2.2直线与平面平行的判定与性质试题及答案

合集下载

2.2 线面平行的判断和性质教师版

2.2 线面平行的判断和性质教师版

2.2 线面平行的判断和性质1.已知直线m l 、,平面αβ、,且,m l αβ⊥⊂,下列命题中正确命题的个数是 ①若//αβ,则 m l ⊥ ②若αβ⊥,则//m l ③若m l ⊥,则//αβ; ④若//m l ,则αβ⊥A.1 B.2 C.3 D.4【答案】B【解析】 试题分析:对于①由,m l αβ⊥⊂且//αβ,则β⊥m ,从而m l ⊥,所以正确;对于②由于,m l αβ⊥⊂且αβ⊥,则ββ⊂m or m ,,//,不能推出//m l ,所以不正确;对于③由于,m l αβ⊥⊂且m l ⊥,则不一正有//αβ,故不正确;对于④由于,m l αβ⊥⊂且//m l ,则α⊥l ,从而有αβ⊥,故正确;所以①④正确,故应选B. 考点:线面垂直和平行的关系.2.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题: ①若//,//,//;a b b c a c 则 ②若,,a b b c a c ⊥⊥⊥则; ③若//,//,a b γγ则a//b ; ④若,,//.a b a b γγ⊥⊥则其中真命题的序号是( )A. ①③B. ①④C. ②③D. ②④【答案】B【解析】 试题分析:①平行具有传递性,故正确;②垂直不具有传递性,a 与c 的方向任意,故错误;③平行于同一平面的直线位置也任意,故错误;④垂直与同一平面的两条直线平行,故正确.所以B 正确.考点:线面的位置关系.3.如图所示,正方体的棱长为a ,M 、N 分别为和AC 上的点,,则MN 与平面的位置关系是( )A .相交B .平行C .垂直D .不能确定【解析】又是平面的一个法向量, 且, ∴,又MN 面,∴MN ∥平面.选B . 4.若空间中四条直线两两不同的直线1l 、2l 、3l 、4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A.14l l ⊥B.14//l lC.1l 、4l 既不平行也不垂直D.1l 、4l 的位置关系不确定【答案】D【解析】试题分析:如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,14//l l ;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此1l 、4l 的位置关系不确定,故选D.考点:本题考查空间中直线的位置关系的判定,属于中等题.5.在正三棱锥P ­ABC 中,D ,E 分别是AB ,BC 的中点,下列结论:①AC ⊥PB ;②AC ∥平面PDE ;③AB ⊥平面PDE ,其中错误的结论个数是( )A .0B .1C .2D .3【解析】如图,设P 在面ABC 内射影为O ,则O 为正三角形ABC 的中心.①可证AC ⊥面PBO ,所以AC ⊥PB ;②AC ∥DE ,可得AC ∥平面PDE ;③AB 与DE 不垂直.选B .6.设m 、n 是两条不同的直线,α、β是两个不同的平面,则A .若m//α,n//α,则m//nB .若m//α,m//β,则α//βC .若m//n ,m α⊥,则n α⊥D .若m//α,α⊥β,则m ⊥β【答案】C【解析】试题分析:因为两直线与同一平面平行,两直线位置关系不定,所以选项A 错误.当直线平行于两相交平面的交线时,该直线与两平面皆平行,所以选项B 错误.同样理由可得:选项D 错误.当 m α⊥,则m α⊥内任一直线l ,因为m//n ,所以n α⊥内任一直线l ,即n α⊥,因此选项C 正确.考点:线面关系判定7.正四面体ABCD 的棱长为1,其中线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,线段EF 在平面α上的射影11F E 长的范围是( )A.[0【答案】D 【解析】试题分析:如图,取AC 中点为G ,结合已知可得GF //AB ,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 旋转时,因为GF //平面α,GE与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值当CD 与平面α平行时,GE 在平面,11F E 取得最大值,所以射影11F E 长的取值范围是,故选D 考点:1线面平行;2线面垂直。

直线、平面平行的判定及性质

直线、平面平行的判定及性质

直线、平面平行的判定及性质1.[2015·福州质检]已知m、n、l为三条不同的直线,α、β为两个不同的平面,则下列命题中正确的是()A.α∥β,m⊂α,n⊂β⇒m∥nB.l∥β,α∥β⇒l∥αC.m∥α,m∥n⇒n∥αD.α∥β,l∥α且l⊄β⇒l∥β答案 D解析对于选项A,m、n可能平行或异面;对于选项B,还可能出现l⊂α这种情形;对于选项C,还可能出现n⊂α这种情形.由α∥β,l∥α可得l∥β或l⊂β,又知l⊄β,所以只有l∥β.故选项D正确.故选D.2.[2016·武汉调研]已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β答案 D解析选项A中α和β也可能相交,选项B中α和β也可能相交,选项C中也可能n⊂α,只有选项D是正确的.3.[2016·潍坊模拟]已知m,n,l1,l2表示直线,α,β表示平面.若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是() A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2答案 D解析由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知α∥β,因此选D.4.[2016·江西盟校联考]设l表示直线,α,β表示平面.给出四个结论:①如果l∥α,则α内有无数条直线与l平行;②如果l∥α,则α内任意的直线与l平行;③如果α∥β,则α内任意的直线与β平行;④如果α∥β,对于α内的一条确定的直线a,在β内仅有唯一的直线与a平行.以上四个结论中,正确结论的个数为()A.0 B.1C.2 D.3答案 C解析②中α内的直线与l可异面,④中可有无数条.5.[2015·南开模拟]下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行答案 C解析若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面内不共线且在平面同侧的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面,两平面可以平行,也可以相交,故D错;故选项C正确.6.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B和AC 上的点,若A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定答案 B解析 连接CD 1,在CD 1上取点P ,使D 1P =2a 3,∴MP ∥BC ,PN ∥AD 1.∴MP ∥面BB 1C 1C ,PN ∥面AA 1D 1D .∴面MNP ∥面BB 1C 1C ,∴MN ∥面BB 1C 1C .7.[2015·郑州模拟]设α,β,γ为三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ.可以填入的条件有( )A .①或②B .②或③C .①或③D .①或②或③答案 C解析 由面面平行的性质定理可知,①正确;当n ∥β,m ⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.选C.8.[2016·济宁模拟]过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.答案 6解析过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.9.[2016·南京模拟]已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中是真命题的是________(写出所有真命题的序号).答案②④解析当l∥m时,平面α与平面β不一定平行,①错误;由直线与平面平行的性质定理,知②正确;若α∥β,l∥α,则l⊂β或l∥β,③错误;∵l⊥α,l∥m,∴m⊥α,又α∥β,∴m⊥β,④正确,故填②④.10.如图,已知矩形ABCD,ED⊥平面ABCD,EF∥DC,EF=DE=AD=12AB=2,O为BD的中点.求证:EO∥平面BCF.证明 证法一:如图,在矩形ABCD 中,取BC 的中点G ,连接FG ,OG .由O 为BD 的中点,知OG ∥DC ,OG =12DC ,又EF ∥DC ,EF =12AB=12DC ,所以OG ∥EF 且OG =EF ,所以四边形OGFE 是平行四边形. 所以EO ∥FG .又FG ⊂平面BCF ,所以EO ∥平面BCF .证法二:如图,过点O 作BC 的平行线分别交AB ,CD 于点M ,N ,连接EM ,EN .因为O 为BD 的中点,则M ,N 分别为AB ,CD 的中点.又EF =12AB ,所以EF 綊BM 綊CN .故四边形EFBM 与四边形EFCN 均为平行四边形.所以EM ∥FB ,EN ∥FC ,所以平面EMN ∥平面BCF .又EO ⊂平面EMN ,所以EO ∥平面BCF .11.如图所示,点P 为▱ABCD 所在平面外一点,点M ,N 分别为AB ,PC 的中点,平面P AD ∩平面PBC =l .(1)求证:BC ∥l ;(2)MN 与平面P AD 是否平行?证明你的结论.解 (1)证明:因为四边形ABCD 是平行四边形,所以BC ∥AD .又因为AD⊂平面P AD,BC⊄平面P AD,所以BC∥平面P AD.又因为平面PBC∩平面P AD=l,BC⊂平面PBC,所以BC∥l.(2)MN∥平面P AD.证明如下:如图所示,取PD的中点E,连接NE,AE,则NE∥CD,NE=12CD.而CD綊AB,M为AB的中点,所以NE∥AM,NE=AM,所以四边形MNEA是平行四边形,所以MN∥AE.又AE⊂平面P AD,MN⊄平面P AD,所以MN∥平面P AD.12.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB =60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD的中点.(1)求证:直线AF ∥平面PEC ;(2)求三棱锥P -BEF 的表面积.解 (1)证明:作FM ∥CD 交PC 于M ,连接ME .∵点F 为PD 的中点,∴FM 綊12CD ,又AE 綊12CD ,∴AE 綊FM ,∴四边形AEMF 为平行四边形,∴AF ∥EM ,∵AF ⊄平面PEC ,EM ⊂平面PEC ,∴直线AF ∥平面PEC .(2)连接ED ,BD ,可知ED ⊥AB ,⎭⎪⎪⎬⎪⎪⎫ ⎭⎪⎬⎪⎫ ⎭⎬⎫PD ⊥平面ABCDAB ⊂平面ABCD ⇒PD ⊥AB DE ⊥AB ⇒AB ⊥平面PEF PE ,FE ⊂平面PEF ⇒AB ⊥PE ,AB ⊥FE ,故S △PEF =12PF ·ED =12×12×32=38;S △PBF =12PF ·BD =12×12×1=14;S △PBE =12PE ·BE =12×72×12=78;S △BEF =12EF ·EB =12×1×12=14.因此三棱锥P -BEF 的表面积S P -BEF =S △PEF +S △PBF +S △PBE +S △BEF =4+3+78. [B 级 知能提升](时间:20分钟)1.有互不相同的直线m ,n ,l 和平面α,β,给出下列四个命题: ①若m ⊂α,l ∩α=A ,A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若m ,n 是相交直线,m ⊂α,m ∥β,n ⊂α,n ∥β,则α∥β; ④若l ∥α,m ∥β,α∥β,则l ∥m .其中真命题有( )A.4个B.3个C.2个D.1个答案 B解析由异面直线的判定定理,易知①是真命题;由线面平行的性质知,存在直线l′⊂α,m′⊂α,使得l∥l′,m∥m′,∵m,l是异面直线,∴l′与m′是相交直线,又n⊥l,n⊥m,∴n⊥l′,n⊥m′,故n⊥α,②是真命题;由线面平行的性质和判定知③是真命题;满足条件l∥α,m∥β,α∥β的直线m,l或相交或平行或异面,故④是假命题,于是选B.2.[2016·温州一测]如图,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE 翻转过程中,正确的命题是________.①|BM|是定值;②点M在圆上运动;③一定存在某个位置,使DE⊥A1C;④一定存在某个位置,使MB∥平面A1DE.答案①②④解析取DC中点N,连接MN,NB,则MN∥A1D,NB∥DE,∴平面MNB∥平面A1DE,∵MB⊂平面MNB,∴MB∥平面A1DE,④正确;∠A1DE=∠MNB,MN=12A1D=定值,NB=DE=定值,根据余弦定理得,MB2=MN2+NB2-2MN·NB·cos∠MNB,所以MB是定值.①正确;B是定点,所以M是在以B为圆心,MB为半径的圆上,②正确;当矩形ABCD满足AC⊥DE时存在,其他情况不存在,③不正确.所以①②④正确.3.如图,在底面是正三角形的直三棱柱ABC-A1B1C1中,AA1=AB=2,D是BC的中点.(1)求证:A1C∥平面AB1D;(2)求点A1到平面AB1D的距离.解(1)证明:连接A1B,交AB1于点O,连接OD.∵ABC-A1B1C1是直三棱柱,∴四边形ABB1A1是平行四边形,∴O是A1B的中点.又D是BC的中点,∴OD∥A1C,∵OD⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(2)由(1)知,O是A1B的中点,∴点A1到平面AB1D的距离等于点B到平面AB1D的距离.∵ABC-A1B1C1是直三棱柱,∴BB1⊥平面ABC,∴平面BCC1B1⊥平面ABC,∵△ABC是正三角形,D是BC的中点,∴AD⊥BC,∴AD⊥平面BCC1B1,∴AD⊥B1D,设点B 到平面AB 1D 的距离为d ,∵VB 1-ABD =VB -AB 1D , ∴S △ABD ·BB 1=S △AB 1D ·d ,∴d =S △ABD ·BB 1S △AB 1D=AD ·BD ·BB 1AD ·B 1D =BD ·BB 1B 1D =255,∴点A 1到平面AB 1D 的距离为255.4.[2015·成都调研]一个多面体的直观图和三视图如图所示,其中M 是AB 的中点,G 是DF 上的一动点.(1)求该多面体的体积与表面积;(2)当FG =GD 时,在棱AD 上确定一点P ,使得GP ∥平面FMC ,并给出证明.解 (1)由题中图可知该多面体为直三棱柱,在△ADF 中,AD ⊥DF ,DF =AD =DC =a ,所以该多面体的体积为12a 3,表面积为12a 2×2+2a 2+a 2+a 2=(3+2)a 2.(2)点P 与点A 重合时,GP ∥平面FMC .如图,取FC 的中点H ,连接GH ,GA ,MH .∵G 是DF 的中点,∴GH 綊12CD .又M 是AB 的中点,∴AM 綊12CD .∴GH ∥AM 且GH =AM ,∴四边形GHMA 是平行四边形, ∴GA ∥MH .又∵MH ⊂平面FMC ,GA ⊄平面FMC , ∴GA ∥平面FMC ,即当点P 与点A 重合时,GP ∥平面FMC .。

直线与平面平行的判定及其性质 测试题(答案)

直线与平面平行的判定及其性质 测试题(答案)

直线与平面平行的判定和性质年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共26题,题分合计130分)1.直线a //平面M ,直线b ⊂/M ,那么a //b 是b //M 的 条件. A.充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要2.已知l 、m 、n 为两两垂直且异面的三条直线,过l 作平面α与m 垂直,则直线n 与平面α的关系是A.n //αB.n //α或n ⊂αC.n ⊂α或n 不平行于αD.n ⊂α3.能保证直线a 与平面α平行的条件是A.b a b a //,,αα⊂⊄B.b a b //,α⊂C.c a b a c b //////,,,αα⊂D.b D b C a B a A b ∈∈∈∈⊂,,,,α且BD AC =4.如果直线a 平行于平面α,则A.平面α内有且只有一直线与a 平行B.平面α内无数条直线与a 平行C.平面α内不存在与a 平行的直线D.平面α内的任意直线与直线a 都平行5.如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系A.相交B.α//bC.α⊂bD.α//b 或α⊂b6.下列命题正确的个数是(1)若直线l 上有无数个点不在平面α内,则l ∥α(2)若直线l 与平面α平行,则l 与平面α内的任意一直线平行(3)两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行 (4)若一直线a 和平面α内一直线b 平行,则a ∥α A.0个 B.1个 C.2个 D.3个7.若直线a ⊥b ,且a ∥平面α,则直线b 与平面α的位置关系是A.b ⊂αB.b ∥αC.b ⊂α或b ∥αD.b 与α相交或b ∥α或b ⊂α都有可能8.已知α、β是两个不同的平面,在下列条件中,可判断平面α与平面β平行的是A.α、β都垂直于平面γB.a 、b 是α内两条直线,且a ∥β,b ∥βC.α内不共线的三个点到β的距离相等D.a 、b 为异面直线,且a ∥α,b ∥α,a ∥β,b ∥β9.下列命题正确的个数是①若直线l 上有无数个点不在平面α内,则l ∥α②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行 ④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点 A.0个 B.1个 C.2个 D.3个10.b 是平面α外的一条直线,下列条件中可得出b ∥α是A.b 与α内的一条直线不相交B.b 与α内的两条直线不相交C.b 与α内的无数条直线不相交D.b 与α内的所有直线不相交11.已知直线l 1、l 2,平面α,l 1∥l 2,l 1∥α,则l 2与α的位置关系是A.l 2∥αB.l 2⊂αC.l 2∥α或l 2⊂αD.l 2与α相交12.已知两条相交直线a 、b ,a ∥平面α,则b 与α的位置关系A.b ∥αB.b 与α相交C.b ⊂αD.b ∥α或b 与α相交13.下列命题中正确的是①过一点,一定存在和两条异面直线都平行的平面②垂直于同一条直线的一条直线和一个平面平行③若两条直线没有公共点,则过其中一条直线一定有一个平面与另一条直线平行 A.① B.③ C.①③ D.①②③14.a、b为平面M外的两条直线,在a∥M的前提下,a∥b是b∥M的A.充要条件B.充分条件C.必要条件D.以上情况都不15.α和β是两个不重合的平面,在下列条件中可判定平面α与β平行的是A.α、β都垂直于平面γB.α内不共线的三点到β的距离相等C.l,m是α平面内的直线,且l∥β,m∥βD.l、m是两条异面直线且l∥α,m∥α,m∥β,l∥β16.在空间中,下述命题正确的A.若直线a∥平面M,直线b⊥直线a,则直线b⊥平面MB.若平面M∥平面N,则平面M内任意一条直线a∥平面NC.若平面M与平面N的交线为a,平面M内的直线b⊥直线a,则直线b⊥平面ND.若平面N内的两条直线都平行于平面M,则平面N∥平面M17.设直线a在平面M内,则直线M平行于平面N是直线a平行于平面N的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件18.设a、b是平面α外的任意两条直线,则"a、b长相等"是"a、b在平面α内的射影长相等"的A.既不充分也不必要条件B.充分必要条件C.必要但不充分条件D.充分但不必要条件19.如果平面α和直线l满足l和α内两条平行直线垂直,则A.l αB.l∥αC.l与α相交D.以上都不对20.如果一条直线和一个平面平行,为了使夹在它们之间的两条线段的长相等,以下结论正确的是A.其充分条件是这两条线段平行B.其必要条件是这两条线段平行C.其充要条件是这两条线段平行D.其必要条件是这两条线段平行21.直线a∥平面α,平面α内有n条直线交于一点,那么这几条直线中与直线a平行的A.至少有一条B.至多有一条C.有且只有一条D.不可能有22.若直线m平面α,则“平面α∥平面β”是“直线m∥平面β”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件23.平行于同一个平面的两条直线的位置关系是A.平行B.相交C.异面D.平行或相交或异面24.下列四个命题中假命题的个数是①两条直线都和同一个平面平行,则这两条直线平行②两条直线没有公共点,则这两条直线平行③两条直线都和第三条直线垂直,则这两条直线平行④一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行A.4B.3C.2D.125.如果一条直线和一个平面平行,为了使夹在它们之间的两条线段的长相等,以下结论正确的是A.其充分条件是这两条线段平行B.其必要条件是这两条线段平行C.其充要条件是这两条线段平行D.其必要条件是这两条线段平行26.直线与平面平行的充要条件是这条直线与平面内的A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交二、填空题(共6题,题分合计25分)1.如图,空间四边形ABCD 中,E 、H 分别是AB 、AD 的中点,F 、G 分别是CB 、CD 上的点.且32==CD CG CB CF ,若BD =6 cm ,梯形EFGH 的面积为28 cm 2,则平行线EH 与FG 间的距离为_______.2.一条直线与平面α相交于点A ,在平面α内不过A 点的直线与这条直线所成角的最大值为_________.3.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与过点A 、E 、C 的平面的位置关系是__________.4.几何体ABCD -A 1B 1C 1D 1是棱长为A 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =31a ,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =___________.5.如果两条直线a 与b 互相平行,且a ∥平面α,那么b 与α的位置关系是 .6.直线a ∥平面α,直线b 、c 都在α 内且a ∥b ∥c ,若a 到b , c 的距离分别为d 1、d 2,且d 1>d 2,则直线a 到α 的距离d 的取值范围是___________.三、解答题(共12题,题分合计112分)1.求证:若直线l与平面α有一个公共点,且l平行于α内的一条直线,则l α..2.如图,P是△ABC所在平面外一点,M∈PB,试过AM作一平面平行于BC,并说明画法的理论依据Array3.设AB、CD为夹在两个平行平面α、β之间线段,且直线AB、CD为异面直线,М、P分别为AB、CD的中点,求证:MP ∥α.4.ABCD-A1B1C1D1是棱长为a的正方体,(1)画出过A、C、B1的平面与下底面的交线l;(2)求l与直线AC的距离.5.正方体ABCD-A1B1C1D1中,侧面对角线AB1、BC1分别有E、F,且B1E=C1F,求证:EF∥平面ABCD.6.平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面.7.设a、b是异面直线,自AB的中点O作平面α与a、b分别平行,M、N分别是a、b上的任意两点,MN与α交于点P,求证:P是MN的中点.8.求证:如果一条直线和两个相交的平面都平行,那么这条直线和它们的交线平行.9.α∩β=c,α∩γ=b,β∩γ=a,若直线a∥直线b,你能得到什么结论?10.如图,正方体ABCD-A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.11.如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,并且CM=DN.求证:MN∥平面AA1B1B.12.如图,平面EFGH分别平行于CD、AB,E、F、G、H分别在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.(1)求证:EFGH是矩形.(2)点E在什么位置时,EFGH的面积最大.直线与平面平行的判定和性质答案一、选择题(共26题,合计130分)1.答案:A2.答案:A3.答案:A4.答案:B5.答案:D6.答案:A7.答案:D8.答案:B9.答案:B10.答案:D11.答案:C12.答案:D13.答案:B14.答案:B15.答案:D16.答案:B17.答案:A18.答案:A19.答案:D20.答案:A21.答案:B22.答案:A23.答案:D24.答案:A25.答案:A26.答案:C二、填空题(共6题,合计25分)1.答案:8 cm2.答案:90°3.答案:BD1∥平面AEC4.答案:a2 325.答案:b∥α或b α6.答案:) ,0(2 d三、解答题(共12题,合计112分)1.答案:见注释2.答案:见注释3.答案:见注释4.答案:. 26 a5.答案:见注释6.答案:见注释7.答案:见注释8.答案:见注释9.答案:见注释10.答案:见注释11.答案:见注释12.答案:(1)见注释(2)E为BD的中点时。

《直线、平面平行的判定及其性质》试题(新人教必修2).

《直线、平面平行的判定及其性质》试题(新人教必修2).

第1题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a m b βγααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第2题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( )A.a b // B.a b ⊥C.a ,b 相交但不垂直 D.a ,b 异面答案:A.第3题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第4题. 如图,长方体1111ABCD A B C D -中,11E F 是平面11A C 上的线段,求证:11E F //平面AC .答案:证明:如图,分别在AB 和CD 上截取11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,11A E ∴平行且等于AE ,11D F 平行且等于DF ,故四边形11AEE A ,11DFF D 为平行四边形.1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD , ∴11E F //平面ABCD .第5题. 如图,在正方形ABCD 中,BD 的圆心是A ,半径为AB ,BD 是正方形ABCD 的对角线,正方形以AB 所在直线为轴旋转一周.则图中Ⅰ,Ⅱ,Ⅲ三部分旋转所得几何体的体积之比为 .答案:111∶∶第6题. 如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶. (1) 求证:直线MN //平面PBC ; (2) 求线段MN 的长.(1) 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NEND AN=. BN PM ND MA =∵,NE PMAN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC , ∴MN //平面PBC .(2) 解:由13PB BC PC ===,得60PBC ∠=; 由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴.第7题. 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点, 求证:PD //平面MAC .答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //.PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .第8题. 如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵ 平行且等于1112B C ,BE 平行且等于1112B C ,OF ∴ 平行且等于BE ,则OFEB 为平行四边形, EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 如图,在正方体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.答案:解:如图,连接连接MA ,MC ,则截面MAC 即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面( ) A.不存在 B.有1个 C.可能不存在也可能有1个 D.有2个以上答案:C.第11题. 如图,在正方体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B .答案:证明:1111B B B D D A A D D ⇒⎨⎪⎩∥ ∥ ∥ ⇒ 四边形11BB D D 是平行四边形⇒ 111111D B DBDB A BD D B A BD⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BD D B B C B⎧⎪⎨⎪=⎩平面同理平面//// ⇒111B CD A BD 平面平面//.第12题. 如图,M 、N 、P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM MB CN NB CP PD ==∶∶∶.求证:(1)AC //平面MNP ,BD //平面MNP ;(2)平面MNP 与平面ACD 的交线AC //.答案:证明:(1)AM CN MN AC MB NBAC MNP AC MNP MN MNP⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.PN BD MNP BD MNP MNP⎫⇒⎪⎪⎬⎪⎪⎭////平面.(2)MNP ACD PE AC ACD PE AC AC MNP =⎫⎪⊂⇒⎬⎪⎭设平面平面平面//,//平面 MNP ACD AC 即平面与平面的交线//.第13题. 如图,线段AB ,CD 所在直线是异面直线,E ,F ,G ,H 分别是线段AC ,CB ,BD ,DA 的中点.(1) 求证:EFGH 共面且AB ∥面EFGH ,CD ∥面EFGH ; (2) 设P ,Q 分别是AB 和CD 上任意一点,求证:PQ 被平面EFGH 平分.答案:证明:(1)∵E ,F ,G ,H 分别是AC ,CB ,BD ,DA 的中点.,EH CD ∴//,FG CD //,EH FG ∴//.因此,E ,F ,G ,H 共面. CD EH ∵//,CD ⊄平面EFGH ,EH ⊂平面EFGH , CD ∴//平面EFGH .同理AB //平面EFGH .(2)设PQ平面EFGH =N ,连接PC ,设PCEF M =.PCQ △所在平面平面EFGH =MN ,CQ ∵//平面EFGH ,CQ ⊂平面PCQ ,CQ MN ∴//.EF ∵ 是ABC △是的中位线,M ∴是PC 的中点,则N 是PQ 的中点,即PQ 被平面EFGH 平分.第14题. 过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( ) A.都平行B.都相交且一定交于同一点 C.都相交但不一定交于同一点 D.都平行或都交于同一点答案:D.第15题. a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( ) A.过A 且平行于a 和b 的平面可能不存在 B.过A 有且只有一个平面平行于a 和b C.过A 至少有一个平面平行于a 和b D.过A 有无数个平面平行于a 和b答案:A.第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为 . 答案:20.第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =: .答案:m n ∶.第18题. 如图,空间四边形ABCD 的对棱AD 、BC 成60的角,且AD BC a ==,平行于AD 与BC 的截面分别交AB 、AC 、CD 、BD 于E 、F 、G 、H . (1)求证:四边形EGFH 为平行四边形;(2)E 在AB 的何处时截面EGFH 的面积最大?最大面积是多少?答案:(1)证明:BC ∵//平面EFGH ,BC ⊂平面ABC , 平面ABC 平面EFGH EF =,BC EF ∴//.同理BC GH //, EF GH ∴//,同理EH FG //, ∴四边形EGFH 为平行四边形. (2)解:∵AD 与BC 成60角,∴60HGF ∠=或120,设:AE AB x =,∵EF AEx BC AB==, BC a =,∴EF ax =,由1EH BEx AD AB==-, 得(1)EH a x =-.∴sin 60EFGH S EF EH =⨯⨯四边形(1)2ax a x =⨯-⨯22()2a x x =-+2211()24x ⎡⎤=--+⎢⎥⎣⎦. 当12x =时,28S a =最大值, 即当E 为AB的中点时,截面的面积最大,最大面积为28a .第19题. P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶''' .答案:425∶第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证:MN //平面PAD .答案:证明:如图,取CD 的中点E ,连接NE ,ME ∵M ,N 分别是AB ,PC 的中点,NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD . 又NE ME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD .第21题. 已知平面α//平面β,AB ,CD 是夹在两平行平面间的两条线段,A ,C 在α内,B ,C 在β内,点E ,F 分别在AB ,CD 上,且AE EB CF FD m n ==∶∶∶. 求证:EF //平面α.答案:证明:分AB ,CD 是异面、共面两种情况讨论. (1) 当AB ,CD 共面时,如图(a )αβ∵//,AC BD ∴//,连接E ,F .AE EB CF FD =∶∶∵,EF AC BD ∴////且EF α⊄,AC α⊂,∴EF //平面α.(2) 当AB ,CD 异面时,如图(b ),过点A 作AH CD // 交β于点H .在H 上取点G ,使AG GH m n =∶∶,连接EF ,由(1)证明可得GF HD //,又AG GH AE EB =∶∶得EG BH //.∴平面EFG //平面β//平面α.又EF ⊂面EFG ,∴EF //平面α.第22题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a βαααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪=⎭//////.第23题. 三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB 、CD 都平行,则截面MNPQ 的周长是( ).A.4a B.2aC.32aD.周长与截面的位置有关答案:B.第24题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( ). A.a b // B.a b ⊥C.a 、b 相交但不垂直 D.a 、b 异面答案:A.第25题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E 、F 分别是PA 、BD 上的点且:PE EA =答案:证明:连结AF 并延长交BC 于M . 连结PM ,AD BC ∵//,BF MFFD FA=∴, 又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM , 又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第26题. 如图,长方体1111ABCD A B C D -中,平面ABCD .答案:证明:如图,分别在AB 和CD 上截得11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD , ∴11E F //平面ABCD .第27题. 已知正方体1111ABCD A B C D -, 求证:平面11AB D //平面1C BD .答案:证明:因为1111ABCD A B C D -为正方体, 所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形.所以11D A C B //.由直线与平面平行的判定定理得1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D =,所以,平面11AB D //平面1C BD .第28题. 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.如图,已知直线a ,b 平面α,且a b //,a α//,a ,b 都在α外. 求证:b α//.答案:证明:过a 作平面β,使它与平面α相交,交线为c . 因为a α//,a β⊂,c αβ=,所以a c //.因为a b //, 所以b c //.又因为c α⊂,b α⊄, 所以b α//.第29题. 如图,直线AA ',BB ',CC '相交于O ,AO AO =',BO B O =',CO C O ='. 求证:ABC //平面ABC '''.答案:提示:容易证明AB AB //'',AC AC //''. 进而可证平面ABC //平面ABC '''.第30题. 直线a 与平面α平行的充要条件是( ) A.直线a 与平面α内的一条直线平行 B.直线a 与平面α内两条直线不相交C.直线a 与平面α内的任一条直线都不相交 D.直线a 与平面α内的无数条直线平行答案:C.。

平行的判定和性质专题及答案

平行的判定和性质专题及答案

平行的判定和性质专题平行的判断方法及性质汇总:一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面专题训练一.选择题:1.两直线a, b平行于平面α,那么a, b的位置关系是 D(A)平行(B)相交(C)异面(D)平行、相交或异面2.两条直线a//b,b在平面α内,则a与α的位置关系是C(A)a//α(B)a与α相交(C)a//α或a在α内(D)a在α内3.直线l与平面α平行,在平面α内,与l平行的直线有 C(A)1条(B)2条(C)无数条(D)n条(n是一正整数)4.若一直线和一平面平行,夹在直线和平面间的两条线段相等,那么这两条线段所在的直线的位置关系是 D(A)平行(B)相交(C)异面(D)平行、相交或异面5.若a, b是异面直线,a//平面α,那么b与α的位置关系是 D(A)b//α(B)b与α相交(C)b在α内(D)不确定6.若直线a//平面α,且点A∈α,则过点A且a与平行的直线 B(A)只有一条,但不一定在α内(B)只有一条,且在α内(C)有无数条,但都不在α内(D)有无数条,且都在α内7.能够保证直线a∥平面β的条件是…………………………………(C )(A)β⊂b,a∥b (B)a∥b∥c,β⊂b,β⊂c(C)β⊄a,β⊂b,a∥b (D)β⊂b,BDACbDCaBA=∈∈,,,,8.如果l∥α,则l平行于α内的( B )(A)全部直线(B)过l的平面与α的交线(C)任一直线(D)唯一确定地直线9.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是 C(A)平行(B)相交(C)平行或相交(D)无法确定10.在下列条件中,可判定平面α与平面β平行的是( D )(A)α、β都垂直于平面γ(B)α内不共线的三个点到β的距离相等(C)l、m是α内两条直线,且l∥β,m∥β(D)l、m是两异面直线且l∥α,m∥α,且l∥β,m∥β11.若两条直线m, n分别在平面α、β内,且α//β,则m, n的关系一定是(D )(A)平行(B)相交(C)异面(D)平行或异面12.已知直线l和平面α:(1)若直线l与平面α内无数条直线平行,则l//α;(2)若直线l与平面α内任意一直线都不平行,则直线l与平面α相交;(3)若l⊄α,则直线l与平面α内某些直线平行;(4)若直线l∩平面α=A,则存在α内的直线b,使b⊥l. 其中正确命题的个数是 C(A)0 (B)1 (C)2 (D)313.能保证直线a与平面α平行的条件是 A(A)a⊄α, b⊂α, a//b (B)b⊂α, a//b(C)b⊂α, c//α, a//b, a//c (D)b⊂α, A∈a, B∈a, C∈b, D∈b, 且AC=BD14.若直线m不平行于平面α,且m⊄α,则下列结论成立的是 B(A)α内的所有直线与m异面(B)α内不存在与m平行的直线(C)α内存在惟一的直线与m平行(D)α内的直线与m都相交15.如果两条直线a//b,且直线a//平面α,则b与α的位置关系是 D(A)相交(B)b//α (C)b⊂α (D)b//α或b⊂α16.设直线a与平面M平行,则必有 D(A)在平面M内不存在与a垂直的直线(B)在平面M内存在与a垂直的惟一直线(C)在平面M内有且只有一条直线与a平行(D)在平面M内有无数条直线与a平行17.已知∠ABC=90°,BC//平面M,AB与平面M斜交,那么∠ABC在平面M内的射影是B(A)锐角(B)直角(C)锐角或直角(D)锐角或直角或钝角18.在正方体ABCD-A1B1C1D1中,点E, F分别是AA1与AB的中点,O1为正方形A1B1C1D1的中心,则EF与BO1所成的角为 A(A)30°(B)45°(C)60°(D)90°19.已知A, B, C, D是空间不共面的四点,它们到平面α的距离之比依次为1 : 1 : 1 : 2,则满足条件的平面α的个数是 C(A)3 (B)4 (C)7 (D)820.下列命题中正确的是 C(A)经过两条异面直线中的一条且与另一条平行的平面至少有一个(B)若两条直线在同一平面内的射影平行,则这两条直线也平行(C)若a, b是异面直线,则一定存在平面α与a, b所成的角相等(D)与两条异面直线都平行的平面只有一个二.填空题:1.过直线外一点且与这条直线平行的平面有无数个。

直线与平面平行的判定和性质经典练习及详细答案

直线与平面平行的判定和性质经典练习及详细答案

平面平行的判定及其性质羄直线、1.2.薂下列命题中,正确命题的是④.;肇①若直线I上有无数个点不在平面:.内,则I // :•芆②若直线I与平面「平行,则I与平面「内的任意一条直线都平行;莁③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线I与平面「平行,则I与平面:.内的任意一条直线都没有公共点3.4. 芀下列条件中,不能判断两个平面平行的是____________ (填序号)肇①一个平面内的一条直线平行于另一个平面蚆②一个平面内的两条直线平行于另一个平面膃③一个平面内有无数条直线平行于另一个平面聿④一个平面内任何一条直线都平行于另一个平面答案①②③5.5. 腿对于平面和共面的直线m n,下列命题中假命题是________________ (填序号)肇①若mL用,m丄n,贝V n / 、丄薁②若mil :- , n // :•,贝V m// n膂③若m二:z , n// :•,贝U m// n芇④若m n与:•所成的角相等,则m// n 答案①②④7.6. 膄已知直线a, b,平面「,则以下三个命题:芃①若a // b, b二:乂,则a //⑶袁②若a // b, a //芒,贝U b //芒;莆③若 a // :•, b // :-,则 a // b.薅其中真命题的个数是答案09.7. 羅直线a//平面M直线b M那么a// b是b〃M的条件.蚀A.充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要11.12.蒆能保证直线a与平面〉平行的条件是, a// b p bu a, a//b肆A. a 広a, b u a, c//a,a//b,a//c蒃C. b u a£a,C^b, D e b 且AC=BD葿D. b u 口,A^a,B13.14. 薆如果直线a平行于平面?,则 _________a平行 B.平面〉内无数条直线与a平行蒇A.平面?内有且只有一直线与a平行的直线 D.平面〉内的任意直线与直线a都平行膅C.平面〉内不存在与15.15. 蒂如果两直线a// b,且a//平面〉,则b与〉的位置关系__________蚆A.相交B. b〃° c.匕匚口D.b〃°或b u°17.16. 薄下列命题正确的个数是______19.17. 蚃(1)若直线I上有无数个点不在平面a内,则I // al与平面a平行,则l与平面a内的任意一直线平行芁(2)若直线,那么另一条也与这个平面平行蚆(3)两条平行线中的一条直线与一个平面平行a和平面a内一直线b平行,则a // a羅(4 )若一直线莄A.0个 B.1个 C.2个 D.3个21.22. 罿b是平面a外的一条直线,下列条件中可得出b/ a是肀A. b与a内的一条直线不相交 B. b与a内的两条直线不相交莅C.b与a内的无数条直线不相交 D.b与a内的所有直线不相交23.23. 螂已知两条相交直线a、b, a//平面a ,则b与a的位置关系肂A. b / a B.b与a相交 C.b」a D.b/ a或b与a相交25.24. 膀如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC, SGSAB上的高,D E、F分别是AC BC SC的中点,试判断SG与平面DEF的位置关系,并给予证明.螆解SG//平面DEF证明如下:薄方法一:三角形中位线连接CG交螁••• DE是厶ABC的中位线,芀••• DE// AB.腿在△ ACG中, D是AC的中点,羂且DH// AG薀• H为CG的中点.艿• FH是厶SCG的中位线,芄• FH// SG蚄又SG亿平面DEF FHU平面DEF,荿••• SG//平面DEF荿方法二:平面平行的性质蚅••• EF为厶SBC的中位线,• EF/ SB膂••• EF伉平面SAB SBu平面SAB莂• EF//平面SAB葿同理可证,DF//平面SAB EF A DF=F ,肆.••平面SAB/平面DEF,又SG二平面SAB • SG//平面DEF27.25. 袄如图所示,在正方体ABC—ABC1D1中,E、F、G H分别是BC CG、賺CD、A1A的中点.求证:蕿(1)BF/ HD;蒇(2)EG//平面BBDD;莁(3)平面BDF/平面BDH袀证明平行四边形的性质,平行线的传递性虿(1 )如图所示,取BB的中点M易证四边形蚄又••• MC/ BF,「. BF/ HD.肃(2)取BD的中点0,连接E0, D0,贝U OE^蚈又DG& I DC• OE^ DG2蝿.••四边形OEGD是平行四边形,• GE// DO.肄又D 0-平面BB D D, • EG/平面BBD D.蒁(3)由(1)知DH// BF,又BD// BD, BD、HD =平面HBD, BF、BH 平面BDF,且BD A HD=D, DBA BF=B,「.平面BDF// 平面B D H.29.26. 螁如图所示,在三棱柱ABC-A i B C中,M N分别是BC和A i B i的中点. 衿求证:MN//平面AACC.蒅证明方法一:平行四边形的性质膃设AC中点为F,连接NF, FC,蒀••• N为A i B i中点,衿••• NF// BQ,且NF=^B C i,2祎又由棱柱性质知B i C i庄BC蚁又M是BC的中点,艿• NF MC羈.••四边形NFCM^平行四边形.芇• MIN/ CF,又CF 平面AA C i, MN二平面AA C ,• MIN/平面AAC C. 莃方法二:三角形中位线的性质节连接AM交C C于点P,连接A i P, 肇T M是BC的中点,且MC/ B i C i,莄• M是B i P的中点,肅又••• N为A B中点,肁• MN// A P,又 A PU 平面AA C , MW 平面AAC,:MIN/平面AACC.膈方法三:平面平行的性质 螅设BiG 中点为Q 连接NQ MQ ,薃•••M Q 是BG BG 的中点,袀•••MQ CG ,又 CGu 平面 AAGC, MQ 伉平面 AAGC, 芈•••MQ/平面 AA C i C.膆•••N 、Q 是A B i 、B i C 的中点,芅• NQ 二 AQ ,又 A i C 二平面 AAC C, NQ 二平面 AAC C, 蕿• NQ//平面 AA C i C.莈又••• MQ P NQB ,「.平面 MNQ 平面 AAC C, 薇又MN 二平面MNQ. MIN/平面AA C C.3 i .32.螂如图所示,正方体 ABC — A B i C D 中,侧面对角线 AB , BC 上分 别有两点 E , F ,且B E=C F. 蚁求证: EF //平面 ABCD 蒈方法一:平行四边形的性质螃过E 作ES// BB 交AB 于S,过F 作FT // BB 交BC 于 T ,蒄连接ST ,则-AE 更,且AB i B i B BC i C i C莀T B i E=C F , B A=CB,. AE=BF蒈•••旦,••• ES=FTB i B CC i膄又••• ES// B B// FT ,.四边形 EFTS 为平行四边形Bl ______ G袂•••EF// ST ,又 ST=平面 ABCD EFC :平面 ABCD : EF//平面 ABCD腿方法二:相似三角形的性质 薈连接BF 交BC 于点Q 连接AQ薅••• BQ // BC, • B 1L =圧BQ C 1B膂• EF // AQ 又 AQ=平面 ABCD EF 二平面 ABCD •- EF//平面 ABCD 蚇方法三:平面平行的性质 羆过E 作EG/ AB 交BB 于G,肂连接GF,则B 11史£ ,B 1A B 1B羁 TB i E=C i F , BA=CB ,螇••• C i E =B i G , • FG // B l C i // BC C 1B B i B 莇又 EG A FG P G , AB A BC=B ,螄.••平面 EFG/平面 ABCD 而EF 二平面EFG螀• EF//平面ABCD33.34.袇如图所示,在正方体 ABC — A B i C D 中,O 为底面ABCD 的中心,P 是DD 的中点,设薄T B i E=C i F , BiA=GB,B L E B ,FB 1D B i QQ是CC上的点,问:当点Q在什么位置时,平面DBQ// 平面PAO蒄解面面平行的判定节当Q为CC的中点时,A B葿平面 DBQ//平面PAO羇••• Q 为CG 的中点,P 为DD 的中点,••• QB// PA袅:P 、O 为 DD 、DB 的中点,• DB// PO羄又 PO P PA=P , DB A QB=B , 薂DB //平面PAO QB//平面 PAO 肇.••平面 DBQ//平面PAO芆直线与平面平行的性质定理35.EFGH 为空间四边形ABCD 勺一个截面,若截面为平行四边形芀(1)求证:AB//平面 EFGH CD//平面 EFGH肇(2)若AB=4, CD=6,求四边形EFGH 周长的取值范围 蚆(1)证明•••四边形EFGH 为平行四边形,• EF// HG膃•••HX 平面 ABD • EF//平面 ABD 聿•••EF 平面 ABC 平面 ABD A 平面 ABCAB腿• EF// AB. • AB//平面 EFGH 肇同理可证,CD//平面EFGH薁⑵ 解 设EF=x (O v x v 4),由于四边形 EFGH 为平行四边形,膂•••CF=x 则 FG = B F = B C -C F =1- x .从而 F G=6- 1 2 3x . •••四边形 EFGH 的周长 CB 4 6 BC BC 4 21 =2(x+6-5)=12- x.又0v x v 4,则有8v l v 12, •四边形 EFGH 周长的取值范围是(8,212) 37.36.莁如图所示,四边形 AC38.芇如图所示,平面:• //平面[,点A € :. , C €「,点B € 1 , D € [,点E , F 分别在线 段 AB CD 上,且 AE : EB=CF : FD薆••• AC// DH, •••四边形 ACDH 是平行四边形, 蒇在AH 上取一点 G,使AG : GH=CF : FD,膅又••• AE : EB=CF : FD, • GF// HD EG// BH 蒂又EG A GFG, •平面 EFG//平面-蚆•••EF 平面 EFG •- EF / l 综上,EF// I薄(2)解三角形中位线膄(1)求证:EF / -; :. / :,:.门平面 ACDHAC,蚃 如图所示,连接 AD,取AD 的中点 M 连接 ME MF.芁••• E , F 分别为AB, CD 的中点,蚆••• ME// BD, MF// AC,羅且 M ^Z BGB , MF=LAC=2,2 2莄•••/ EMF 为AC 与BD 所成的角(或其补角),罿EMF=60。

高考专题练习: 直线、平面平行的判定与性质

高考专题练习: 直线、平面平行的判定与性质

1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)因为l∥a,a⊂α,l⊄α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b常用结论1.三种平行关系的转化线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想.2.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)直线l平行于平面α内的无数条直线,则l∥α.()(2)若直线l在平面α外,则l∥α.()(3)若直线l∥b,直线b⊂α,则l∥α.()(4)若直线l∥b,直线b⊂α,那么直线l平行于平面α内的无数条直线.()答案:(1)×(2)×(3)×(4)√二、易错纠偏常见误区|(1)对空间平行关系的相互转化条件理解不够;(2)忽略线面平行、面面平行的条件.1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.2.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH 是平行四边形.答案:平行四边形与线、面平行相关命题的判定(师生共研)(1)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β(2)(2020·沈阳市教学质量监测(一))已知a,b为两条不同的直线,α,β,γ为三个不同的平面,则下列说法中正确的是()①若a∥α,α∥β,则a∥β;②若α∥β,β∥γ,则α∥γ;③若a⊥α,b⊥α,则a∥b;④若α⊥γ,β⊥γ,则α⊥β.A.①③B.②③C.①②③D.②③④【解析】(1)A错误,n有可能在平面α内;B错误,平面α可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.(2)若a∥α,α∥β,则a可能平行于β,也可能在β内,故①不正确;若α∥β,β∥γ,则由面面平行的性质知α∥γ,故②正确;若a⊥α,b⊥α,则由线面垂直的性质知a∥b,故③正确;若α⊥γ,β⊥γ,则α与β可能平行也可能相交,故④不正确.综上所述,②③正确,故选B.【答案】(1)D(2)B解决线、面平行关系应注意的问题(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易被忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.1.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,b⊄α,c⊂α,所以b∥α.2.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面解析:选B.对于A,C,D选项,α均有可能与β相交,故排除A,C,D 选项,选B.线面平行的判定与性质(多维探究)角度一线面平行的证明在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D.【证明】(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC 1D 1是平行四边形,所以HD 1∥MC 1.又因为在平面BCC 1B 1中,BM ∥=FC 1, 所以四边形BMC 1F 为平行四边形, 所以MC 1∥BF ,所以BF ∥HD 1. (2)取BD 的中点O ,连接EO ,D 1O , 则OE ∥DC 且OE =12DC ,又D 1G ∥DC 且D 1G =12DC ,所以OE ∥=D 1G , 所以四边形OEGD 1是平行四边形,所以GE ∥D 1O . 又D 1O ⊂平面BB 1D 1D ,GE ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D .证明直线与平面平行的常用方法(1)利用线面平行的定义.(2)利用线面平行的判定定理:关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.角度二 线面平行性质定理的应用如图,在五面体ABCDFE 中,底面ABCD 为矩形,EF ∥AB ,过BC的平面交棱FD 于点P ,交棱F A 于点Q .证明:PQ ∥平面ABCD .【证明】 因为底面ABCD 为矩形,所以AD ∥BC ,⎭⎪⎬⎪⎫AD ∥BCAD ⊂平面ADF BC ⊄平面ADF ⇒BC ∥平面ADF ,⎭⎪⎬⎪⎫BC ∥平面ADFBC ⊂平面BCPQ 平面BCPQ ∩平面ADF =PQ ⇒BC ∥PQ ,⎭⎪⎬⎪⎫PQ ∥BCPQ ⊄平面ABCD BC ⊂平面ABCD ⇒PQ ∥平面ABCD .应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.该定理的作用是由线面平行转化为线线平行.1.(一题多解)(2021·河南中原名校联考)如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是P A ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .证明:方法一:如图,连接AF ,并延长交BC 于点G ,连接PG ,因为BC ∥AD ,所以FG F A =FBFD , 又因为PE EA =BFFD ,所以PE EA =GFF A ,所以EF ∥PG .又因为PG ⊂平面PBC ,EF ⊄平面PBC , 所以EF ∥平面PBC .方法二:如图,过点F 作FM ∥AD ,交AB 于点M ,连接EM ,因为FM ∥AD ,AD ∥BC ,所以FM ∥BC ,又因为FM ⊄平面PBC ,BC ⊂平面PBC , 所以FM ∥平面PBC . 由FM ∥AD 得BM MA =BFFD ,又因为PE EA =BF FD ,所以PE EA =BMMA ,所以EM ∥PB . 因为PB ⊂平面PBC ,EM ⊄平面PBC , 所以EM ∥平面PBC ,因为EM ∩FM =M ,EM ,FM ⊂平面EFM ,所以平面EFM∥平面PBC,因为EF⊂平面EFM,所以EF∥平面PBC.2.如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,又因为CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)取AB的中点N,连接DN,MN,因为M是AE的中点,N是AB的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.面面平行的判定与性质(典例迁移)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G∥=EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EF A1∥平面BCHG.【迁移探究1】(变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.【迁移探究2】(变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1∥=BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.1.如图,AB∥平面α∥平面β,过点A,B的直线m,n分别交α,β于点C,E和点D,F,若AC=2,CE=3,BF=4,则BD的长为()A.65B.75C.85D.95解析:选C.由AB∥α∥β,易证ACCE=BDDF.即AC AE =BDBF,所以BD=AC·BFAE=2×45=85.2.(一题多解)如图,四边形ABCD是正方形,ED⊥平面ABCD,AF⊥平面ABCD.证明:平面ABF∥平面DCE.证明:方法一:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为AF⊄平面DCE,DE⊂平面DCE,所以AF∥平面DCE.因为四边形ABCD是正方形,所以AB∥CD.因为AB⊄平面DCE,CD⊂平面DCE,所以AB∥平面DCE.因为AB∩AF=A,AB⊂平面ABF,AF⊂平面ABF,所以平面ABF∥平面DCE.方法二:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为四边形ABCD为正方形,所以AB∥CD.又AF∩AB=A,DE∩DC=D,所以平面ABF∥平面DCE.方法三:因为DE⊥平面ABCD,所以DE⊥AD,在正方形ABCD中,AD⊥DC.又DE∩DC=D,所以AD⊥平面DEC.同理AD⊥平面ABF.所以平面ABF∥平面DCE.[A级基础练]1.已知α,β表示两个不同的平面,直线m是α内一条直线,则“α∥β”是“m∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由α∥β,m⊂α,可得m∥β;反过来,由m∥β,m⊂α,不能推出α∥β.综上,“α∥β”是“m∥β”的充分不必要条件.2.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析:选D.A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.3.(2021·合肥模拟)已知a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a⊂α,b⊂β,a∥b,则α∥βC.若α∥β,a∥α,则a∥βD.若α∩β=a,β∩γ=b,α∩γ=c,a∥b,则b∥c解析:选D.若a∥b,b⊂α,则a∥α或a⊂α,故A不正确;若a⊂α,b ⊂β,a∥b,则α∥β或α与β相交,故B不正确;若α∥β,a∥α,则a∥β或a⊂β,故C不正确;如图,由a∥b可得b∥α,又b⊂γ,α∩γ=c,所以b∥c,故D正确.4.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:选A.对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.5.如图,在三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选B.在三棱柱ABC-A1B1C1中,AB∥A1B1.因为AB⊂平面ABC,A1B1⊄平面ABC,所以A1B1∥平面ABC.因为过A1B1的平面与平面ABC交于DE,所以DE∥A1B1,所以DE∥AB.6.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度为________.解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以点F为DC的中点.故EF=12AC= 2.答案: 27.在棱长为2的正方体ABCD-A1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是________.解析:由面面平行的性质知截面与平面AB1的交线MN是△AA1B的中位线,所以截面是梯形CD1MN,其面积为12×(2+22)×(5)2-⎝⎛⎭⎪⎫222=92.答案:9 28.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,FH∩HN=H,DD1∩BD =D,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,所以MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)9.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面P AB;(2)求三棱锥P-ABM的体积.解:(1)证明:因为M,N分别为PD,AD的中点,所以MN∥P A,又MN⊄平面P AB,P A⊂平面P AB,所以MN∥平面P AB.在Rt△ACD中,∠CAD=60°,CN=AN,所以∠ACN=60°.又∠BAC=60°,所以CN∥AB.因为CN⊄平面P AB,AB⊂平面P AB,所以CN∥平面P AB.又CN∩MN=N,所以平面CMN∥平面P AB.(2)由(1)知,平面CMN∥平面P AB,所以点M到平面P AB的距离等于点C到平面P AB的距离.因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=3,所以三棱锥P-ABM的体积V=V M­P AB=V C­P AB=V P­ABC=13×12×1×3×2=33.10.如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,AB=2,AF=1,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m 的位置关系,并证明你的结论.解:(1)证明:如图,记AC与BD的交点为O,连接OE.因为O,M分别是AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m ∥AM ,所以l ∥m .[B 级 综合练]11.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列说法中,错误的为( )A .AC ⊥BDB .AC =BD C .AC ∥截面PQMND .异面直线PM 与BD 所成的角为45° 解析:选B .因为截面PQMN 是正方形, 所以PQ ∥MN ,QM ∥PN ,则PQ ∥平面ACD ,QM ∥平面BDA , 所以PQ ∥AC ,QM ∥BD ,由PQ ⊥QM 可得AC ⊥BD ,故A 正确; 由PQ ∥AC 可得AC ∥截面PQMN ,故C 正确; 由BD ∥PN ,所以∠MPN 是异面直线PM 与BD 所成的角,且为45°,D 正确; 由上面可知:BD ∥PN ,MN ∥AC . 所以PN BD =AN AD ,MN AC =DN AD ,而AN 与DN 关系不确定,PN =MN , 所以BD 与AC 关系不确定.B 错误.故选B .12.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面P AO .解析:如图所示,设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥P A .连接DB ,因为P ,O 分别是DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面P AO ,QB ⊄平面P AO ,PO ⊂平面P AO ,P A ⊂平面P AO ,所以D 1B ∥平面P AO ,QB ∥平面P AO ,又D 1B ∩QB =B ,所以平面D 1BQ ∥平面P AO .故Q 为CC 1的中点时,有平面D 1BQ ∥平面P AO .答案:Q 为CC 1的中点13.(2021·烟台模拟)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=1.一平面截该长方体,所得截面为OPQRST ,其中O ,P 分别为AD ,CD 的中点,B 1S =12,则AT =________.解析:设AT =x ,则A 1T =1-x ,由面面平行的性质得,PO ∥SR ,TO ∥QR ,TS ∥PQ , 所以△DOP ∽△B 1RS .因为DP =OD =1,所以B 1S =B 1R =12, 所以A 1S =C 1R =32.由△ATO ∽△C 1QR ,可得AO AT =C 1RC 1Q ,即1x =32C 1Q ,故C 1Q =3x2.由△A 1TS ∽△CQP ,可得CQ CP =A 1TA 1S ,即1-3x 21=1-x 32,解得x =25.答案:2514.(2020·高考全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B -EB 1C 1F 的体积.解:(1)证明:因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .又因为B 1C 1⊂平面EB 1C 1F ,所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN .又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP=ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为12×(B 1C 1+EF )·PN =12×(6+2)×6=24.所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.[C 级 提升练]15.如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面P AB 是等腰直角三角形,P A =PB ,平面P AB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面P AD .(1)确定点E ,F 的位置,并说明理由;(2)求三棱锥F -DCE 的体积.解:(1)因为平面CEF ∥平面P AD ,平面CEF ∩平面ABCD =CE ,平面P AD ∩平面ABCD =AD ,所以CE ∥AD ,又AB ∥DC ,所以四边形AECD 是平行四边形,所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面P AD ,平面CEF ∩平面P AB =EF ,平面P AD ∩平面P AB =P A ,所以EF ∥P A ,又点E 是AB 的中点,所以点F 是PB 的中点.综上,E ,F 分别是AB ,PB 的中点.(2)连接PE ,由题意及(1)知P A =PB ,AE =EB ,所以PE ⊥AB ,又平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB , 所以PE ⊥平面ABCD .又AB ∥CD ,AB ⊥AD ,所以V F ­DEC =12V P ­DEC =16S △DEC ×PE =16×12×2×2×2=23.。

04线面平行与面面平行判定与性质(经典题型+答案)

04线面平行与面面平行判定与性质(经典题型+答案)

线面平行、面面平行的判定及性质一、直线与平面平行文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则直线与此平面平行.性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.二、平面与平面平行文字语言图形语言符号语言判定定理一个平面内有两条相交直线与另一个平面平行,则这两个平面平行性质定理如果两个平行平面时与第三个平面相交,那么它们的交线平行A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解:由面面平行的定义可知选D.例2:若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直解:A错误,a与α内的直线平行或异面.例3:已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是________(填序号)。

解:①中a与b可能异面;②中a与b可能相交、平行或异面;③中a可能在平面α内,④正确。

例4:已知α、β是平面,m 、n 是直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β.②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.③如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n 与α相交.④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α且n ∥β其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4解:对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,选B.例5:已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎪⎨⎪⎧ m ⊥αn ⊥α⇒m ∥n ;(2)⎩⎪⎨⎪⎧ m ⊥αm ⊥n ⇒n ∥α (3)⎩⎪⎨⎪⎧m ⊥αn ∥α⇒m ⊥n 其中真命题的个数为 ( ) A .0 B .1 C .2 D .3 解:若⎩⎪⎨⎪⎧ m ⊥α,n ⊥α,则m ∥n ,即命题(1)正确;若⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ,则n ∥α或n ⊂α,即命题(2)不正确;若⎩⎪⎨⎪⎧m ⊥αn ∥α,则m ⊥n ,即命题(3)正确;综上可得,真命题共有2个.选C例6:已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是 ( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2解:由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.例7:在下列条件中,可判断平面α与β平行的是( ).A. α、β都平行于直线lB. α内存在不共线的三点到β的距离相等C. l 、m 是α内两条直线,且l ∥β,m ∥βD. l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β 解:排除法,A中α、β可以是相交平面;B中三点可面平面两侧;C中两直线可以不相交.故选D,也可直接证明.例8:经过平面外的两点作该平面的平行平面可以作( ).A. 0个B. 1个C. 0个或1个D. 1个或2个解:这两点可以是在平面同侧或两侧.选C 。

高一数学直线平面平行的判定及其性质试题答案及解析

高一数学直线平面平行的判定及其性质试题答案及解析

高一数学直线平面平行的判定及其性质试题答案及解析1. a∥,则a平行于内的(D)A.一条确定的直线B.任意一条直线C.所有直线D.无数多条平行线【答案】D【解析】略2.m、n是平面外的两条直线,在m∥的前提下,m∥n是n∥的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】,则存在有。

而由可得,从而有。

反之则不一定成立,可能相交,平行或异面。

所以是的充分不必要条件,故选A3.直线a∥平面?,平面?内有n条直线相交于一点,那么这n条直线中与直线a平行的() A.至少有一条B.至多有一条C.有且只有一条D.不可能有【答案】B【解析】,则直线与平面的直线可能平行或异面。

则直线可能平面这n条互相相交的直线中的一条平行,与其余n-1条直线都异面,或与这n条互相相交的直线都异面。

故选B4. a和b是两条异面直线,下列结论正确的是()A.过不在a、b上的任意一点,可作一个平面与a、b都平行B.过不在a、b上的任意一点,可作一条直线与a、b都相交C.过不在a、b上的任意一点,可作一条直线与a、b都平行D.过a可以并且只可以作一个平面与b平行【答案】D【解析】经过空间任意一点不都可作唯一一个平面与两条已知异面直线都平行,有时会出现其中一条直线在所做的平面上,A不正确;在a任取一点M,在b上任取一点N,直线MN上的点才可作一条直线与a、b都相交。

其它的点不行,B不正确;若过不在a,b上的任意一点,有直线l∥a,l∥b,则a∥b,与a,b异面矛盾,C不正确;在a上任取一点M,则过点M且与直线b平行的直线唯一,则该直线与直线a所在平面与直线b 平行。

而两相交直线所确定的平面唯一,该平面唯一。

D正确,故选D5. a∥(判断对错) ( )【答案】错【解析】错误;6.三个平面两两相交不共线,求证三条直线交于一点或两两平行。

【答案】见解析【解析】证:设,,∴、(1)若(2)若∴、、交于一点7.、异面直线,为空间任一点,过作直线与、均相交,这样的直线可以作多少条。

高一数学必修二——2.2直线、平面平行的判定及其性质

高一数学必修二——2.2直线、平面平行的判定及其性质
1 ∥ ∴EO = 2 BD1
A1 E D1 B1
C1
而EO 平面AEC, BD1 平面AEC ∴BD1 ∥平面AEC
A
D
O
C B
3、如图,在三棱柱ABC——A1B1C1中,D 是AC的中点。
求证:AB1//平面DBC1
B1
A1
C1
P
D
A
C
B
(2)(2013·新课标全国卷Ⅱ)如图,直
三棱柱ABC-A1B1C1中,D,E分 别是AB,BB1的中点. ①证明:BC1∥平面A1CD; ②设AA1=AC=CB=2,AB= 2 2, 求 三棱锥C-A1DE的体积.
(2)因为PD⊥平面ABCD,GC⊂平面
ABCD,所以GC⊥PD.因为ABCD为正 方形,所以GC⊥CD. 因为PD∩CD=D,所以GC⊥平面PCD. 因为PF=PD=1,EF=CD=1, 所以S△PEF= EF×PF=. 因为GC=BC=1, 所以. V =V
P-EFG G-PEF
=
3.(2015·杭州模拟)一个多面体的直观图及三视图 如图所示(其中M,N分别是AF,BC的中点). (1)求证:MN∥平面CDEF. (2)求多面体A-CDEF的体积.
(1)证明线线平行常用的方法:
一是利用平行公理,即证两直线同时和第三条直线平 行; 二是利用平行四边形进行平行转换;
三是利用三角形的中位线定理证线线平行;
四是利用线面平行、面面平行的性质定理进行平行转 换.
中位线定理
例题讲解:
例.空间四边形ABCD中,E,F分别为AB,AD的 中点,证明:直线EF与平面BCD平行
1.直线a在平面 内还是在平面 外?
直线a在平面外 即直线a与平面可能相交或平行

平面与平面平行的判定与性质试题及答案

平面与平面平行的判定与性质试题及答案

平面与平面平行的判定与性质一、选择题1.平面α∥平面β,点A 、C ∈α,点B 、D ∈β,则直线AC ∥直线B D 的充要条件是( )A .AB ∥CD B .AD ∥CBC .AB 与CD 相交 D .A 、B 、C 、D 四点共面2.“α内存在着不共线的三点到平面β的距离均相等”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要的条件3.平面α∥平面β,直线a ⊂α,P ∈β,则过点P 的直线中( )A .不存在与α平行的直线B .不一定存在与α平行的直线C .有且只有—条直线与a 平行D .有无数条与a 平行的直线4.下列命题中为真命题的是( )A .平行于同一条直线的两个平面平行B .垂直于同一条直线的两个平面平行C .若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.D .若三直线a 、b 、c 两两平行,则在过直线a 的平面中,有且只有—个平面与b ,c 均平行.5.已知平面α∥平面β,且α、β间的距离为d ,l ⊂α,l ′⊂β,则l 与l ′之间的距离的取值范围为( )A .(d ,∞)B .(d ,+∞)C .{d}D .(0,∞)6.已知直线a 、b 、c ⊂α,且a ∥β、b ∥β、c ∥β,则“a 、b 、c 到平面β的距离均相等”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要的条件7.给出以下命题:①夹在两个平行平面间的线段,较长的与平面所成的角较小;②夹在两个平行平面间的线段,如果它们的长度相等,则它们必平行;③夹在两个平行平面间的线段,如果它的长度相等,则它们与平面所成的角也相等; ④在过定点P 的直线中,被两平行平面所截得的线段长为d 的直线有且只有一条,则两平行平面间的距离也为d其中假命题共有( )A .1个B .2个C .3个D .4个8.设α∥β,P ∈α,Q ∈β当P 、Q 分别在平面α、β内运动时,线段PQ 的中点X 也随着运动,则所有的动点X ( )A .不共面B .当且仅当P 、Q 分别在两条平行直线上移动时才共面C .当且仅当P 、Q 分别在两条互相垂直的异面直线上移动时才共面D .无论P 、Q 如何运动都共面二、填空题9.已知α∥β且α与β间的距离为d ,直线a 与α相交于点A 与β相交于B ,若d AB 332=,则直线a 与α所成的角=___________.10.过两平行平面α、β外的点P 两条直线AB 与CD ,它们分别交α于A 、C 两点,交β于B 、D 两点,若P A =6,AC =9,PB =8,则BD 的长为__________.11.已知点A 、B 到平面α的距离分别为d 与3d ,则A 、B 的中点到平面α的距离为________.12.已知平面α内存在着n 个点,它们任何三点不共线,若“这n 个点到平面β的距离均相等”是“α∥β”的充要条件,则n 的最小值为_________.三、解答题13.已知平面α∥平面β直线a ∥α,a β,求证:a ∥β.14.如图,平面α∥平面β,A 、C ∈α,B 、D ∈β,点E 、F 分别在线段A B、CD 上,且FD CF EB AE =,求证:EF ∥平面β.15.P 是△A BC 所在平面外一点,A ′,B ′,C ′分别是△P BC 、△PCA 、△P A B的重心,(1)求证:平面A ′B′C ′∥平面A BC ;(2)求S △A ′B′C ′∶S △A BC .16.如图已知平面α∥平面β,线段A B分别交α、β于M 、N ,线段AD 分别交α、β于C 、D ,线段BF 分别交α,β于F 、E ,若AM =m ,BN =n ,MN =P ,求△END 与△FMC 的面积之比.17.如图,已知:平面α∥平面β,A 、C ∈α,B 、D ∈β,AC 与BD 为异面直线,AC =6,BD =8,A B=CD =10,A B与CD 成60°的角,求AC 与BD 所成的角.参考答案一、选择题1.D 2.B 3.C 4.B 5.B 6.C 7.A 8.D二、填空题9.60° 10.12 11.d 或2d 12.5三、解答题13.证明:取平面α内一定点A ,则直线a 与点A 确定平面γ,设γ∩α=b ,γ∩β=c , 则由a ∥α得a ∥b ,由α∥β得b ∥c ,于是a ∥c .又∵a ⊄β,∴a ∥β.14.证明:(1)若直线AB 和CD 共面,∵α∥β,平面ABDC 与α、β分别交于AC 、BC 两直线,∴AC ∥BD .又∵EB AE =FD CF,∴EF ∥AC ∥BD ,∴EF ∥平面β.(2)若AB 与CD 异面,连接BC 并在BC 上取一点G ,使得EB AE =GB CG,则在△BAC 中,EG ∥AC ,AC ⊂平面α,∴EG ∥α.又∵α∥β,∴EG ∥β;同理可得:GF ∥BD ,而BD ⊂β,又∵GF ∥β.∵EG ∩GF =G ,∴平面EGF ∥β,又∵EF ⊂平面EGF ,∴EF ∥β.综合(1)(2)得EF ∥β.15.证明:(1)连接P A ′、PB ′、PC ′,分别交BC 、CA 、AB 于K 、G 、H ,连接GH 、KG 、HK .∵B ′、C ′均为相应三角形的重心,∴G 、H 分别为AC 、AB 的中点,且PG B P '=PH C P '=32,∴B ′C ′∥GH ,同理A ′B ′∥KG ,A ′B ′∩B ′C ′=B ′且GH ∩KG =G ,从而平面A ′B ′C ′∥平面ABC .(2)由(1)知△A ′B ′C ′∽△KGH , ∴KGH C B A S S ∆'''∆=2)(GH C B ''=94,又∵S △KGH =41S △ABC ,∴S △A ′B ′C ′=91S △ABC ,∴S △A ′B ′C ′∶S △ABC =1∶9.16.证明:∵α∥β,平面AND 分别交α,β于MC 、ND ,∴由面面平行的性质定理知,MC ∥ND ,同理MF ∥NE ;又由等角定理:“一个角的两边分别平行于另一角的两边且方向相同,则两角相等”知:∠END =∠FMC ,从而ND MC =AN AM ,MF NE =BM BN,∴ND =AM AN ·MC =m p m +·MC ,NE =BM BN·MF =p n n +·MF .∴S △END =21ND ·NE ·sin ∠END=21·m pm +·p n n +·MC ·MF ·sin ∠FMC=)+()+(p n m p m n ·S △FMC .∴FMC END S S ∆∆=)+()+(p n m p m n .即:△END 与△FMC 的面积之比为)+()+(p n m p m n .17.由α∥β作BE ∥=AC ,连结CE ,则ABEC 是平行四边形.∠DBE 是AC 与BD 所成的角.∠DCE 是AB 、CD 所成的角,故∠DCE =60°.由AB =CD =10,知CE =10,于是△CDE 为等边三角形, ∴DE =10.又∵BE =AC =6,BD =8,∴∠DBE =90°.∴AC 与BD 所成的角为90°.。

平行线的判定与性质(含答案)-

平行线的判定与性质(含答案)-

22.平行线的判定与性质知识纵横在同一平面内,不相交的两条直线叫做平行线(parallel lines).角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、•数量关系角等角的知识。

当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用。

与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1.由角定角 已知角的关系−−−→判定两直线平行−−−→性质确定其他角的关系.2.由线定线 已知两直线平行−−−→性质角的关系−−−→判定确定其他两直线平行.例题求解【例1】如图,AB ∥CD,AC ⊥BC,图中与∠CAB 互余的角有_______个.(2003年安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断。

解:3个 提示:分别为∠BCD,∠ABC,∠EBF. 【例2】如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( • ).A.4对B.8对C.12对D.16对 (第11届“希望杯”邀请赛试题) 思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解入手。

解:选D 提示:原图形可分解出如下8个基本图形.BFDG E C AB FHD GECA【例3】如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,求证:AB∥EF思路点拨解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB或CD平行的直线。

解:过C点作CG∥AB,过点D作DH∥AB,可证得∠HDE=10°=∠DEF,故HD∥EF,•又HD∥AB,所以AB∥EF.【例4】如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线.•求证:∠EDF=∠BDF.思路点拨综合运用角平分线、垂直(vertical)的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.解:提示:由DF∥CE得,∠BDF=∠BCE,∠FDE=∠DEC,由AC∥DE得,∠DEC=∠ECA【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?B F DE CAB FDECAB (a)DE CA B (b)DEC A(c)B D EC A B (d)F DG E C A F 2E nE 2F n-1F 1B(e)DE 1CA思路点拨:已知AB ∥CD,连结AB 、CD 的折线内折或外折;或改变E 点位置、•或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间。

直线、平面平行的判定及其性质_测试题(有详解)

直线、平面平行的判定及其性质_测试题(有详解)

金太阳教育网直线、平面平行的判定及其性质 测试题(有详解)A一、选择题1.下列条件中,能判断两个平面平行的是( )A .一个平面内的一条直线平行于另一个平面;B .一个平面内的两条直线平行于另一个平面C .一个平面内有无数条直线平行于另一个平面D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是A .0B .1C .2D .33. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一的直线与m 平行D .α内的直线与m 都相交5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .16.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( )A .()12MN AC BC ≥+B .()12MN AC BC ≤+ C .()12MN AC BC =+ D .()12MN AC BC <+ 二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是 ①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 .三、解答题金太阳教育网1A 10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( )A .a α⊄,则//a αB .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂4.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定5.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行A .①③B .①②C .②③D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:金太阳教育网 .⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.(将正确的序号都填上)8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1.三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN ,求证:直线MN ∥平面PBC .C1.平面内两正方形ABCD 与ABEF ,点M ,N 分别在对角线AC ,FB 上,且AM:MC=FN:NB ,沿AB 折起,使得∠DAF =900(1)证明:折叠后MN//平面CBE ;(2)若AM:MC =2:3,在线段AB 上是否存在一点G ,使平面MGN //平面CBE ?若存在,试确定点G 的位置.2.设平面α∥平面β,AB 、CD 是两条异面直线,M ,N 分别是AB ,CD 的中点,且A ,C ∈α,B ,D ∈β,求证:MN ∥平面α.E PD C B A金太阳教育网 参考答案A一、选择题1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的2.C【提示】棱AC ,BD 与平面EFG 平行,共2条.3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ= 则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线.5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上.6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边.二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD .8. ①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP.9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE.三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D金太阳教育网 11.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点,所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题1.D【提示】A 错,若a ∥b ,则不能断定α∥β;B 错,若A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,若a ∥b ,则不能断定α∥β;D 正确.2.C【提示】若直线a ,b 满足a ∥b ,b α,则a ∥α 或a α3.D【提示】根据面面平行的性质定理可推证之.4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l .5.A【提示】6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在.二、填空题7.①④⑤⑥金太阳教育网 8.68或368 【提示】如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SC SC 34-,∴SC =68.(1)(2)如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368. 9.M ∈HF【提示】易证平面NHF ∥平面BD D 1 B 1,M 为两平面的公共点,应在交线HF 上.三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O = ,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面.11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MB AM =MB MB AB -=MBMB DC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB平面PBC ,∴直线MN ∥平面PBC . 证法二:过N 作NQ ∥AD 交P A 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN∥平面PBC .C1.(1)证明:设直线AN 与BE 交与点H ,连接CH ,ANF ∆ ∽HNB ∆,∴NHAN NB FN =. 又NB FN MC AM =,则NH AN =MCAM ,∴MN//CH. 又CBE CBE MN 平面,平面⊂⊄CH ,∴MN//平面CBE.O F A B C D PE金太阳教育网 (2)解:存在,过M 作MG ⊥AB,垂足为G ,则MG//BC, ∴MG//平面CBE,又MN//平面CBE ,M MN MG =⋂,平面MGN//平面CBE.即G 在AB 线上,且AG:GB=AM:MC=2:32.证明:连接BC ,AD ,取BC 的中点E ,连接ME 、NE ,则ME 是△BAC 的中位线,故ME ∥AC. ME ⊄α,∴ME ∥α.同理可证,NE ∥BD.又α∥β,设CB 与DC 确定的平面BCD 与平面α交于直线CF ,则CF ∥BD ,∴NE ∥CF. 而NE ⊄平面α,CF ⊂α,∴NE ∥α.又ME ∩NE=E ,∴平面MNE ∥α,而MN ⊂平面MNE ,∴MN ∥平面α.一、选择题1.下列条件中,能判断两个平面平行的是( )A .一个平面内的一条直线平行于另一个平面;B .一个平面内的两条直线平行于另一个平面C .一个平面内有无数条直线平行于另一个平面D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是A .0B .1C .2D .33. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一的直线与m 平行D .α内的直线与m 都相交5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .16.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( )A .()12MN AC BC ≥+B .()12MN AC BC ≤+金太阳教育网1A C .()12MN AC BC =+ D .()12MN AC BC <+ 二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________. 8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 .三、解答题10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( )A .a α⊄,则//a αB .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂金太阳教育网 4.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定5.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行A .①③B .①②C .②③D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.(将正确的序号都填上)8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1.三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN ,求证:直线MN ∥平面PBC .E PD C BA金太阳教育网 C1.平面内两正方形ABCD 与ABEF ,点M ,N 分别在对角线AC ,FB 上,且AM:MC=FN:NB ,沿AB 折起,使得∠DAF =900(1)证明:折叠后MN//平面CBE ;(2)若AM:MC =2:3,在线段AB 上是否存在一点G ,使平面MGN //平面CBE ?若存在,试确定点G 的位置.2.设平面α∥平面β,AB 、CD 是两条异面直线,M ,N 分别是AB ,CD 的中点,且A ,C ∈α,B ,D ∈β,求证:MN ∥平面α.金太阳教育网参考答案A一、选择题 1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的 2.C【提示】棱AC ,BD 与平面EFG 平行,共2条. 3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ= 则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确. 4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线. 5.B 【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上. 6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边. 二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 8. ①③ 【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP. 9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE. 三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D金太阳教育网11.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1 (2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点 E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点, 所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1 又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH 因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题 1.D【提示】A 错,若a ∥b ,则不能断定α∥β;B 错,若A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,若a ∥b ,则不能断定α∥β;D 正确. 2.C【提示】若直线a ,b 满足a ∥b ,b α,则a ∥α 或a α 3.D【提示】根据面面平行的性质定理可推证之. 4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l . 5.A 【提示】 6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 二、填空题 7.①④⑤⑥金太阳教育网8.68或368 【提示】如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68.(1)(2)如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC-,即918=SCSC -34. ∴SC =368.9.M ∈HF【提示】易证平面NHF ∥平面BD D 1 B 1,M 为两平面的公共点,应在交线HF 上. 三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O = ,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线, ∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面.11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MB AM =MB MB AB -=MBMBDC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB平面PBC ,∴直线MN ∥平面PBC .证法二:过N 作NQ ∥AD 交P A 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN∥平面PBC .C1.(1)证明:设直线AN 与BE 交与点H ,连接CH ,ANF ∆ ∽HNB ∆,∴NHANNB FN =. 又NB FN MC AM =,则NH AN =MCAM,∴MN//CH. 又CBE CBE MN 平面,平面⊂⊄CH ,∴MN//平面CBE.OF ABCDP E金太阳教育网(2)解:存在,过M 作MG ⊥AB,垂足为G ,则MG//BC, ∴MG//平面CBE, 又MN//平面CBE ,M MN MG =⋂,平面MGN//平面CBE. 即G 在AB 线上,且AG:GB=AM:MC=2:32.证明:连接BC ,AD ,取BC 的中点E ,连接ME 、NE ,则ME 是△BAC 的中位线,故ME ∥AC. ME ⊄α,∴ME ∥α. 同理可证,NE ∥BD. 又α∥β,设CB 与DC 确定的平面BCD 与平面α交于直线CF ,则CF ∥BD ,∴NE ∥CF. 而NE ⊄平面α,CF ⊂α,∴NE ∥α. 又ME ∩NE=E ,∴平面MNE ∥α,而MN ⊂平面MNE ,∴MN ∥平面α.。

高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)

高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)

§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。

《直线、平面平行的判定及其性质》测试题

《直线、平面平行的判定及其性质》测试题

直线、平面平行的判定及其性质一、选择题(共60分)1、若两个平面互相平行,则分别在这两个平行平面内的直线( )A.平行B.异面C.相交D.平行或异面2、下列结论中,正确的有( )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥平面β,点P∈α,a∥β,且P∈a,则aα个个个个3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC 和平面DEF的位置关系是( )A.平行B.相交C.在内D.不能确定4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )∥αα与α相交 D.以上都有可能6、下列命题中正确的命题的个数为( )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.7、下列命题正确的个数是( )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥α个个个个8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m ⊥α,m ⊥β,则α∥β; ②若α⊥γ,β⊥γ,则α∥β; ③若mα,nβ,m ∥n,则α∥β;④若m 、n 是异面直线,m α,m ∥β,nβ,n ∥α,则α∥β.其中真命题是( )A.①和②B.①和③C.③和④D.①和④9、长方体ABCD-A 1B 1C 1D 1中,E 为AA 1中点,F 为BB 1中点,与EF 平行的长方体的面有( ) 个 个 个 个10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,M ,使得l ∥α,l ∥β,M ∥α,M ∥β.其中可以判断两个平面α与β平行的条件有( ) 个 个 个 个11、设m ,n 为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是 ( ) A.若m ⊂α,n ⊂α,且m ∥β,n ∥β,则α∥β B.若m ∥α,m ∥n ,则n ∥α C.若m ∥α,n ∥α,则m ∥nD.若m,n 是两条异面直线,且βσββσσ////,//,//,//,则n m n m12、已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( ) A.若α⊥γ,α⊥β,则γ∥β B.若m ∥n ,m ⊂α,n ⊂β,则α∥β C.若α⊥β,m ⊥β,则m ∥α D.若m ∥n ,m ⊥α,n ⊥β,则α∥β 二、填空题 (共20分)13.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP=3a,过P 、M 、N 的平面与棱CD 交于Q ,则PQ=_________. 14.若直线a 和b 都与平面α平行,则a 和b 的位置关系是__________.15.过长方体ABCD —A 1B 1C 1D 1的任意两条棱的中点作直线,其中能够与平面ACC 1A 1平行的直线有 _________条.16.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且PA =6,AC =9,PD =8,则BD 的长为 .三、解答题 (17(10分)、18、19、20、21、22(12分))17. (10分)如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC .18.(12分)如图所示,已知P 、Q 是单位正方体ABCD —A 1B 1C 1D 1的面A 1B 1BA 和面ABCD 的中心.求证:PQ ∥平面BCC 1B 1.19. (12分)如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD ∶∶,求证:EF //平面PBC .CDABM P20.(12分)如下图,F,H分别是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,求证:平面BDF∥平面B1D1H.21.(12分)如图,在直四棱柱ABCD—A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2CD,E,E1,F分别是棱AD,AA1,AB的中点.求证:直线EE1∥平面FCC1.22.(12分)如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;4,求异面直线PA与MN所成的角的大小.(2)若MN=BC=4,PA=3直线、平面平行的判定及其性质(答案)一、选择题1、若两个平面互相平行,则分别在这两个平行平面内的直线( D )A.平行B.异面C.相交D.平行或异面2、下列结论中,正确的有( A )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aα个个个个解析:若aα,则a∥α或a与α相交,由此知①不正确若a∥平面α,bα,则a与b异面或a∥b,∴②不正确若平面α∥β,aα,bβ,则a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设aα,过直线a作一面γ,使γ与平面α相交,则γ与平面β必相交.设γ∩α=b,γ∩β=c,则点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,则a∥b,这与a∩b=P矛盾,∴aα.故④正确.3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC 和平面DEF的位置关系是( A )A.平行B.相交C.在内D.不能确定参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.可以证明AC平面DEF.若AC平面DEF,则AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.主要考察知识点:空间直线和平面[来源:学+科+网Z+X+X+K]4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( D )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在参考答案与解析:解析:如当A与a确定的平面与b平行时,过A作与a,b都平行的平面不存在. 答案:D主要考察知识点:空间直线和平面[来源:学+科+网Z+X+X+K]5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )∥αα与α相交 D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b 与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.答案:D主要考察知识点:空间直线和平面6、下列命题中正确的命题的个数为( A )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(若改为l与α内任何直线都平行,则必有l∥α),∴①是假命题.对于②,∵直线a在平面α外,包括两种情况a∥α和a与α相交,∴a与α不一定平行,∴②为假命题.对于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不一定平行于平面α.∴③也是假命题.对于④,∵a∥b,bα.那么aα,或a∥α.∴a可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A主要考察知识点:空间直线和平面7、下列命题正确的个数是( A )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥α个个个个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A主要考察知识点:空间直线和平面8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是( D )A.①和②B.①和③C.③和④D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情况也成立,③中α与β相交时,也能满足前提条件答案:D主要考察知识点:空间直线和平面9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有( C )个个个个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C主要考察知识点:空间直线和平面10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有( B )个个个个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,但是α与β相交,不平行,故排除①,若α与β相交,如图所示,可在α内找到A、B、C三个点到平面β的距离相等,所以排除③.容易证明②④都是正确的.答案:B主要考察知识点:空间直线和平面11.D12.D二、填空题13、在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP=,过P 、M 、N 的平面与棱CD 交于Q ,则PQ=_________.参考答案与解析:解析:由线面平行的性质定理知MN ∥PQ(∵MN ∥平面AC ,PQ=平面PMN ∩平面AC ,∴MN ∥PQ).易知DP=DQ=.故.答案:主要考察知识点:空间直线和平面14、若直线a 和b 都与平面α平行,则a 和b 的位置关系是__________. 参考答案与解析:相交或平行或异面 主要考察知识点:空间直线和平面 15、6 16、52424或三、解答题17.答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //. PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .18.答案:19.答案:证明:连结AF 并延长交BC 于M . 连结PM ,AD BC ∵//,BF MFFD FA=∴, 又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM ,CDABM PO又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .20.如下图,F ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱CC 1,AA 1的中点, 求证:平面BDF ∥平面B 1D 1H . 证明: 取DD 1,中点E 连AE 、EF . ∵E 、F 为DD 1、CC 1中点,∴EF ∥CD .,EF =CD ∴EF ∥AB ,EF =AB∴四边形EFBA 为平行四边形. ∴AE ∥BF .又∵E 、H 分别为D 1D 、A 1A 中点,∴D 1E ∥HA ,D 1E =HA ∴四边形HADD 1为平行四边形. ∴HD 1∥AE ∴HD 1∥BF由正方体的性质易知B 1D 1∥BD ,且已证BF ∥D 1H . ∵B 1D 1⊄平面BDF ,BD ⊂平面BDF , ∴B 1D 1∥平面BDF .连接HB ,D 1F , ∵HD 1⊄平面BDF ,BF ⊂平面BDF , ∴HD 1∥平面BDF .又∵B 1D 1∩HD 1=D 1, ∴平面BDF ∥平面B 1D 1H .21,答案:[证明] 因为F 为AB 的中点,CD =2,AB =4,AB ∥CD ,所以CD ∥AF ,CD =AF因此四边形AFCD 为平行四边形, 所以AD ∥FC .又CC 1∥DD 1,FC ∩CC 1=C ,FC ⊂平面FCC 1,CC 1⊂平面FCC 1, AD ∩DD 1=D ,AD ⊂平面ADD 1A 1, DD 1⊂平面ADD 1A 1,所以平面ADD 1A 1∥平面FCC 1. 又EE 1⊂平面ADD 1A 1,EE 1⊄平面FCC 1,所以EE 1∥平面FCC 1.22.答案:(1)取PD 的中点H ,连接AH ,NH ,∵N 是PC 的中点,∴NH =12DC .由M 是AB 的中点,且DC ∥AB ,∴NH ∥AM ,NH =AM 即四边形AMNH 为平行四边形. ∴MN ∥AH,由MN ⊄平面PAD ,AH ⊂平面PAD , ∴MN ∥平面PAD .(2)连接AC 并取其中点O ,连接OM 、ON , ∴OM ∥12BC ,ON ∥12PA .,OM =12BC ,ON =12PA .∴∠ONM 就是异面直线PA 与MN 所成的角, 由MN =BC =4,PA =43,得OM =2,ON =2 3.∴MO 2+ON 2=MN 2,∴∠ONM =30°,即异面直线PA 与MN 成30°的角.。

直线与平面平行的判定与性质试题及答案

直线与平面平行的判定与性质试题及答案

直线与平面平行的判定与性质一、选择题1.已知直线a ∥平面α,直线b α,则a 与b 的关系为( )A .相交B .平行C .异面D .平行或异面2.平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面a =c ,若a ∥b ,则c 与a ,b 的位置关系是( )A .c 与a ,b 都异面B .c 与a ,b 都相交C .c 至少与a ,b 中的一条相交D .c 与a ,b 都平行3.给出下列四个命题:①如果a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面;②如果直线a 和平面α满足a ∥α,那么a 与平面α内的直线不是平行就是异面, ③如果直线a ∥α,b ∥α,则a ∥b④如果平面α∩平面β=a ,若b ∥α,b ∥β,则a ∥b其中为真命题有( )A .1个B .2个C .3个D .4个4.A 、B 是不在直线l 上的两点,则过点A 、B 且与直线l 平行的平面的个数是 ( )A .0个B .1个C .无数个D .以上三种情况均有可能二、填空题5.在△ABC 中,AB =5,AC =7,∠A =60°,G 是重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN ___________6.P 是边长为8的正方形ABCD 所在平面外的一点,且P A =PB =PC =PD =8,M 、N分别在P A 、BD 上,且53==ND BN MA PM ,则MN =_________.7.三个平面两两相交,有三条交线,则这三条交线的位置关系为__________.三、解答题8.如图,两个全等正方形ABCD 与ABEF 所在平面相交于AB ,ME ∈AC ,NE ∈FB ,且AM =FN ,求证:MN ∥平面BCE .9.求证:如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线互相平行.10.已知E ,F ,G ,M 分别是四面体的棱AD ,CD ,BD ,BC 的中点,求证:AM ∥平面EFG .11.在正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,求证;EF ∥平面BB 1D 1D .12.空间四边形ABCD 的对棱AD ,BC 成60°的角,且AD =BC =a ,平行于AD 与BC 的截面分别交AB ,AC ,CD ,BD 于E 、F 、G 、H .(1)求证:四边形EFGH 为平行四边形;(2)E 在AB 的何处时截面EFGH 的面积最大?最大面积是多少?参考答案一、选择题1.D 2.D 3.B 4.D二、填空题 5.3392;6.19;7.两两平行或相交于一点.三、解答题8.证明:过M 在平面AC 内作直线AB 的平行线交于BC 于G ,过N 在平面AE 内作直线AB 的平行线交BE 于H ,连GH ,只要证明GH ∥MN 即可,事实上,∵MG ∥AB ,NH ∥AB ,∴MG ∥NH . 又∵AB MG =AC MC ,FE NH =BF BN,且ABCD 和ABEF 是两个全等的正方形,AM =FN ,∴AC =BF ,MC =BN ,从而有AB MG =FE NH,∴MG =NH ,∴四边形MGHN 为平行四边形.∴MN ∥GH .又∵GH ⊂平面BCE ,MN ⊄平面BCE ,∴MN ∥平面BCE .9.证明:∵a ∥b ,b ⊂β,∴a ∥β.又∵a ⊂α,α∩β=l ,∴a ∥l .又∵a ∥b ,b ∥l ,∴a ∥b ∥l .10.证明:连MD 交GF 于N ,连EN .∵GF 为△BCD 的中位线,∴N 为MD 的中点.∵E 为AD 的中点,∴EN 为△AMD 的中位线,∴EN ∥AM .∵AM ⊄平面EFG ,EN ⊂平面EFG ,∴AM ∥平面EFG .11.证明:取D 1B 1的中点O ,连OF ,OB .∵OF ∥=21B 1C 1,BE ∥=21B 1C 1, ∵OF ∥=BE ,则OFEB 为平行四边形. ∴EF ∥BO .∵EF ⊄平面BB 1D 1D ,BO ⊂平面BB 1D 1D ,∴EF ∥平面BB 1D 1D .12.证明:(1)∵BC ∥平面EFGH ,BC ⊂平面ABC ,平面ABC ∩平面EFGH =EF , ∴BC ∥EF ,同理BC ∥HC ,∴EF ∥HG .同理可证EH ∥FG ,∴四边形EFGH 为平行四边形.解:(2)∵AD 与BC 成角为60°,∴∠HEF =60°(或120°),设AB AE=x , ∵BC EF =AB AE=x ,BC =a ,∴EF =ax ,由AD EH =BA BE =11x-,得EH =(1-x )a .∴S 四边形EFGH =EF ·EH ·sin60°=ax ·a (1-x )·23=223a ·x (1-x )≤223a ·221)-+(x x =283a .当且仅当x =1-x ,即x =21时等号成立,即E 为AB 的中点时,截面EFGH 的面积最大为283a .。

(完整版)直线与平面平行的判定和性质经典练习及详细答案

(完整版)直线与平面平行的判定和性质经典练习及详细答案

直线、平面平行的判定及其性质1. 下列命题中,正确命题的是 ④ 。

①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点。

2. 下列条件中,不能判断两个平面平行的是 (填序号)。

①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面 答案 ①②③3. 对于平面α和共面的直线m 、n,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ⊂α,n ∥α,则m ∥n④若m 、n 与α所成的角相等,则m ∥n 答案 ①②④ 4. 已知直线a ,b,平面α,则以下三个命题: ①若a ∥b,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b 。

其中真命题的个数是 . 答案 05. 直线a //平面M ,直线b ⊂/M ,那么a //b 是b //M 的 条件。

A.充分而不必要 B.必要而不充分 C 。

充要 D 。

不充分也不必要6. 能保证直线a 与平面α平行的条件是 A 。

b a b a //,,αα⊂⊄ B 。

b a b //,α⊂ C.c a b a c b //////,,,αα⊂D 。

b D b C a B a A b ∈∈∈∈⊂,,,,α且BD AC =7. 如果直线a 平行于平面α,则A.平面α内有且只有一直线与a 平行B.平面α内无数条直线与a 平行C.平面α内不存在与a 平行的直线D.平面α内的任意直线与直线a 都平行8. 如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系A 。

2.2直线、平面平行地判定与性质

2.2直线、平面平行地判定与性质

§2.2直线、平面平行的判定与性质高考会这样考1.考查空间平行关系及性质;2.大题中证明或探索空间的平行关系.备考要这样做1.熟练掌握线面平行、面面平行的判定定理和性质,会把空间问题转化为平面问题,解答过程的叙述步骤要完整,避免因条件书写不全而失分;2.2.学会应用“化归思想”进行“线线问题、线面问题、面面问题”的互相转化,牢记解决问题的根源在“定理”.1.直线与平面平行的判定与性质[状元的深入理解]1.证明线面平行是高考中常见的问题,常用的方法就是证明这条线与平面内的某条直线平行.但一定要说明一条直线在平面外,一条直线在平面内.2.在判定和证明直线与平面的位置关系时,除熟练运用判定定理和性质定理外,切不可丢弃定义,因为定义既可作判定定理使用,亦可作性质定理使用.3.辅助线(面)是解(证)线面平行的关键.为了能利用线面平行的判定定理及性质定理,往往需要作辅助线(面).1.已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α.上面命题中正确的是________(填序号).2.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的____________条件.3.已知平面α∥平面β,直线a⊂α,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.4.若直线l不平行于平面α,且l⊄α,则 ( ) A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交5.下列命题正确的是( ) A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行方法与技巧1. 平行问题的转化关系2. 直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质. 3. 平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a ⊥α,a ⊥β⇒α∥β.【题型分类剖析】题型一 直线与平面平行的判定与性质例1 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ .求证:PQ ∥平面BCE .思维启迪:证明直线与平面平行可以利用直线与平面平行的判定定理,也可利用面面平行的性质.证明 方法一 如图所示. 作PM ∥AB 交BE 于M , 作QN ∥AB 交BC 于N , 连接MN .∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD . 又AP =DQ ,∴PE =QB , 又PM ∥AB ∥QN ,∴PM AB =PE AE =QB BD =QNDC,∴PM AB =QN DC,∴PM 綊QN ,即四边形PMNQ 为平行四边形, ∴PQ ∥MN .又MN ⊂平面BCE ,PQ ⊄平面BCE , ∴PQ ∥平面BCE .方法二 如图,连接AQ ,并延长交BC 延长线于K ,连接EK , ∵AE =BD ,AP =DQ , ∴PE =BQ ,∴AP PE =DQBQ ,又AD ∥BK ,∴DQ BQ =AQ QK, ∴AP PE =AQ QK,∴PQ ∥EK .又PQ ⊄平面BCE ,EK ⊂平面BCE , ∴PQ ∥平面BCE .探究提高 判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).如图,在四棱锥P —ABCD 中,底面ABCD 是菱形,∠BAD=60°,AB =2,PA =1,PA ⊥平面ABCD ,E 是PC 的中点,F 是AB 的中点.求证:BE ∥平面PDF . 证明 取PD 中点为M ,连接ME ,MF ,∵E 是PC 的中点, ∴ME 是△PCD 的中位线, ∴ME 綊12CD .∵F 是AB 的中点且四边形ABCD 是菱形,AB 綊CD , ∴ME 綊FB ,∴四边形MEBF 是平行四边形,∴BE ∥MF . ∵BE ⊄平面PDF ,MF ⊂平面PDF ,∴BE ∥平面PDF . 题型二 平面与平面平行的判定与性质例2 如图,在三棱柱ABC —A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EFA 1∥平面BCHG .思维启迪:要证四点共面,只需证GH ∥BC ;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行. 证明 (1)∵GH 是△A 1B 1C 1的中位线,∴GH ∥B 1C 1. 又∵B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面.(2)∵E、F分别为AB、AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.探究提高证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.证明:若一条直线与两个相交平面都平行,则这条直线平行于两个平面的交线.解已知:直线a∥平面α,直线a∥平面β,α∩β=b.求证:a∥b.证明:如图所示,过直线a作平面γ,δ分别交平面α,β于直线m,n(m,n不同于交线b),由直线与平面平行的性质定理,得a∥m,a∥n,由平行线的传递性,得m∥n,由于n⊄α,m⊂α,故n∥平面α.又n⊂β,α∩β=b,故n∥b.又a∥n,故a∥b.题型三平行关系的综合应用例3如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?思维启迪:利用线面平行的性质可以得到线线平行,可以先确定截面形状,再建立目标函数求最值.解∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG、EH.∴AB∥FG,AB∥EH,∴FG∥EH,同理可证EF∥GH,∴截面EFGH是平行四边形.设AB=a,CD=b,∠FGH=α (α即为异面直线AB和CD所成的角或其补角).又设FG =x ,GH =y ,则由平面几何知识可得x a =CG BC ,y b =BG BC ,两式相加得x a +yb=1,即y =ba(a -x ),∴S ▱EFGH =FG ·GH ·sin α =x ·b a ·(a -x )·sin α=b sin αax (a -x ). ∵x >0,a -x >0且x +(a -x )=a 为定值, ∴当且仅当x =a -x 时,b sin αa x (a -x )=ab sin α4,此时x =a 2,y =b2. 即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时截面面积最大. 探究提高 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO?解 当Q 为CC 1的中点时,平面D 1BQ ∥平面PAO .证明如下: ∵Q 为CC 1的中点,P 为DD 1的中点, ∴QB ∥PA .∵P 、O 分别为DD 1、DB 的中点,∴D 1B ∥PO . 又∵D 1B ⊄平面PAO ,PO ⊂平面PAO ,QB ⊄平面PAO ,PA ⊂平面PAO ,∴D 1B ∥平面PAO ,QB ∥平面PAO , 又D 1B ∩QB =B ,D 1B 、QB ⊂平面D 1BQ , ∴平面D 1BQ ∥平面PAO .【答题示范与提高】立体几何中的探索性问题典例:(12分)如图所示,在正方体ABCD—A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.规范解答解(1)如图(a)所示,取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.[2分]又在正方体ABCD—A1B1C1D1中,AD⊥平面ABB1A1,所以EM ⊥平面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 为BE 和平面ABB 1A 1所成的角.[4分]图(a)设正方体的棱长为2,则EM =AD =2,BE =22+22+12=3.于是,在Rt △BEM 中,sin ∠EBM =EM BE =23,[5分]即直线BE 和平面ABB 1A 1所成的角的正弦值为23.[6分](2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE .事实上,如图(b)所示,分别取C 1D 1和CD 的中点F ,G ,连接B 1F ,EG ,BG ,CD 1,FG .因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形,因此D 1C ∥A 1B .又E ,G 分别为D 1D ,CD 的中点,图(b)所以EG ∥D 1C ,从而EG ∥A 1B .这说明A 1,B ,G ,E 四点共面.所以BG ⊂平面A 1BE .[8分]因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点, 所以FG ∥C 1C ∥B 1B ,且FG =C 1C =B 1B , 因此四边形B 1BGF 是平行四边形, 所以B 1F ∥BG ,[10分]而B 1F ⊄平面A 1BE ,BG ⊂平面A 1BE , 故B 1F ∥平面A 1BE . 答题模板对于探索类问题,书写步骤的格式有两种:一种:第一步:探求出点的位置. 第二步:证明符合要求. 第三步:给出明确答案.第四步:反思回顾.查看关键点,易错点和答题规范.另一种:从结论出发,“要使什么成立”,“只需使什么成立”,寻求使结论成立的充分条件,类似于分析法.温馨提醒 (1)本题属立体几何中的综合题,重点考查推理能力和计算能力.(2)第(1)问常见错误是无法作出平面ABB 1A 1的垂线,以致无法确定线面角.(3)第(2)问为探索性问题,找不到解决问题的切入口,入手较难.(4)书写格式混乱,不条理,思路不清晰.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 若直线m ⊂平面α,则条件甲:“直线l ∥α”是条件乙:“l ∥m ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 已知直线a ,b ,c 及平面α,β,下列条件中,能使a ∥b 成立的是( ) A .a ∥α,b ⊂αB .a ∥α,b ∥αC .a ∥c ,b ∥cD .a ∥α,α∩β=b3. 在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( )A .平行B .平行和异面C .平行和相交D .异面和相交4. 设m 、n 表示不同直线,α、β表示不同平面,则下列结论中正确的是( )A .若m ∥α,m ∥n ,则n ∥αB .若m ⊂α,n ⊂β,m ∥β,n ∥α,则α∥βC .若α∥β,m ∥α,m ∥n ,则n ∥βD .若α∥β,m ∥α,n ∥m ,n ⊄β,则n ∥β 二、填空题(每小题5分,共15分)5. 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. 如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边 形EFGH 及其内部运动,则M 满足条件______________时,有MN ∥平面B 1BDD 1.三、解答题(共22分)8. (10分)如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面,交平面BDM 于GH.求证:PA∥GH.9. (12分)如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=42,求四棱锥F—ABCD的体积..B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( ) A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l22.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是 ( )A.①② B.①④C.②③D.③④3.给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为( ) 二、填空题(每小题5分,共15分)4.已知平面α∥平面β,P是α、β外一点,过点P的直线m与α、β分别交于A、C,过点P的直线n与α、β分别交于B、D且PA=6,AC=9,PD=8,则BD的长为________. 5. 一个正方体的展开图如图所示,B、C、D为原正方体的顶点,A为原正方体一条棱的中点.在原来的正方体中,CD与AB所成角的余弦值为________.6.已知正方体ABCD-A1B1C1D1,下列结论中,正确的结论是________(只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.三、解答题7. (13分)如图,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A—PDE的体积;(2)AC边上是否存在一点M,使得PA∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与平面平行的判定与性质
一、选择题
1.已知直线a ∥平面α,直线b α,则a 与b 的关系为( )
A .相交
B .平行
C .异面
D .平行或异面
2.平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面a =c ,若a ∥b ,则c 与a ,b 的位置关系是( )
A .c 与a ,b 都异面
B .c 与a ,b 都相交
C .c 至少与a ,b 中的一条相交
D .c 与a ,b 都平行
3.给出下列四个命题:
①如果a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面;
②如果直线a 和平面α满足a ∥α,那么a 与平面α内的直线不是平行就是异面,
③如果直线a ∥α,b ∥α,则a ∥b
④如果平面α∩平面β=a ,若b ∥α,b ∥β,则a ∥b
其中为真命题有( )
A .1个
B .2个
C .3个
D .4个
4.A 、B 是不在直线l 上的两点,则过点A 、B 且与直线l 平行的平面的个数是 ( )
A .0个
B .1个
C .无数个
D .以上三种情况均有可能
二、填空题
5.在△ABC 中,AB =5,AC =7,∠A =60°,G 是重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN ___________
6.P 是边长为8的正方形ABCD 所在平面外的一点,且P A =PB =PC =PD =8,M 、N 分别在P A 、BD 上,且
53==ND BN MA PM ,则MN =_________. 7.三个平面两两相交,有三条交线,则这三条交线的位置关系为__________.
三、解答题
8.如图,两个全等正方形ABCD 与ABEF 所在平面相交于AB ,ME ∈AC ,NE ∈FB ,且AM =FN ,求证:MN ∥平面BCE .
9.求证:如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线互相平行.
10.已知E ,F ,G ,M 分别是四面体的棱AD ,CD ,BD ,BC 的中点,求证:AM ∥平面EFG .
11.在正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,求证;EF ∥平面BB 1D 1D .
12.空间四边形ABCD 的对棱AD ,BC 成60°的角,且AD =BC =a ,平行于AD 与BC 的截面分别交AB ,AC ,CD ,BD 于E 、F 、G 、H .
(1)求证:四边形EFGH 为平行四边形;
(2)E 在AB 的何处时截面EFGH 的面积最大?最大面积是多少?
参考答案
一、选择题
1.D 2.D 3.B 4.D
二、填空题 5.339
2;6.19;7.两两平行或相交于一点.
三、解答题
8.证明:过M 在平面AC 内作直线AB 的平行线交于BC 于G ,过N 在平面AE 内作直线AB 的平行线交BE 于H ,连GH ,只要证明GH ∥MN 即可,事实上,
∵MG ∥AB ,NH ∥AB ,
∴MG ∥NH . 又∵AB MG =AC MC ,FE NH =BF BN ,且ABCD 和ABEF 是两个全等的正方形,AM =FN ,∴AC =BF ,MC =
BN ,从而有AB MG =FE NH

∴MG =NH ,∴四边形MGHN 为平行四边形.
∴MN ∥GH .又∵GH ⊂平面BCE ,MN ⊄平面BCE ,∴MN ∥平面BCE .
9.证明:∵a ∥b ,b ⊂β,∴a ∥β.
又∵a ⊂α,α∩β=l ,∴a ∥l .
又∵a ∥b ,b ∥l ,∴a ∥b ∥l .
10.证明:连MD 交GF 于N ,连EN .∵GF 为△BCD 的中位线,
∴N 为MD 的中点.∵E 为AD 的中点,
∴EN 为△AMD 的中位线,∴EN ∥AM .
∵AM ⊄平面EFG ,EN ⊂平面EFG ,∴AM ∥平面EFG .
11.证明:取D 1B 1的中点O ,连OF ,OB .
∵OF ∥=21B 1C 1,BE ∥=21
B 1
C 1
, ∵OF ∥=
BE ,则OFEB 为平行四边形. ∴EF ∥BO .∵EF ⊄平面BB 1D 1D ,BO ⊂平面BB 1D 1D ,
∴EF ∥平面BB 1D 1D .
12.证明:(1)∵BC ∥平面EFGH ,BC ⊂平面ABC ,平面ABC ∩平面EFGH =EF ,
∴BC ∥EF ,同理BC ∥HC ,∴EF ∥HG .
同理可证EH ∥FG ,∴四边形EFGH 为平行四边形.
解:(2)∵AD 与BC 成角为60°,
∴∠HEF =60°(或120°),设AB AE
=x , ∵BC EF =AB AE
=x ,BC =a ,
∴EF =ax ,由AD EH =BA BE =11x
-,得EH =(1-x )a .
∴S 四边形EFGH =EF ·EH ·sin60°
=ax ·a (1-x )·23=223a ·x (1-x )≤223a ·221)-+(x x =283a .
当且仅当x =1-x ,即x =21时等号成立,即E 为AB 的中点时,截面EFGH 的面积最大为283a .。

相关文档
最新文档