c∫[a, b]f(x)dx (c为常数)C. ∫[a, b]f(x)g(x)dx = ∫[a, b]f(x)dx * ∫[a, b]g(x)dxD. ∫[a, b]f(x)dx = -∫[b, a]f(x)dx6. 函数f(x)=|x|/(x^2+9)的不可导点是A. x=-3B. x=3C. x=-3和x=-sqrt(3)D. x=-3和x=sqrt(3)7. 设函数u(x, y)具有二阶连续偏导数,下列哪个条件可以确保u(x, y)为调和函数?A. u_xx + u_yy = 0B. u_xx + u_yy = 1C. u_xx - u_yy = 0D. u_xx - u_yy = 18. 设实数α为2π的有理数倍数,函数f(x)的周期为2π,下列哪个函数一定是f(x)的周期函数?A. f(x + α)B. f(x - α)C. f(-x)D. f(x/2)9. 设f(x)在区间[a, b]上一阶可导,且f(a)=f(b)=0,若存在c∈(a,b)使得f(c)=0,则函数f(x)在[a, b]上的其中一个极值点为A. aB. bC. cD. 以上都可能是10. 函数f(x)对任意的x∈(-∞, +∞)满足f'(x) = f(x),若f(x)在x=0处的值为2,则f(1)的值为A. -1B. 0C. 1D. 2二、填空题(每小题5分,共20分)1. 若函数f(x)可导,则f(x)________是可测的,且__________是可测的。

(完整word版)数学分析—极限练习题及详细答案

(完整word版)数学分析—极限练习题及详细答案

一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。

A.sin ||xB.ln(1)x -C.11.【答案】D 。

2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。

4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。

5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。

数学分析课后习题答案--高教第二版(陈纪修)--13章

数学分析课后习题答案--高教第二版(陈纪修)--13章

F (x, y) = f (x) , (x, y) ∈ D 。
证明 F (x, y) 在 D 上可积。
证 将[a,b] 、[c, d ] 分别作划分:
a = x0 < x1 < x2 < < xn−1 < xn = b

m c = y0 < y1 < y2 < < ym−1 < ym = d , o 则 D 分成了 nm 个小矩形 ∆Dij (i = 1,2, , n, j = 1,2, , m) 。
2π 3

∫∫∫

1
+
dxdxdz x2 + y2 +
z
2

4π 3

m 4.计算下列重积分:
co (1) ∫∫(x3 + 3x2 y + y3 )dxdy ,其中 D 为闭矩形[0,1] × [0,1] ;
. D
aw (2) ∫∫ xy ex2+y2 dxdy ,其中 D 为闭矩形[a,b] × [c,d ];
课 证明
H ( x, y) = max{ f ( x, y), g( x, y)}

h( x, y) = min{ f ( x, y), g( x, y)}
也在 D 上可积。
证 首先我们有
H (x, y) = 1 ( f (x, y) + g(x, y) + f (x, y) − g(x, y) ), 2
D
khd (3)
∫∫∫ Ω
dxdydz (x + y + z)3
,其中

为长方体 [1,2]
×
[1,2]

数学分析试题及答案

数学分析试题及答案

(十四)《数学分析II 》考试题一填空(共15分,每题5分):1 设 E = {x — [x] I x e 则 s upE = 1 , inf E = 0"'(5) = 2,则鳏今若警=竺,sin ax, x < 0,ln(l + x) +。

在"。

处可导,灿 Jb= o二计算下列极限:(共20分,每题5分)1 1 1 11 lim (1 + — + — + ----------- F —)〃 ; ,一823 n故 lim (1 + 土 + ! + 〃一>8 2 3]+ + —2 hm ------------- ---------- :— (V/?)解:由Stolz 定理, 「 1 + A /2 + — yfn..lim ----------- — --------- = lim —。

/_____ 今〃f° (而)3 f (如)一(J. — 1)=lim____ _____________〃一8( — — 1)(〃 + 一 1) + 〃 一 1)=lim"*(〃 —(〃一 1))(2” + — 1)—1)1 + J1--2=怛 I ------------ " 1=32 +、)F ),,小 1 1解:由于1<(1 + 5 +氏+・…+上是沽,又limS = l,n〃一>81 1+ —)〃 = lony/n(y/n + y/n — 1)「sinx —sin6f3 lim ------------------------L x — ac x + a ・ x — a「 sin X —sin Q 2cos -------------------------- sin ----------- 解:lim ------------------- = Um -------------- 2 ---------X* x — a — x — a . X — Usin ----------=lim cos ------------------------ =—— = cost/.2X — Cl ~~2~4 lim(l + 2x) ve .X —()解:lim(l + 2x)' = lim (l + 2x)A —>0X —>Qi2x2=e 2三计算导数(共15分,每题5分): 1 /(x) = Vx 2 + 1 — ]n(x + J-? +1), '(x); 2x 1 + _ _____解:e)=玉 _ 2«.『+l=^2 Jx? + 1 X ++ 1 yjx 1 +1 yjx 2 + 1 」X’ + 1 x-1 表示的函数的二阶导数 y = “sin t(“sin ,)' 3〃sirr ,cos , - —- = z ----------------- = -tanf, dx (acos t) — 3ocos~fsin ,d^y — sec" t sec 、 ~ o dx~ (t/cos ,)' 3“cosUsin ,3 设 y = (3x2 _ 2)sin2x,求y (I(x,)o 2 求由方程! 解: 解:由Leibniz 公式 y <,00) =C 1%(sin2x)<100)(3x 2 -2) + C l l 00(sin 2x)(99>(3x 2 -2y + C^(sin 2x)(98)(3x 2 -2/ =2,0° sin(2x + 衅)(3子一 2) +100 ・ 2的 siii(2x + 哗)6x + 悴298 sin(2x + 哗)• 6= 2,00(3x 2 - 2)sin 2x - 600 • 2W xcos 2x - 29700 x 2<?8 sin 2x = 2*12/ -229708 )sin 2.s 1200xcos2炸四(12分)设u>0, {%}满足:X 。

数学分析习题册答案

数学分析习题册答案

习 题 1-11.计算下列极限(1)lim x ax a a x x a→--, 0;a >解:原式lim[]x a a ax a a a x a x a x a→--=---=()|()|x a x a x a a x ==''- =1ln aa a a a a --⋅=(ln 1)a a a -(2)sin sin limsin()x a x ax a →--;解:原式sin sin lim x a x ax a→-=-(sin )'cos x a x a ===(3)2lim 2), 0;n n a →∞->解:原式2n =20[()']x x a ==2ln a = (4)1lim [(1)1]pn n n→∞+-,0;p >解:原式111(1)1lim ()|p p p x n n nx =→∞+-'===11p x px p -== (5)10100(1tan )(1sin )lim;sin x x x x→+-- 解:原式101000(1tan )1(1sin )1lim lim tan sin x x x x x x→→+---=--=990010(1)|10(1)|20t t t t ==+++=(6)1x →,,m n 为正整数;解:原式11lim1x x →=- 1111()'()'mx nx x x ===n m=2.设()f x 在0x 处二阶可导,计算00020()2()()lim h f x h f x f x h h→+-+-. 解:原式000()()lim 2h f x h f x h h →''+--=00000()()()()lim 2h f x h f x f x f x h h→''''+-+--=000000()()()()lim lim 22h h f x h f x f x h f x h h →→''''+---=+-00011()()()22f x f x f x ''''''=+=3.设0a >,()0f a >,()f a '存在,计算1ln ln ()lim[]()x a x a f x f a -→.解:1ln ln ()lim[]x a x a f x -→ln ()ln ()ln ln lim f x f a x ax a e --→=ln ()ln ()limln ln x a f x f a x a e→--=ln ()ln ()lim ln ln x af x f a x a x a x a e →----='()()f a a f a e=习 题 1-21.求下列极限 (1)lim x →+∞;解:原式lim 1)(1)]0x x x →+∞=+--= ,其中ξ在1x -与1x +之间(2)40cos(sin )cos lim sin x x xx→-;解:原式=40sin (sin )limx x x x ξ→--=30sin sin lim()()()x x x x x ξξξ→--⋅=16,其中ξ在x 与sin x 之间(3)lim x →+∞解:原式116611lim [(1)(1)]x x x x →+∞=+--56111lim (1)[(1)(1)]6x x x xξ-→+∞=⋅+⋅+--5611lim (1)33x ξ-→+∞=+= ,其中ξ在11x -与11x +之间 (4) 211lim (arctan arctan);1n n n n →+∞-+ 解:原式22111lim ()11n n n n ξ→+∞=-++ 1=,其中其中ξ在11n +与1n 之间 2.设()f x 在a 处可导,()0f a >,计算11()lim ()nn n n f a f a →∞⎡⎤+⎢⎥-⎣⎦.解:原式1111(ln ()ln ())lim (ln ()ln ())lim n n f a f a n f a f a n nn nn e e→∞+--+--→∞==11ln ()ln ()ln ()ln ()[lim lim ]11n n f a f a f a f a n n n ne→∞→∞+---+-=()()2()()()()f a f a f a f a f a f a ee'''+==习 题 1-31.求下列极限(1)0(1)1lim (1)1x x x λμ→+-+-,0;μ≠解:原式0limx x x λλμμ→==(2)0x →;解:02ln cos cos 2cos lim12x x x nxI x →-⋅⋅⋅=20ln cos ln cos 2ln cos 2lim x x x nx x→++⋅⋅⋅+=- 20cos 1cos 21cos 12lim x x x nx x →-+-+⋅⋅⋅+-=-22220(2)()lim x x x nx x →++⋅⋅⋅+=21ni i ==∑ (3)011lim)1xx x e →--(; 解:原式01lim (1)x x x e xx e →--=-201lim x x e x x →--=01lim 2x x e x→-=01lim 22x x x →== (4)112lim [(1)]xxx x x x →+∞+-;解:原式11ln(1)ln 2lim ()x x xxx x ee+→+∞=-21lim (ln(1)ln )x x x x x →+∞=+- 1lim ln(1)x x x→+∞=+1lim 1x xx→+∞== 2. 求下列极限 (1)2221cos ln cos limsin x x x x xe e x-→----;解:原式222201122lim12x x x x x →+==- (2)0ln()2sin lim sin(2tan 2)sin(tan 2)tan x x x e xx x x→++--;解:原式0ln(11)2sin lim sin(2tan 2)sin(tan 2)tan x x x e x x x x →++-+=--012sin limsin(2tan 2)sin(tan 2)tan x x x e xx x x→+-+=-- 02lim442x x x xx x x→++==--习 题 1-41.求下列极限(1)21lim (1sin )n n n n→∞-;解:原式2331111lim [1(())]3!n n n o n n n →∞=--+11lim((1))3!6n o →∞=+=(2)求33601lim sin x x e x x→--;解:原式3636336600()112lim lim 2x x x xx o x x e x x x →→++---=== (3)21lim[ln(1)]x x x x→∞-+;解:原式222111lim[(())]2x x x o x x x →∞=--+12=(4)21lim (1)x xx e x-→+∞+;解:原式211[ln(1)]2lim x x xx ee +--→∞==此题已换3.设()f x 在0x =处可导,(0)0f ≠,(0)0f '≠.若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.解:因为 ()(0)(0)()f h f f h o h '=++,(2)(0)2(0)()f h f f h o h '=++ 所以00()(2)2(0)(1)(0)(2)(0)()0limlim h h af h bf h f a b f a b f o h h h→→'+-+-+++==从而 10a b +-= 20a b += 解得:2,1a b ==- 3.设()f x 在0x 处二阶可导,用泰勒公式求0002()2()()limh f x h f x f x h h →+-+-解:原式222200001000220''()''()()'()()2()()'()()2!2!limh f x f x f x f x h h o h f x f x f x h h o h h→+++-+-++=22201220''()()()lim h f x h o h o h h→++=0''()f x = 4. 设()f x 在0x =处可导,且20sin ()lim() 2.x x f x x x →+=求(0),(0)f f '和01()lim x f x x→+. 解 因为 2200sin ()sin ()2lim()lim x x x f x x xf x x x x→→+=+= []22()(0)(0)()limx x o x x f f x o x x→'++++=2220(1(0))(0)()lim x f x f x o x x →'+++=所以 1(0)0,(0)2f f '+==,即(0)1,(0)2f f '=-= 所以 01()l i mx f x x→+01(0)(0)()l i m x f f x o x x →'+++=02()l i m 2x x o x x →+==习 题 1-51. 计算下列极限(1) limn →∞解:原式limn →∞=2n ==(2)2212lim (1)nn n a a na a na+→∞+++⋅⋅⋅+> 解:原式21lim (1)nn n n na na n a ++→∞=--2lim (1)n n na n a →∞=--21a a=-2. 设lim n n a a →∞=,求 (1) 1222lim nn a a na n →∞+++ ;解:原式22lim (1)n n na n n →∞=--lim 212n n na a n →∞==- (2) 12lim 111n nna a a →∞+++ ,0,1,2,,.i a i n ≠=解:由于1211111lim lim n n n na a a n a a →∞→∞+++== , 所以12lim 111n nna a a a →∞=+++3.设2lim()0n n n x x -→∞-=,求lim n n x n →∞和1lim n n n x x n-→∞-.解:因为2lim()0n n n x x -→∞-=,所以222lim()0n n n x x -→∞-=且2121lim()0n n n x x +-→∞-=从而有stolz 定理2222limlim 022n n n n n x x xn -→∞→∞-==,且212121lim lim 0212n n n n n x x x n ++-→∞→∞-==+ 所以lim 0n n x n →∞=,111lim lim lim 01nn n n n n n x x x x n n n n n --→∞→∞→∞--=-=-4.设110x q <<,其中01q <≤,并且1(1)n n n x x qx +=-, 证明:1lim n n nx q→∞=.证明:因110x q<<,所以211211(1)111(1)()24qx qx x x qx q q q+-=-≤=<,所以210x q <<,用数学归纳法易证,10n x q <<。

数学分析简明教程答案13

数学分析简明教程答案13

第十三章 幂级数§13.1 幂级数的收敛半径与收敛域1.求下列各幂级数的收敛域:(1)∑∞=1!)2(n nn x ;(2)∑∞=+++111)1ln(n n x n n ; (3)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+11n nn x n n ;(4)∑∞=122n n nx ;(5)∑∞=-+1))1(3(n nn n x n ; (6)()()∑∞=+-+1123n n nn x n ; (7)()()n n x n n ∑∞=+1!!12!!2;(8)∑∞=-⎪⎭⎫ ⎝⎛+1211n n n x n ;(9)()n n nn x nn∑∞=-11;(10)∑∞=+175n nn nx ; (11)()()nn x n n ∑∞=12!2!;(12)n n x n ∑∞=⎪⎭⎫ ⎝⎛+++11211 ; (13)∑∞nnx;(14)()()∑∞=---112!122n n n x ; (15)()10,12<<∑∞=a x a n n n ;(16)∑∞=1n p nnx .解(1)由012lim !2)1(2lim 1=+=⎪⎪⎭⎫⎝⎛+∞→+∞→n n n n n n n ,故收敛半径+∞=R ,收敛域为)(∞+∞-,.(2)由 121)2ln()2ln(lim 1)1ln(2)2ln(lim =++⋅++=⎪⎭⎫⎝⎛++++∞→∞→n n n n n n n n n n ,故收敛半径1R =. 在1=x ,级数为∑∞=++11)1ln(n n n ,发散;在1-=x ,级数为∑∞=+++-111)1ln()1(n n n n ,由交错级数的Leibniz 判别法,知其收敛,因而收敛域为)[1,1-.(3)e n n n nn n nn n =⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+∞→∞→11lim 1lim ,所以收敛半径e R 1=.由于()∞→≠→⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛±⎪⎭⎫ ⎝⎛+n e e n nn 01111, 故在e x 1±=级数发散,因此收敛域为)1,1(ee -.(4)由121lim 21limlim 2===∞→∞→∞→n n n n n n n n a ,知收敛半径1=R . 在1=x ,级数为∑∞=±12)1(2n nn绝对收敛,故收敛域为]1,1[-. (5)由()413limlim =-+=∞→∞→nnn n n n na ,故收敛半径41=R . 在41=x ,级数()[]∑∞=-+1413n n nn n ,将其奇偶项分开,拆成两个部分,分别为∑∞=121k k 和()∑∞=--1122121k k k ,前一项级数发散,后一项级数收敛,因此级数()[]∑∞=-+1413n n nn n 发散;同样,41-=x 时,级数为()[]()∑∞=--+11413n nn nn n ,也可拆成两部分,前一部分为∑∞=121k k ,另一部分()()∑∞=-----112122121k k k k ,前者发散,后者绝对收敛,因此级数()[]()∑∞=--+11413n nn nn n 发散,所以收敛区域是)41,41(-. (6)()()()332132231lim 23123lim 11=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--++=⎪⎪⎭⎫⎝⎛-++-+∞→++∞→n nn n nn n n n n n n ,所以级数的收敛半径是31=R . 当311=+x 时,级数为()∑∑∞=∞=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=-+1132113123n n n n n n n n n 发散;当311-=+x 时,级数为()()∑∑∞=∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛--+1132113123n n n n n n n n n n 收敛. 因此,收敛域为31131≤+≤-x 即⎥⎦⎤⎢⎣⎡--32,43. (7) ()()()()()13212lim !!12!!2!!32!!12lim =++=⎭⎬⎫⎩⎨⎧+++∞→∞→n n n n n n n n ,所以收敛半径1=R .当1=x 时,级数为()()∑∞=+1!!12!!2n n n ,由于12132lim 12232lim <=+=⎪⎭⎫ ⎝⎛-++∞→∞→n n n n n n n ,故由Raabe 判别法,知级数发散;当1-=x 时,级数为()()()n n n n 1!!12!!21-+∑∞=(实际上,由其绝对收敛立知其收敛),这是交错级数,由于()()()()()()!!12!!2!!12!!23222!!32!!22+<+++=++n n n n n n n n ,故()()⎭⎬⎫⎩⎨⎧+!!12!!2n n 单调下降,且由n n n 2112254320<+< (用数学归纳法证之)及夹迫性知()()0!!12!!2lim =+∞→n n n ,由Leibniz 判别法,知()()()n n n n 1!!12!!21-+∑∞=收敛,所以收敛域为)1,1[-. (8)111lim 11lim 2--∞→-∞→=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+e n n nn n n n ,所以收敛半径e R =.由于()()∞→≠→±⎪⎭⎫ ⎝⎛+-n e e n n n 0112,故级数在e x ±=发散,因而收敛域为),(e e -.(9)()()11111lim11=-++-++∞→nnn n n nn n n ,所以1=R .在1=x ,级数为()∑∞=-11n nn nn,由Leibniz 判别法,知其收敛;在1-=x ,级数为∑∞=11n nnn发散,故收敛域]1,1(-.(10)71751751lim 11=⎪⎭⎫⎝⎛++++∞→n n n n n ,所以7=R .在71±=x ,由于()()∞→→+±n n n n1757,即级数()∑∞=+±1757n nn n一般项()n n n757+±当n ∞→时不趋于0,因此级数发散,故收敛域()7,7-.(11)()[]()[]()()()()()4112121lim !2!!12!1lim 222=+++=⎥⎦⎤⎢⎣⎡++∞→∞→n n n n n n n n n ,因此4=R . 在4±=x ,级数为21(!)(4)(2)!n n n n ∞=±∑,因为级数一般项的绝对值为 1!)!12(!)!2()4()!2()!(2>-=±n n n n n 对一切n 成立,所以0)4()!2()!(lim2≠±∞→nn n n ,即级数21(!)(4)(2)!n n n n ∞=±∑发散,因此收敛域为)4,4(-.(12) 因为1)1211()11211(lim =⎪⎭⎫ ⎝⎛++++++∞→n n n ,所以1=R .而在1±=x ,由于()011211lim ≠∞=±⎪⎭⎫ ⎝⎛+++∞→nn n ,故级数在1±=x 均发散,因而收敛区间为)1,1(-.(13)因为11lim=+∞→nn n ,所以1=R .又在1±=x ,显然级数()∑∞=±11n nn 均发散,故收敛域为)1,1(-.(14)由于()()()()()()101222lim !122!122lim 21212<=+-=⎥⎦⎤⎢⎣⎡--+-∞→--∞→n n x n x n x n n n n ,故()∞∞-∈∀,x ,()()∑∞=---112!122n n n x 均绝对收敛,因而收敛半径+∞=R ,收敛域()∞∞-,.(15)因为0lim lim 2==∞→∞→n n n n n a a (10<<a ),所以+∞=R ,收敛域为()+∞∞-,.(16)()1111lim 111lim =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+∞→∞→p n ppn n n n ,所以1=R . 在1±=x ,级数变为()∑∞=±11n pn n ,故当1>p 时都收敛;10≤<p 时,()∑∞=-11n pn n 收敛,而∑∞=11n p n 发散,0≤p 时一般项不趋于0,均发散.因此,当1>p 时,收敛域]1,1[-; 10≤<p 时,收敛域为)1,1[-;而当0≤p 时, 收敛域为)1,1(-.2.设幂级数nn nx a∑∞=1的收敛半径为R , n n n x b ∑∞=1的收敛半径为Q ,讨论下列级数的收敛半径:(1)∑∞=12n n nx a;(2)()∑∞=+1n n n nx b a;(3)()∑∞=1n nnn xb a .解(1)由题设R a a nn n 1lim 1=+∞→,所以()221211lim x R x a x a n n n n n =++∞→,故当112<x R ,即R x <时,级数nn n x a 21∑∞=绝对收敛,而当112>x R ,即R x >时,级数nn n x a 21∑∞=发散,因此级数nn n x a 21∑∞=的收敛半径为R . (2)收敛半径必{}Q R ,m in ≥,而不定,需给出n a ,n b 的具体表达式才可确定,可以举出例子.(3)RQ b a b a nn n n n 1lim11=++∞→,所以收敛半径为RQ ,只有当Q R ,中一个为0,另一个为∞+时,不能确定,需看具体n a ,n b 来确定,可以是[)+∞,0中任一数.3.设()0,,2,1101>=≤∑∞=x n M x ak kk ,求证:当10x x <<时,有(1)n n nx a∑∞=0收敛;(2)M x an n n≤∑∞=0.证明(1)nn n x a ∑∞=0=n n n n x x x a ⎪⎪⎭⎫ ⎝⎛∑∞=111,而由于10x x <<,故数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛nx x 1单调递减趋于0,级数n n n x a11∑∞=的部分和数列M x a n nn ≤∑∞=0有界,由Dirichlet 判别法,级数nn n x a ∑∞=0收敛.(2) 设n n nx a∑∞=0的部分和为)(x s n ,则由Abel 变换,有 knk k k nk k k n x x x a x a x s ⎪⎪⎭⎫ ⎝⎛==∑∑==1111)(∑∑∑=-==+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=n k kk nn k k i i i k k x a x x x a x x x x 1111111111M x x M x x x x x x M nn k k k <=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛≤∑-=+1111111, 所以,M x s x s x an n n n n n n≤=∞→∞→∞=∑)(lim )(lim 0.§13.2 幂级数的性质1.设nn n x a x f ∑∞==)(当r x <时收敛,那么当101+∞=∑+n n n r n a 收敛时有11)(+∞=∑⎰+=n n n rr n a dx x f , 不论nn n xa ∑∞=0当r x =时是否收敛.证明 由于幂级数11+∞=∑+n n n r n a 的收敛半径至少不小于r ,且该幂级数在r x =收敛,因而该幂级数在[]r ,0一致收敛(Abel 第二定理),因此该幂级数的和函数)(x s 在r x =连续,即()101lim +∞=→∑+=-n n n rx r n a x s .又r x <<∀0,由于n n n x a ∑∞=0当r x <时收敛,故可逐项积分,即)(1100x s r n a dx x a dx x a n n n n xnn x n nn =+==+∞=∞=∞=∑∑⎰⎰∑,即)(lim )(0x s dt t f rx x -→=⎰,令-→r x 取极限即有1001)(lim )(+∞=→∑⎰+==-n n n rx r r n a x s dx x f .2.利用上题证明()∑⎰∞=-=-121011ln n ndx x x . 证明 ()()1,11)1ln(111<-=--=-∑∑∞=∞=-x x nx nx n nn n n ,故()∑∞=--=-1111ln n n x n x x ,1<x ,而级数∑∑∞=∞=-=+-⋅-12111)1(11n n n n n 是收敛的,利用上题结论,就有()∑⎰∞=-=-121011ln n n dx xx .3. 用逐项微分或逐项积分求下列级数的和:(1)∑∞=1n nnx ;(2)∑∞=1n nnx;(3)()∑∞=+11n nxn n ;(4)()()∑∞=---121121n n n x n n ; (5)∑∞=+122!1n nnx n n ; (6)()()nn n x n n ∑∞=+-13!11;(7)∑∞=-+11414n n n x ;(8)()∑∞=+-0112n n n x ;(9)∑∞=-112n n x n;(10)()∑∞=++1122!12n n x n n .解(1)因为1,1111<=-∑∞=-x x x n n ,所以当1<x 时,⎰∑⎰-=∞=-x n x n dt t dt t 000111,即()x n x n n --=∑∞=1ln 1,且当1-=x 时,级数()∑∞=-11n nn 收敛,由Abel 第二定理,有()11,1ln 1<≤---=∑∞=x x n x n n. (2)设∑∞==1)(n nnx x s ,则1,)(11<=∑∞=-x nx x x s n n ,逐项积分,有1,1)(1101<-===∑∑⎰⎰∞=∞=-x x x x dt t n dt t t s n n n x n x,所以,()2111)(x x x x x s -='⎪⎭⎫ ⎝⎛-=,即()1,1)(2<-=x x x x s . (3)设()∑∞=+=11)(n nx n n x s ,1<x ,则有 ()()1,11)(221111<-===+=∑∑∑⎰⎰∞=∞=+∞=x x x nx x nxdt t n n dt t s n nn n n xnx,所以,322)1(2)1()(x x x x x s -='⎪⎪⎭⎫⎝⎛-=,1<x . (4)设()()∑∞=--=12121)(n n nx n n x s ,1≤x ,则 ()()∑∞=----='11211221)(n n n x n x s ,11≤<-x , ()()()211212211212121)(xx x x s n n n n n +=-=-=''∑∑∞=-∞=--,1<x , 所以,()x dt tx s xarctan 21121)(02=+='⎰,11≤<-x , )1ln(41arctan 21arctan 21)(20x x x tdt x s x+-==⎰,1≤x . (5) 设 1)(2!12!2!1)(211212-+=+=+=∑∑∑∞=∞=∞=xnn n n n n n n ne x x n x n n x n n x s σ,+∞<x . 由于()211101222!1122!)(2!)(xn n n n n x n n n e xx n x x n n dt t t x n n x =⎪⎭⎫⎝⎛-==⇒=∑∑⎰∑∞=-∞=∞=σσ,所以, 222412)(x x e x e x x +=σ,故 112141)(22-⎪⎭⎫⎝⎛++=xe x x x s .(6)设()()∑∞=+-=13!11)(n n n x n n x s ,+∞<x ,则[]()∑∞=-='13!)(n nx n n x xs ,所以,[]()()[]()13)(!)(12220+--='⇒-=-='--∞∑⎰x x xe x xs e x x x n n dx t ts t x x n x,()11)(3-++=-x e x x x xs ,则()xe ex x s x x11)(2-++=--(在0=x 理解为极限值).(7)令∑∞=-+=11414)(n n n x x s , 则1,14)(1142<+=∑∞=+x n x x s x n n ,所以, []()44141421)(xx xxx s x n nn n-==='∑∑∞=∞=, 故x x x x x s x -+-+=arctan 2111ln 41)(2,因此2222arctan 11ln 41)(xxx x x x x s -+-+=(在0=x 理解为极限值).(8)22122lim 12lim1=-=-∞→+∞→n n n nn n ,收敛半径21=R ,在21±=x ,有 ()()⎪⎭⎫ ⎝⎛-±=⎪⎭⎫ ⎝⎛±-∑∑∞=∞=+nn n n nn 2121211201, 由于()02121lim ≠⎪⎭⎫⎝⎛-±∞→nnn ,故级数发散.可得 ()()∑∑∑∞=∞=∞=+-=-=012212)(n n n nn nn x x x x s()()x x x x 2111112112--=---=,21<x . (9)设1,)(112<=∑∞=-x x nx s n n ,则有x x x dx dt t s u nx dt t s n n xu n nx-==⎪⎭⎫⎝⎛⇒=∑⎰⎰∑⎰∞=∞=1)(1)(10010,所以,20)1(11)(1x x x dt t s x x -='⎪⎭⎫⎝⎛-=⎰, 即20)1()(x x dt t s x-=⎰,所以32)1(1)1()(x xx x x s -+='⎪⎪⎭⎫ ⎝⎛-=,1<x . (10)设()+∞<+=∑∞+x x n n x s n ,!12)(122,则有(逐项积分),()1!1)(1!12)(2121001120-==⎪⎭⎫ ⎝⎛⇒+=+∞=∞=+∑⎰⎰∑⎰x n n x t n n xe x x n dt du u u s t x n n dt t t s所以,()()x e x x du uu s e x du u u s x x x x x -+=-+=⎰⎰2230202)(,112)(1, ()11624)(224-+++=x e x x x xx s , 则()x e x x x x x s x -+++=2235624)(.4.求下列级数的和: (1)∑∞=-1212n nn ; (2)()∑∞=+1121n n n . 解 (1)考虑级数())(1212x s xn n n=-∑∞=,1<x .由于()∑∞=--=122212)(n n x n x x s ,逐项积分,()2112112021)(xxx x x dt t t s n n n n x-===∑∑⎰∞==∞=-,所以, ()()()2222222211)(11)(xx x x s x x x x s -+=⇒-+=,1<x . 故有()3222112212121=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=-∑∑∞=∞=s n n n nn n . (2)设()∑∞=++=112121)(n n x nn x s ,则级数在1≤x 绝对收敛,所以, ∑∞=='121)(n n x n x s ,2112122)(x xx x s n n -==''∑∞=-,1<x . 因此,)1ln(12)(202x dt t t x s x--=-='⎰,xxx x x dx x x s x +-++--=--=⎰11ln 2)1ln()1ln()(202,1≤x .())(lim )1(12111x s s nn x n -→∞===+∑[]2ln 22)1ln()1(2)1ln()1(lim 1-=++-+--=-→x x x x x x .5.证明:(1) ∑∞=04)!4(n n n x 满足方程y y =)4(;(2) ∑∞=02)!(n nn x 满足方程0=-'+''y y y x . 解(1)对级数∑∞=04)!4(n n n x ,由0)!4(1)]!1(4[1lim =⎪⎪⎭⎫⎝⎛+∞→n n n ,故收敛半径+∞=R ,收敛域为()+∞∞-,,而采取用逐项求导得,∑∑∑∞=∞=-∞==-=⎪⎪⎭⎫⎝⎛041)1(4)4(04)!4()]!1(4[)!4(n nn n n n n x n x n x ,即∑∞=04)!4(n n n x 满足方程y y =)4(. (2)级数∑∞=02)!(n n n x 收敛域为()+∞∞-,,设∑∞==02)!(n nn x y ,通过逐项求导得, ()()∑∑∞=-∞=='⎥⎦⎤⎢⎣⎡='12102!!n n n n n nxn x y , ()()()∑∑∞=-∞=-="⎪⎪⎭⎫ ⎝⎛=''22202!1!n n n n n x n n n x y , 所以,()()()∑∑∑∞=∞=-∞=--+-=-'+''02121222!!!)1(n nn n n n n x n nx n x n n x y y y x()()[]()()[]()0!!11!11020212=-+++++=∑∑∑∞=∞=∞=n nn n n nn x n x n n x n n ,即∑∞=02)!(n nn x 满足方程0=-'+''y y y x . 6.设)(x f 是幂级数∑∞=0n n nx a在()R R ,-上的和函数,若)(x f 为奇函数,则级数中仅出现奇次幂的项;若)(x f 为偶函数,则级数中仅出现偶次幂的项.证明 由于∑∞==)(n n nx ax f ,()R R x ,-∈.()R R x ,-∈∀,由)(x f 是奇函数,即)()(x f x f -=-,得0]1)1[()(0=+-⇒-=-∑∑∑∞=∞=∞=n n n nn nn n nnx a x a x a,故{}N n ⋃∈∀0,有0]1)1[(=+-n na ,故当n 为偶数时002=⇒=n n a a ,即级数中偶次幂系数均为0,因此级数中仅出现奇次幂的项.同样,若)(x f 为偶函数,即)()(x f x f =-,得0]1)1[(0=--∑∞=n n n nx a ,故n ∀,有0]1)1[(=--n n a ,当n 为奇数时,有002=⇒=-n n a a ,即级数中奇次幂的系数均为0,因此级数中仅出现偶次幂的项.7.设∑∞=+=12)1ln()(n nn n x x f .求证:(1))(x f 在]1,1[-连续,)(x f '在)1,1(-内连续; (2))(x f 在点1-=x 可导; (3)+∞='-→)(lim 1x f x ;(4))(x f 在点1=x 不可导;证明(1)由于1,)1ln(1)1ln(22≤+≤+x n n n n x n ,而级数∑∞=+12)1ln(1n n n 收敛,由M判别法,知级数∑∞=+12)1ln(n nn n x 在]1,1[-一致收敛,而级数的每一项为幂函数在]1,1[-连续,故和函数∑∞=+=12)1ln()(n nn n x x f 在]1,1[-连续.又级数∑∑∞=-∞=+='⎥⎦⎤⎢⎣⎡+1112)1ln()1ln(n n n n n n x n n x 的收敛半径为1=R ,因此在)1,1(-内,其和函数)(x f '连续.(2)幂级数∑∞=-+11)1ln(n n n n x 在1-=x 成为∑∞=-+-11)1ln()1(n n n n ,由Leibniz 判别法,知级数收敛,由Abel 第二定理,幂级数在]0,1[-一致收敛,因而其和函数)(x f '在1-=x 右连续,因此)(lim 1x f x '+-→存在,且)(lim )1(1x f f x '=-'+-→.(3)+∞=+='∑∞=→-11)1ln(1)(lim n x n n x f . (4)因为∑∞=→→+--=----1211)1ln()1()1(lim 1)1()(lim n n x x n n x x x f x f ()+∞=+=++++=∑∑∞=∞=--→-1122111ln 1)1ln(1lim n n n n x n n n n x x , 故)(x f 在点1=x 不可导.§13.3函数的幂级数展式1.利用基本初等函数的展式,将下列函数展开为Maclaurin 级数,并说明收敛区间. (1)0,1≠-a xa ; (2)()211x +;(3)()311x +;(4)x 2cos ; (5)x 3sin ; (6)xx 31-;(7)()xex -+1;(8)()21ln x x ++;(9)22311x x +-; (10)x arcsin ;(11)()21ln xx ++;(12)21ln arctan x x x +-;(13)⎰xdt tt0sin ; (14)dt t x⎰2cos .解(1)nn a x a ax ax a ∑∞=⎪⎭⎫⎝⎛=-=-111111 (1<a x ) ∑∞=+=11n n n x a(a x <).(2)()()22111-+=+x x()()()()()∑∑∞=∞=+-=+----+=0111!12321n n nn nx n x n n ,1<x .(3)()()()()()∑∞=-+----+=+=+133!13431111n n x n n x x()()()∑∞=++-=22121n n x n n ,1<x .(4)∑∞=-+=+=022)2()!2()1(212122cos 1cos n n n x n x x ∑∞=--+=1212)!2(2)1(1n nn n x n ,+∞<x . (5)()()()()()!123141!1214343sin sin 3sin 1201203+--+-=-=+∞=+∞=∑∑k x k x x x x k kk k kk ()()()∑∞=++--=0122!1231143k k kk k x ,+∞<x .(6)()213131--=-x x xx()⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+=∑∞=13!12123211n n x n n x (13<x )()⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=∑∞=123!!!121n n n x n n x ,31<x . (7)()()()∑∞=--+=+0!111n n xx n x ex (+∞<-x ) ()()∑∞=-+=0!11n n n x n x (+∞<x )()()∑∑∞=+∞=-+-=10!1!1n n nn nnx n x n (+∞<x )()()∑∞=--⎥⎦⎤⎢⎣⎡--+=111!1!111n nn x n n ,+∞<x . (8)()()()212211ln -+='++x xx()∑∞=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+=12!21223211n n x n n (12<x )()()∑∞=--+=12!2!!1211n n n n x n n ,1<x ,所以,()()()()()∑⎰∞=++--+='++1120212!2!!1211ln n n nn xx n n n x dx xx ,1≤x , 即()()()()∑∞=++--+=++112212!2!!1211ln n n nn x n n n x xx . (9)xx x x x x ---=--=+-11212)21)(1(123112∑∑∞=∞=-=0)2(2n nn nxx (12<x 且1<x )()∑∞=+-=112n n n x ,21<x . (10)()()∑∞=-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+=+='122!2122321111arcsin n nx n n x x (12<-x )()∑∞=-+=12!2!!121n n nx n n ,1<x ,所以,()()∑∞=++-+=11212!2!!12arcsin n n nx n n n x x ,1<x . 在1±=x ,由于()()()()()123132!12!!1212!2!!12lim 1>=⎪⎪⎭⎫ ⎝⎛-++++-+∞→n n n n n n n n n n , 用Raabe 判别法知右端级数收敛,因而收敛区间为]1,1[-.(11)()()()x x xx xx ---=--=++1ln 1ln 11ln 1ln 332()()()()x nnx n n n nn -----=∑∑∞=-∞=-1113111∑∑∞=∞=-=13111n nn n x nx n ,11<≤-x . (12)dx x xdx x dxxx x x x x ⎰⎰+-+=+-02022111ln arctan ()()⎰∑⎰∑∞=∞=---=xn nx n x x dx x x 0202()()220120121121+∞=+∞=∑∑+--+-=n n n n n n x n x n x()()()()∑∞=+++-=01211221n n n x n n ,1≤x .(13)()()()()⎰∑⎰∑⎰∞=∞=++-=--=x k k kx k k kxdt t k dt t k t dt t t 02000120!121!1211sin ()()()∑∞=+++-=012!12121k k kx k k ,+∞<x .(14)()()()()()⎰∑⎰∑⎰∞=∞=-=-=x k k kx k kk xdt t k dt t k dt t004002202!21!21cos()()()∑∞=++-=01414!21k k kx k k ,+∞<x .2.利用幂级数相乘求下列函数的Maclaurin 展开式: (1)()xx ++11ln ; (2)()2arctan x ; (3)()x -1ln 2.解(1)()()()()∑∑∞=∞=---=++=++011111ln 11ln n nn nn x xnn x x x x ()()()∑∑∑∑∞=∞=-∞==---⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡--=1111111111n n k n n n k k n k n k k x k x x k ,1<x .(2)()()20022022111arctan ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰∑⎰∞=x n nn x dt t dt t x ()()()()121200121121+--+∞==+--+-=∑∑k n kn k n n k k x k n x k()()()()∑∑∞=+=+-+-=0120121211n n nk nx k n k ()()∑∑∞=+=++-=012012111n n nk nx k n ,1≤x . (3)()()()∑∑∑∑∞==-+∞=∞=--+=⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡--=-111212112111ln n nk k n k n n n n n k n x k x n x x n x()()∑∑∑∑∞=+=∞=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=11111111211n n n k n n n k x k n x k n k ,11≤≤-x . 3.将下列函数在指定点0x 展开为Taylor 级数:(1))(,10a b x xa ≠=-; (2)1,221ln 02-=++x xx ; (3)2,ln 0=x x ; (4)1,0=x e x.解(1)()()()ba bx b a b x b a x a ----=---=-11111()()∑∑∞=-∞=--=⎪⎭⎫⎝⎛---=0101n n nn nb a b x b a b x b a ,b a b x -<-. (2)()[]2211ln 221ln++-=++x xx ()()[]()()∑∑∞∞=-+-=+--=nn n n n n x nx n21211111,02≤≤-x .(3)()()∑∞=-⎪⎭⎫⎝⎛--+=⎪⎭⎫⎝⎛-++=-+=112212ln 221ln 2ln 22ln ln n nn x n x x x (1221≤-<-x ) ()()∑∞=---+=112212ln n n nn x n ,40≤<x .(4)()()()∑∑∞=∞=--+-=-===001111!1!1n nn n x x xx n e x n e eeee ,+∞<<∞-x . 4.展开 ⎪⎪⎭⎫⎝⎛-x e dx d x 1为x 的幂级数,并推出()∑∞=+=1!11n n n . 解 ∑∑∑∞=-∞=-∞=-==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-22110!1!11!111n n n n n n x x n n x n dx d x n x dx d x e dx d ()∑∞==+=11!1n n x n n,+∞<x , 所以,()()1111!11211=+-=⎪⎪⎭⎫ ⎝⎛-=+==∞=∑x x x x n x x e x e dx d n n . 5.试将()x x f ln =展开成11+-x x 的幂级数. 解 令11+-=x x t ,则 ttx -+=11,因而有()()()()()()∑∑∞=-∞=-----=--+=-+==1101111ln 1ln 11ln ln n n n n nn t nt n t t t tx x f()∑∑∞=-∞=-⎪⎭⎫⎝⎛+--=+-=112111112211n n n n n x x n t n,0>x .6.函数()x f 在区间),(b a 内的各阶导数一致有界,即0>∃M ,对一切()b a x ,∈,有() ,2,1,)(=≤n M x f n ,证明:对()b a ,内任意点x 与0x ,有()()()()∑∞=-=000!n n n x x n x f x f . 证明 由Taylor 公式,()b a x ,∈∀,()b a x ,0∈,有()()()()()()()()()x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=00)(200000!!2 , 其中()()()()()()∞→→-+≤-+=+++n x x n Mx x n f x R n n n n 0!1!1101)1(ξ,()b a x ,∈∀,其中ξ在x 与0x 之间.故()x f 在区间()b a ,可以展成()0x x -的幂级数,即()b a x ,∈∀,()b a x ,0∈,()()()∑∞=-=000)(!n n n x x n x fx f .。

数学分析—极限练习题及详细答案教学文稿

数学分析—极限练习题及详细答案教学文稿

数学分析—极限练习题及详细答案一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。

A.sin ||xB.ln(1)x -C.1 1.【答案】D 。

2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.02.【答案】 B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.1223331233200311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。

4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim 1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。

5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。

数学分析课本(华师大三版)-习题及答案第十三章

数学分析课本(华师大三版)-习题及答案第十三章

第十三章 函数列与函数项级数一、证明题1.讨论下列函数列或函数项级数在所示区间D 上是否一致收敛,并说明理由:(1) f n (x)=22n 1x +,n=1,2,…,D=(-1,1); (2) f n (x)=22xn 1x +,n=1,2,…D=(-∞,+∞); (3) f n (x)=⎪⎪⎩⎪⎪⎨⎧≤<++≤≤++-1x 1n 1 0,1n 1x 0 1,1)x (n (n=1,2……); (4) f n (x)=nx , n=1,2,…, (i) D=[0,+∞]; (ii) D=[0,1000]; (5) f n (x)=sin n x , n=1,2,…, (i) D=[-L,L]; (ii) D=[-∞,+∞]; (6) ∑+--nx 1)(21n , D=[-∞,+∞]; (7) ∑-+1n 22)x (1x , (i) D=[-∞,+∞]; (ii) D=⎥⎦⎤⎢⎣⎡10,101. 2. 证明:设f(x)→f(x),x ∈D; a n →0(n →∞),(a n >0),若对每一个自然数n.有|f n (x)-f(x)|≤a n , x ∈D,则{f n }在D 上一致收敛于f.3. 设{f n }为定义在[a,b]上的函数列,且对每一个n,f n 在点a 右连续,但{f n (a n )}是发散的,证明在任何开区间(a,a+δ)这里(a+δ<b)内{f n }都不一致收敛.4. 设函数项级数∑n u (x)在D 上一致收敛于S(x),函数g(x)在D 上有界,证明级数∑(x)g(x)u n 在D 上一致收敛于g(x)S(x). 5. 若在区间I 上,对任何自然数n, |u n (x)|≤V n (x), 证明当∑n v (x)在I 上一致收敛时,级数∑n u (x)在I 也一致收敛.6. 设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑n u (a)与∑n u (b)都绝对收敛,则级数∑n u (x)在[a,b]上绝对并一致收敛.7. 在[0,1]上定义函数列1,2n n 1x 0,n 1 x ,n 1(x)u n =⎪⎪⎩⎪⎪⎨⎧≠==证明: 级数∑n u (x)在[0,1]上一致收敛,但它不存在优级数.8. 证明:级数∑∞=0n n n x )-(1x (-1)在[0,1]上绝对并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛.9. 设f 为定义在区间(a,b)内的任一函数,记f n (x)=n [nf(x)],n=1,2,……,证明函数列{f n }在(a,b)内一致收敛于f.10. 设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数.则级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上一致收敛.11. 证明: 若函数列{f n }在[a,b]上满足定理13.10的条件,则{f n }在[a,b]上一致收敛.12. 证明: 函数f(x)=∑3n sinnx 在(-∞,+∞)上连续,且有连续的导函数.13. 证明: 定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.12条件,且 ∑⎰∞==0n n2πcosnx dx r 02π 14. 讨论下列函数列在所定义区间上的一致收敛性及其极限函数的连续性,可积性和可微性.(1) f n (x)=2nx x e -(n=1,2,…)x ∈[-L,L];(2) f n (x)=nx1nx +,n=1,2,…, (i) x ∈[)+∞,0, (ii) x ∈[)+∞a, (a>0); 15. 证明函数ξ(x)=∑x n 1在(1,+∞)内连续,且有连续的各阶导数.16. 证明:若函数列{f n }在x 0的某δ邻域U(x 0,δ)内一致收敛于f,且)1,2,(n a (x)f lim n n x x 0 ==→,则n n a lim ∞→与f(x)lim 0x x →存在且相等,即∞→n lim (x)f lim n x x 0→=(x)f lim lim n n x x 0∞→→ 17. 设f 在(-∞,+∞)上有任何阶导数,记F n =f (n),且在任何有限区间内,F n →ϕ(n →∞),试证 ϕ(x)=ce x (c 为常数).二、计算题1. 判别下列函数项级数在所示区间上的一致收敛性. (1) ∑-∈-r]r,[x ,1)!(n x n; (2) ∑+∞-∞∈+],[x ,)x (1x (-1)n 221-n ; (3) ∑>≥0r |x |,x n n ;(4) ∑∈[0,1]x ,nx 2n.2. 讨论下列函数列或函数英级数在所示区间D 上的敛散性: (1) (0,1]D ,1,2,n ,nx11(x)f n ==+=(2) ∑=][0,2D ,n sinnx π; (3) ∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1]; (4) ∑n n 3xsin 2, D=(0,+∞) (5) ∑+-+)nx ](11)x (n [1x 222, D=(0,+∞) (6) ∑nx n, D=[-1,0]; (7) ∑+-+12n x 1)(12n n D=[-1,1] 3. 设S(x)=∑-21n nx ,x ∈[-1,1],计算积分S(t)dt 0x ⎰. 4. 设S(x)=∑⋅n n cosnx ,x ∈(-∞,+∞),计算积分S(t)dt 0x ⎰.5. 设S(x)=∑-nx ne (x>0),计算积分S(t)dt ln2ln3⎰ 三、考研复习题1. 试问K 为何值时,下列函数列{f n }一致收敛:(1) f n (x)=xn k e -nx ,0≤x<+∞; (2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<⎪⎭⎫ ⎝⎛-≤≤=1x n 2 0,,n 2x n 1 ,n x n2n 1x 0 ,xn (x)f k k n 2. 证明:(1)若f n (x)→f(x)(n →∞)(x ∈I),且f 在I 上有界,则{f n }至多除有限项外,在I 上是一致有界的;(2) 若f n (x)⇒f(x) (n →∞)(x ∈I),且对每一个自然数n,f n 在I 上有界,则{f n }在I 上一致有界.3. 设f 为⎥⎦⎤⎢⎣⎡1,21上的连续函数,证明: (1) {x n f(x)}在⎥⎦⎤⎢⎣⎡1,21上收敛; (2) {x n f(x)}在⎥⎦⎤⎢⎣⎡1,21上一致收敛的充要条件是f 在⎥⎦⎤⎢⎣⎡1,21上有界且f(1)=04. 若把定理13.9中一致收敛函数列{f n }的每一项在[a,b]上连续改为在[a,b]上可积,试证{f n }在[a,b]上的极限函数在[a,b]上也可积.5. 证明: 由二重极限∞→m lim (∞→n lim cos 2n (m!πx)) 所确定的极限函数是狄利克雷函数.6. 设级数∑n a 收敛,证明∞→n lim ∑x n n a =∑n a . 7. 设可微函数列{f n }在[a,b]上收敛,{f 'n }在[a,b]上一致有界,证明:{f n }在[a,b]上一致收敛.。

数学分析选讲习题答案。我们学校自己编的《数学分析选讲》讲义习题解答,不要乱评论。OK?

数学分析选讲习题答案。我们学校自己编的《数学分析选讲》讲义习题解答,不要乱评论。OK?
事实上若?不是a的聚点则有正数?使?????中至多除?外没有a的点而????b从而???b与?是最小上界矛盾
参 考 文 献
1. 庄亚栋, 王慕三 数学分析, 北京, 高等教育出版社, 1990.
2. Rudin, w., Principles of Mathematical Analysis, 3-d. New York, McGraw-Hill, 1976. 中译 本, 数学分析原理(上册), 赵慈庚、蒋铎译, 3. G. 克莱鲍尔, 数学分析, 庄亚栋译, 上海 , 上海科学技术出版社, 1981. 4. Birkhoff, G., and MacLane, S., A Survey of Modern Algebra, 4-d. New York, Macmillan, 1977. 中译本: G. 伯克霍夫, S. 麦克莱恩 , 近世代数概论(上册), 王连祥、徐广善译, 人 民教育出版社, 1979. 5. 杨宗磐, 数学分析入门 , 北京, 科学出版社 , 1958. 6. 华东师范大学数学系 , 数学分析(第二版), 北京, 高等教育出版社, 1990. 7. 庄亚栋, 方洪锦, 姚林, 基础数学试题选解 , 南京 , 江苏科学技术出版社, 1986 8. Dieudonne, J., Foundations of Morden Analysis, New York, Academic, 1969. 中译本: J. 狄厄多尼, 现代分析基础 , 苏维宜译, 科学出版社, 1982. 9. 方企勤, 数学分析, 第一册 , 北京, 高等教育出版社, 1986. 10. 沈燮昌, 数学分析, 第二册, 北京, 高等教育出版社, 1986. 11. 廖可人, 李正元 , 数学分析, 第三册 , 北京 , 高等教育出版社 , 1986. 12. 陈传璋, 金福临 , 朱学炎, 欧阳光中 数学分析(第二版), 北京, 高等教育出版社, 1983. 13. 14. 15. 16. 17. 18. Г .М .菲赫金哥尔茨 , 微积分学教程 , 第二卷二、 三分册 , 北京大学高等数学教研室译, 北京, 高等教育出版社 , 1954. 强文久, 李元章 , 黄雯荣, 数学分析的基本概念与方法, 北京, 高等教育出版社, 1989. 汪林, 数学分析中的问题与反例, 昆明, 云南科技出版社, 1990. 裴礼文, 数学分析中的典型问题与方法, 北京 , 高等教育出版社 , 1993. 周家云, 刘一鸣 , 解际太, 数学分析的方法, 济南, 山东教育出版社, 1991.

数学分析课后题答案

数学分析课后题答案

§1 实数连续性的等价描述2211.{}({},{})1(1).1; sup 1,inf 0;(2)[2(2)]; sup ,inf ;1(3),1,(1,2,); sup ,inf 2;1(4)[1(1)]; n n n n n n n n n n k k n n n n x x x x x x nx n x x x k x k x x k n x n ++∞-∞=-===+-=+∞=-∞==+==+∞=+=+-求数列的上下确界若无上下确界则称,是的上下确界:(1) sup 3,inf 0;(5)12; sup 2,inf 1;123(6)cos ; sup 1,inf .132nn n nn n n n n n n x x x x x n n x x x n π-===+==-===-+§2 实数闭区间的紧致性{}{}{}{}{}11122112225.,()..,0,. 2,,;max(2,),,; k k n n m n n n n n n n n n x x x a a i x G x x x G G x x x G G x x x x G →∞→∀>∈>=∈>=∈>若数列无界,且非无穷大量,则必存在两个子列,为有限数证明:由数列无界可知对于总有使得那么我们如下构造数列:取则有使得取则有使得取{}{}{}{}2331333max(2,),,;max(2,),,;lim 2,lim ..k k k k k n n n n k k n n n n k n n n n k n G x x x x G G x x x x G x x ii x -→∞→∞=∈>=∈>=+∞=+∞∃则有使得取则有使得由于那么我们可以知道我们得到一个子列满足由于数列不是无穷大量,那么12300111021220323300,0,,. 1,,,max(2,),,, max(3,),,,n n n n G N n N x G N n N x G N n n N x G N n n N x G >∀>∃><=∃><=∃><=∃><对使得我们如下构造数列:取那么使得取那么使得取那么使得{}{}{}100 max(2,),,,,,k k k k k k k n n m n N n n N x G G x x x -=∃><取那么使得 于是我们得到一个以为界的数列那么由紧致性定理可以知道此数列必有收敛子列显然这个收敛子列也必是数列的子列。

数学分析简明教程答案13

数学分析简明教程答案13

k 1 2k 1 22k 1
n1
n4n
发散;
同样,x
1 时,级数为
4
n1
3 1 n4n
n
n
1 n ,也可拆成两部分,前一部分为
1

k 1 2k
另一部分
k1
1 2k 1
3 1 n n
,前者发散,后者绝对收敛,因此级数
2k 1 22k1
n1
n4n
1 n 发
又在 x 1,显然级数 n 1n 均发散,故收敛域为 (1, 1) . n1
(14)由于
lim
n
x 22n1 2n 1!
散,所以收敛区域是 ( 1 , 1 ) . 44
(6)lnim 3n1
2 n 1
n1
3n
n
2n
lim
n
n
n 1
3
2 2
3 1 2 n
n 3 ,所以级数3 的收敛半径是 R 1 . 3
当 x 1 1 时,级数为 3n
3
n1
2n
n
1 3n
n1
1 n
1 n
n1 nn n
n1 nn n
发散,故收敛域 (1, 1] .
(10)
lim n
5 n 1
1
7 n1
5n
1
7n
1 7
,所以
R
7


x
1 7
,由于
7n
5n 7n
1 n
,即级数
n1
7n
5n 7n
7n
一般项
5n 7n

n
时不趋于 0,因此级数发散,故收敛域 7,7 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 Fourier 级数习题 16.1 函数的Fourier 级数展开⒈设交流电的变化规律为E t A t ()sin =ω,将它转变为直流电的整流过程有两种类型:⑴ 半波整流(图16.1.5(a)) f t At t 12()(sin |sin |)=+ωω; ⑵ 全波整流(图16.1.5(b))f t A t 2()|sin |=ω;现取ω=1,试将f x 1()和f x 2()在],[ππ-展开为Fourier 级数。

解 (1)0a =11()f x dx πππ-⎰2Aπ=,a n =11()cos f x nxdx πππ-⎰22(1)An π=-- (2,4,6,n =L ),n a =11()cos 0f x nxdx πππ-=⎰,(1,3,5,n =L ); 1b =11()sin 2Af x xdx πππ-=⎰, b n =11()sin 0f x nxdx πππ-=⎰,(2,3,4,n =L )。

1()f x :212cos 2sin 241k AA A kxx k ππ∞=+--∑。

(2)0a =21()f x dx πππ-⎰4Aπ=,a n =21()cos f x nxdx πππ-⎰24(1)An π=-- (2,4,6,n =K ), n a =21()cos 0f x nxdx πππ-=⎰(1,3,5,n =K ); b n =21()sin 0f x nxdx πππ-=⎰,(1,2,3,n =L)。

2()f x :∑∞=--12142cos 42k k kxAAππ。

⒉ 将下列函数在],[ππ-上展开成Fourier 级数:⑴ x x f sgn )(=; ⑵ f x x ()|cos |=;(a)(b)图16.1.5⑶ 222)(π-=x x f ;⑷ f x ()⎩⎨⎧∈-∈=);,0[,0),0,[,ππx x x ⑸ f x ()⎩⎨⎧∈-∈=).,0[,),0,[,ππx bx x ax解(1)()f x 为奇函数,所以0n a =,(0,1,2,n =K ),b n =1()sin f x nxdx πππ-⎰2(1cos())n n ππ-=,(1,2,3,n =L )。

()f x :∑∞=--112)12sin(4k k xk π。

(2)()f x 为偶函数,所以0n b =,(1,2,3,n =L ),0a =1()f x dx πππ-⎰4π=,n a =1()cos f x nxdx πππ-⎰224(1)(1)n n π-=-- ,(2,4,6,n =L ),n a =1()cos 0f x nxdx πππ-=⎰,(1,3,5,n =L )。

()f x :∑∞=---122cos 14)1(42k kkx k ππ。

(3)()f x 为偶函数,所以0n b =,(1,2,3,n =L ),0a =1()f x dx πππ-⎰253π=-,n a =1()cos f x nxdx πππ-⎰22(1)nn-= (1,2,3,n =L )。

()f x :nx nn ncos )1(265122∑∞=-+-π。

(4)0a =1()f x dx πππ-⎰2π=-,n a =1()cos f x nxdx πππ-⎰21(1)nn π--=,(1,2,3,n =L ), b n =1()sin f x nxdx πππ-⎰cos()n n π=-,(1,2,3,n =L )。

()f x :∑∞=+++-02)12()12cos(24k k x k ππnx n n n sin )1(11∑∞=+-+。

(5)0a =1()f x dx πππ-⎰()2b a π-=,n a =1()cos f x nxdx πππ-⎰2()(1(1))n a b n π---=,(1,2,3,n =L ), b n =1()sin f x nxdx πππ-⎰()cos()a b n nπ+=-,(1,2,3,n =L )。

()f x :∑∞=++-+--02)12()12cos()(24)(k k xk b a b a ππnx n b a n n sin )1()(11∑∞=+-++。

⒊ 将下列函数展开成正弦级数:⑴ x x f +=π)(,],0[π∈x ; ⑵ f x x ()e =-2,],0[π∈x ;⑶ f x ()⎩⎨⎧∈∈=];,[,),,0[,222ππππx x x ⑷ f x ()⎪⎩⎪⎨⎧∈∈=].2,1[,0),1,0[,2cos x x x π 解(1)b n =2()sin f x nxdx ππ⎰12(1)2nn--=⋅,(1,2,3,n =L )。

()f x :112(1)2sin nn nx n ∞=--∑。

(2)b n =2()sin f x nxdx ππ⎰2221(1)(4)n n e n ππ-⎡⎤--⎣⎦=+,(1,2,3,n =L )。

()f x :[]nx n e n n n sin 4)1(12122∑∞=-+--ππ。

(3)b n =2()sin f x nxdx ππ⎰22(1)2sin 2n n n n πππ⎡⎤---⎢⎥⎣⎦=,(1,2,3,n =L )。

()f x :nx n n n n n sin 2sin 4)1(2121∑∞=+⎥⎦⎤⎢⎣⎡+-ππ。

(4)1b =2021()sin 2f x xdx π=⎰,b n =22()sin 2f x nxdx ⎰22(sin)2(1)n n n ππ-=-,(2,3,4,n =L )。

()f x :x n n n n x n 2sin 12sin22sin122πππππ∑∞=--+。

⒋ 将下列函数展开成余弦级数:⑴ f x x x ()()=-π,],0[π∈x ; ⑵ f x x ()e =,],0[π∈x ;⑶ f x ()⎩⎨⎧∈∈=];,[,1),,0[,2sin 244πππx x x ⑷ 22)(ππ-+-=x x x f ,],0[π∈x . 解(1)0a =2()f x dx ππ⎰23π=,n a =2()cos f x nxdx ππ⎰22(1(1))n n +-=-,(1,2,3,n =L )。

()f x :∑∞=-1222cos 6k k kxπ。

(2)0a =2()f x dx ππ⎰2(1)e ππ=-,n a =2()cos f x nxdx ππ⎰22(1)1(1)n e n ππ⎡⎤--⎣⎦=+,(1,2,3,n =L )。

()f x :)1(1-ππe []nx n e n n cos 11)1(212∑∞=+--+ππ。

(3)0a =204()f x dx ππ⎰2ππ+=, 1a =204()cos 2f x xdx ππ⎰1π=-,n a =204()cos 2f x nxdx ππ⎰22sin (1)2n n n n ππ⎛⎫=- ⎪-⎝⎭,(2,3,4,n =L )。

()f x :111()cos 22x ππ+-22211sin 1cos 212n n nx n n ππ∞=⎛⎫-- ⎪-⎝⎭∑。

(4)0a =2()f x dx ππ⎰2π=,n a =2()cos f x nxdx ππ⎰24(1)cos 2n n nππ⎡⎤--⎢⎥⎣⎦=,(1,2,3,n =L )。

()f x :nx n n n ncos 2cos)1(4412∑∞=⎥⎦⎤⎢⎣⎡--+πππ。

⒌ 求定义在任意一个长度为π2的区间]2,[π+a a 上的函数f x ()的Fourier 级数及其系数的计算公式。

解 设f x ()~a a nx b nx n n n 012++=∞∑(cos sin ),则2201()cos (cos sin )cos 2a a n n aan a f x mxdx a nx b nx mxdx ππ∞++=⎡⎤=++⎢⎥⎣⎦∑⎰⎰22201cos (cos cos sin cos )2a a a n n aaan amxdx a nx mxdx b nx mxdx πππ∞+++==++∑⎰⎰⎰m a π=,(0,1,2,m =K ),2201()sin (cos sin )sin 2a a n n aan a f x mxdx a nx b nx mxdx ππ∞++=⎡⎤=++⎢⎥⎣⎦∑⎰⎰22201sin (cos sin sin sin )2a a a n n aaan amxdx a nx mxdx b nx mxdx πππ∞+++==++∑⎰⎰⎰m b π=,(1,2,m =K ),所以a n =⎰+ππ2cos )(1a anxdx x f (Λ,2,1,0=n ), b n =⎰+ππ2sin )(1a anxdx x f (Λ,2,1=n )。

⒍ 将下列函数在指定区间展开成Fourier 级数:⑴ 2)(xx f -=π,]2,0[π∈x ;⑵ f x x ()=2,]2,0[π∈x ;⑶ x x f =)(, x ∈[,]01;⑷ f x ()⎩⎨⎧∈-∈=);1,0[,0),0,1[,e 3x x x ⑸ f x ()⎩⎨⎧∈-∈=),0[,0),0,[,T x T x C (C 是常数). 解(1)n a =201()cos 0f x nxdx ππ=⎰,(0,1,2,n =L ),b n =201()sin f x nxdx ππ⎰1n=,(1,2,3,n =L )。

()f x :nx nn sin 11∑∞=。

(2)0a =22018()3f x dx πππ=⎰, n a =201()cos f x nxdx ππ⎰24n =,(1,2,3,n =L ),b n =201()sin f x nxdx ππ⎰4n π=-,(1,2,3,n =L )。

()f x :∑∞=⎪⎭⎫⎝⎛-+122sin cos 1434n nx n nx nππ。

(3)0a =102()1f x dx =⎰,n a =102()cos 2f x nxdx π⎰0=,(1,2,3,n =L),b n =12()sin 2f x nxdx π⎰1n π=-,(1,2,3,n =L )。

()f x :nx nn ππ2sin 11211∑∞=-。

(4)0a =1311()(1)3f x dx e --=-⎰, n a =11()cos f x nxdx π-⎰32231(1)9n e n π-⎡⎤=--⎣⎦+,(1,2,3,n =L ), b n =11()sin f x nxdx π-⎰3221(1)9n n e n ππ-⎡⎤=-+-⎣⎦+,(1,2,3,n =L )。

相关文档
最新文档