电磁感应综合题

合集下载

(完整版)电磁感应综合练习题(基本题型,含答案)

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。

如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。

电磁感应综合典型例题

电磁感应综合典型例题

2mgh 。

电阻为 R 的矩形线框 abcd ,边长 ab=L ,ad=h ,质量为 m ,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为 h ,如图所示,若线框恰好以恒定速 度通过磁场,线框中产生的焦耳热是 _______.(不考虑空气阻力)线框通过磁场的过程中,动能不变。

根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热.所以,线框通过磁场过程中产生的焦耳 热为Q=WG=mg —2h=2mgh .本题也可以直接从焦耳热公式 Q=I2 Rt 进行推算:设线框以恒定速度 v 通过磁场,运动时间从线框的 cd 边进入磁场到 ab 边离开磁场的过程中,因切割磁感线产生的感应电流的大小为cd 边进入磁场时的电流从 d 到c,cd 边离开磁场后的电流方向从 a 到 b.整个下落过程中磁场对感应电流产生的安培力方向始终向上,大小恒为据匀速下落的条件,有因线框通过磁场的时间,也就是线框中产生电流的时间,所以据焦耳定律,联立 ( l )、( 2 )、( 3 )三式,即得线框中产生的焦耳热为Q=2mgh .两种解法相比较,由于用能的转化和守恒的观点,只需从全过程考虑,不需涉及电流的产生等过程,计算更为简捷.一个质量 m=0.016kg 、长 L=0.5m ,宽 d=0.1m 、电阻R=0.1Ω的矩形线圈,从离匀强磁场上边缘高 h1 =5m 处由静止自由下落.进入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运动过程中线框保持平动),测得线圈下边通过磁场的时间△ t=0.15s,取 g=10m/s2,求:( 1 )匀强磁场的磁感强度 B;( 2 ) 磁场区域的高度 h2 ;( 3 )通过磁场过程中线框中产生的热量,并说明其转化过程.线圈进入磁场后受到向上的磁场力,恰作匀速运动时必满足条件:磁场力 =重力.由此可算出 B 并由运动学公式可算出 h2。

电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。

2.掌握应用动量守恒定律处理电磁感应问题的方法。

3.熟练应用楞次定律与法拉第电磁感应定律解决问题。

4.会分析电磁感应中的图像问题。

5.会分析电磁感应中的动力学与能量问题。

电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。

一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。

【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

电磁感应的相关测试题

电磁感应的相关测试题

电磁感应的相关测试题一、选择题1. 电磁感应是指A. 电导体通过磁场产生电流B. 电流通过磁场产生磁力C. 磁场改变产生电场D. 电场改变产生磁场2. 法拉第电磁感应定律是指A. 磁感应强度与电流成正比B. 磁感应强度与导线长度成正比C. 电动势与导线长度成正比D. 电动势与磁感应强度成正比3. 以下哪个现象不是电磁感应的实例A. 发电机工作B. 变压器工作C. 闪电产生D. 影像传输4. 电磁感应现象最早由谁发现A. 法拉第B. 麦克斯韦C. 奥斯特D. 伏打5. 一根导线被放置在匀强磁场中,导线中产生电流的条件是A. 导线与磁力线平行B. 导线方向与磁力线垂直C. 导线中无电流D. 导线中有电流二、判断题判断以下说法正误,正确的在括号里写T,错误的写F。

1. 在电磁感应中,只有磁感应强度改变才能产生感应电动势。

()2. 电磁感应定律适用于任何形状的线圈和导体。

()3. 电磁感应现象同时满足洛伦兹力和法拉第电磁感应定律。

()4. 在电磁感应情况下,闭合回路内电荷不会发生移动。

()5. 存在磁通量的变化才能产生感应电流。

()三、简答题1. 简述法拉第电磁感应定律的内容。

2. 解释电磁感应产生的原理,并给出一个实际的应用例子。

3. 什么是自感现象,以及它与电磁感应的关系是什么?四、计算题一卷电阻为1欧姆的线圈,匀强磁场的磁感应强度为0.5特斯拉,线圈内的匀强磁场方向与线圈平面垂直。

线圈以40圈/秒的速度从匀强磁场中被拉出,求线圈两端感应出的电动势。

五、应用题一辆电动自行车行驶过程中,电动机中线圈的面积为0.02平方米,处于垂直于地面的匀强磁场中,磁感应强度为0.5特斯拉。

电动自行车的速度是10m/s,线圈的方向与磁感应强度的方向垂直。

求电动机两端感应出的电动势。

六、综合题一根导线被放置在匀强磁场中,经过一段时间后,导线中形成了电流。

如果我们希望增大电流大小,你会使用什么办法?解释原因。

以上就是电磁感应的相关测试题,希望对你的学习有所帮助。

(完整版)电磁感应综合练习题(基本题型,含答案)

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。

如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。

高中物理模块复习典型题分类-电磁感应(含详细答案)

高中物理模块复习典型题分类-电磁感应(含详细答案)

高中物理模块复习典型题分类-电磁感应(含详细答案)一、单选题1.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)()A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W2.如图所示,水平桌面上放一闭合铝环,在铝环轴线上方有一条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断中正确的是()A.铝环有收缩趋势,对桌面压力减小B.铝环有收缩趋势,对桌面压力增大C.铝环有扩张趋势,对桌面压力减小D.铝环有扩张趋势,对桌面压力增大3.如图所示,A为水平放置的胶木圆盘,在其侧面带有负电荷,在A的正上方用丝线悬挂一个金属圆环B,使B的环面在水平面上且与圆盘面平行,其轴线与胶木盘A的轴线重合。

现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大4.如图所示,AB、CD是一个圆的两条直径且AB、CD夹角为60°,该圆处于匀强电场中,电场强度方向平行该圆所在平面.其中φB=φC=φ,U BA=φ,保持该电场的场强大小和方向不变,让电场以B点为轴在其所在平面内逆时针转过60°.则下列判断中不正确的是()A.转动前U BD=φB.转动后U BD=C.转动后D.转动后5.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。

电磁感应定律测试题

电磁感应定律测试题

电磁感应定律测试题一、选择题1. 在通过闭合线圈的磁场穿过时,以下哪个现象是不会发生的?A. 闭合线圈中将会有电流产生B. 线圈两端电势差会增大C. 线圈中的磁通量会发生变化D. 闭合线圈中会产生反向电流2. 当磁场的磁感应强度为0.1 T,某线圈中的磁通量变化率为5 T/s,该线圈中的感应电动势大小为多少?A. 0.5 VB. 0.2 VC. 2 VD. 0.05 V3. 将电阻为100 Ω的线圈置于磁感应强度为0.2 T的匀强磁场中,线圈中的感应电流大小为多少?A. 0.2 AB. 5 AC. 2 AD. 20 A二、填空题1. 当通过磁感应强度为0.5 T的闭合线圈的磁通量发生变化时,线圈中的感应电动势大小为0.02 V,磁通量变化率为___________ T/s。

2. 在电磁感应现象中,磁场相对于闭合线圈的运动速度越快,感应电动势的大小越___________。

3. 某线圈中的感应电动势大小为2 V,线圈的电阻为20 Ω,该线圈中的感应电流大小为___________ A。

三、分析题1. 简述电磁感应定律的基本内容,并说明闭合线圈中产生自感应电动势的原因。

2. 当通过闭合线圈的磁通量不变时,线圈中是否会产生感应电动势?为什么?3. 如果将一个导体杆匀速地切入垂直于其运动方向的均匀磁场中,导体杆两端是否会产生电势差?为什么?四、综合题一根长度为1m的导体杆以速度2 m/s切入和垂直于杆运动方向的磁感应强度为0.5 T的匀强磁场中。

已知导体杆的阻抗为5 Ω,求:1. 导体杆两端的电势差大小;2. 导体杆两端的感应电流大小;3. 如将导体杆长度变为2m,磁感应强度仍为0.5 T,导体杆切入磁场的速度变为4 m/s,求此时导体杆两端的电势差大小。

----------以上是一份关于电磁感应定律的测试题,针对不同形式的问题进行了选择题、填空题和分析题。

通过这份测试题,可以帮助你巩固电磁感应定律的基本知识,并进行能力的自我评估。

专题突破练 专题四 第18练 电磁感应中的动量问题 电磁感应规律的综合应用

专题突破练 专题四 第18练 电磁感应中的动量问题 电磁感应规律的综合应用

第18练电磁感应中的动量问题电磁感应规律的综合应用1.(多选)(2019·全国卷Ⅲ·19)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上,选运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02项A、C正确,B、D错误.2.(多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻.质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q,合上开关S后()A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.3.(多选)(2022·湖南卷·10)如图,间距L =1 m 的U 形金属导轨,一端接有0.1 Ω的定值电阻R ,固定在高h =0.8 m 的绝缘水平桌面上.质量均为0.1 kg 的匀质导体棒a 和b 静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为0.1 Ω,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒a 距离导轨最右端1.74 m .整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为0.1 T .用F =0.5 N 沿导轨水平向右的恒力拉导体棒a ,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,撤去F ,导体棒a 离开导轨后落到水平地面上.重力加速度取10 m/s 2,不计空气阻力,不计其他电阻,下列说法正确的是( )A .导体棒a 离开导轨至落地过程中,水平位移为0.6 mB .导体棒a 离开导轨至落地前,其感应电动势不变C .导体棒a 在导轨上运动的过程中,导体棒b 有向右运动的趋势D .导体棒a 在导轨上运动的过程中,通过电阻R 的电荷量为0.58 C答案 BD解析 导体棒a 在导轨上向右运动,产生的感应电流方向向里,流过导体棒b 的电流方向向里,由左手定则可知安培力向左,则导体棒b 有向左运动的趋势,故C 错误;导体棒b 与电阻R 并联,有I =BL v 0.15 Ω,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,有B ·I 2·L =μmg ,联立解得导体棒a 的速度为v =3 m/s ,导体棒a 离开导轨至落地前做平抛运动,有x=v t ,h =12gt 2,联立解得导体棒a 离开导轨至落地过程中水平位移为x =1.2 m ,故A 错误;导体棒a 离开导轨至落地前做平抛运动,水平速度切割磁感线,则产生的感应电动势不变,故B 正确;导体棒a 在导轨上运动的过程中,通过电路的电荷量为q =I ·Δt =BL ·Δx 0.15 Ω=0.1×1×1.740.15 C =1.16 C ,导体棒b 与电阻R 并联,则通过电阻R 的电荷量为q R =q 2=0.58 C ,故D 正确.4.(2022·辽宁卷·15)如图所示,两平行光滑长直金属导轨水平放置,间距为L .abcd 区域有匀强磁场,磁感应强度大小为B ,方向竖直向上.初始时刻,磁场外的细金属杆M 以初速度v 0向右运动,磁场内的细金属杆N 处于静止状态.两金属杆与导轨接触良好且运动过程中始终与导轨垂直.两杆的质量均为m ,在导轨间的电阻均为R ,感应电流产生的磁场及导轨的电阻忽略不计.(1)求M 刚进入磁场时受到的安培力F 的大小和方向;(2)若两杆在磁场内未相撞且N 出磁场时的速度为v 03,求:①N 在磁场内运动过程中通过回路的电荷量q ;②初始时刻N 到ab 的最小距离x ;(3)初始时刻,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),求M 出磁场后不与N 相撞条件下k 的取值范围.答案 (1)B 2L 2v 02R 方向水平向左 (2)①m v 03BL ②2m v 0R 3B 2L2 (3)2≤k <3 解析 (1)细金属杆M 以初速度v 0向右运动,刚进入磁场时,产生的电动势为E =BL v 0电流为I =E 2R则所受的安培力大小为F =BIL =B 2L 2v 02R由左手定则可知安培力的方向水平向左;(2)①金属杆N 在磁场内运动的过程中,取水平向右为正方向,由动量定理有B I L ·Δt =m ·v 03-0 且q =I ·Δt联立解得通过回路的电荷量q =m v 03BL②设杆M 在磁场中运动的位移大小为x 1,杆N 在磁场中运动的位移大小为x 2,则有Δx =x 1-x 2,有 I =E2R ,E =BL ·Δx Δt 整理可得q =BL ·Δx 2R联立可得Δx =2m v 0R 3B 2L 2 若两杆在磁场内刚好相撞,N 到ab 的最小距离为x =Δx =2m v 0R 3B 2L 2 (3)两杆出磁场后在平行光滑长直金属导轨上运动,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),则N 到cd 边的速度大小恒为v 03,取水平向右为正方向,根据动量守恒定律可知m v 0=m v 1+m ·v 03解得N 出磁场时,M 的速度大小为v 1=23v 0 由题意可知,此时M 到cd 边的距离为s =(k -1)x若要保证M 出磁场后不与N 相撞,则有两种临界情况:①M 减速到v 03时出磁场,速度刚好等于N 的速度,一定不与N 相撞,对M 根据动量定理有 -B I 1L ·Δt 1=m ·v 03-m ·23v 0 q 1=I 1·Δt 1=BL ·(k -1)x 2R联立解得k =2②M 运动到cd 边时,恰好减速到零,则对M 由动量定理有-B I 2L ·Δt 2=0-m ·23v 0 同理解得k =3综上所述,M 出磁场后不与N 相撞条件下k 的取值范围为2≤k <3.1.(多选)足够长的平行光滑金属导轨ab 、cd 水平放置于竖直向上的匀强磁场中,ac 之间连接阻值为R 的电阻,导轨间距为L ,导体棒ef 垂直导轨放置且与导轨接触良好,导体棒质量为m 、电阻为r .t =0时刻对导体棒施加一个水平向右的力F (图中未画出),导体棒在F 的作用下开始做初速度为零的匀加速直线运动,当导体棒运动x 距离时撤去外力F ,此时导体棒的速度大小为v 0.若不计导轨电阻,则下列说法正确的是( )A .外力F 的大小与时间的关系式为F =ma +B 2L 2at R +rB .t =0时刻外力F 的大小为m v 022xC .从撤去外力F 到导体棒停止运动,电阻R 上产生的焦耳热为12m v 02 D .从撤去外力F 到导体棒停止运动,导体棒运动的位移大小为m v 0(R +r )B 2L 2答案 ABD 解析 由题知导体棒在F 的作用下开始做初速度为零的匀加速直线运动,根据牛顿第二定律有F -B 2L 2v R +r =ma ,v =at ,整理有F =B 2L 2at R +r+ma ,A 正确;由v 02=2ax ,解得在t =0时刻F =ma =m v 022x ,B 正确;从撤去外力F 到导体棒停止运动,根据动能定理有Q =12m v 02,则R 上产生的焦耳热为Q R =R R +r Q =Rm v 022(R +r ),C 错误;从撤去外力F 到导体棒停止运动,根据动量定理有-B I Lt =0-m v 0,I ·t =BL vR +r ·t =BLx R +r ,联立解得x =m v 0(R +r )B 2L 2,D 正确. 2.(多选)(2022·湖南衡阳市二模)如图,光滑平行导轨上端接一电阻R ,导轨弯曲部分与水平部分平滑连接,导轨间距为l ,导轨水平部分左端有一竖直向上的匀强磁场,磁感应强度大小为B ,现将金属棒PQ 从导轨弯曲部分的上端由静止释放,金属棒刚进入磁场时的速度大小为v 1,离开磁场时的速度大小为v 2,改变金属棒释放的高度,使其释放高度变为原来的12,金属棒仍然可以通过磁场区域,导轨和金属棒的电阻不计,则( ) A .金属棒通过磁场区域时金属棒中的电流方向为由P 到QB .金属棒第二次离开磁场时的速度大小为v 2-(1-22)v 1C .金属棒在两次通过磁场区域的过程中电阻R 上产生的热量相等D .金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等答案 BD解析 金属棒通过磁场区域时,由右手定则可知,金属棒中的电流方向为由Q 到P ,故A 错误;金属棒第二次释放的高度变为原来的12,由动能定理可知,进入匀强磁场时的速度大小为v 3=2v 12,金属棒通过磁场区域的过程中,根据动量定理有-B I lt =Δp ,又因为I =E R,E =ΔΦt ,所以-Bl ΔΦR=Δp ,则可知金属棒两次通过匀强磁场区域的过程中动量变化量相同,速度变化量也相同,则v 2-v 1=v 4-v 3,故金属棒第二次离开磁场时的速度大小为v 4=v 2-(1-22)v 1,故B 正确;金属棒第二次通过磁场区域的过程中所用时间长且减少的动能少,则电阻R 上产生的热量少,故C 错误;由电荷量q =ΔΦR,可知金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等,故D 正确.3.(多选)如图所示,足够长的水平光滑金属导轨所在空间中,分布着垂直于导轨平面方向竖直向上的匀强磁场,磁感应强度大小为B .两导体棒a 、b 均垂直于导轨静止放置.已知导体棒a 质量为2m ,导体棒b 质量为m ,长度均为l ,接入电路的电阻均为r ,其余部分电阻不计.现使导体棒a 获得瞬时平行于导轨水平向右的初速度v 0.除磁场作用外,两棒沿导轨方向无其他外力作用,在两导体棒运动过程中,下列说法正确的是( )A .任何一段时间内,导体棒b 的动能增加量跟导体棒a 的动能减少量在数值上总是相等的B .任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反C .全过程中,通过导体棒b 的电荷量为2m v 03BlD .全过程中,导体棒b 共产生的焦耳热为m v 026答案 BCD解析 根据题意可知,两棒组成闭合回路,电流相同,故所受安培力的合力为零,动量守恒,故任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反,根据能量守恒定律可知,a 的动能减少量在数值上等于b 的动能增加量与产热之和,故A 错误,B 正确;两棒最终共速,根据动量守恒定律,有2m v 0=(2m +m )v ,对b 棒m v -0=B I l ·t =Blq ,联立解得q =2m v 03Bl,故C 正确;根据能量守恒定律,可知两棒共产生的焦耳热为Q =12×2m v 02-12()2m +m v 2=m v 023,而由于两棒的电阻大小相等,因此b 棒产生的焦耳热为Q b =12Q =m v 026,故D 正确. 4.(2022·山东烟台市、德州市一模)有一边长为L 、质量为m 、总电阻为R 的正方形导线框自磁场上方某处自由下落,如图所示.匀强磁场区域Ⅰ、Ⅱ的磁感应强度大小均为B ,二者宽度分别为L 、H ,且H >L .导线框恰好匀速进入区域Ⅰ,一段时间后又恰好匀速离开区域Ⅱ,重力加速度为g ,下列说法正确的是( )A .导线框离开区域Ⅱ的速度大于mgRB 2L2 B .导线框刚进入区域Ⅱ时的加速度大小为g ,方向竖直向上C .导线框进入区域Ⅱ的过程产生的焦耳热为mgHD .导线框自开始进入区域Ⅰ至刚完全离开区域Ⅱ的时间为6B 2L 3mgR答案 C解析 由题意知,导线框恰好匀速离开区域Ⅱ,则有mg =BIL =B 2L 2v R ,解得v =mgR B 2L2,A 错误;导线框进入区域Ⅰ到刚要进入区域Ⅱ过程一直做匀速运动,有v =mgR B 2L2,导线框下边刚进入磁场区域Ⅱ时,上、下边都切割磁感线,由法拉第电磁感应定律可知E 2=BL v +BL v =2BL v ,又I 2=E 2R ,联立解得I 2=2BL v R,导线框所受安培力F 2=2BI 2L ,由牛顿第二定律有F 2-mg =ma ,解得a =3g ,方向竖直向上,B 错误;开始进入区域Ⅱ时与开始离开区域Ⅱ时,速度大小相等,则导线框产生的焦耳热等于重力势能的减少量,有Q =mgH ,C 正确;导线框自开始进入区域Ⅰ至开始进入区域Ⅱ的过程中,t 1=L v =B 2L 3mgR,导线框自开始进入区域Ⅱ至开始离开区域Ⅱ过程中,由动量定理得mgt 2-F 安2Δt =m v -m v ,即mgt 2-BL 2BL 2R =0,解得t 2=2B 2L 3mgR ,导线框自开始离开区域Ⅱ至刚完全离开区域Ⅱ过程中,t 3=L v =B 2L 3mgR,故t =t 1+t 2+t 3=4B 2L 3mgR,D 错误. 5.(多选)(2022·河北省模拟)如图所示,两根相距L 且电阻不计的足够长光滑金属导轨,导轨左端为弧形,右端水平,且水平部分处于方向竖直向下、磁感应强度大小为B 的匀强磁场中.铜棒a 、b 电阻均为R 、质量均为m ,均与导轨垂直且与导轨接触良好,铜棒b 静止在导轨水平部分,铜棒a 在弧形导轨上从距离水平部分高度为h =0.5L 处由静止释放,重力加速度为g ,关于此后的过程,下列说法正确的是( )A .回路中的最大电流为gLBL RB .铜棒b 的最大加速度为gLB 2L 22mRC .铜棒b 获得的最大速度为gLD .回路中产生的总焦耳热为mgL 4答案 BD解析 铜棒a 沿弧形导轨下滑,刚进入磁场区域时,由机械能守恒定律有mgh =12m v 2,且h =0.5 L ,解得v =gL ,回路中的最大感应电动势E =BL v ,回路中的最大电流I =E 2R,联立解得I =BL gL 2R,故A 错误;铜棒b 受到的最大安培力F 安=BIL ,由牛顿第二定律有F 安=ma ,解得铜棒b 的最大加速度a =B 2L 2gL 2mR,故B 正确;铜棒a 、b 在匀强磁场中做切割磁感线运动的过程中,整体所受合外力为零,动量守恒,最终铜棒a 、b 速度相等,由动量守恒定律得m v =2m v ′,解得铜棒b 获得的最大速度为v ′=gL 2,故C 错误;由能量守恒定律得,回路中产生的总焦耳热为Q =12m v 2-12×2m v ′2=mgL 4,故D 正确. 6.(多选)(2022·广东韶关市二模)某高中科研兴趣小组利用课余时间进行研究电磁阻尼效果的研究性学习,实验示意图如图甲所示,虚线MN 右侧有垂直于水平面向下的匀强磁场,边长为1 m 、质量为0.1 kg 、电阻为0.2 Ω的正方形金属线框在光滑绝缘水平面上以大小v 0=2 m/s 的速度向右滑动并进入磁场,磁场边界MN 与线框的右边框平行.从线框刚进入磁场开始计时,线框的速度v 随滑行的距离x 变化的规律如图乙所示,下列说法正确的是( )A .图乙中x 0=1 mB .线框进入磁场的过程中,线框的加速度先不变再突然减为零C .线框进入磁场的过程中,线框中产生的焦耳热为0.1 JD .线框进入磁场的过程中,通过线框某横截面的电荷量为22C 答案 AD 解析 穿过线框的磁通量变化导致线框中产生感应电流,使线框受到安培力的作用,从而使速度改变;当线框完全进入磁场时,磁通量不变,速度不变,则由题图乙可知x 0=1 m ,A正确;线框进入磁场的过程中,安培力F =BIL ,其中I =E R =BL v R,由题图乙可知,速度减小,则安培力减小,由牛顿第二定律可知,线框的加速度减小,因此线框做变减速运动,B 错误;根据能量守恒定律可知,减少的动能全部转化为焦耳热,则有Q =ΔE k =12m v 02-12m v 2,代入数据可得Q =0.15 J ,C 错误; 线框进入磁场的过程中,取水平向右为正方向,根据动量定理可得-B 2L 2v R t =m v -m v 0,整理得v =v 0-B 2L 2x mR,结合题图乙可知,当x =1 m 时,v =1 m/s ,代入解得B =150 T ,通过线框某横截面的电荷量为q =I t =Bx 02R ,解得q =22 C ,D 正确. 7.(多选)(2022·宁夏吴忠中学三模)如图所示,两段均足够长、不等宽的光滑平行导轨固定在水平面上,较窄导轨的间距L 1=1 m ,较宽导轨的间距L 2=1.5 m .整个装置处于磁感应强度大小为B =0.5 T 、方向竖直向上的匀强磁场中,导体棒MN 、PQ 的质量分别为m 1=0.4 kg 、m 2=1.2 kg ,长度分别为1 m 、1.5 m ,电阻分别为R 1=0.3 Ω、R 2=0.9 Ω,两导体棒静止在水平导轨上.t =0时刻,导体棒MN 获得v 0=7 m/s 、水平向右的初速度.导轨电阻忽略不计,导体棒MN 、PQ 始终与导轨垂直且接触良好,导体棒MN 始终在较窄导轨上运动,取g =10 m/s 2则( )A .t =0时刻,回路中的电流为3512A B .导体棒MN 最终做匀速直线运动,速度大小为3 m/sC .通过导体棒MN 的电荷量最大值为3.4 CD .导体棒PQ 中产生的焦耳热最大值为4.2 J答案 ABD解析 t =0时刻,回路中的电流为I 0=E R =BL 1v 0R 1+R 2=3512A ,故A 正确;导体棒MN 与PQ 切割磁感线产生的电动势相互削弱,当两导体棒产生的电动势相等时,感应电流为零,所受安培力为零,故两导体棒最终做匀速直线运动,此时有BL 1v MN =BL 2v PQ ,设从导体棒MN 开始运动至导体棒MN 、PQ 做匀速运动所用的时间为Δt ,取水平向右为正方向,对导体棒MN 分析,由动量定理得-BL 1I ·Δt =m 1v MN -m 1v 0,对导体棒PQ 分析,由动量定理得BL 2I ·Δt =m 2v PQ ,又因为q =I ·Δt ,联立解得v MN =3 m/s ,v PQ =2 m/s ,q =3.2 C ,故B 正确,C 错误;由能量守恒定律得12m 1v 02=12m 1v MN 2+12m 2v PQ 2+Q 总,Q PQ =R 2R 1+R 2Q 总,代入数据联立解得Q PQ =4.2 J ,故D 正确.8.(多选)如图所示,竖直放置的两根足够长的光滑金属导轨相距L ,导轨的两端分别与电源(串联一滑动变阻器R )、定值电阻R 0、电容器(电容为C ,原来不带电)和开关S 相连.整个空间充满了磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场.一质量为m 、电阻不计的金属棒ab 横跨在导轨上.已知电源电动势为E 、内阻为r ,不计导轨的电阻.当S 接1,滑动变阻器R 接入电路一定阻值时,金属棒ab 在磁场中恰好保持静止.当S 接2后,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度.重力加速度为g ,则下列说法正确的是( )A .当S 接1时,滑动变阻器接入电路的阻值R =EBLmgB .若将ab 棒由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CBL vC .当S 接2时,金属棒ab 从静止开始到刚好达到稳定速度所经历的时间t =B 2L 2h +m 2gR 02mgR 0B 2L 2D .若将ab 棒由静止释放的同时,将S 接到3,则金属棒ab 将做匀加速直线运动,加速度大小a =mgm +CB 2L 2答案 BD解析 当S 接1时,有I =E R +r ,由平衡条件得mg =BIL ,联立解得R =EBLmg -r ,故A 错误;当S 接2,速度稳定时有mg =B 2L 2v R 0,解得v =mgR 0B 2L 2,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度,根据动量定理可得mgt -B I Lt =m v ,即mgt -B 2L 2vR 0·t =m v ,其中vt =h ,联立解得t =B 4L 4h +m 2gR 02mgR 0B 2L 2,故C 错误;若将棒ab 由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CU =CBL v ,根据动量定理可得mg Δt -B I ′L Δt =m Δv ,即mg Δt -BL ·ΔQ =m Δv ,将ΔQ =CBL Δv 代入解得mg Δt -CB 2L 2Δv =m Δv ,所以a =Δv Δt =mgm +CB 2L 2,金属棒ab 将做匀加速直线运动,故B 、D 正确.9.如图所示,两电阻不计的光滑平行金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、长度为L 、电阻不计的金属杆,杆始终与导轨接触良好.整个装置处于磁感应强度大小为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现使杆从M 点以v 0的速度竖直向上运动,经历时间t ,到达最高点N ,重力加速度大小为g .求t 时间内:(1)流过电阻的电荷量q ; (2)电阻上产生的焦耳热Q . 答案 (1)m v 0-mgtBL(2)12m v 02-m 2gR (v 0-gt )B 2L 2解析 (1)杆竖直向上运动的过程中,取v 0方向为正方向,根据动量定理,有-mgt -F t =0-m v 0 F =BL I q =I t联立解得q =m v 0-mgt BL(2)设杆上升的高度为h ,取v 0方向为正方向,由动量定理得-mgt -B 2L 2vR t =0-m v 0又h =v t联立解得h =mR (v 0-gt )B 2L 2杆上升过程中由能量守恒定律可知,电阻上产生的焦耳热Q =12m v 02-mgh联立解得Q =12m v 02-m 2gR (v 0-gt )B 2L 2.10.(2022·天津市一模)如图,间距为L 的两平行金属导轨右端接有电阻R ,固定在离地高为H 的平面上,空间存在着方向竖直向下、磁感应强度大小为B 的匀强磁场.质量为m 的金属杆ab 垂直导轨放置,杆获得一个大小为v 0的水平初速度后向左运动并离开导轨,其落地点距导轨左端的水平距离为s .已知重力加速度为g ,忽略一切摩擦和阻力,杆和导轨电阻不计.求:(1)杆即将离开导轨时的加速度大小a ;(2)杆穿过匀强磁场的过程中,克服安培力做的功W ; (3)杆ab 在水平导轨上运动的位移大小x .答案 (1)B 2L 2s 2mRH 2gH (2)12m (v 02-gs 22H ) (3)mR B 2L 2(v 0-s 2H2gH ) 解析 (1)杆离开导轨后做平抛运动,则有H =12gt 2,s =v t ,联立解得杆离开导轨时的速度大小为v =sg 2H杆离开导轨时,产生的感应电动势为E =BL v 感应电流大小为I =ER杆受到的安培力大小为F =BIL 根据牛顿第二定律可得F =ma联立解得杆即将离开导轨时的加速度大小为a =B 2L 2s2mRH 2gH(2)根据动能定理,可得-W =12m v 2-12m v 02则杆穿过匀强磁场的过程中,克服安培力做的功为 W =12m (v 02-gs 22H)(3)根据动量定理,可得-B I Lt =m v -m v 0 q =I t =BLxR联立解得x =mR B 2L 2(v 0-s2H2gH ).11.两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处平滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 接入电路的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度大小为B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度-时间图像如图乙所示(以a 运动的方向为正方向),其中m a =2 kg ,m b =1 kg ,g 取10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 答案 (1)5 s (2)73 C (3)1156J解析 (1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b 0,对杆b 运用动量定理,有Bd I ·Δt =m b (v 0-v b 0) 由题图乙可知,v b 0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v a 2解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度大小为v ′,由动量守恒定律得m a v a -m b v b 0=(m a +m b )v ′ 代入数据解得v ′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v ′的运动时间为Δt ′,则由动量定理可得-Bd I ′·Δt ′=m a (v ′-v a ),而q =I ′·Δt ′ 代入数据解得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的总焦耳热为Q =m a gh +12m b v 02-12(m b +m a )v ′2=1616 J则b 杆中产生的焦耳热为Q ′=R b R a +R bQ =1156 J.错题统计(题号)对应考点错因分析动量定理在电磁感应中的应用动量守恒定律在电磁感应中的应用电磁感应中的综合问题一、动量定理、动量守恒定律在电磁感应中的应用导体棒在磁场中做变速运动,所受安培力是变力,可用动量定理求速度、位移、电荷量、时间等.对于双杆问题,若双杆所受外力为零,可用动量守恒定律分析.1.单杆运动问题已知量(其中B、L、m已知)待求量关系式(以棒减速为例)v1、v2q -B I LΔt=m v2-m v1,q=IΔtv1、v2、R总x -B2L2vΔtR总=m v2-m v1,x=vΔtF其他为恒力,v1、v2、q Δt-B I LΔt+F其他Δt=m v2-m v1,q=IΔtF其他为恒力,v1、v2、R总、x(或Δt)Δt(或x)-B2L2vΔtR总+F其他·Δt=m v2-m v1,x =vΔt2.双杆运动问题(1)等间距轨道上的双杆问题①双杆所受外力的合力为零时,若只需求末速度,可用动量守恒定律分析.②若需求电荷量、位移、时间等,则需要利用动量定理分析.(2)不等距导轨上的双杆问题由于合外力不为零,不等距导轨上的双杆问题需用动量定理分析.常见的双杆模型:题型一(等距、初速度、光滑、平行)题型二(不等距、初速度、光滑、平行)题型三(等距、恒力、光滑、平行)示意图导体棒长度L1=L2导体棒长度L1=2L2,两棒只在各自的轨道上运动导体棒长度L1=L2图像观点力学观点棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒以相等的速度匀速运动棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒的加速度均为零,速度之比为1∶2开始时,两棒做变加速运动;稳定时,两棒以相同的加速度做匀加速运动动量观点两棒组成的系统动量守恒两棒组成的系统动量不守恒对单棒可以用动量定理两棒组成的系统动量不守恒对单棒可以用动量定理能量观点系统动能的减少量等于产生的焦耳热系统动能的减少量等于产生的焦耳热拉力做的功一部分转化为双棒的动能,一部分转化为内能(焦耳热):W=Q+E k1+E k23.杆+电容器模型基本模型规律无外力,电容器充电(电阻阻值为R,导体棒电阻不计,电容器电容为C)无外力,电容器放电(电源电动势为E,内阻不计,导体棒电阻不计,电容器电容为C)电路特点导体棒相当于电源,电容器被充电电容器放电,相当于电源;导体棒受安培力而运动电流的特点安培力为阻力,棒减速,E减小,有I=BL v-U CR,电容器被充电,U C变大,当BL v=U C时,I=0,F安=0,棒做匀电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BL v。

电磁感应综合题

电磁感应综合题

电磁感应综合题1.如图,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l 的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab 与导线框的一条边垂直,ba 的延长线平分导线框。

在t =0时,使导线框从图示位置开始以恒定速度沿ab 方向移动,直到整个导线框离开磁场区域。

以i 表示导线框中感应电流的强度,取逆时针方向为正。

下列表示i —t 关系的图示中,可能正确的是 ( )2、两根相距为L 的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面,质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R ,整个装置处于磁感应强度大小为B ,方向水平向右的匀强磁场中,当ab 杆在平行于水平导轨的拉力F 作用下以速度v 沿导轨匀速运动时,cd 杆也正好以某一速度向下匀速运动,重力加速度为g ,以下说法正确的是( )A .ab 杆所受拉力F 的大小为μmg +B 2L 2v2RB .cd 杆所受摩擦力为零C .cd 杆向下匀速运动的速度为2mgRB 2L2 D .ab 杆所受摩擦力为2μmg3如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为V 时,受到安培力的大小为F 。

此时( ) A .电阻R 1消耗的热功率为Fv/3 B .电阻 R 1消耗的热功率为Fv/6C .整个装置因摩擦而消耗的热功率为μmgvcosθD .整个装置消耗的机械功率为(F +μmgcosθ)vB 的匀强磁场,磁场的宽度MJ 和JG 均为L ,一个质量为m 、电阻为R 、边长也为L 的正方形导线框,由静止开始沿斜面下滑,当ab 边刚越过GH 进入磁场区时,恰好以速度 v 1做匀速直线运动;当ab 边下滑到JP 与MN 的中间位置时,线框又恰好以速度v 2做匀速直线运动,从ab 进入GH 到MN 与JP 的中间位置的过程中,线框的机械能减少量为△ E,重力对线框做功的绝对值为W 1,安培力对线框做功的绝对值为W 2,下列说法中不正确的有( )A .v 2 :v 1= 1 :2B .v 2 :v 1 = 1 :4C .从ab 进入GH 到MN 与JP 的中间位置的过程中,W 2 等于 △ED .从ab 进入GH 到MN 与JP 的中间位置的过程中,线框动能变化量为W 1-W 25.两条平行的裸导体轨道M 、N 所在平面与水平面间的夹角为 ,相距L ,导轨下端与电阻R 相连,质量为m 的金属棒ab 放在 导轨上,导轨处在方向垂直斜面上的匀强磁场中,磁感应强度 为B ,如图所示。

电磁感应现象习题综合题附答案

电磁感应现象习题综合题附答案

电磁感应现象习题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=3.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。

电磁感应综合练习题

电磁感应综合练习题

电磁感应综合练习题1.磁悬浮列车是一种高速低耗的新型交通工具。

它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。

列车轨道沿Ox方向,轨道区域内存有垂直于金属框平面的磁场,磁感应强度B沿Ox方向按正弦规律分布,其空间周期为λ,最大值为B0,如图2所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v0沿Ox方向匀速平移。

设在短暂时间内,MN、PQ边所在位置的磁感应强度随时间的变化能够忽略,并忽略一切阻力。

列车在驱动系统作用下沿Ox方向加速行驶,某时刻速度为v(v<v0)。

(1)简要叙述列车运行中获得驱动力的原理;(2)为使列车获得最大驱动力,写出MN、PQ边应处于磁场中的什么位置及λ与d之间应满足的关系式:(3)计算在满足第(2)问的条件下列车速度为v时驱动力的大小。

xB磁场区域1磁场区域2磁场区域3磁场区域4磁场区域5 BBB Bθd1d2d1d2d1d1d2d1B棒棒2.如图所示,间距为L的两条充足长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d1,间距为d2.两根质量均为m、有效电阻均为R的导体棒a和b放在导轨上,并与导轨垂直.(设重力加速度为g)(1)若a进入第2个磁场区域时,b以与a同样的速度进入第1个磁场区域,求b穿过第1个磁场区域过程中增加的动能△E k;(2)若a进入第2个磁场区域时,b恰好离开第1个磁场区域;此后a离开第2个磁场区域时,b又恰好进入第2个磁场区域.且a.b在任意一个磁场区域或无磁场区域的运动时间均相.求b穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q;(3)对于第(2)问所述的运动情况,求a穿出第k个磁场区域时的速率v。

3.如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属球,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。

电磁感应综合-导轨模型计算题(精选26题 含答案详解)

电磁感应综合-导轨模型计算题(精选26题 含答案详解)

电磁感应综合-导轨模型计算题1.(9分)如图所示,两根间距L=1m 、电阻不计的平行光滑金属导轨ab 、cd 水平放置,一端与阻值R =2Ω的电阻相连。

质量m=1kg 的导体棒ef 在外力作用下沿导轨以v=5m/s 的速度向右匀速运动。

整个装置处于磁感应强度B=0.2T 的竖直向下的匀强磁场中。

求:(1)感应电动势大小; (2)回路中感应电流大小; (3)导体棒所受安培力大小。

【答案】(1)V 1=E (2)0.5A I = (3)0.1N F =安【解析】 试题分析:(1)导体棒向右运动,切割磁感线产生感应电动势BLv E = 代入数据解得:V 1=E(2)感应电流RE I =代入数据解得:A 5.0=I(3)导体棒所受安培力BIL F =安 代入数据解得:N 10.F =安考点:本题考查了电磁感应定律、欧姆定律、安培力。

2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8 W ,求该速度的大小.(3)在上问中,若R =2 Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)【答案】(1)4m/s 2(2)10m/s (3)0.4T 【解析】试题分析:(1)金属棒开始下滑的初速为零,Veba由牛顿第二定律得:mgsinθ-μmgcosθ=ma ①由①式解得:a=10×(0.6-0.25×0.8)m/s 2=4m/s 2②;(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F , 棒在沿导轨方向受力平衡:mgsinθ一μmgcos0一F=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率:Fv=P ④ 由③、④两式解得:s m s m F P v /10/)8.025.06.0(102.08=⨯-⨯⨯==⑤ (3)设电路中电流为I ,两导轨间金属棒的长为l ,磁场的磁感应强度为B , 感应电流:RBlvI =⑥ 电功率:P=I 2R ⑦ 由⑥、⑦两式解得:T T vl PR B 4.011028=⨯⨯==⑧ 磁场方向垂直导轨平面向上;考点:牛顿第二定律;电功率;法拉第电磁感应定律. 3.(13分)如图,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面内,相距为L 。

(完整版)电磁感应综合练习题(基本题型,含答案),推荐文档

(完整版)电磁感应综合练习题(基本题型,含答案),推荐文档

图 9-2
图 9-3
图 9-4
【答案】C 4.如图 9-3 所示,通电螺线管两侧各悬挂一个小铜环,铜环平面 与螺线管截面平行,当电键 S 接通一瞬间,两铜环的运动情况是 () A.同时向两侧推开
B.同时向螺线管靠拢
C.一个被推开,一个被吸引,但因电源正负极未知,无法具体判断
我去人也就图 9-有1 人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
导轨间距为 L0 M 、 P 两点间接有阻值为 R 的电阻。一根质量为 m 的均匀直金属杆 ab 放在两导轨上,并与导轨垂直。整套装置处于 磁感应强度为 B 的匀强磁场中,磁场方向垂直斜面向下。导轨和
(1)通过 R 的电流大小和方向
金属杆的电阻可忽略。让 ab 杆沿导轨由静止开始下滑,导轨和金
(2)电容器的电荷量。
I E BLv RR
ab
杆受到安培力 F BIL B 2 L2v R
根据牛顿运动定律,有 ma mg F mg sin B 2 L2v R
a gain B 2 L2v mR
(3)当 a=0 时,即 gain B 2 L2v 时 mR
,杆达到最大速度 vm
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
B.在某位置附近来回振动
D.要将金属环匀速拉出,拉力大小要改变
C.向右做初速度为零的加速运动,后又改做减速运动
【答案】BD
D.向右做变加速运动,后改做匀速运动
8.如图 9-7 所示,在一根软铁棒上绕有一个线圈,a、b别与平行导轨 M、N 相连,有匀强磁场与导轨面垂
直,一根导体棒横放在两导轨上,要使 a 点的电势均比 b 点的
3.磁电式电表在没有接入电路(或两接线柱是空闲)时,由于微

人教版高中物理选择性必修第二册课后习题 第2章 电磁感应 习题课三 电磁感应中的综合问题

人教版高中物理选择性必修第二册课后习题 第2章 电磁感应 习题课三 电磁感应中的综合问题

习题课三电磁感应中的综合问题课后·训练提升基础巩固一、选择题(第1~2题为单选题,第3~6题为多选题)1.如图所示,垂直于导体框平面向里的匀强磁场的磁感应强度为B,导体ef的长为l,ef的电阻为r,外电阻阻值为R,其余电阻不计。

ef与导体框接触良好,当ef在外力作用下向右以速度v匀速运动时,ef两端的电压为( )A.BlvB.BlvRR+r C.BlvrR+rD.BlvrR,导体棒切割磁感线产生的感应电动势为E=Blv,ef两端的电压相当于电源的路端电压,根据闭合电路欧姆定律得U ef=ER总·R=BlvR+rR,选项B正确。

2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当磁场的磁感应强度B随时间t 按图乙所示变化时,下列选项能正确表示线圈中感应电动势E变化的是( )内,磁感应强度均匀增大,根据楞次定律,线圈中感应电流为负方向,且保持不变;1~3s内,磁感应强度不变,线圈中感应电流为零;3~5s 内,磁感应强度均匀减小,线圈中感应电流为正方向,且保持不变;0~1s内和3~5s内磁场的变化率之比为2∶1,即感应电动势之比为2∶1,可得出感应电动势图像为B,选项B正确。

3.由螺线管、电阻和水平放置的平行板电容器组成的电路如图所示,其中,螺线管匝数为n,横截面积为S,电容器两极板间距为d。

螺线管处于竖直向上的匀强磁场中,一质量为m、电荷量为q的带正电颗粒悬停在电容器中,重力加速度大小为g,则( )A.磁感应强度均匀增大B.磁感应强度均匀减小C.磁感应强度变化率为nmgdqSD.磁感应强度变化率为mgdnqS,带正电颗粒悬停在电容器中,粒子受重力与静电力作用,故静电力竖直向上,电容器下极板带正电,即通电螺线管的下端为电源正极,根据电源内部的电流由负极流向正极,由安培定则可知磁感应强度均匀减小,选项A错误,B正确。

带正电颗粒悬停在电容器中,粒子受重力与静电力作用,有qE=mg,根据法拉第电磁感应定律有E电=nΔΦΔt =nΔBΔtS,且E=E电d,联立解得ΔBΔt =mgdnqS,选项C错误,D正确。

电磁感应现象习题综合题含答案解析

电磁感应现象习题综合题含答案解析

电磁感应现象习题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m2.如图所示,两平行长直金属导轨(不计电阻)水平放置,间距为L ,有两根长度均为L 、电阻均为R 、质量均为m 的导体棒AB 、CD 平放在金属导轨上。

其中棒CD 通过绝缘细绳、定滑轮与质量也为m 的重物相连,重物放在水平地面上,开始时细绳伸直但无弹力,棒CD 与导轨间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,忽略其他摩擦和其他阻力,导轨间有一方向竖直向下的匀强磁场1B ,磁场区域的边界满足曲线方程:sin(0y L x x L Lπ=≤≤,单位为)m 。

八年级物理练习题:电磁感应

八年级物理练习题:电磁感应

八年级物理练习题:电磁感应电磁感应练习题
题目一:
1. 一根导线被连接到一个电池的两个端口上,并放在一块磁铁附近。

当电流通过导线时,磁铁受到吸引。

请说明这是如何发生的?
题目二:
2. 一个长直导线垂直放置在一块保持不变的磁场中。

如果导线中的电流方向与磁场方向相同,导线将受到一个向上的力。

如果电流方向与磁场方向相反,导线将受到一个向下的力。

请解释这个现象。

题目三:
3. 当电磁感应发生时,电流是如何产生的?请解释法拉第电磁感应定律。

题目四:
4. 简述发电机的工作原理。

说明在发电机中如何利用电磁感应产生电流。

题目五:
5. 请解释电磁感应在变压器中的应用。

说明变压器如何将电能从一个线圈传输到另一个线圈。

题目六:
6. 电磁感应可用于许多设备和技术中。

请举例并解释其中一个实际应用。

题目七:
7. 描述电磁感应实验的步骤。

设计并实施一个简单的电磁感应实验。

题目八:
8. 某个发电站的输出电压为220V。

计算电磁感应原理下,需要多少匝才能将
输出电压增加到440V?
题目九:
9. 当一个磁场变化时,经过具有多个匝数的线圈时,电压的大小会受到影响。

请说明匝数如何影响电磁感应中的电压大小。

题目十:
10. 电磁感应也被应用于感应炉。

解释感应炉是如何利用电磁感应加热金属的。

2022年高考物理三轮冲刺练习专题七 电磁感应综合题

2022年高考物理三轮冲刺练习专题七 电磁感应综合题

2022年高考物理三轮冲刺练习专题七 电磁感应综合题物理考试注意事项:1、填写答题卡的内容用2B 铅笔填写2、提前 xx 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释(共4题;共8分)1.(2分)如图所示,U 型导体框固定在水平面内,一匀强磁场竖直向下穿过导体框,导体棒ab 垂直放在框上,以初速度v 0水平向右运动,运动距离为L 时停在框上。

已知棒的质量为m ,阻值为R ,导体框的电阻不计。

则下列说法正确的是( )A .棒中感应电流的方向由a 到bB .棒上产生的焦耳热一定为12mv 02C .棒克服安培力所做的功可能小于12mv 02 D .当棒速度为v02时,运动距离一定为L 22.(2分)如图所示,三条水平虚线L 1、L 2、L 3之间有宽度为L 的两个匀强磁场区域Ⅰ、Ⅰ,两区域内的磁感应强度大小相等方向相反,正方形金属线框abcd 的质量为m 、边长为L ,开始ab 边与边界L 1重合,对线框施加拉力F 使其匀加速通过磁场区,以顺时针方向电流为正,下列关于感应电流i 和拉力F 随时间变化的图像可能正确的是( )A .B .C .D .3.(2分)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度大小为B ,导轨间距最窄处为一狭缝,取狭缝所在处O 点为坐标原点,狭缝右侧两导轨与x 轴夹角均为 θ ,一电容为C 的电容器与导轨左端相连,导轨上的金属棒与x 轴垂直,在外力F 作用下从O 点开始以速度v 向右匀速运动,忽略所有电阻,下列说法正确的是( )A .通过金属棒的电流为 2BCv2tanθB .金属棒到达 x 0 时,电容器极板上的电荷量为 BCvx 0tanθC .金属棒运动过程中,电容器的上极板带负电D .金属棒运动过程中,外力F 做功的功率恒定4.(2分)如图所示,光滑平行金属导轨与水平面成一定角度,两导轨上端用一定值电阻相连,该装置处于一匀强磁场中,磁场方向垂直于导轨平面向上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如右图所示,一根电阻为R =12 Ω的电阻丝做成一个半径为r =1 m 的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B =0.2 T ,现有一根质量为m =0.1 kg 、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落
距离为r 2时,棒的速度大小为v 1=83 m/s ,下落到经过圆心时棒的速度大小为v 2=103
m/s ,试求:
(1)下落距离为r 2
时棒的加速度; (2)从开始下落到经过圆心的过程中线框中产生的热量.
2、如图所示,两根平行光滑导轨PQ 和MN 相距d =0.5m ,它们与水平方
向的倾角为α(sin α=0.6),导轨的上方跟电阻为R =4Ω相连,导轨上放
一个金属棒,金属棒的质量为m =0.2kg ,电阻r =2Ω。

整个装置放在方向竖直向上的匀强磁场中,磁感强度B =1.2T 。

金属棒在沿斜面方向向上的恒
力作用下收静止开始沿斜面向上运动,电阻R 消耗的最大电功率P =1W 。

(g =10m/s 2)求:(1)恒力的大小;(2)恒力作用功的最大功率。

3、如图所示,AB .CD 是两根足够长的固定平行金属导轨,两轨间距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的AC 端连接一个阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,电阻为R ,与导轨的动摩擦因数为μ ,从静止开始沿导轨下滑,求:
(1)ab 棒的最大速度 (2)ab 释放的最大功率
(3)若ab 棒下降高度h 时达到最大速度,在这个过程中,ab 棒产生的焦耳热为多大?
4、如右图所示,半径为a 的圆环电阻不计,放置在垂直于纸面向里,磁感应强度为B 的匀强磁场中,环内有一导体棒电阻为r ,可以绕环匀速转动.将电阻R ,开关S 连
接在环和棒的O 端,将电容器极板水平放置,并联在R 和开关S 两端.
(1)开关S 断开,极板间有一带正电q ,质量为m 的粒子恰好静止,
试判断OM 的转动方向和角速度的大小.
(2)当S 闭合时,该带电粒子以14
g 的加速度向下运动,则R 是r 的几倍? 5、如图所示,半径为R 的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应强度为B ,方向垂直于
纸面向内.一根长度略大于导轨直径的导体棒MN 以速率v 在圆导轨上从左端滑到右端,电路中的
N
定值电阻为r,其余电阻不计.导体棒与圆形导轨接触良好.求:
(1)、在滑动过程中通过电阻r的电流的平均值;
(2)、MN从左端到右端的整个过程中,通过r的电荷量;
(3)、当MN通过圆导轨中心时,通过r的电流是多大?
6、如图所示,两根平行且足够长的金属导轨置于磁感应强度为B的匀强磁场
中,磁场的方向垂直于导轨平面,两导轨间距为L,左端连一电阻R,右
端连一电容器C,其余电阻不计。

长为2L的导体棒ab与从图中实线位置
开始,以a为圆心沿顺时针方向的角速度ω匀速转动,转90°的过程中,
通过电阻R的电荷量为多少?
7.如图所示,水平放置的导体框架,宽L=0.50 m,接有电阻R=0.20 Ω,匀
强磁场垂直框架平面向里,磁感应强度B=0.40 T.一导体棒ab垂直框边跨
放在框架上,并能无摩擦地在框架上滑动,框架和导体ab的电阻均不计.
当ab以v=4.0 m/s的速度向右匀速滑动时,求:
(1)ab棒中产生的感应电动势大小;
(2)维持导体棒ab做匀速运动的外力F的大小;
(3)若将外力F突然减小到F′,简要论述导体ab以后的运动情况.
8、如图所示,在磁感应强度为B的匀强磁场中有一个面积为S的矩形线圈绕垂直
于磁感线的对称轴OO′以角速度ω匀速转动.
(1)穿过线框平面磁通量的变化率何时最大?最大值为多少?
(2)当线框由图示位置转过60°的过程中,平均感应电动势为多大?
(3)线框由图示位置转到60°时瞬时感应电动势为多大?
试总结本部分内容中所涉及的相关公式:____________________________________。

相关文档
最新文档