高中数北师大必修4练习:习题课——三角恒等变换公式的综合应用
2016-2017学年高中数学-第三章-三角恒等变形-三角恒等变换公式的综合应用课件-北师大版必修4
21
tan(+)-tan
53
=
= 2 1
1+tan(+)tan
1+5× 3
所以 tan
9
答案:
8
π
+
4
=
=
π
4
的值为
1
,
17
1
1+17
1+tan
= 1
1-tan
1- 17
9
8
= .
2
3
4
.
5
1
2
4.求 sin 10°sin 30°sin 50°sin 70°的值.
sin20°
1
3
2
π π
(1)当 x∈ ,
6 2
π π
(2)当 x∈ ,
6 2
b+|b|2+ .
f(x)=a·
时,求函数 f(x)的值域;
时,若 f(x)=8,求函数 f π
12
π
12
的值;
(3)将函数 y=f(x)的图像向右平移 个单位后,再将得到的图像
上各点的纵坐标向下平移 5 个单位,得到函数 y=g(x)的图像,求函数
g(x)的表达式并判断奇偶性.
思路点拨:(1)利用降幂公式、辅助角公式将原函数化为正弦型函
数再研究性质;
(2)要将已知与所求具体化,再利用角变换技巧与和差公式解决;
(3)利用图像变换理论先得到g(x),再利用奇偶性定义加以判断.
探究一
探究二
探究三
答题模板
规范解答:(1)f(x)=a·
b+|b| 2+
围是(
)
北师大版高中数学课件第四章 习题课 三角恒等变换的综合应用
和方法,掌握三角函数化简的技巧,特别对于已知条件的敏感关键
词一定要重视.这样才能更有效地提分.
-4-
习题课
激趣诱思
三角恒等变换的综合应用
课前篇自主预习
课堂篇探究学习
知识点拨
一、两角的和与差的正弦、余弦、正切公式
1.cos(α±β)=cos αcos β∓sin αsin β.
4
A.-5
4
B.5
)
3
1
C.-5
(2)已知 tan α=-2,tan(α+β)=7,则 tan β 的值为
3
D.5
.
-15-
习题课
探究一
课前篇自主预习
三角恒等变换的综合应用
探究二
探究三
探究四
课堂篇探究学习
课堂篇探究学习
当堂检测
解析(1)法 1:
2sin cos
sin 2α=2sin αcos α=si n 2 +co s 2
解原式=
1+cos10 °
cos10 °+ 3sin10 °
cos10 °
2co s 2 5°
2sin50 °+cos10 °×
=
1
2
3
2
2sin50 °+2 cos10 °+ sin10 °
=
2|cos5 °|
2sin50 °+2sin (30°+10°)
=
2cos5 °
2[sin (45°+5°)+sin (45°-5°)]
于 B,y=cos 2x + 2 =-sin 2x,是最小正周期为 π 的奇函数;对于
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试(答案解析)(1)
一、选择题1.已知函数44()cos sin f x x x =-在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t 则函数()()()g t M t N t =-的最小值为( ) A1-B .1C.2D.12-2.已知矩形ABCD 中,AB AD >.设点B 关于AC 的对称点为B ',AB '与CD 交于点P ,若3CP PD =,则tan BCB '∠=( )A.-B. C.2-D.4-3.已知tan 2α=,则sin cos 2sin cos αααα+=-( )A .1B .1-C .2D .2-4.化简22221sin sin cos cos cos 2cos 22αβαβαβ+-=( ) A .12B1C .14D.15.已知3(,)4παβπ∈,,3sin()5αβ+=-,12sin()413πβ-=,则cos()4πα+=( ) A .5665-B .3365-C .5665D .33656.已知cos 2π)4αα=+1tan tan αα+等于( ) A .92B .29C .9-2D .2-97.已知,22ππα⎛⎫∈- ⎪⎝⎭,1cos 63πα⎛⎫+= ⎪⎝⎭,则sin α=( )ABC.D8.已知cos 410πθ⎛⎫-=⎪⎝⎭,则sin 2θ=( ) A .2425-B .1225-C .1225D .24259.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( )A .7B .17C .-17D .-710.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=-->在区间25[,]36ππ-上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的范围是( )A .3(0,]5B .13[,]25C .13[,]24D .15[,)2211.若0||4πα<<,则下列说法①sin2α>sinα,②cos2α<cosα,③tan2α>tanα,正确的是( ) A .① B .②C .③D .①③12.若,则的值为( )A .B .C .D .二、填空题13.在区间,22ππ⎛⎫- ⎪⎝⎭范围内,函数tan y x =与函数sin y x =的图象交点有_______个.14.已知A 、B 、C 为△ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为______. 15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若3sin 4α=,则()cos αβ-=______. 16.已知π0π2αβ<<<<,3cos 5α=,()3sin 5αβ+=-,则cos β的值为______. 17.已知方程23310x ax a +++=,()2a >的两根为tan α,tan β,α,,22ππβ⎛⎫∈- ⎪⎝⎭,则αβ+=________.18.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是A ,B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为________.19.设)sin17cos172a =︒+︒,22cos 131b =︒-,2c =,则a ,b ,c 的大小关系是______.20.已知正n 边形的边长为a ,其外接圆的半径为R ,内切圆的半径为r .给出下列四个结论:①2sina R n π=;②2π2sina R n=;③2tan2aR r nπ+=;④π2tana R r n+=. 其中正确结论的序号是______.三、解答题21.设函数()4sin cos 16f x x x πωω⎛⎫=-- ⎪⎝⎭的最小正周期为π,其中0>ω. (1)求函数()f x 的递增区间; (2)若函数()()g x f x m =+在,122x ππ⎡⎤∈⎢⎥⎣⎦上有两个不同的零点1x ,2x ,求实数m 的取值范围.22.已知2()sin cos 2222x x x f x =--. (1)求()f x 图象的对称轴方程;(2)若存在0[0,]x π∈,使()02f x t ≤+,求实数t 的取值范围. 23.已知0πx <<,sin cos x x +=. (Ⅰ)求sin cos x x -的值;(Ⅱ)求2sin 22sin 1tan x xx+-的值.24.已知函数21()cos2sin 12sin 22x f x x x ⎛⎫=+⋅- ⎪⎝⎭,3()24g x x π⎛⎫=+ ⎪⎝⎭.(1)对任意的[]12,0,x x t ∈,当12x x <时,均有()()()()1212f x f x g x g x -<-成立,求正实数t 的最大值;(2)在满足(1)的条件时,若方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=在区间,4t π⎛⎫- ⎪⎝⎭上有解,求实数a 的取值范围.25.已知函数()cos23f x x =-,()2cos 4g x a x a =-. (1)求函数()()2h x x f x =+的最大值;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,求a 的取值范围. 26.求值:(1)cos540tan 225cos(330)sin(240)︒︒︒︒+--+-;(2)1cos201sin10tan 52sin 20tan 5︒︒︒︒︒+⎛⎫-- ⎪⎝⎭【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用平方差公式、同角三角函数关系以及二倍角公式将函数变形为()cos 2f x x =,然后发现区间长度刚好是四分之一个周期,从而利用余弦函数的对称性,得到当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小,求出此时的最大值和最小值,即可得到答案. 【详解】 函数44222222()cos sin (cos sin )(cos sin )cos sin cos 2f x x x x x x x x x x =-=+-=-=,所以函数()f x 的周期为22T ππ==,区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦的区间长度刚好是函数()f x 的四分之一个周期, 因为()f x 在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t ,由函数cos 2y x =的对称性可知,当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于2y cos x =的对称轴对称时,此时最大值与最小值的差值最小,即函数()()()g t M t N t =-取最小值,区间,4t t π⎡⎤-⎢⎥⎣⎦,的中点为428t tt t ππ-+==-,此时()f t 取得最值±1,不妨()f t 取得最大值()=1M t , 则有cos 2()18t π-=,解得224t k ππ-=,所以,,8t k k Z ππ=+∈所以2()cos 2cos 2cos 442N t t k πππ⎛⎫==+==⎪⎝⎭, 故()()()g t M t N t =-取最小值为212-. 故选:D . 【点睛】关键点睛:本题考查了三角函数的最值,涉及了二倍角公式的应用、同角三角函数关系的应用、三角函数的周期性、对称性的应用,解题的关键是分析出当区间,4t t π⎡⎤-⎢⎥⎣⎦关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小.2.A解析:A 【分析】根据对称性可得BAC CAP ACP ∠=∠=∠,设1PD =,可计算出AB 的长,利用勾股定理可得BC 的长,在Rt ABC 中,由ABBC可得tan BCA ∠,再利用正切函数的二倍角公式可得答案. 【详解】如图,由题意得BAC CAP ACP ∠=∠=∠. 不妨设1PD =,则3AP CP ==,4AB CD ==, 在Rt APD 中,223122AD =-=,即22BC AD ==. 在Rt ABC 中,tan 222AB BCA BC ∠===. 则22tan 22tan tan 2221tan 12BCA BCB BCA BCA ∠'∠=∠===--∠-, 故选:A.【点睛】本题考查了利用三角函数解决几何图形问题,关键点是利用对称性找到边长之间的关系然后利用正切函数求解,考查了学生分析问题、解决问题的能力.3.A解析:A 【分析】已知正切值要求正余弦值,可以利用商的关系将“弦化切”,代入数值即可. 【详解】原式分子分母同除以cos α得 原=tan 12112tan 141αα++==--故选:A. 【点睛】已知正切值求正余弦值,通常有两种做法:一是将所求式子分子分母同除cos α或2cos α,化为tan α求解; 二是利用sin tan cos ααα=得sin tan cos ααα=代入消元即可. 4.A解析:A 【分析】由原式利用二倍角公式,和同角三角函数基本关系进行化简,即可得到结果. 【详解】()()2222cos 2cos 2cos sin cos sin αβααββ=--22222222cos cos cos sin sin cos sin sin αβαβαβαβ=--+,所以22221sin sin cos cos cos 2cos 22αβαβαβ+-()2222222222221sin sin cos cos cos cos cos sin sin cos sin sin 2αβαβαβαβαβαβ=+---+()222222221sin sin cos cos +cos sin +sin cos 2αβαβαβαβ=+ ()()()2222221sin sin +cos cos cos +sin 2αββαββ=+()2211sin cos 22αα=+=. 故选:A 【点睛】本题主要考查三角函数的化简求值,涉及到同角三角函数基本关系和三角恒等变换,属于中档题.5.A解析:A【分析】 由角的变换可知()()44ππααββ+=+--,利用同角三角基本关系及两角差的余弦公式求解即可. 【详解】3(,)4παβπ∈,, 3(,2)2παβπ∴+∈,3(,)424πππβ-∈,4cos()5αβ∴+=,5cos()413πβ-=-,cos()cos[()()cos ()]cos (()s )sin ()444in 4πππααβαβαπββββ∴+=+-++-=-+-453125651351365=-⨯-⨯=-,故选:A 【点睛】本题主要考查了角的变换,同角三角函数的基本关系,两角差的余弦公式,属于中档题.6.A解析:A 【分析】先利用cos 2sin 22παα⎛⎫=+ ⎪⎝⎭结合cos 2π3)4αα=+得出cos 46πα⎛⎫+= ⎪⎝⎭的值,然后利用二倍角公式得到24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭,即4sin 29α=,又12tan tan sin 2ααα+=,将4sin 29α=代入便可解出答案. 【详解】因为sin 22sin cos cos 2244π4)444πππααααπαππααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+ ⎪⎛⎫⎛⎫⎝⎭+++ ⎪ ⎪⎝⎭⎝⎭,4πα⎛⎫+= ⎪⎝⎭,则cos 4πα⎛⎫+= ⎪⎝⎭ 所以24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭, 又4cos 2sin 229παα⎛⎫+=-=- ⎪⎝⎭,所以4sin 29α=,所以1sin cos 1229tan 4tan cos sin sin cos sin 229ααααααααα+=+====.故选:A. 【点睛】本题考查诱导公式,考查正弦、余弦的二倍角公式及其应用,难度一般,解答时公式的变形运用是关键.7.D解析:D 【分析】结合同角三角函数基本关系计算sin 6πα⎛⎫+ ⎪⎝⎭的值,再利用两角差的正弦公式进行求解即可.【详解】 由,22ππα⎛⎫∈-⎪⎝⎭可得2,633πππα⎛⎫+∈- ⎪⎝⎭, 又11cos cos 6323ππα⎛⎫+=<= ⎪⎝⎭,所以2,633πππα⎛⎫+∈ ⎪⎝⎭所以sin 63πα⎛⎫+== ⎪⎝⎭, sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11132326-=⨯-⨯=. 故选:D 【点睛】本题主要考查两角和与差的正余弦公式与同角三角函数基本关系,解题的关键是熟练运用公式.8.D解析:D 【分析】由2sin 2cos(2)cos[2()]2cos ()1244πππθθθθ=-=-=--,代入即可求解. 【详解】因为cos 4πθ⎛⎫-=⎪⎝⎭, 由24924sin 2cos(2)cos[2()]2cos ()1212445025πππθθθθ=-=-=--=⨯-=. 故选:D.【点睛】本题主要考查了三角恒等变换的化简、求值,其中解答中熟记余弦的倍角公式,准确运算是解答的关键,着重考查了运算与求解能力.9.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.10.B解析:B 【分析】先化简函数,根据()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,则为函数含有零的增区间的子集,再根据区间[]0,π上恰好取得一次最大值,则取得最大值时对应的最小正数解属于[]0,π,最后取交集.【详解】因为()222sin cos sin 24x f x x x ωπωω⎛⎫=-- ⎪⎝⎭,()2sin 1sin sin x x x ωωω=+-,22sin sin sin x x x ωωω=+-,sin x ω=,令22,22k x k k Z πππωπ-+≤≤+∈,则22,22k k x k Z ππππωωωω-+≤≤+∈, 因为()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数, 25,23,2262,k k k Z ππππωωωωππ⎡⎤∴-++∈⎢⎥⎣⎦⎡⎤-⊆⎢⎥⎣⎦所以223562ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解得35ω≤,令2,2x k k Z πωπ=+∈,因为在区间[]0,π上恰好取得一次最大值, 所以02ππω≤≤,所以12ω≥, 所以ω的取值范围是1325ω≤≤. 故选:B. 【点睛】本题主要考查三角函数的单调性和最值以及二倍角公式的应用,还考查了运算求解的能力,属于中档题.11.B解析:B 【分析】 取6πα=-判断①③,根据余弦函数的性质结合二倍角公式判断②.【详解】当6πα=-时,31sin 2sin ,sin sin ,sin 2sin 3262ππαααα⎛⎫⎛⎫=-=-=-=-< ⎪ ⎪⎝⎭⎝⎭3tan 2tan 3,tan tan ,tan 2tan 363ππαααα⎛⎫⎛⎫=-=-=-=-< ⎪ ⎪⎝⎭⎝⎭,则①③错误;0||4πα<<,2cos cos ||,12αα⎛⎫∴=∈ ⎪⎪⎝⎭2cos 2cos 2cos cos 1(cos 1)(2cos 1)0αααααα∴-=--=-+<即cos2cos αα<,②正确; 故选:B 【点睛】本题主要考查了求余弦函数的值域以及二倍角的余弦公式的应用,属于中档题.12.C解析:C 【解析】 试题分析:因,故应选C .考点:同角三角函数的关系及运用.二、填空题13.1【分析】将函数图象交点个数等价于方程在根的个数即可得答案【详解】∵函数图象交点个数等价于方程在根的个数∴解得:∴方程只有一解∴函数与函数的图象交点有1个故答案为:1【点睛】本题考查函数图象交点个数解析:1 【分析】将函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数,即可得答案. 【详解】∵函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数, ∴sin 1tan sin sin 0sin (1)0cos cos x x x x x x x=⇔-=⇔-=,解得:0x =, ∴方程只有一解,∴函数tan y x =与函数sin y x =的图象交点有1个. 故答案为:1. 【点睛】本题考查函数图象交点个数与方程根个数的等价性,考查函数与方程思想,考查逻辑推理能力和运算求解能力.14.【分析】由三角形内角的性质结合可得由目标函数式并利用基本不等式即可求得其最小值注意基本不等式的使用条件一正二定三相等其中为锐角【详解】为△的三内角为锐角∴故有即可得∴当且仅当时等号成立∴的最小值为故解析:23【分析】由三角形内角的性质结合tan 2tan B A =,可得23tan tan tan 2BC B =-,由目标函数式11tan tan B C+并利用基本不等式即可求得其最小值,注意基本不等式的使用条件“一正二定三相等”,其中A 为锐角,tan 2tan 0B A => 【详解】A 、B 、C 为△ABC 的三内角,A 为锐角,tan 2tan 0B A => ∴tan 2tan[()]2tan()B B C B C π=-+=-+故有2(tan tan )tan tan tan 1B C B B C +=-,即可得23tan tan tan 2BC B =-∴2111tan 2tan 12tan tan tan 3tan 33tan 3B B BC B B B -+=+=+≥=,当且仅当tan 1B =时等号成立 ∴11tan tan B C +的最小值为23故答案为:23【点睛】本题考查了由三角形内角间的函数关系,利用三角恒等变换以及基本不等式求目标三角函数的最值,注意两角和正切公式、基本不等式(使用条件要成立)的应用15.;【分析】根据角的终边关于轴对称得到以及两角差的余弦公式即可求出【详解】因为角与角均以为始边它们的终边关于轴对称所以所以故答案为:【点睛】本题主要考查了三角函数定义的应用两角差的余弦公式同角三角函数解析:18; 【分析】根据角的终边关于y 轴对称得到cos cos ,sin sin αβαβ=-=,以及两角差的余弦公式即可求出. 【详解】因为角α与角β均以Ox 为始边,它们的终边关于y 轴对称, 所以3cos cos ,sin sin 4αβαβ=-==, 所以()22cos cos cos sin sin sincos αβαβαβαα-=+=-22sin 1α=-92116=⨯- 18= 故答案为:18【点睛】本题主要考查了三角函数定义的应用,两角差的余弦公式,同角三角函数的关系,属于中档题.16.【分析】根据角的范围求出和的值再将变成利用两角差的余弦公式即可求得【详解】因为且所以因为所以因为所以所以故答案为:【点睛】本题考查了同角公式以及两角差的余弦公式考查了学生的计算能力属于中档题解析:2425-【分析】根据角的范围,求出sin α和cos()αβ+的值,再将cos β变成cos()αβα+-利用两角差的余弦公式即可求得. 【详解】 因为02πα<<,且3cos 5α=,所以4sin 5α, 因为π0π2αβ<<<<,所以322ππαβ<+<, 因为3sin()5αβ+=-,所以4cos()5αβ+=-, 所以cos cos()βαβα=+-cos()cos sin()sin αβααβα=+++433424555525=-⨯-⨯=-.故答案为:2425-【点睛】本题考查了同角公式以及两角差的余弦公式,考查了学生的计算能力,属于中档题.17.【分析】根据方程的两根为得到由两角和的正切公式得到再确定的范围求解【详解】因为方程的两根为所以则因为所以所以所以故答案为:【点睛】本题主要考查两角和与差的正切公式的应用还考查了运算求解的能力属于中档题 解析:34π-【分析】根据方程23310x ax a +++=,()2a >的两根为tan α,tan β,得到tan tan 3,tan tan 31a a αβαβ+=-⋅=+,由两角和的正切公式得到()tan αβ+,再确定αβ+的范围求解. 【详解】因为方程23310x ax a +++=,()2a >的两根为tan α,tan β, 所以tan tan 3,tan tan 31a a αβαβ+=-⋅=+, 则()tan tan tan 11tan tan αβαβαβ++==-⋅,因为2a >,所以tan tan 30,tan tan 310a a αβαβ+=-<⋅=+>, 所以tan 0,tan 0αβ<<,α,,02πβ⎛⎫∈-⎪⎝⎭, (),0αβπ+∈-,所以34παβ+=-. 故答案为:34π- 【点睛】本题主要考查两角和与差的正切公式的应用,还考查了运算求解的能力,属于中档题.18.【分析】设点的坐标为由于为定值由正弦定理可知当取得最大值时的外接圆面积取得最小值也等价于取得最大值结合已知即可求得答案【详解】不妨设点的坐标为由于为定值由正弦定理可知当取得最大值时的外接圆面积取得最解析:22122x y -=.【分析】设点P 的坐标为()()2,0m m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值,结合已知,即可求得答案. 【详解】不妨设点P 的坐标为()()2,0m m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值,2tan a APF m +∠=,2tan aBPF m-∠=, ∴()2222tan tan 221a aa a m m APB APF BPF a ab b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当()20b m m m=>,即当m b =时,等号成立,此时APB ∠最大,即APB ∆的外接圆面积取最小值.点P 的坐标为()2,b ,代入22221x y a b-=,可得a =b =∴双曲线的方程为22122x y -=.故答案为:22122x y -=.【点睛】本题主要考查了求双曲线的方程,解题关键是掌握双曲线基础知识和灵活使用均值不等式,考查了分析能力和计算能力,属于难题.19.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系. 【详解】)sin17cos17sin17cos 45cos17sin 45sin 622a =︒+︒=︒+︒=, 22cos 131cos 26sin 64b =︒-==,sin 602c ==, 所以,c a b <<. 故答案为:c a b <<. 【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.20.①③【分析】首先根据正边形的某个边作出内切圆和外接圆的半径的图形分析与角的关系判断选项【详解】如图是正边形的外接圆的半径是内切圆的半径设在中综上可知正确的选项是①③故答案为:①③【点睛】关键点点睛:解析:①③ 【分析】首先根据正n 边形的某个边,作出内切圆和外接圆的半径的图形,分析,R r 与角的关系,判断选项. 【详解】如图,OA 是正n 边形的外接圆的半径,OB 是内切圆的半径, 设,OA R OB r ==,nπα=,2a AB =, 在Rt OAB 中,2sin2sina a R nnππ==cos cos2sina n r R nnπππ=⋅=,21cos 2cos 22sin 4sin cos22a a n n R r n n nπππππ⎛⎫+ ⎪⎝⎭∴+===cos 22sin 2tan 22a a n n n πππ=, 综上可知正确的选项是①③.故答案为:①③ 【点睛】关键点点睛:本题的关键是作图,根据正n 边形的某个边,作出示意图,同时相邻的R 与r 的夹角是nπ,下面的问题就迎刃而解. 三、解答题21.(1)递增区间是(),63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ;(2)(]2,1--.【分析】(1)利用两角差的正余弦公式、正余弦的二倍角公式对()f x 进行化简,再根据正弦函数的周期和单调递增区间可得答案; (2)由x 的范围求出26x π-及sin 26x π⎛⎫- ⎪⎝⎭的范围,利用换元法分析()2sin F u u =的单调性和最值,结合()y F u =与y m =-两函数的图象的交点个数可得答案. 【详解】(1)()24sin cos 123cos 2sin 16f x x x x x x πωωωωω⎛⎫=--=+- ⎪⎝⎭32cos22sin 26x x x πωωω⎛⎫=-=- ⎪⎝⎭,∵()f x 的最小正周期为π,且0>ω,∴22ππω=,解得1ω=, ∴()2sin 26f x x π⎛⎫=-⎪⎝⎭,设26u x π=-,∵函数sin y u =的递增区间是()2,222k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,由()222262k x k k πππππ-≤-≤+∈Z ,得()63k x k k ππππ-≤≤+∈Z ,∴函数()f x 的递增区间是(),63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z . (2)由(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭, 当,122x ππ⎡⎤∈⎢⎥⎣⎦时,520,66u x ππ⎡⎤=-∈⎢⎥⎣⎦,令()2sin F u u =,则5166F F ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭, ∵()2sin F u u =在0,2u π⎡⎤∈⎢⎥⎣⎦上递增,在5,26u ππ⎡⎤∈⎢⎥⎣⎦上递减, ∴()max 22F u F π⎛⎫==⎪⎝⎭, ∵函数()()g x f x m =+在,122x ππ⎡⎤∈⎢⎥⎣⎦上有两个不同的零点, ∵.函数()y f x =与y m =-两图象在,122x ππ⎡⎤∈⎢⎥⎣⎦上有两个不同的交点, ∴函数()y F u =与y m =-两图象在50,6u π⎡⎤∈⎢⎥⎣⎦上有两个不同的交点, ∴12m ≤-<,解得21m -<≤-, ∴实数m 的取值范围是(]2,1--. 【点睛】本题考查了三角函数的化简和性质,关键点是利用两角差的正余弦公式、正余弦的二倍角公式对()f x 进行化简和利用三角函数的性质解题,考查了学生分析问题、解决问题的能力. 22.(1)对称轴方程6x k ππ=-+,k ∈Z ;(2)3t ≥-.【分析】(1)先运用降幂公式、辅助角公式,将原函数的解析式化为()()sin f x A x b ωϕ=++或()()cos f x A x b ωϕ=++的形式,然后运用整体法求解对称轴;(2)根据题目条件,只需使min ()2f x t ≤+成立即可,然后三角函数的图象及性质求解()f x 的最小值,然后解得t 的取值范围.【详解】解:(1)2()sin cos 222x x x f x =-1sin 2x x =-cos 6x π⎛⎫=+ ⎪⎝⎭,令6x k ππ+=,得6x k ππ=-+,k ∈Z ,所以()f x 图象的对称轴方程为6x k ππ=-+,k ∈Z .(2)若存在0[0,]x π∈,使()02f x t ≤+,则min ()2f x t ≤+, 由[0,]x π∈得7,666x πππ⎡⎤+∈⎢⎥⎣⎦,根据余弦函数的性质可得,当6x ππ+=, 即56x π=时,函数取得最小值1-, 所以12t -≤+,故3t ≥-. 【点睛】本题考查三角恒等变换、三角函数图象及性质的综合运用,解答的一般思路如下: (1)利用三角恒等变换研究三角函数的图象性质问题时,先利用正弦、余弦的二倍角公式将原函数解析式进行化简,将原函数解析式化简为()()sin f x A x b ωϕ=++的形式,然后可利用整体法求解原函数的单调区间、对称轴、对称中心等;(2)解答与三角函数图象性质有关的不等式恒成立、有解等问题时,要注意参数分离、整体思想的运用,将问题转化为处理函数最值问题来解决.23.(1 ;(2)415【分析】(1)先根据sin cos x x +的值和二者的平方关系联立求得 sin cos x x 的值,再把sin cos x x -平方即可求出;(2)结合(1)求sin x ,cos x 的值,最后利用商数关系求得tan x 的值,代入即可得解. 【详解】(1)∵sin cos x x +=, ∴21(sin cos )12sin cos 5x x x x +=+=, ∴2sin cos 5x x =-, ∵0πx <<,∴sin 0x >,cos 0x <,sin cos 0x x -> ∴249(sin cos )12sin cos 155x x x x -=-=+=,∴sin cos 5x x -=. (2)sin cos 5x x +=,sin cos x x -=解得sin 5x =,cos 5x =-, ∴sin tan 2cos xx x==- ∵4sin 25x =-,24sin 5x =,∴24sin 22sin 4551tan 81215x xx -++==-+. 【点睛】方法点睛:三角恒等常用的方法:三看(看角、看名、看式),三变(变角、变名、变式). 24.(1)4π;(2)32a <.【分析】(1)构造()()()h x f x g x =-,由单调性的定义得出()h x 在区间[0,]t 上为增函数,结合正弦型函数的单调性,得出正实数t 的最大值.(2)方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=有解,可分离参数为2()112()1()1h x a h x h x +==-++,在,44ππ⎛⎫- ⎪⎝⎭上有解,再根据()h x 的值域,求解实数a 的取值范围. 【详解】解:(1)依题可知:1()cos 2sin cos 2f x x x x =+sin 224x π⎛⎫=+ ⎪⎝⎭, 又∵()()()()1212f x f x g x g x -<-,∴()()()()1122f x g x f x g x -<-, 令()()()h x f x g x =-,则3()2244h x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭2244x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭sin 2x =.∵()()12h x h x <,∴()h x 在[]0,t 上单调递增, ∵22222k x k ππππ-≤≤+,∴()44k x k k Z ππππ-≤≤+∈,∴4t π≤,即t 的最大值为4π. (2)∵[()()1]2()2()10a f x g x f x g x ⋅-+-+-=, ∴(2)[()()]10a f x g x a --+-=, ∴2()112()1()1h x a h x h x +==-++,即12sin 21a x =-+在,44ππ⎛⎫- ⎪⎝⎭上有解,∵1sin 21x -<<,∴32a <. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.25.(1)-1;(2)()4-+∞ 【分析】(1)易得()2sin 233h x x π⎛⎫=+- ⎪⎝⎭,再利用正弦函数的性质求解.(2)将0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,转化为0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立,令[]cos 0,1t x =∈,利用二次函数的性质求()22244r t t at a =-+-的最小值即可.【详解】(1)因为函数()cos23f x x =-,所以()2cos 232sin 233h x x x x π⎛⎫=+-=+- ⎪⎝⎭, 当22,32x k k Z πππ+=+∈,即 ,12x k k Z ππ=+∈时, sin 213x π⎛⎫+= ⎪⎝⎭,所以()h x 的最大值是-1;(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,cos232cos 4x a x a >--恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立, 令[]cos 0,1t x =∈ ()22244r t t at a =-+- 当02a ≤,即 0a ≤时, ()()min 0440r t r a ==->,解得 1a >,此时无解; 当012a <<,即 02a <<时, ()2min 44022a a r t r a ⎛⎫==-+-> ⎪⎝⎭,解得44-<+,此时42a -<; 当12a ≥,即 2a ≥时, ()()min 1220r t r a ==->,解得 1a >,此时2a ≥;综上:a 的取值范围是()4-+∞【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.26.(1)0(2【分析】(1)利用诱导公式化简,即可求解; (2)先利用二倍角公式化简1cos 202sin 20︒︒+,由切化弦化1tan 5tan 5︒︒-, 通分后利用两角差的正弦公式展开即可化简求值.【详解】利用(1)原式cos(3180)tan 45cos30sin 60110;︒︒︒=⨯︒+-+=-+= (2)原式=22cos 10cos5sin 5sin10()4sin10cos10sin 5cos5︒︒︒=-︒-︒︒︒︒22cos10cos 5sin 5cos10cos10cos10sin10sin102cos1012sin10sin 5cos52sin102sin10sin102︒︒-︒︒︒︒=-︒=-︒⋅=-︒︒︒︒︒︒︒cos102sin 20cos102sin(3010)2sin102sin10︒-︒︒-︒-︒==︒︒1cos102(cos10)222sin10︒︒︒︒--=== 【点睛】关键点点睛:三角函数化简求值,需要根据式子的结构特征选择合适的公式,并且要注意公式的正用、逆用,特别是复杂式子的灵活运用,属于难题.。
(完整word)北师大版数学必修四第三章三角恒等变形复习题三
北师大版数学必修四第三章三角恒等变形复习题三(P133~135)A组1。
化简(1)√1-2sin(3—π)cos(3-π)解析:∵—π/2〈3—π〈0,则:0〈π—3<π/2∴√[1—2sin(3—π)cos(3—π)]=√[1+2sin(π—3)cos(π—3)]=√[sin²(π—3)+ 2sin(π-3)cos(π—3) +cos²(π—3)]=√[sin(π-3)+cos(π—3)]²=sin(π—3)+cos(π-3)=sin3 -cos3(2)√(1—2sin190°cos190°)/[cos170°+√(1—cos²170°)]sin(α+180°)=—sinα,cos(α+180°)=-cosα,sin(180°-α)=sinα,cos(180°-α)=cosα。
∴√(1-2sin190°cos190°)/[cos170°+√(1—cos²170°)]=√(sin²190°+cos²190°-2sin190°cos190°)/(cos170°+|sin170°|)=|sin190°-cos190°|/(cos170°+|sin170°|)=(cos10°—sin10°)/(sin10°—cos10°)= -12.已知tanα=—4/3 计算(1)(3sinα+2cosα)/(sinα—4cosα)同时除以cosα得(3sinα+2cosα)/(sinα-4cosα)=(3tanα+2)/(tanα-4)=(3*(—3/4)+2)/(-3/4—4)=(-9+8)/(—3—16)=1/19(2)2sin²α+3sinαcosα—cos²α解:原式=[2sin2а+3sinаcosа-cos2а]/[(sina)^2 +(cosa)^2](分母1=sina)^2 +(cosa)^2) =[2(tana)^2 +3tana -1]/[(tana)^2 +1] (代入tanα=—3/4)=—34/253.求证(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)∧2(1—sina+cosa)^2=[1-(sina-cosa)]^2=1-2(sina—cosa)+(sina-cosa)^2=1—2sina+2cosa+(sina)^2+(cosa)^2-2sinacosa=2+2cosa—2sina-2sinacosa=2(1+cosa-sina—sinacosa)=2(1-sina)(1+cosa)(2)sin^2α+sin^2β-sin^2αsin^2β+cos^2αcos^2β=1sin^2α+sin^2β—sin^2α·sin^2β+cos^2α·cos^2β=sin^2α·(1-sin^2β)+sin^2β+cos^2α·cos^2β=sin^2α·cos^2β+sin^2β+cos^2α·cos^2β=sin^2α·cos^2β+cos^2α·cos^2β+sin^2β=cos^2β·(sin^2α+cos^2α)+sin^2β=cos^2β+sin^2β=1(3)tanAsinA/(tanA-sinA)=(tanA+sinA)/tanAsinAtanAsinA/(tanA-sinA)=sinA/cosA*sinA/(sinA/cosA-sinA)=sinA/cosA*sinA*(1/cosA+1)/{(1/cosA+1)*(sinA/cosA-sinA)}=sinA*sinA(1/cosA+1/cos^2A)/{sinA*(1/cos^2A-1)}=sinA*sinA(1/cosA+1/cos^2A)*cosA/(sinA*sin^2A/cosA)=sinA(1+1/cosA)/tanAsinA=(tanA+sinA)/tanAsinA4.选择题(1)下列表达式中,正确的是(A)A.sin(α+β)=cosαsinβ+sinαcosβB.cos(α+v)cosαcosβ+sinαsinβC。
2019-2020学年高中数学北师大版必修4练习:习题课——三角恒等变换公式的综合应用
1 - ������������������������ =
���������������������2��� + ���������������������2���
‒
���������������������2���
-
���������������������2���
������
.∵0≤α≤π,∴0≤2
( ) ������ + ������ = ������������������������ + ���������������������4���
解(1)tan
4
1
-
������������������������������������������������
4
������������������������ + 1 = 2 + 1 = 1 - ������������������������ 1 - 2 =-3.
-2sin
x-|ln(x+1)|的零点个数为 .
1 + ������������������������
解析令 f(x)=4· 2 ·sin x-2sin x-|ln(x+1)|=sin 2x-|ln(x+1)|=0,即 sin 2x=|ln(x+1)|,在同一坐标
系作出 y=sin 2x 与 y=|ln(x+1)|的图像.
-
2
=
2×2 22 + 2 -
2=1.
9.
导学号 93774100 已知 5sin β=sin(2α+β),求证:2tan(α+β)=3tan α.
证明 5sin β=5sin[(α+β)-α]
新版高中数学北师大版必修4习题:第三章三角恒等变形 3.2.1-3.2.2 Word版含解析
§2两角和与差的三角函数2.1两角差的余弦函数2.2两角和与差的正弦、余弦函数课时过关·能力提升1.在△ABC中,sin A sin B<cos A cos B,则其形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形解析:∵sin A sin B<cos A cos B,∴cos A cos B-sin A sin B>0,即cos(A+B)>0,∴cos C<0.故这个三角形为钝角三角形.答案:B2.在△ABC中,已知cos A=35,cos B=1517,则cos C等于()A.−1385B.1385C.−7785D.7785解析:因为cos A=35,cos B=1517,所以sin A=4,sin B=8,所以cos C=-cos(A+B)=−35×1517+45×817=−1385.答案:A3.函数f(x)=sin x−√3cos x(x∈[-π,0])的递增区间是()A.[-π,-5π6]B.[-5π6,-π6]C.[-π3,0]D.[-π6,0]解析:f(x)=2(12sinx-√32cosx)=2(sinxcosπ3-cosxsinπ3)=2sin(x-π3).∵-π≤x≤0,∴−4π3≤x−π3≤−π3,∴当−π≤x −π≤−π,即x ∈[-π6,0]时,f (x )是增加的.答案:D4.已知α,β均为锐角,且cos α=√10,cos β=√5,则α+β的值是( ) A .2π3B.3π4C.π4D.π3解析:∵α,β均为锐角,∴sin α=3√10,sin β=2√5. ∴cos(α+β)=cos αcos β-sin αsin β=√1010×√55−3√1010×2√55=−√22.又α,β均为锐角,∴0<α+β<π.∴α+β=3π4. 答案:B5.已知8sin α+5cos β=6,sin(α+β)=4780,则8cos α+5sin β=( ) A .±10 B .10 C .-10D .±20 解析:设8cos α+5sin β=x ,则(8sin α+5cos β)2+(8cos α+5sin β)2=62+x 2,从而有64+25+80(sin α·cos β+cos αsin β)=36+x 2,∴89+80×4780=36+x2,∴x2=100,∴x =±10.答案:A6.已知函数f (x )=√3sin 2x +cos 2x,则下面结论中错误的是( )A .函数f (x )的最小正周期为πB .函数f (x )的图像可由g (x )=2sin 2x 的图像向左平移π6个单位长度得到C .函数f (x )的图像关于直线x =π6对称D .函数f (x )在区间[0,π6]上是增加的解析:∵函数f (x )=√3sin 2x+cos 2x=2(√32sin2x +12cos2x)=2sin (2x +π6),∴把g (x )=2sin 2x 的图像向左平移π6个单位长度得到函数y=2si n [2(x +π6)]=2sin (2x +π3)的图像,∴B 选项是错误的. 答案:B7.在△ABC 中,A=120°,则sin B+sin C 的最大值为 .解析:由A=120°,A+B+C=180°,得sin B+sin C=sin B+sin(60°-B )=√32cos B +12sin B=sin(60°+B ).显然,当B=30°时,sin B+sin C 取得最大值1.答案:1★8.已知α,β∈(3π4,π),sin(α+β)=−35,sin(β-π4)=1213,则cos(α+π4)=.解析:由条件,得3π2<α+β<2π,π2<β−π4<3π4,∴cos(α+β)=45,cos(β-π4)=−513.∴co s(α+π4)=cos[(α+β)-(β-π4)]=cos(α+β)co s(β-π4)+sin(α+β)sin(β-π4)=45×(-513)+(-35)×1213=−5665.答案:−56659.函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为. 解析:∵f(x)=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cos φ+cos(x+φ)sin φ-2sin φcos(x+φ)=sin(x+φ)cos φ-cos(x+φ)sin φ=sin[(x+φ)-φ]=sin x.∴f(x)max=1.答案:110.求证:sin(2α+β)sinα−2cos(α+β)=sinβsinα.证明左边=sin[α+(α+β)]-2sinαcos(α+β)sinα=sinαcos(α+β)+cosαsin(α+β)-2sinαcos(α+β)sinα=-sinαcos(α+β)+cosαsin(α+β)sinα=sin[(α+β)-α]sinα=sinβsinα=右边,∴原等式成立.11.已知si n(α+π3)+sin α=−4√35,−π2<α<0,求cos α的值.解由已知,得sin αco sπ3+cos αsi nπ3+sin α=−4√35,∴3 2sin α+√32cos α=−4√35,∴√32sin α+12cos α=−45,即si n(α+π)=−4.∵−π<α<0,∴−π3<α+π6<π6,∴cos(α+π6)=35,∴cos α=co s[(α+π6)-π6]=cos(α+π6)cosπ6+sin(α+π6)sinπ6=35×√32+(-45)×12=3√3-410.★12.已知a=(√3,−1),b=(sin x,cos x),x∈R,f(x)=a·b.(1)求f(x)的解析式;(2)求f(x)的周期、值域及单调区间.解(1)f(x)=a·b=(√3,−1)·(sin x,cos x)=√3sin x-cos x=2(√32sinx-12cosx)=2sin(x-π6)(x∈R).(2)∵f(x)=2si n(x-π6),∴f(x)的周期为2π1=2π,值域为[-2,2].由−π2+2kπ≤x−π6≤π2+2kπ(k∈Z),得f(x)的递增区间为[-π3+2kπ,2π3+2kπ](k∈Z);由π2+2kπ≤x−π6≤3π2+2kπ(k∈Z),得f(x)的递减区间为[2π3+2kπ,5π3+2kπ](k∈Z).。
新版高中数学北师大版必修4习题:第三章三角恒等变形 3.3.2 Word版含解析
第2课时半角公式及其应用课时过关·能力提升1.已知cos α=−35,且π<α<3π2,则cosα2的值等于()A.√55B.−√55C.2√55D.−2√55解析:∵π<α<3π2,∴π2<α2<3π4.∴co sα2=−√1+cosα2=−√55.答案:B2.设5π<θ<6π,co sθ2=a,则sinθ4的值等于()A.−√1+a2B.−√1-a2C.−√2+2a2D.−√2-2a2解析:∵5π<θ<6π,∴5π2<θ2<3π,5π4<θ4<3π2,∴sinθ4=−√1-cosθ22=−√1-a2=−√2-2a2.答案:D3.设α∈(π,2π),则√1-cos(π+α)2=() A.si nαB.cosαC.-si nα2D.−cosα2解析:∵α∈(π,2π),∴α2∈(π2,π),∴√1-cos(π+α)2=√1+cosα2=√cos2α2=−cosα2.答案:D4.设a=12cos 6°−√32sin 6°,b=2tan13°1+tan213°,c=√1-cos50°2,则有()A.a>b>cB.a<b<cC.a<c<bD.b<c<a解析:a=12cos 6°−√32sin 6°=sin 24°,b=2tan13°1+tan213°=sin 26°,c=√1-cos50°2=sin 25°.利用正弦函数的性质可知选C.答案:C★5.设α∈(0,π2),β∈(0,π2),且tan α=1+sinβcosβ,则()A.3α-β=π2B.2α−β=π2C.3α+β=π2D.2α+β=π2解析:tan α=1+sinβcosβ=1+cos(π2-β)sin(π2-β)=2cos2(π4-β2)2sin(π4-β2)cos(π4-β2)=cot(π4-β2)=ta n[π2-(π4-β2)]=tan(π4+β2),∴α=kπ+(π4+β2),k∈Z,∴2α-β=2kπ+π2,k∈Z.当k=0时,满足2α-β=π2,故选B.答案:B6.若cos α=−45,α是第三象限的角,则1+tanα21-tanα2=.解析:由题意,得sin α=−35,则ta nα2=1-cosαsinα=1+45-35=−3,所以1+tanα21-tanα2=−12.答案:−127.3-sin70°2-cos210°=.解析:3-sin70°2-cos210°=3-sin70°2-1+cos20°2=2(3-cos20°)3-cos20°=2.答案:28.化简sin4x1+cos4x ·cos2x1+cos2x·cosx1+cosx=.解析:原式=2sin2xcos2x2cos22x ·cos2x1+cos2x·cosx1+cosx=sin2x1+cos2x·cosx1+cosx=2sinxcosx2cos2x·cosx1+cosx=sinx1+cosx=tanx2.答案:ta n x29.已知等腰三角形的顶角的余弦值等于513,求这个三角形底角的正弦、余弦和正切值.解设等腰三角形的顶角为α,底角为θ,则cos α=513,α+2θ=π,θ∈(0,π2),∴cos 2θ=−5,∴sin θ=√1-cos2θ2=√1+5132=3√1313,cos θ=√1+cos2θ2=√1-5132=2√1313,tan θ=sinθcosθ=32.故这个三角形底角的正弦、余弦和正切值分别为3√1313,2√13 13,32.10.在△ABC中,若sin A sin B=cos2C2,试判断△ABC的形状.解sin A sin B=cos2C2=1+cosC2=1-cos(A+B)2,即2sin A sin B+cos(A+B)=1,∴2sin A sin B+cos A cos B-sin A sin B=cos A cos B+sin A sin B=cos(A-B)=1.∵-π<A-B<π,∴A-B=0,即A=B.∴△ABC是等腰三角形.11.在△ABC 中,f (B )=4cos B ·sin 2(π4+B 2)+√3cos 2B −2cos B.(1)若f (B )=2,求角B ;(2)若f (B )-m>2恒成立,求实数m 的取值范围.解(1)由题意,得f (B )=4cos B ·1-cos (π2+B )2+√3cos 2B-2cos B=2cos B (1+sin B )+√3cos 2B-2cos B=sin 2B +√3cos 2B=2si n (2B +π3).∵f (B )=2,∴2si n (2B +π3)=2. ∵角B 是△ABC 的内角,∴2B +π3=π2,则B =π12. (2)若f (B )-m>2恒成立,即2si n (2B +π3)>2+m 恒成立.∵0<B<π,∴π3<2B +π3<7π3,∴2si n (2B +π3)∈[-2,2],∴2+m<-2,∴m<-4.★12.已知OA ⃗⃗⃗⃗⃗ =(1,sin x −1),OB ⃗⃗⃗⃗⃗ =(sin x +sin xcos x,sin x),f(x)=OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ (x ∈R ).求: (1)函数f (x )的最大值和最小正周期;(2)函数f (x )的递增区间.解(1)f (x )=OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =sin x+sin x cos x+sin 2x-sin x =12sin 2x +1-cos2x 2=√22sin (2x -π4)+12,最小正周期为π,令2x −π4=π2+2kπ(k ∈Z ),可得当x=k π+3π8(k ∈Z )时,f (x )取得最大值1+√22.(2)当2k π−π2≤2x −π4≤2k π+π2(k ∈Z ),即k π−π8≤x ≤k π+3π8(k ∈Z )时,原函数为增加的,∴函数f (x )的递增区间是[kπ-π8,kπ+3π8](k ∈Z ).。
新版高中数学北师大版必修4习题:第三章三角恒等变形 3.3.1 Word版含解析
§3二倍角的三角函数第1课时二倍角公式及其应用课时过关·能力提升1.函数y=2cos2x的一个递增区间是()A.[-π4,π4]B.[0,π2]C.[π4,3π4]D.[π2,π]解析:y=2cos2x=1+cos 2x的递增区间为{x|2kπ-π≤2x≤2kπ(k∈Z)},即{x|kπ−π2≤x≤kπ(k∈Z)}.令k=1,有π≤x≤π.答案:D2.已知si n(π4-x)=35,则cos(π2-2x)的值为()A.1925B.1625C.1425D.725解析:因为si n(π4-x)=35,所以co s(π2-2x)=cos[2(π4-x)]=1−2sin2(π4-x)=725.答案:D3.sin110°sin20°cos2155°-sin2155°的值为()A.−12B.12C.√32D.−√32解析:原式=cos20°sin20°cos225°-sin225°=12sin40°cos50°=12sin40°sin40°=12.答案:B4.设向量a=(1,sin θ),b=(3sin θ,1),且a∥b,则cos 2θ等于()A.1B.2C.−1D.−2解析:∵a∥b,∴3sin2θ=1,∴sin2θ=1.∴cos 2θ=1-2sin2θ=1.答案:A5.若tan θ+1tanθ=4,则sin 2θ=()A.15B.14C.13D.12解析:∵tan θ+1tanθ=4,∴sinθcosθ+cosθsinθ=4.∴sin2θ+cos2θcosθsinθ=4,即2sin2θ=4.∴sin 2θ=12.答案:D6.函数f(x)=sin2(x+π4)−sin2(x-π4)是()A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数解析:∵(x+π4)+(π4-x)=π2,∴f(x)=cos2(π4-x)−sin2(π4-x)=cos[2(π4-x)]=cos(π2-2x)=sin 2x.∴T=π,f(x)为奇函数.答案:C7.函数y=2sin x cos x+√3cos 2x的最大值为.解析:∵y=2sin x cos x+√3cos 2x=sin 2x+√3cos 2x=2si n(2x+π3),∴-2≤y≤2,∴所求函数的最大值为2.答案:28.计算sin 6°·cos 24°·sin 78°·cos 48°的结果是.解析:sin 6°·cos 24°·sin 78°·cos 48°=sin 6°·cos 24°·cos 12°·cos 48°=2cos6°sin6°cos12°cos24°cos48°2cos6°=2sin12°cos12°cos24°cos48°4cos6°=2sin24°cos24°cos48°8cos6°=2sin48°cos48°16cos6°=sin96°16cos6°=sin(90°+6°)16cos6°=cos6°16cos6°=1 16.答案:1169.已知A,B是△ABC的两个内角,向量m=co s A-B2i+√52sin A+B2j,其中i,j为互相垂直的单位向量.若|m|=3√24,则tan Atan B的值为.解析:|m|2=cos2A-B2+54sin2A+B2=1+cos(A-B)2+54·1-cos(A+B)2=(3√24)2=98,∴4cos(A-B)=5cos(A+B),∴cos A cos B=9sin A sin B,即tan A tan B=19.答案:1910.(1)已知cos θ=−√23,θ∈(π2,π),求2sin2θ−cosθsinθ的值;(2)在△ABC中,若cos A=13,求sin2B+C2+cos 2A的值.解(1)∵cos θ=−√23,θ∈(π2,π),∴sin θ=√1-cos2θ=√1-29=√73,∴2sin2θ−cosθsinθ=22sinθcosθ−cosθsinθ=1sinθcosθ−cos2θsinθcosθ=1-cos2θsinθcosθ=sin2θsinθcosθ=sinθcosθ=√73-23=−√142.(2)sin2B+C2+cos 2A=1-cos(B+C)2+cos 2A=1+cosA2+2cos2A−1=12+12×13+2×(13)2−1=−19.11.已知函数f(x)=√2sin x2cos x2−√2sin2x2.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π,0]上的最小值.解(1)因为f (x )=√22sin x −√22(1−cos x )=si n (x +π4)−√22,所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0, 所以−3π4≤x +π4≤π4.当x +π4=−π2,即x=−3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f (-3π4)=−1−√22.★12.某一扇形铁皮的半径长为1,圆心角为π3.现在铁皮匠想从中剪下一个矩形ABCD,如图,设∠COP=α,求当角α取何值时,矩形ABCD 的面积S 最大,并求出这个最大面积. 解在Rt △OBC 中,OB=cos α,BC=sin α.在Rt △OAD 中,DA=tan π=√3,∴OA =√33DA =√33BC =√33sin α, ∴AB=OB-OA=cos α−√33sin α. ∴S=AB ·BC =(cosα-√33sinα)sin α=sin α·cos α−√33sin2α=12sin 2α−√36(1−cos 2α) =12sin 2α+√36cos 2α−√36=√33(√32sin2α+12cos2α)−√36=√33sin (2α+π6)−√36.∵0<α<π3,∴当2α+π6=π2,即α=π6时,S max=√33−√36=√36.。
高中数学北师大版高一必修4习题:第三章三角恒等变形_3.3.1
§3二倍角的三角函数第1课时二倍角公式及其应用课时过关·能力提升1.函数y=2cos2x的一个递增区间是()A-C解析:y=2cos2x=1+cos 2x的递增区间为{x|2kπ-π≤2x≤2kπ(k∈Z)},即{x|kπ≤x≤kπ(k∈Z)}.令k=1,有≤x≤π.答案:D2.已知si-则-的值为A解析:因为si-所以co---答案:D3.的值为-A.解析:原式-答案:B4.设向量a=(1,sin θ),b=(3sin θ,1),且a∥b,则cos 2θ等于()A解析:∵a∥b,∴3sin2θ=1,∴sin2θ∴cos 2θ=1-2sin2θ答案:A5.若tan θ则A解析:∵tan θ即∴sin 2θ答案:D6.函数f(x)=sin-是A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数解析:-----2x.∴T=π,f(x)为奇函数.答案:C7.函数y=2sin x cos x的最大值为解析:∵y=2sin x cos x2x=sin 2x2x=2si∴-2≤y≤2 ∴所求函数的最大值为2.答案:28.计算sin 6°·cos 24°·sin 78°·cos 48°的结果是.解析:sin 6°·cos 24°·sin 78°·cos 48°=sin 6°·cos 24°·cos 12°·cos 48°答案:9.已知A,B是△ABC的两个内角,向量m=co-其中i,j为互相垂直的单位向量.若|m|则的值为解析:|m|2=cos---∴4cos(A-B)=5cos(A+B),∴cos A cos B=9sin A sin B,即tan A tan B答案:10.(1)已知cos θ=求的值(2)在△ABC中,若cos A求的值解(1)∵cos θ=∴sin θ--(2)sin2A-2A=11.已知函数f(x)(1)求f(x)的最小正周期;(2)求f(x)在区间[-π,0]上的最小值.解(1)因为f(x)x x)=si所以f(x)的最小正周期为2π.(2)因为-π≤x≤0所以≤x当x即x=时,f(x)取得最小值.所以f(x)在区间[-π,0]上的最小值为-★12.某一扇形铁皮的半径长为1,圆心角为现在铁皮匠想从中剪下一个矩形如图设∠COP=α,求当角α取何值时,矩形ABCD的面积S最大,并求出这个最大面积.解在Rt△OBC中,OB=cos α,BC=sin α.在Rt△OAD中∴OAα,∴AB=OB-OA=cos αα.∴S=AB·BC-α=sin α·cos α2α2α)2α2α∵0<α∴当2α即时,S max。
【精品提分练习】新版高中数学北师大版必修4习题:第三章三角恒等变形 3.2.13.2.2
§2两角和与差的三角函数2.1两角差的余弦函数2.2两角和与差的正弦、余弦函数课时过关·能力提升1.在△ABC中,sin A sin B<cos A cos B,则其形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形解析:∵sin A sin B<cos A cos B,∴cos A cos B-sin A sin B>0,即cos(A+B)>0,∴cos C<0.故这个三角形为钝角三角形.答案:B2.在△ABC中,已知cos A则等于A.解析:因为cos A B所以sin A B所以cos C=-cos(A+B)=答案:A3.函数f(x)=sin x∈[-π,0])的递增区间是() A----C--解析:f(x)=-=--∵-π≤x≤0 ∴≤x∴当≤x即x∈-时,f(x)是增加的.答案:D4.已知α,β均为锐角,且cos α则的值是A解析:∵α,β均为锐角,∴sin α∴cos(α+β)=cos αcos β-sin αsin β又α,β均为锐角,∴0<α+β<π.∴α+β答案:B5.已知8sin α+5cos β=6,sin(α+β)则A.±10B.10C.-10D.±20解析:设8cos α+5sin β=x,则(8sin α+5cos β)2+(8cos α+5sin β)2=62+x2,从而有64+25+80(sin α·cosβ+cos αsin β)=36+x2,∴89+80答案:A6.已知函数f(x)则下面结论中错误的是A.函数f(x)的最小正周期为πB.函数f(x)的图像可由g(x)=2sin 2x的图像向左平移个单位长度得到C.函数f(x)的图像关于直线x对称D.函数f(x)在区间上是增加的解析:∵函数f(x)2x+cos 2x=把g(x)=2sin 2x的图像向左平移个单位长度得到函数y=2si的图像,∴B选项是错误的.答案:B7.在△ABC中,A=120°,则sin B+sin C的最大值为.解析:由A=120°,A+B+C=180°,得sin B+sin C=sin B+sin(60°-B)B B=sin(60°+B).显然,当B=30°时,sin B+sin C取得最大值1.答案:1★8.已知α,β∈-则解析:由条件,得∴cos(α+β)-∴co--=cos(α+β)co----答案:9.函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为.解析:∵f(x)=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cos φ+cos(x+φ)sin φ-2sin φcos(x+φ)=sin(x+φ)cos φ-cos(x+φ)sin φ=sin[(x+φ)-φ]=sin x.∴f(x)max=1.答案:110.求证证明左边--右边,∴原等式成立.11.已知si求的值解由已知,得sin αcoαsiα=α=α=即si∴∴cos α=co---★12.已知a=b=(sin x,cos x),x∈R,f(x)=a·b.(1)求f(x)的解析式;(2)求f(x)的周期、值域及单调区间.解(1)f(x)=a·b=·(sin x,cos x)x-cos x=--∈R).(2)∵f(x)=2si-∴f(x)的周期为值域为[-2,2].由≤x∈Z),得f(x)的递增区间为-∈Z);由≤x∈Z),得f(x)的递减区间为∈Z).。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试题(包含答案解析)(5)
一、选择题1.已知,(0,2)αβπ∈,且满足1sin cos 2αα-=,1cos sin 2ββ-=,则sin()αβ+=( )A .1B .2-或1 C .34-或1 D .1或-12.已知函数2()2sin cos (0)f x x x x ωωωω=->图像的相邻两条对称轴之间的距离为2π,则2f π⎛⎫= ⎪⎝⎭( )A .1B .1--C .0D .-3.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ). A .ππ56f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=- ⎪⎝⎭C .π4f x ⎛⎫-⎪⎝⎭是偶函数 D .π4f x ⎛⎫+⎪⎝⎭是奇函数 4.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( )A .6 B .6C .16D .16-5.已知()sin 2cos x x x ϕ+=+对x ∈R 恒成立,则cos 2ϕ=( ) A .25-B .25C .35D .356.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118 B .118C .-1718D .17187.函数()sin sin 22f x x x π⎛⎫=++ ⎪⎝⎭的最大值为( )A .2B .1C .18D .988.函数2()3sin cos f x x x x =+的最大值为( )A .2B .C .D .3+9.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .11010.设a 、b R ∈,[)0,2c π∈,若对任意实数x 都有()2sin 3sin 3x a bx c π⎛⎫-=+ ⎪⎝⎭,定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象交点的横坐标是d ,则满足条件的有序实数组(),,,a b c d 的组数为( ) A .7B .11C .14D .2811.求sin10°sin50°sin70°的值( )A .12B C .18D 12.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .3-B .3C .13-D .13二、填空题13.222cos 402cos 50cos35cos65cos55cos155︒-︒=︒︒+︒︒_________.14.若cos()3πα-=-,02πα⎛⎫∈- ⎪⎝⎭,则tan α的值是____________.15.已知tan 2α=,则2sin 2cos αα+=________.16.若角α的终边与单位圆的交点为1,()3m m R ⎛⎫∈ ⎪⎝⎭,则cos2=α______. 17.已知tan 3α=-,则cos2=α_____________. 18.已知1cos cos 2αβ+=,1sin sin 3αβ+=,则cos()αβ-=______. 19.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________. 20.若函数()sin()cos f x x x ϕ=++为偶函数,则常数ϕ的一个取值为________.三、解答题21.已知函数()2sin cos 144f x x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的最小正周期;(2)若函数()()2g x f x x =-,求函数()g x 的单调增区间.22.已知2()2sin ()142xf x π=+-. (1)求()(2)3g x f x π=-的递增区间;(2)是否存在实数k ,使得不等式(2)(4)()(4)()32f x k f x k f x π+-⋅+-⋅+<对任意22x ππ⎡⎤∈-⎢⎥⎣⎦,的恒成立,若存在,求出k 的取值范围;若不存在,说明理由.23.函数2()sin cos (0)f x x x x ωωωω=+⋅>且满足___________. ①函数()f x 的最小正周期为π;②已知12x x ≠,()()1212f x f x ==,且12x x -的最小值为2π,在这两个条件中任选一个,补充在上面横线处,然后解答问题. (1)确定ω的值并求函数()f x 的单调区间;(2)求函数()f x 在0,3x π⎡⎤∈⎢⎥⎣⎦上的值域. 24.在下列三个条件中任选一个,补充在下面问题中,并解答. ①函数1()cos sin (0)2264f x x x ωωπω⎛⎫⎛⎫=+-> ⎪ ⎪⎝⎭⎝⎭.②函数1()sin +cos()(0)2224f x x x x ωωωω⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭; ③函数()1()sin 0,||22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立;已知_______(填所选条件序号),函数()f x 图象的相邻两条对称轴之间的距离为2π. (1)求3f π⎛⎫ ⎪⎝⎭的值; (2)求函数()f x 的单调递增区间和对称中心、对称轴. 注:如果选择多个条件分别解答,按第一个解答计分.25.如图,以x 轴非负半轴为始边,角α的终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,将角α的终边绕着原点O 顺时针旋转4π得到角β.(1)求3sin()5cos()2sin sin()2πααπαπα-+-⎛⎫-++ ⎪⎝⎭的值; (2)求sin 22cos ββ+的值. 26.已知0πx <<,5sin cos x x +=. (Ⅰ)求sin cos x x -的值;(Ⅱ)求2sin 22sin 1tan x xx+-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由两角与差的正弦、余弦公式变形由已知求得sin()4πα-和cos()4πβ+,用平方关系求得cos()4πα-和sin()4πα+,而sin()sin ()()44ππαβαβ⎡⎤+=-++⎢⎥⎣⎦,展开后计算,注意分类讨论. 【详解】 ∵1sin cos 2αα-=,∴222sin 224αα-=2sin()44πα-=, 1cos sin 2ββ-=,422cos 222ββ-=,2cos()44πβ+=,∴cos()44πα-=±,sin()44πα+=±, sin()sin ()()sin()cos()cos()sin()444444ππππππαβαβαβαβ⎡⎤+=-++=-++-+⎢⎥⎣⎦,当7cos()sin()448ππαβ-+=时,17sin()188αβ+=+=, 当7cos()sin()448ππαβ-+=-时,173sin()884αβ+=-=-, 故选:C . 【点睛】关键点点睛:本题考查两角和与差正弦、余弦公式.解题关键是确定已知角和未知角之间的关系,本题中已知等式变形得出4πα-和4πβ+,未知角有()()44ππαβαβ+=-++,这样易确定使用的公式与顺序.2.D解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定1ω=,再求2f π⎛⎫ ⎪⎝⎭. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω-=-=- πsin 222sin 23x x x ωωω⎛⎫=+=+- ⎪⎝⎭由题意知()f x 的最小正周期为π22π⨯=,所以2π2πω=,即1ω=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭π2sin 23f ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭.故选:D. 【点睛】本题考查了三角函数的性质,关键点是根据已知条件先化简正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.3.B解析:B【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立知π422f a ⎛⎫=+=⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan baϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 44422f b a a b ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<, 当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B :sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C :sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确;对于选项D :si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x 的最值,π422f a ⎛⎫=+= ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.4.C解析:C 【分析】 求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+== ⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11132326-=⨯-⨯=. 故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.5.D解析:D 【分析】利用两角和的正弦公式进行展开,结合恒成立可得cos ϕ,最后根据二倍角公式得结果. 【详解】由题可知,cos sin sin 2cos x x x x ϕϕ+=+, 则cosϕ=,sin ϕ=, 所以283cos22cos 1155ϕϕ=-=-=,故选:D. 【点睛】本题主要考查了两角和的余弦以及二倍角公式的应用,通过恒成立求出cos ϕ是解题的关键,属于中档题.6.C解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin 2αα+=,对等式平方即可得结果. 【详解】 由3cos 2sin 4παα⎛⎫=-⎪⎝⎭,可得())223cos sin cos sin 2αααα-=-, 又由,2παπ⎛⎫∈⎪⎝⎭,可知cos sin 0αα-≠,于是()3cos sin 2αα+=,所以112sin cos 18αα=+, 故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.7.D解析:D 【分析】利用诱导公式与二倍角的余弦公式化简,再结合二次函数配方法求解即可. 【详解】因为()sin sin 2sin cos 22f x x x x x π⎛⎫=++=+ ⎪⎝⎭, 2219sin 12sin 2sin 48x x x ⎛⎫=+-=--+ ⎪⎝⎭所以()f x 的最大值为98, 故选:D. 【点睛】本题主要考查诱导公式与二倍角的余弦公式的应用,考查了二次函数的性质,属于基础题.8.A解析:A【分析】利用降次公式、二倍角公式和辅助角公式化简()f x ,由此求得()f x 的最大值. 【详解】依题意()1cos 233sin 2sin 2222222x f x x x x -=+=-+12cos 2226x x x π⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎭,所以()f x 22=. 故选:A 【点睛】本小题主要考查降次公式、二倍角公式和辅助角公式,考查三角函数的最值的求法,属于中档题.9.A解析:A 【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.10.D解析:D 【分析】 根据()2sin 3sin 3x a bx c π⎛⎫-=+ ⎪⎝⎭结合a 、b R ∈,[)0,2c π∈可得出a 、b 、c 的取值组合,求得方程sin 2cos x x =在区间[]0,3π的解,可得出d 的可能取值,进而可求得符合条件的有序实数组(),,,a b c d 的组数. 【详解】已知a 、b R ∈,[)0,2c π∈,若对任意实数x 都有()2sin 3sin 3x a bx c π⎛⎫-=+ ⎪⎝⎭,①当2a =时,则353b c π=⎧⎪⎨=⎪⎩或343b c π=-⎧⎪⎨=⎪⎩;②当2a =-时,则323b c π=⎧⎪⎨=⎪⎩或33b c π=-⎧⎪⎨=⎪⎩.解方程sin 2cos x x =,即2sin cos cos x x x =,可得()2sin 1cos 0x x -=,即1sin 2x =或cos 0x =.当[]0,3x π∈时,解方程1sin 2x =,可得6x π=、56π、136π、176π;解方程cos 0x =,可得2x π=、32π、52π. 所以,d 的取值集合为5313517,,,,,,6262626πππππππ⎧⎫⎨⎬⎩⎭. 因此,符合条件的有序实数组(),,,a b c d 的组数为4728⨯=. 故选:D. 【点睛】本题考查乘法计数原理的应用,同时也考查了三角方程与三角函数解析式中参数的求解,考查计算能力,属于中等题.11.C解析:C 【分析】由诱导公式可转化为cos20cos40cos80︒︒︒,利用二倍角公式正弦公式求解即可. 【详解】sin10sin50sin70cos20cos40cos80︒︒︒=︒︒︒ 1sin160sin 20cos 20cos 40cos8018sin 20sin 208︒∴︒︒︒︒==︒︒ 即1sin10sin 50sin 708︒︒︒= 故选:C 【点睛】本题主要考查了诱导公式,二倍角的正弦公式,考查了运算能力,属于中档题.12.A解析:A 【分析】首先根据三角函数诱导公式,可由等式()cos 2cos 2παπα⎛⎫+=-⎪⎝⎭求出tan 2α=;再由两角和的正切公式可求出tan 4απ⎛⎫+ ⎪⎝⎭. 【详解】 解:()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭, ∴由三角函数诱导公式化简得:sin 2cos αα-=-,即得tan 2α=,tantan 124tan()34121tan tan 4παπαπα++∴+===---⋅.故选:A. 【点睛】本题主要考查三角函数的诱导公式、两角和的正切公式,考查运算求解能力,属于基础题型.二、填空题13.【分析】用诱导公式降次公式两角和与差的正余弦公式化简求值得到答案【详解】原式故答案为:【点睛】本题考查了三角关系的化简与求值诱导公式转化角两角和与差公式二倍角公式属于中档题 解析:2-【分析】用诱导公式、降次公式、两角和与差的正余弦公式化简求值,得到答案. 【详解】 原式()()22222cos 40cos 502cos 402cos 50sin 55cos 65cos55sin 65sin 5565︒-︒︒-︒==︒︒-︒︒︒-︒.()2cos80sin 10︒=-︒2sin10sin10︒=-︒2=-故答案为:2-. 【点睛】本题考查了三角关系的化简与求值,诱导公式转化角,两角和与差公式,二倍角公式,属于中档题.14.【分析】由诱导公式化简再利用同角三角函数间的关系和角的范围可得答案【详解】由且得故答案为:【点睛】本题考查三角函数的诱导公式和同角三角函数间的关系在运用公式时注意角的范围属于基础题解析:2-【分析】由诱导公式化简cos()πα-,再利用同角三角函数间的关系和角的范围可得答案. 【详解】由cos()3πα-=-,且,02πα⎛⎫∈- ⎪⎝⎭,得cos tan 332ααα===-==-.故答案为:2-. 【点睛】本题考查三角函数的诱导公式和同角三角函数间的关系,在运用公式时,注意角的范围,属于基础题.15.1【分析】本题先求出再化简代入求值即可【详解】解:∵∴或①当且时;②当且时故答案为:1【点睛】本题考查了同角三角函数关系二倍角公式是基础题解析:1 【分析】本题先求出sin α、cos α,再化简2sin 2cos αα+代入求值即可. 【详解】解:∵ tan 2α=,sin tan cos ααα=,22sin cos 1αα+=, ∴sin cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩①当sin α=cos 5α=时,222sin 2cos 2sin cos cos 21555ααααα⎛+=⋅+=⨯+= ⎝⎭; ②当sin α=且cos α=时,222sin 2cos 2sin cos cos 21555ααααα⎛⎫⎛⎛⎫+=⋅+=⨯-⨯-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:1.【点睛】本题考查了同角三角函数关系,二倍角公式,是基础题.16.【分析】由题意利用任意角的三角函数的定义求得再利用二倍角公式求得的值【详解】由题意角的终边与单位圆的交点为可得解得即又由故答案为:【点睛】本题主要考查了任意角的三角函数的定义二倍角的正弦公式的应用其解析:79【分析】由题意利用任意角的三角函数的定义求得cos α,再利用二倍角公式求得cos2α的值. 【详解】由题意,角α的终边与单位圆的交点为1,()3m m R ⎛⎫∈ ⎪⎝⎭,可得2119m +=,解得3m =±,即cos 3α=±, 又由287cos 22cos 12199αα=-=⋅-=. 故答案为:79. 【点睛】本题主要考查了任意角的三角函数的定义,二倍角的正弦公式的应用,其中解答中熟记三角函数的定义,结合余弦的倍角公式求解是解答的关键,属于基础题.17.【分析】由题意根据二倍角公式同角三角函数的基本关系求得的值【详解】故答案为:【点睛】本题主要考查二倍角公式同角三角函数的基本关系在三角函数化简求值中的应用属于基础题解析:45-【分析】由题意,根据二倍角公式、同角三角函数的基本关系求得2cos α的值. 【详解】3tan α=-,222222cos sin 1tan 1942cos sin 1tan 195cos ααααααα---∴====-+++. 故答案为:45-. 【点睛】本题主要考查二倍角公式、同角三角函数的基本关系在三角函数化简求值中的应用,属于基础题.18.【分析】把两个条件平方相加再利用两角差的余弦公式求得的值【详解】将两式平方可得:①②将①和②相加可得:即解得故答案为:【点睛】本题考查同角三角函数间的基本关系和两角差的余弦公式的应用考查逻辑思维能力 解析:5972-【分析】把两个条件平方相加,再利用两角差的余弦公式求得cos()αβ-的值. 【详解】1cos cos 2αβ+=,1sin sin 3αβ+=,将两式平方可得: 221cos 2cos cos cos 4ααββ++=①, 221sin 2sin sin sin 9ααββ++=②, 将①和②相加可得:1322cos cos 2sin sin 36αβαβ++=, 即1322cos()36αβ+-=,解得59cos()72αβ-=-. 故答案为:5972-. 【点睛】本题考查同角三角函数间的基本关系和两角差的余弦公式的应用,考查逻辑思维能力和运算能力,属于常考题.19.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα所以矩形的面积4cos 2sin 4sin2S ααα=⋅= 当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.20.(答案不唯一)【分析】根据函数为偶函数有化简得对任意恒成立所以有取其中一个值即可得出答案【详解】解:因为函数为偶函数则所以所以等价于对任意恒成立所以所以所以常数的一个取值为故答案为:(答案不唯一)【解析:π2(答案不唯一) 【分析】根据函数为偶函数有()()f x f x =-,化简得sin cos 0x ϕ=对任意x 恒成立,所以有()2k k Z πϕπ=+∈,取其中一个值即可得出答案.【详解】解:因为函数()sin()cos f x x x ϕ=++为偶函数,则()()f x f x =- 所以sin()cos sin()cos()x x x x ϕϕ++=-++-所以sin cos cos sin cos sin()cos cos()sin cos x x x x x x ϕϕϕϕ++=-+-+ 等价于sin cos 0x ϕ=对任意x 恒成立,所以cos 0ϕ=, 所以()2k k Z πϕπ=+∈,所以常数ϕ的一个取值为π2. 故答案为:π2(答案不唯一) 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.三、解答题21.(1)最小正周期为π;(2)5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,.【分析】(1)由三角函数恒等变换化简函数得()sin 2f x x =,由三角函数的周期公式可得答案;(2)由余弦的二倍角公式和辅助角公式得()gx 2sin23x π=-(),再由正弦函数的性质可求得函数的单调增区间. 【详解】 解:(1)函数()22sin cos 12cos 1cos 2sin 24444f x x x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--=--=⨯-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以函数()f x 的最小正周期为22ππ=. (2)()()22sin 22cos 1sin 2g x f x x x x x x =-=-=)2sin 23x π=-(),令222232k x k k Z πππππ-≤-≤+∈,,得51212k x k k Z ππππ-≤≤+∈,, 所以函数()g x 的单调增区间为51212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,,. 【点睛】方法点睛:解决三角函数的周期和单调性等相关问题,先利用三角函数的恒等变换化简函数为一个角一个三角函数,再运用整体思想代入是常用的方法. 22.(1)5[,],1212k k Z πππ-+∈;(2)存在,14k <<【分析】(1)利用二倍角公式化简可得()sin f x x =,从而可得()sin(2)3g x x π=-,由正弦函数的单调性可得222232k x k πππππ-+≤-≤+,k Z ∈,解不等式即可.(2)不等式化为2sin cos (4)(sin cos )3x x k x x ⋅+-+<,令sin cos [t x x =+∈-,不等式等价为2(4)40t k t +--<在⎡-⎣恒成立,令函数2()(4)4,m t t k t =+--根据二次函数根的分布只需(1)0m m -<⎧⎪⎨<⎪⎩,解不等式即可.【详解】(1)解:2()2sin ()1cos()sin 422x f x x x ππ=+-=-+=, ()(2)sin(2)33g x f x x ππ=-=-,222232k x k πππππ-+≤-≤+解得5,1212k x k k Z ππππ-+≤≤+∈, 函数()g x 的递增区间为5[,],1212k k Z πππ-+∈; (2)假设存在这样的实数k ,则不等式即为2sin cos (4)(sin cos )3x x k x x ⋅+-+<,令sin cos ,t x x =+则()22sin cos 11sin cos 22x x t x x +--⋅==则不等式()221(4)3(4)40t k t t k t ⇔-+-<⇔+--<又sin cos )4t x x x π=+=+,由,02x ⎡⎤∈-⎢⎥⎣⎦π,3,444x πππ⎡⎤∴+∈-⎢⎥⎣⎦,所以sin cos )[4t x x x π=+=+∈-令函数2()(4)4,m t t k t =+--即2()(4)40,t m t t k t ⎡=+--<∈-⎣恒成立,由一元二次方程根的分布,只需(1)0101404)20m k k m k ⎧-<-<⎧⎪⎪⇒⇒<<⎨<--<⎪⎩ 【点睛】关键点点睛:本题考查了三角恒等变换、三角函数的性质、三角不等式恒成立以及一元二次方程根的分布,解题的关键是将不等式通过换元法转化为2(4)40t k t +--<在⎡-⎣恒成立,考查了分析能力、运算求解能力. 23.条件选择见解析;(1)1ω=,单调增区为,()63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,单调减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)30,2⎡⎤⎢⎥⎣⎦.【分析】化简()f x 1sin 262x πω⎛⎫=-+ ⎪⎝⎭. (1)若选① ,根据周期公式可得ω;若选②,由12min22T x x π-==,可得周期和ω,再根据正弦函数的单调性可得()f x 单调区间;(2)由x 的范围求出26x π-及1sin 262x π⎛⎫-+ ⎪⎝⎭的范围可得答案. 【详解】1cos 2()cos 2xf x x x ωωω-=+112cos 2222x x ωω=-+ 1sin 262x πω⎛⎫=-+ ⎪⎝⎭.(1)若选① ,则有T π=,222πωπ∴==,即1ω=,若选②,则有12min22T x x π-==, 222πωπ∴==,即1ω=,综上1()sin 262f x x π⎛⎫=-+ ⎪⎝⎭, 于是由222()262πππππ-+≤-≤+∈k x k k Z ,解得()63ππππ-+≤≤+∈k x k k Z ,即()f x 单调增区为,()63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,由3222()262k x k k Z πππππ+≤-≤+∈, 解得5()36k x k k Z ππππ+≤≤+∈, 所以()f x 单调减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)1()sin 262f x x π⎛⎫=-+ ⎪⎝⎭,若0,3x π⎡⎤∈⎢⎥⎣⎦,则2,662x πππ⎡⎤-∈-⎢⎥⎣⎦, 则13sin 20,622x π⎛⎫⎡⎤-+∈ ⎪⎢⎥⎝⎭⎣⎦, 所以()f x 值域为30,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查了()()sin f x A x b ωϕ=++的性质,有关三角函数的解答题,考查基础知识、基本技能和基本方法,且难度不大,主要考查以下四类问题;(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角三角函数的基本关系和诱导公式求三角函数值及化简和等式证明的问题;(4)与周期、对称性有关的问题,考查了计算能力.24.条件性选择见解析,(1)14;(2)单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;对称中心的坐标为,0,212k k Z ππ⎛⎫-∈ ⎪⎝⎭;对称轴为直线26k x ππ=+,k Z ∈. 【分析】 选择条件①:()f x 11cos cos222224x x x ωωω⎛⎫⎛⎫=+- ⎪⎪ ⎪⎝⎭⎝⎭11cos sin 426x x x πωωω⎛⎫=+=+ ⎪⎝⎭,再根据相邻两对称轴之间距离为2π,可得ω从而求出()f x ;选择条件②:()f x 11cos sin 426x x x πωωω⎛⎫=+=+ ⎪⎝⎭,相邻两对称轴之间距离为2π,可得ω,从而求出()f x ; 选择条件③:()f x 相邻两对称轴之间距离为2π,求出ω,对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立,则()f x 的图象关于5,012π⎛⎫ ⎪⎝⎭对称,可求出ϕ,从而得出()f x ;(1)由于选择哪种情况,都有1()sin 226f x x π⎛⎫=+ ⎪⎝⎭,代入3f π⎛⎫⎪⎝⎭可得答案. (2)分别根据正弦函数的单调递增区间、对称中心、对称轴可得答案. 【详解】选择条件①:依题意,()1cos sin 2264f x x x ωωπ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,即有:()11cos sin cos222224f x x x x ωωω⎛⎫⎛⎫=+- ⎪⎪ ⎪⎝⎭⎝⎭,化简得:211()cos cos 222224f x x x x ωωω⎛⎫=+- ⎪⎝⎭,即有:11()cos sin 426f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又因为()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭ ;选择条件②:依题意,()1cos cos 224f x x x x ωωω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,即有:11()cos sin 426f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又因为()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭; 选择条件③:依题意,()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立, 则()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称,则5212k πϕπ⨯+=,k Z ∈,由||2ϕπ<知6π=ϕ,从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭; (1)由于选择哪种情况,都有1()sin 226f x x π⎛⎫=+ ⎪⎝⎭,所以11sin 233264f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.(2)1()sin 226f x x π⎛⎫=+ ⎪⎝⎭, 单调递增区间为2222621,k x k k z πππππ-≤+≤+∈, 解得,,36x k k k Z ππππ⎡⎤∈-+∈⎢⎥⎣⎦, 从而()f x 的单调增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦又由2,6x k k Z ππ+=∈,所以212k x k Z ππ=-∈,,得()f x 的对称中心的坐标为,0,212k k Z ππ⎛⎫-∈⎪⎝⎭, ()f x 的对称轴为直线2,62x k k Z πππ+=+∈,即26k x ππ=+,k Z ∈. 【点睛】 关键点点睛:本题考查了三角函数解析式的化简,以及三角函数的图象与性质的应用,其中解答中利用三角恒等变换的公式,化简函数的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.25.(1)1;(2)725+-【分析】(1)先利用三角函数的定义分别求出cos α,sin α,tan α,用诱导公式先化简,再求值;(2)由题意得4αβ-=π,得4πβα=-,用二倍角公式即可求解. 【详解】解:(1)由题得4cos 5α=-,3sin 5α=,3tan 4α=-. 3sin()5cos()3sin 5cos 3tan 512cos sin 2tan 2sin sin()2παααααπααααπα-+-++===--⎛⎫-++ ⎪⎝⎭. (2)由题意得4αβ-=π,得4πβα=-, 所以sin 22cos sin 22cos 44ππββαα⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭ sin 22cos cos 22cos 244πππαααα⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2164312cos sin )122555ααα⎫=-+=-⨯+-+⎪⎭725+=-. 【点睛】(1) 三角函数值的大小与点P (x ,y )在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论.(2)根据题意把角进行合理转化,还要注意角的范围.26.(1)5;(2)415 【分析】 (1)先根据sin cos x x +的值和二者的平方关系联立求得 sin cos x x 的值,再把sin cos x x -平方即可求出;(2)结合(1)求sin x ,cos x 的值,最后利用商数关系求得tan x 的值,代入即可得解.【详解】(1)∵sin cos x x +=, ∴21(sin cos )12sin cos 5x x x x +=+=, ∴2sin cos 5x x =-, ∵0πx <<, ∴sin 0x >,cos 0x <,sin cos 0x x -> ∴249(sin cos )12sin cos 155x x x x -=-=+=,∴sin cos x x -=. (2)sin cos x x +=,sin cos x x -=解得sin 5x =,cos 5x =-, ∴sin tan 2cos x x x==- ∵4sin 25x =-,24sin 5x =, ∴24sin 22sin 4551tan 81215x x x -++==-+. 【点睛】 方法点睛:三角恒等常用的方法:三看(看角、看名、看式),三变(变角、变名、变式).。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试(有答案解析)(1)
一、选择题1.已知2tan 23θ=,则1cos sin 1cos sin θθθθ-+++的值为( )A .23B .23-C .32D .32-2.函数12log (sin cos )y x x =的单调增区间是( )A .(,)()44k k k Z ππππ-+∈ B .3(,)()44k k k Z ππππ++∈ C .(,)()4k k k Z πππ+∈D .(,)()42k k k Z ππππ++∈ 3.已知3(,)4παβπ∈,,3sin()5αβ+=-,12sin()413πβ-=,则cos()4πα+=( ) A .5665-B .3365-C .5665D .33654.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( )A .6 B C .16D .16-5.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118B .118C .-1718D .17186.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-77.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .1108.已知()0,απ∈,()2sin 2cos21παα-=-,则sin α=( )A .15B C .-D 9.求sin10°sin50°sin70°的值( )A .12B .2C .18D .810.在斜三角形ABC 中,sin A cos B·cos C ,且tan B·tan C =1,则角A 的值为( )A .4πB .3π C .2πD .34π 11.已知()1sin 30cos 3αα︒+=+,则()sin 230α+︒=( )A .79-B .79C D .12.已知函数()()()()21cos cos 02f x x x x ωωωω=+->,若()f x 在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .(]0,2B .(]0,1C .2,13⎛⎤⎥⎝⎦D .20,3⎛⎤ ⎥⎝⎦二、填空题13.tan 80tan 4080tan 40︒+︒︒︒=________.14.已知A 、B 、C 为△ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为______.15.将22sin cos x x x +化简为sin()A x B ωϕ++(0A >,0>ω,π2ϕ<)的形式为______.16.已知sin 46πα⎛⎫+= ⎪⎝⎭,()0,απ∈,则cos 26πα⎛⎫+= ⎪⎝⎭__________.17.()sin 501︒+︒的值__________.18.已知方程23310x ax a +++=,()2a >的两根为tan α,tan β,α,,22ππβ⎛⎫∈- ⎪⎝⎭,则αβ+=________.19________.20.在直角三角形ABC 中,C ∠为直角,45BAC ∠>,点D 在线段BC 上,且13CD CB =,若1tan 2DAB ∠=,则BAC ∠的正切值为_____.三、解答题21.已知cos α5=,sin (α﹣β)10=,且α、β∈(0,2π).求:(Ⅰ)cos (2α﹣β)的值; (Ⅱ)β的值.22.已知函数2()2cos sin()sin cos 3f x x x x x x π=++.(1)若[,]126x ππ∈-,求函数()f x 的最值;(2)记锐角△ABC 的内角A 、B 、C 的对边分别为a b c 、、,若()0f A =,4b c +=,求△ABC 面积的最大值.23.在下列三个条件中任选一个,补充在下面问题中,并进行解答. ①函数()2sin(2)f x x ωϕ=+(0>ω,||2ϕπ<)的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②函数())cos(2)(0)f x x x ωπωω=-->; ③函数()4cos sin 1(0)6f x x x πωωω⎛⎫=+-> ⎪⎝⎭; 问题:已知________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若0,2πα⎛⎫∈ ⎪⎝⎭,()f α=α的值. 24.已知函数()2sin cos cos26f x x x x π⎫⎛=-+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求()f x 的单调递增区间和最值;(2)若函数()()g x f x a =-有且仅有一个零点,求实数a 的取值范围. 25.设函数2()cos 22sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的最大值及取得最大值时x 的集合; (2)若,42⎛⎫∈⎪⎝⎭ππα,且2()5f α=,求sin 2α.26.已知函数()212sin sin 2cos 32f x x x x π⎛⎫=-+-⎪⎝⎭.(1)求函数()f x 的单调增区间; (2)当,64x ππ⎛⎫∈-⎪⎝⎭时,函数()()()221216g x f x mf x m =-+-有四个零点,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据半角公式得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,再分子分母同除以2cos 2θ得2tan 1cos sin 21cos si tan2n 31ta 2n 2θθθθθθθ-+=++=++. 【详解】解:根据半角公式得:22cos 12sin2cos 122θθθ=-=-,sin 2sincos22θθθ=所以22222sin 2sin cos sin sin cos2222222cos 2sin cos cos sin cos 21cos sin 1cos 222n 2i 2s θθθθθθθθθθθθθθθθ-+==++++++, 对上述式子分子分母同除以2cos 2θ得: 222sin sin cos tan22222cos s 42ta in cos 22n 1cos sin 1029321cos sin 1531tan 1322θθθθθθθθθθθθθ+-+==+++===++++. 故选:A. 【点睛】本题解题的关键在于利用半角公式化简得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,进而构造齐次式求解即可,考查运算求解能力,是中档题. 2.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质, 可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.3.A解析:A 【分析】 由角的变换可知()()44ππααββ+=+--,利用同角三角基本关系及两角差的余弦公式求解即可. 【详解】3(,)4παβπ∈,, 3(,2)2παβπ∴+∈,3(,)424πππβ-∈,4cos()5αβ∴+=,5cos()413πβ-=-,cos()cos[()()cos ()]cos (()s )sin ()444in 4πππααβαβαπββββ∴+=+-++-=-+-453125651351365=-⨯-⨯=-,故选:A 【点睛】本题主要考查了角的变换,同角三角函数的基本关系,两角差的余弦公式,属于中档题.4.C解析:C 【分析】求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+==⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1132=-⨯=故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.5.C解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin 2αα+=,对等式平方即可得结果. 【详解】 由3cos 2sin 4παα⎛⎫=-⎪⎝⎭,可得())223cos sin cos sin αααα-=-, 又由,2παπ⎛⎫∈⎪⎝⎭,可知cos sin 0αα-≠,于是()3cos sin 2αα+=,所以112sin cos 18αα=+, 故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.6.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果.由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.7.A解析:A 【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.8.D解析:D 【分析】先利用诱导公式化简,再利用正弦、余弦的二倍角公式化简可得结果 【详解】解:由()2sin 2cos21παα-=-,得2sin 2cos21αα=-, 所以24sin cos 12sin 1ααα=--,即22sin cos sin ααα=-, 因为()0,απ∈,所以sin 0α≠, 所以2cos sin αα=-, 因为22sin cos 1αα+=, 所以221sin sin 14αα+=,所以24sin 5α=,因为()0,απ∈,所以sin 0α>,所以sin α=, 故选:D 【点睛】此题考查诱导公式的应用,考查二倍角公式的应用,考查同角三角函数的关系,属于中档题9.C解析:C由诱导公式可转化为cos20cos40cos80︒︒︒,利用二倍角公式正弦公式求解即可. 【详解】sin10sin50sin70cos20cos40cos80︒︒︒=︒︒︒ 1sin160sin 20cos 20cos 40cos8018sin 20sin 208︒∴︒︒︒︒==︒︒ 即1sin10sin 50sin 708︒︒︒= 故选:C 【点睛】本题主要考查了诱导公式,二倍角的正弦公式,考查了运算能力,属于中档题.10.A解析:A 【详解】由tan tan 1B C =可得sin sin (1cos cos B C B C =,进而得cos cos A C B =,由于sin cos A B C =, 所以sin cos A A =,可得4A π=,故选A.11.B解析:B 【分析】根据条件展开化简得到()1sin 303α-︒=,再利用角的变换,得到()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒,再利用二倍角公式化简求值.【详解】 由()1sin 30cos 3αα︒+=+,得11cos cos 223ααα+=+, 化简得()1sin 303α-︒=; ()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒ ()21712sin 301299α=--︒=-⨯=故选:B . 【点睛】本题考查三角恒等变换,重点考查转化的思想,计算能力,属于基础题型.12.D【分析】利用二倍角公式和辅助角公式化简函数()f x ,根据()f x 在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,建立不等关系,解出ω的取值范围.【详解】 因为()1cos 21sin 2sin 22226x f x x x ωπωω+⎛⎫=+-=+ ⎪⎝⎭,由题意得,362,262ωπππωπππ⎧-+≥-⎪⎪⎨⎪+≤⎪⎩解得23ω≤,又0>ω,所以203ω<≤. 故选:D 【点睛】本题考查正弦函数单调性的应用,考查三角恒等变换,属于中档题.二、填空题13.【分析】逆用两角和的正切公式进行化简即可得所求的值【详解】解:根据两角和的正切公式可得所以所以故答案为:【点睛】本题考查两角和的正切公式的逆用考查化简运算能力属于基础题解析: 【分析】逆用两角和的正切公式进行化简,即可得所求的值. 【详解】解:根据两角和的正切公式,可得tan80tan 40tan120tan(8040)1tan 40tan80︒︒︒︒︒︒︒+=+==-所以tan 40tan 80tan 40tan 80)40tan 80︒︒︒︒︒︒+=-=,所以tan 80tan 4080tan 40︒︒︒︒+=故答案为:. 【点睛】本题考查两角和的正切公式的逆用,考查化简运算能力,属于基础题.14.【分析】由三角形内角的性质结合可得由目标函数式并利用基本不等式即可求得其最小值注意基本不等式的使用条件一正二定三相等其中为锐角【详解】为△的三内角为锐角∴故有即可得∴当且仅当时等号成立∴的最小值为故解析:23由三角形内角的性质结合tan 2tan B A =,可得23tan tan tan 2BC B =-,由目标函数式11tan tan B C+并利用基本不等式即可求得其最小值,注意基本不等式的使用条件“一正二定三相等”,其中A 为锐角,tan 2tan 0B A => 【详解】A 、B 、C 为△ABC 的三内角,A 为锐角,tan 2tan 0B A => ∴tan 2tan[()]2tan()B B C B C π=-+=-+故有2(tan tan )tan tan tan 1B C B B C +=-,即可得23tan tan tan 2BC B =-∴2111tan 2tan 12tan tan tan 3tan 33tan 3B B BC B B B -+=+=+≥=,当且仅当tan 1B =时等号成立 ∴11tan tan B C +的最小值为23故答案为:23【点睛】本题考查了由三角形内角间的函数关系,利用三角恒等变换以及基本不等式求目标三角函数的最值,注意两角和正切公式、基本不等式(使用条件要成立)的应用15.【分析】利用正弦二倍角和余弦二倍角公式及辅助角公式化简得解【详解】故答案为:【点睛】本题考查二倍角公式及辅助角公式属于基础题解析:π2sin(2)16x -+【分析】利用正弦二倍角和余弦二倍角公式及辅助角公式化简得解. 【详解】2π2sin cos 1cos 222sin(2)16x x x x x x +=-=-+故答案为:π2sin(2)16x -+ 【点睛】本题考查二倍角公式及辅助角公式,属于基础题.16.【分析】构造角再用两角和的余弦公式及二倍公式打开【详解】故答案为:【点睛】本题是给值求值题关键是构造角应注意的是确定三角函数值的符号解析:26- 【分析】 构造角22643πππαα⎛⎫+=+- ⎪⎝⎭,cos 4πα⎛⎫+ ⎪⎝⎭求,再用两角和的余弦公式及二倍公式打开. 【详解】()50,,,444πππαπα⎛⎫∈+∈ ⎪⎝⎭,sin 42πα⎛⎫+=< ⎪⎝⎭,cos 4πα⎛⎫∴+= ⎪⎝⎭,22cos 22cos 1443ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭,sin 22sin cos 444πππααα⎛⎫⎛⎫⎛⎫+=+⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 2cos 2cos 2cos sin 2sin 6434343πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2132⎛=⨯+= ⎝⎭故答案为:26【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.17.1【分析】由结合辅助角公式可知原式为结合诱导公式以及二倍角公式可求值【详解】解:故答案为:1【点睛】本题考查了同角三角函数的基本关系考查了二倍角公式考查了辅助角公式考查了诱导公式本题的难点是熟练运用解析:1 【分析】由sin10tan10cos10︒︒=︒,结合辅助角公式可知原式为2sin50sin 40cos10︒︒︒,结合诱导公式以及二倍角公式可求值. 【详解】解: ()cos10sin501sin50cos10︒+︒︒+︒=︒⨯︒()2sin50cos30sin10sin 30cos102sin50sin 402sin50cos50cos10cos10cos10︒︒︒+︒︒︒︒︒︒===︒︒︒()sin 10902sin50cos50sin100cos101cos10cos10cos10cos10︒+︒︒︒︒︒====︒︒︒︒.故答案为:1. 【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.18.【分析】根据方程的两根为得到由两角和的正切公式得到再确定的范围求解【详解】因为方程的两根为所以则因为所以所以所以故答案为:【点睛】本题主要考查两角和与差的正切公式的应用还考查了运算求解的能力属于中档题 解析:34π-【分析】根据方程23310x ax a +++=,()2a >的两根为tan α,tan β,得到tan tan 3,tan tan 31a a αβαβ+=-⋅=+,由两角和的正切公式得到()tan αβ+,再确定αβ+的范围求解. 【详解】因为方程23310x ax a +++=,()2a >的两根为tan α,tan β, 所以tan tan 3,tan tan 31a a αβαβ+=-⋅=+, 则()tan tan tan 11tan tan αβαβαβ++==-⋅,因为2a >,所以tan tan 30,tan tan 310a a αβαβ+=-<⋅=+>, 所以tan 0,tan 0αβ<<,α,,02πβ⎛⎫∈-⎪⎝⎭, (),0αβπ+∈-,所以34παβ+=-. 故答案为:34π- 【点睛】本题主要考查两角和与差的正切公式的应用,还考查了运算求解的能力,属于中档题.19.【分析】利用同角三角函数的基本关系式二倍角公式结合根式运算化简求得表达式的值【详解】依题意由于所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式二倍角公式考查根式运算属于基础题解析:4【分析】利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值. 【详解】=4==,由于342ππ<<=故答案为:4【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题. 20.3【分析】在直角三角形中设利用两角差的正切公式求解【详解】设则故故答案为:3【点睛】此题考查在直角三角形中求角的正切值关键在于合理构造角的和差关系其本质是利用两角差的正切公式求解解析:3【分析】在直角三角形中设3BC=,3AC x=<,1tan tan()2DAB BAC DAC∠=∠-∠=,利用两角差的正切公式求解.【详解】设3BC=,3AC x=<,则31tan,tanBAC DACx x∠=∠=22221tan tan()13321xxDAB BAC DAC xxx∠=∠-∠===⇒=++,故tan3BAC∠=.故答案为:3【点睛】此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.三、解答题21.(Ⅰ)10;(Ⅱ)4π.【分析】(Ⅰ)由α,β的范围求出α﹣β的范围,由题意和平方关系求出sinα和cos(α﹣β),由两角和的余弦公式求出cos(2α﹣β)=cos[(α﹣β)+α]的值;(Ⅱ)由两角差的余弦公式求出cosβ=cos[α﹣(α﹣β)]的值,再由β的范围求出β的值.【详解】(Ⅰ)∵02παβ⎛⎫∈ ⎪⎝⎭,,,∴α﹣β∈(2π-,2π),∵cos 5α=,()sin 10αβ-=,∴sin α5==,cos (α﹣β)10==, ∴cos (2α﹣β)=cos[(α﹣β)+α]=cos (α﹣β)cosα﹣sin (α﹣β)sin α10510510=⨯-⨯=(Ⅱ)由(Ⅰ)得,cos β=cos[α﹣(α﹣β)]=cos α cos (α﹣β)+ sinα sin (α﹣β)2=+=, 又∵02πβ⎛⎫∈ ⎪⎝⎭,,∴β4π=.【点睛】关键点点睛:拆角2()αβαβα-=-+,()βααβ=--是本题解题关键.22.(1)最大值为2,最小值为1(2【分析】(1)利用两角和差的正弦、余弦公式、二倍角公式化简函数的解析式为()f x =2sin (2x +3π),由,126x ππ⎡⎤∈-⎢⎥⎣⎦,再根据正弦函数的定义域和值域求得函数()f x 的最值; (2)锐角△ABC 中,由f (A )=0 可得A =3π,利用基本不等式求得bc ≤4,即bc 的最大值为4,由此求得△ABC 的面积1sin 2S bc A =的最大值. 【详解】(1)∵函数2()2cos sin()sin cos 3f x x x x x x π=++22cos s s sin cos in x x x x x x -+=sin 222sin(2)3x x x π==+∵,126x ππ⎡⎤∈-⎢⎥⎣⎦, ∴6π≤2x +3π≤23π,23故函数f (x )的最大值为2,最小值为1. (2)锐角△ABC 中,由()0f A =可得 sin (2A +)03π=,∴A =3π. ∵b +c=当且仅当b =c 时取等号,故bc ≤4,即bc 的最大值为 4.故△ABC 面积1sin 24S bc A ==≤故△ABC 【点睛】关键点点睛:求三角形面积的最值问题,一般需要利用面积公式111sin sin sin 222S bc A ac B ab C ===.根据题目条件选择合适的方法求出两边之积的最值,一般考虑余弦定理及均值不等式,属于中档题.23.(Ⅰ)()2sin(2)6f x x π=+(Ⅱ)12πα=或4πα=【分析】分别选择①,②,③求出函数()2sin(2)6f x x π=+, (Ⅰ)根据正弦函数的增区间列式可求出()f x 的递增区间; (Ⅱ)代入()f α,根据α的范围可求出结果. 【详解】因为函数()f x 的图象相邻两条对称轴之间的距离为2π.所以22T ππ=⨯=, 选择①,则22ππω=,得1ω=,所以()2sin(2)f x x ϕ=+, 所以()()2sin 2()1212g x f x x ππϕ⎡⎤=-=-+⎢⎥⎣⎦2sin(2)6x πϕ=-+, 因为()g x 的图象关于原点对称,所以()g x 为奇函数,所以(0)0g =, 所以2sin()06πϕ-=,所以6k πϕπ-=,k Z ∈,所以6k πϕπ=+,k Z ∈,因为||2ϕπ<,所以0,6k πϕ==,所以()2sin(2)6f x x π=+, 选择②,())cos(2)f x x x ωπω=--(0)ω>=()()2cos 2x x ωω+6所以22ππω=,所以1ω=,所以()2sin(2)6f x x π=+, 选择③,()4cos sin 1(0)6f x x x πωωω⎛⎫=+-> ⎪⎝⎭4cos sin cos cos sin 66x x x ππωωω⎛⎫=+ ⎪⎝⎭1-=14cos cos 122x x x ωωω⎛⎫+- ⎪ ⎪⎝⎭2cos 2cos 1x x x ωωω=+-2cos 2x x ωω=+2sin 26x πω⎛⎫=+ ⎪⎝⎭,所以22ππω=,所以1ω=,所以()2sin(2)6f x x π=+, (Ⅰ)由222262k x k πππππ-+≤+≤+,k Z ∈,得36k x k ππππ-+≤≤+,k Z ∈,所以()f x 的单调递增区间为[,]36ππk πk π-++,k Z ∈.(Ⅱ)若0,2πα⎛⎫∈ ⎪⎝⎭,()f α=2sin(2)6πα+=sin(2)62πα+=, 因为02πα<<,所以72666πππα<+<, 所以263ππα+=或2263ππα+=,得12πα=或4πα=.【点睛】关键点点睛:根据三角函数的性质求出()f x 的解析式是解题关键.24.(1)()f x 的单调递增区间是 06,π⎡⎤⎢⎥⎣⎦,()()min max 30,2f x f x ==;(2)3[0,1)2⎧⎫⋃⎨⎬⎩⎭【分析】(1)利用两角差的余弦公式,二倍角公式和辅助角法,将函数转化为()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再利用正弦函数的性质求解.(2)将函数()()g x f x a =-有且仅有一个零点,转化为函数()y f x = 与y a =有且仅有一个交点,利用数形结合法求解. 【详解】(1)函数()2sin cos cos26f x x x x π⎫⎛=-+ ⎪⎝⎭,12sin sin cos 22x x x x ⎫=++⎪⎪⎝⎭,2cos sin cos 2x x x x =++,112cos 222x x =++, 1sin 262x π⎛⎫=++ ⎪⎝⎭,令222,262k x k k Z πππππ-≤+≤+∈,解得 ,36k x k k Z ππππ-≤≤+∈,因为0,2x π⎡⎤∈⎢⎥⎣⎦, 所以函数()f x 的单调递增区间是 06,π⎡⎤⎢⎥⎣⎦. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,则72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()()min max 30,2f x f x ==. (2)因为()()g x f x a =-有且仅有一个零点, 所以()f x a =有且仅有一个零点,即函数()y f x = 与y a =有且仅有一个交点, 如图所示:由图象知:32a =或 [0,1)a ∈, 所以实数a 的取值范围是3[0,1)2⎧⎫⋃⎨⎬⎩⎭.【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.25.(1),3x xx k k Z ππ⎧⎫∈=-+∈⎨⎬⎩⎭∣时,max ()2f x =;(2334+. 【分析】(1)利用两角和的余弦展开和正弦的降幂公式化简,再利用两角和的正弦写成()()sin f x A x ωϕ=+形式可求最值及对应的x 的值;(2)由3sin 265πα⎛⎫+= ⎪⎝⎭和α的范围利用平方关系求出cos 26πα⎛⎫+ ⎪⎝⎭,再利用凑角sin 2sin 266ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦可得答案.【详解】(1)13()cos 221cos 222f x x x x =-+-1sin 26x π⎛⎫=-+ ⎪⎝⎭,当2262x k πππ+=-+,即,3x xx k k Z ππ⎧⎫∈=-+∈⎨⎬⎩⎭∣时,max ()2f x =.(2)21sin 265πα⎛⎫-+= ⎪⎝⎭,3sin 265πα⎛⎫∴+= ⎪⎝⎭,,42ππα⎛⎫∈ ⎪⎝⎭,272,636πππα⎛⎫∴+∈ ⎪⎝⎭,4cos 265πα⎛⎫∴+==- ⎪⎝⎭341sin 2sin 266552ππαα⎡⎤-⎛⎫=+-=-⨯=⎪⎢⎥⎝⎭⎣⎦. 【点睛】本题考查了三角函数的性质、三角函数的化简求值,关键点是正用两角和的余弦、正弦公式和逆用两角和的正弦公式,利用凑角求三角函数值,考查了学生的基础知识、基本运算能力.26.(1)5[,]1212k k ππππ-+,k Z ∈(2m <<【分析】(1)化简()f x 的解析式,根据正弦函数的增区间可得结果;(2)转化为221()216h t t mt m =-+-在(2内有两个零点,根据二次函数列式可得结果. 【详解】(1)()212sin sin 2cos 32f x x x x π⎛⎫=-+-⎪⎝⎭12sin sin cos cos sin 1cos 2332x x x x ππ⎛⎫=-++- ⎪⎝⎭21cos sin 1cos 22x x x x =-++-212cos cos 22x x x =++-1cos 212cos 222x x x +=++-32cos 22x x =+)3x π=+,由222232k x k πππππ-≤+≤+,k Z ∈,得51212k x k ππππ-≤≤+,k Z ∈, 所以函数()f x 的单调增区间为5[,]1212k k ππππ-+,k Z ∈. (2)当,64x ππ⎛⎫∈-⎪⎝⎭时,52(0,)36x ππ+∈,())3f x x π=+∈,因为函数()()()221216g x f x mf x m =-+-有四个零点,令()t f x =,则(t ∈且221()216h t t mt m =-+-在2内有两个零点,所以22144016200m m m h h ⎧⎛⎫∆=--> ⎪⎪⎝⎭<<⎪⎪⎨⎪>⎪⎝⎭⎪⎪>⎪⎩,即22316043160m m m <<⎪⎪+->⎨⎪⎪-+->⎪⎩,解得2m ⎪<<⎪⎪⎪⎨⎪⎪⎪⎪⎩1144m <<, 所以实数m的取值范是1144m <<. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试(含答案解析)(4)
一、选择题1.已知23cos sin2αβ+=,1sin sin cos 3αββ+=,则)os(c 2αβ+=( )A .49B .59 C .536D .518-2.已知tan 2α=,则sin cos 2sin cos αααα+=-( ) A .1 B .1- C .2D .2-3.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ). A .ππ56f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=- ⎪⎝⎭C .π4f x ⎛⎫-⎪⎝⎭是偶函数 D .π4f x ⎛⎫+⎪⎝⎭是奇函数 4.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( )A .0,3πβ⎛⎫∈ ⎪⎝⎭ B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭5.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .9,10ππ⎛⎫⎪⎝⎭B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫ ⎪⎝⎭6.已知()2020cos2020f x x x =+的最大值为A ,若存在实数1x ,2x ,使得对任意的实数x ,总有()()()12f x f x f x ≤≤成立,则12A x x -的最小值为( ) A .2020π B .1010π C .505π D .4040π 7.在ABC 中三内角A ,B ,C 的对边分别为a ,b ,c,且222b c a +=,2bc =,则角C 的大小是( )A .6π或23π B .3πC .23π D .6π 8.已知角α满足1cos()63πα+=,则sin(2)6πα-=( )A.9-B.9C .79-D .799.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7C .17-D .-710.若11sin cos αα+=sin cos αα=( ) A .13-B .13C .13-或1D .13或1- 11.设函数()f x =sin()cos()x x ωϕωϕ+++(ω>0,||ϕ<2π)的最小正周期为π,且()f x -=()f x ,则()f x ( )A .在0,2π⎛⎫⎪⎝⎭单调递减 B .在3,44ππ⎛⎫⎪⎝⎭单调递减 C .在0,2π⎛⎫⎪⎝⎭单调递增 D .在3,44ππ⎛⎫⎪⎝⎭单调递增 12.已知函数()()()()21cos cos 02f x x x x ωωωω=+->,若()f x 在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .(]0,2B .(]0,1C .2,13⎛⎤⎥⎝⎦D .20,3⎛⎤ ⎥⎝⎦二、填空题13.给出下列命题:①存在实数α使得sin cos 1αα=; ②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数; ④8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>, 其中正确命题的序号是______.14.设a ,b 是非零实数,且满足sincos1077tan 21cos sin 77a b a b πππππ+=-,则b a =_______.15.若1tan 20201tan αα+=-,则1tan 2cos 2αα+=____________.16.求值:sin 50sin 30sin10cos50cos30sin10︒+︒︒︒-︒︒=_______17.已知cosα17=,cos(α﹣β)1314=,且0<β<α2π<,则sinβ=_____.18.已知α,β均为锐角,()5cos 13αβ+=-,π3sin 35β⎛⎫+= ⎪⎝⎭,则πsin 3α⎛⎫-= ⎪⎝⎭______.19.已知()()sin 2sin 223cos cos 2πθπθπθπθ⎛⎫--- ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭,则22sin 2sin cos cos θθθθ+-=___________.20.已知sin 4πθ⎛⎫-= ⎪⎝⎭sin 2θ=___________. 三、解答题21.已知函数()sin()1g x ax bπ=-++,从下面三个条件中任选一个条件,求出,a b 的值,并解答后面的问题. ①已知函数f (x )=2sin(x +6π)·sin(x -3π)+2的最小值为a ,最大值为b ; ②已知0,0a b >>,且4a b +=,当19a b+取到最小值时对应的a ,b ; ③已知函数3()f x b x a=+-,满足(1)(1)6f x f x -++=. (1)选择条件________,确定,a b 的值;(2)求函数()g x 的单调递增区间和对称中心.22.在下列三个条件中任选一个,补充在下面问题中,并解答. ①函数1()cos sin (0)2264f x x x ωωπω⎛⎫⎛⎫=+-> ⎪ ⎪⎝⎭⎝⎭.②函数1()sin +cos()(0)224f x x x x ωωωω⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭; ③函数()1()sin 0,||22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立;已知_______(填所选条件序号),函数()f x 图象的相邻两条对称轴之间的距离为2π. (1)求3f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间和对称中心、对称轴. 注:如果选择多个条件分别解答,按第一个解答计分.23.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式. (2)若3()5f x =-,且36x ππ-<<,求cos2x 的值.24.求值:(1)cos540tan 225cos(330)sin(240)︒︒︒︒+--+-;(2)1cos201sin10tan 52sin 20tan 5︒︒︒︒︒+⎛⎫-- ⎪⎝⎭25.在直角坐标系xOy 中,已知锐角α和β的顶点都在坐标原点,始边都与x 轴非负半轴重合,且终边与单位圆分别交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫⎪⎝⎭,求()sin αβ-的值. 26.已知函数3()sin (cos 3)2f x x x x =+-. (1)求3f π⎛⎫⎪⎝⎭的值及函数()f x 的单调增区间; (2)若,122x ππ⎡⎤∀∈⎢⎥⎣⎦,不等式()2m f x m <<+恒成立,求实数m 的取值集合.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】将所给条件分别用二倍角公式变形可以得到2cos cos22αβ-=,22sin sin 23αβ+=,然后平方相加化简计算即可求得结果. 【详解】 由23cos sin2αβ+=知2cos cos22αβ-=①,在1sin sin cos 3αββ+=两边同时乘以2得22sin sin 23αβ+=②,将①②两个等式平方相加得()4414cos 249βα+-+=+,解得()5cos 236αβ+=.故选:C. 【点睛】思路点睛:出现两个角的三角函数的和差,求两角和的正弦或余弦时常采用平方相加或平方相减,化简计算可得到两角和或差的三角函数值.2.A解析:A 【分析】已知正切值要求正余弦值,可以利用商的关系将“弦化切”,代入数值即可. 【详解】原式分子分母同除以cos α得 原=tan 12112tan 141αα++==--故选:A. 【点睛】已知正切值求正余弦值,通常有两种做法:一是将所求式子分子分母同除cos α或2cos α,化为tan α求解; 二是利用sin tan cos ααα=得sin tan cos ααα=代入消元即可. 3.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立知π422f a ⎛⎫=+=⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan baϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 44422f b a a b ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<,当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B :sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C :sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确;对于选项D :si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x 的最值,π422f a ⎛⎫=+= ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.4.C解析:C 【分析】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得1cos (,0)2β=-,从而得解. 【详解】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈.又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()αβ+==. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++4236(0353515-=-⨯+⨯=<.102+=>,所以1cos (,0)2β∈- 所以2,23ππβ⎛⎫∈ ⎪⎝⎭.故选:C. 【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.5.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 6.B解析:B 【分析】化简函数()f x 的解析式可得周期与最大值,对任意的实数x ,总有()()()12f x f x f x ≤≤成立,即12x x -半周期的整数倍,代入求最小值即可.【详解】()2020cos 20202sin 20206f x x x x π⎛⎫=+=+ ⎪⎝⎭,则220201010T ππ==,2A = 1212210101010A x x ππ-≥⨯⨯=故选:B【点睛】本题考查正弦函数的性质,考查三角恒等变换,考查周期与最值的求法,属于中档题.7.A解析:A 【分析】由222b c a +=可得cosA =2bc =可得2A =C 值. 【详解】∵222b c a +=,∴cos A 2222b c a bc +-===, 由0<A <π,可得A 6π=,∵2bc =,∴2A =∴5sin 64C sinC π⎛⎫-=⎪⎝⎭,即()1sinCcosC 12244cos C +-=解得50C 6π<< ∴2C=3π或43π,即C=6π或23π 故选A 【点睛】本题考查正弦定理和余弦定理的运用,同时考查两角和差的正弦公式和内角和定理,属于中档题.8.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.9.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos ,5α==-sin 3tan cos 4ααα==-, tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17 故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.10.A解析:A 【分析】将已知式同分之后,两边平方,再根据22sin cos 1αα+=可化简得方程23(sin cos )2sin cos 10αααα--=,解出1sin cos 3αα=-或1,根据111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,得出1sin cos 3αα=-.【详解】由11sin cos sin cos sin cos αααααα++== 两边平方得22(sin cos )(sin cos )αααα+ 222sin cos 2sin cos (sin cos )αααααα++=212sin cos 3(sin cos )αααα+==23(sin cos )2sin cos 10αααα∴--=,1sin cos 3αα∴=-或1,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,1sin cos 3αα∴=-.故选:A. 【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对sin cos αα范围的判断.11.A解析:A 【分析】由题意结合三角恒等变换得()+4f x x πωϕ⎛⎫=+ ⎪⎝⎭,由三角函数的性质可得ω、ϕ,再由三角函数的图象与性质即可得解.【详解】由题意()sin()cos()+4f x x x x πωϕωϕωϕ⎛⎫=+++=+ ⎪⎝⎭,因为函数()f x 的最小正周期为π,且()f x -=()f x , 所以2ππω=,且+4πϕ=,2k k Z ππ+∈,解得ω=2,ϕ=,4k k Z ππ+∈,又||ϕ<2π,所以ϕ=4π,所以()f x =2+2x π⎛⎫⎪⎝⎭2x ,当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈,故()f x 在0,2π⎛⎫⎪⎝⎭上单调递减,故A 正确,C 错误; 当3,44x ππ⎛⎫∈ ⎪⎝⎭时,2,232x ππ⎛⎫∈ ⎪⎝⎭,故()f x 在3,44ππ⎛⎫⎪⎝⎭上不单调,故B 、D 错误. 故选:A. 【点睛】本题考查了三角函数图象与性质的综合应用,考查了三角恒等变换的应用,牢记三角函数图象的特征是解题关键,属于中档题.12.D解析:D 【分析】利用二倍角公式和辅助角公式化简函数()f x ,根据()f x 在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,建立不等关系,解出ω的取值范围. 【详解】 因为()1cos 21sin 2sin 22226x f x x x ωπωω+⎛⎫=+-=+ ⎪⎝⎭,由题意得,362,262ωπππωπππ⎧-+≥-⎪⎪⎨⎪+≤⎪⎩解得23ω≤,又0>ω,所以203ω<≤. 故选:D 【点睛】本题考查正弦函数单调性的应用,考查三角恒等变换,属于中档题.二、填空题13.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦, 所以,不存在实数α使得sin cos 1αα=,①错误; 对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪⎪⎝-⎭-⎭=⎝, ()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误.因此,正确命题的序号为③④. 故答案为:③④. 【点睛】本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题.14.【分析】先把已知条件转化为利用正切函数的周期性求出即可求得结论【详解】因为(tanθ)∴∴tanθ=tan (kπ)∴故答案为【点睛】本题主要考查三角函数中的恒等变换应用考查了两角和的正切公式属于中档题【分析】先把已知条件转化为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-.利用正切函数的周期性求出3k πθπ=+,即可求得结论.【详解】因为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-,(tanθb a =)∴10721k ππθπ+=+∴3k πθπ=+.tanθ=tan (k π3π+)=∴ba=. 【点睛】本题主要考查三角函数中的恒等变换应用,考查了两角和的正切公式,属于中档题.15.2020【分析】由条件求出化简待求式为的形式即可求解【详解】因为解得所以故答案为:2020【点睛】本题主要考查了同角三角函数的基本关系考查了运算能力属于中档题解析:2020 【分析】由条件求出tan α,化简待求式为tan α的形式即可求解. 【详解】 因为1tan 20201tan αα+=-,解得2019tan 2021α=, 所以222222221cos sin 2tan 1tan 2tan tan 2cos 2cos sin 1tan 1tan 1tan αααααααααααα+++=+=+---- 2220191(1tan )1tan 2021=202020191tan 1tan 12021αααα+++===---, 故答案为:2020 【点睛】本题主要考查了同角三角函数的基本关系,考查了运算能力,属于中档题.16.【分析】根据代入原式利用正余弦的和差角公式求解即可【详解】故答案为:【点睛】本题主要考查了非特殊角的三角函数化简与求值需要根据所给的角度与特殊角的关系并利用三角恒等变换进行求解属于中档题【分析】根据506010︒=︒-︒,代入原式利用正余弦的和差角公式求解即可. 【详解】()()sin 6010sin 30sin10sin 50sin 30sin10cos50cos30sin10cos 6010cos30sin10︒-︒+︒︒︒+︒︒=︒-︒︒︒-︒-︒︒sin 60cos10cos60sin10sin 30sin10cos60cos10sin 60sin10cos30sin10︒︒-︒︒+︒︒=︒︒+︒︒-︒︒sin 60cos10tan 60cos60cos10︒︒==︒=︒︒【点睛】本题主要考查了非特殊角的三角函数化简与求值,需要根据所给的角度与特殊角的关系,并利用三角恒等变换进行求解.属于中档题.17.【分析】利用同角三角函数的基本关系式求得的值由的值【详解】依题意则所以所以所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数学思想方法属于基础题【分析】利用同角三角函数的基本关系式求得()sin ,sin ααβ-的值,由()sin sin βααβ=--⎡⎤⎣⎦的值. 【详解】 依题意02πβα<<<,则02πβ>->-,所以02παβ<-<,所以sin α==,()sin αβ-==()sin sin βααβ=--⎡⎤⎣⎦()()sin cos cos sin ααβααβ=---131147=-==故答案为:2【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于基础题.18.【分析】先求出再由并结合两角和与差的正弦公式求解即可【详解】由题意可知则又则或者因为为锐角所以不成立即成立所以故故答案为:【点睛】本题考查两角和与差的正弦公式的应用考查同角三角函数基本关系的应用考查 解析:3365-【分析】先求出()sin αβ+,πcos 3β⎛⎫+⎪⎝⎭,再由()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,并结合两角和与差的正弦公式求解即可. 【详解】 由题意,可知0,παβ,则()sin 1213αβ+===,又π31sin 352β⎛⎛⎫+=∈ ⎪ ⎝⎭⎝⎭,则πππ,364β⎛⎫+∈ ⎪⎝⎭,或者π3π5π,346β⎛⎫+∈ ⎪⎝⎭, 因为β为锐角,所以πππ,364β⎛⎫+∈ ⎪⎝⎭不成立,即π3π5π,346β⎛⎫+∈ ⎪⎝⎭成立,所以π4cos 35β⎛⎫+===- ⎪⎝⎭.故()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()ππsin cos cos sin 33αββαββ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭533311245651533⎛⎫-⨯=- ⎪⎛⎫=⨯--⎝ ⎪⎝⎭⎭.故答案为:3365-. 【点睛】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.19.【分析】利用诱导公式结合弦化切的思想求出的值然后在代数式上除以并在所得分式的分子和分母中同时除以可得出关于的分式代值计算即可【详解】解得因此故答案为:【点睛】本题考查诱导公式和同角三角函数的商数关系 解析:75【分析】利用诱导公式结合弦化切的思想求出tan θ的值,然后在代数式22sin 2sin cos cos θθθθ+-上除以22sin cos θθ+,并在所得分式的分子和分母中同时除以2cos θ可得出关于tan θ的分式,代值计算即可. 【详解】()()sin 2sin sin cos tan 1223sin cos tan 1cos cos 2πθπθθθθπθθθθπθ⎛⎫--- ⎪++⎝⎭===--⎛⎫+++ ⎪⎝⎭,解得tan 3θ=.因此,22222222sin 2sin cos cos tan 2tan 1sin 2sin cos cos sin os tan 1θθθθθθθθθθθθθ+-+-+-==++2232317315+⨯-==+. 故答案为:75.【点睛】本题考查诱导公式和同角三角函数的商数关系化简求值,解题的关键就是求出tan θ的值,考查运算求解能力,属于中等题.20.【分析】根据可得的值将平方结合正弦的二倍角公式即可计算出的值【详解】因为所以所以所以且所以所以故答案为:【点睛】关键点点睛:解答本题的关键是通过展开得到的值再根据与之间的关系:去完成求解解析:23【分析】根据sin 4πθ⎛⎫-= ⎪⎝⎭可得sin cos θθ-的值,将sin cos θθ-平方结合正弦的二倍角公式即可计算出sin 2θ的值. 【详解】因为sin 46πθ⎛⎫-= ⎪⎝⎭)sin cos θθ-=sin cos θθ-=, 所以()21sin cos 3θθ-=且22sin cos 1θθ+=, 所以112sin cos 3θθ-=,所以2sin 23θ=, 故答案为:23. 【点睛】关键点点睛:解答本题的关键是通过展开sin 4πθ⎛⎫-⎪⎝⎭得到sin cos θθ-的值,再根据sin cos θθ-与sin 2θ之间的关系:()2sin cos 1sin 2θθθ-=-去完成求解. 三、解答题21.(1)1,3a b ==;(2)递增区间为7[2,2]()66k k k Z ππππ++∈,对称中心为,13k ππ⎛⎫-+ ⎪⎝⎭()k Z ∈. 【分析】(1)选择条件①,利用两角和与差的公式,二倍角公式和辅助角公式整理函数()f x ,利用最值即求得参数,a b ;选择条件②,妙用“1”代入,使用基本不等式,计算取等号条件,即求得参数,a b ;根据分式函数对称中心和已知条件对照,即求得参数,a b ; (2)先利用参数,a b 得()sin()13g x x π=-++,再利用整体代入法求函数单调增区间和对称中心即可. 【详解】解:(1)选择条件①,()2sin()sin()263f x x x ππ=+-+,故111()=2cos sin 2sin 222222f x x x x x x x ⎫⎛⎫⎛⎫++=-++⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()sin(2)23f x x π∴=-++,当sin(2)13x π+=-时,max ()3f x =;当sin(2)13x π+=时,min ()1f x =.故1,3a b ==;选择条件②,0,0a b >>,4a b +=,则19119191()()(19)(104444b a a b a b a b a b +=++=+++≥+=,当且仅当9b a a b=时,等号成立,即3b a =代入4a b +=,得1,3a b ==; 选择条件③,函数3()f x b x a=+-的定义域{}x x a ≠,值域为{}y y b ≠,即该分式函数对称中心为(),a b ,又(1)(1)6f x f x -++=得()f x 对称中心为()13,, 故1,3a b ==;(2)由(1)知1,3a b ==, 得()sin()13g x x π=-++,要使()g x 递增,只需sin()3x π+递减,故令322,232k x k k Z πππππ+≤+≤+∈, 解得722,66k x k k Z ππππ+≤≤+∈, 所以()g x 递增区间为72,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,令3x k ππ+=,解得:3x k ππ=-+,k Z ∈,所以()g x 的对称中心为,13k ππ⎛⎫-+ ⎪⎝⎭()k Z ∈.【点睛】 方法点睛:求三角函数性质问题时,通常先利用两角和与差的三角函数公式、二倍角公式及辅助角公式将函数化简成基本形式()()sin f x A x b ωϕ=++,再利用整体代入法求解单调性、对称性等性质.22.条件性选择见解析,(1)14;(2)单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦; 对称中心的坐标为,0,212k k Z ππ⎛⎫-∈ ⎪⎝⎭;对称轴为直线26k x ππ=+,k Z ∈. 【分析】 选择条件①:()f x 11cos cos22224x x x ωωω⎫⎛⎫=+-⎪⎪⎪⎝⎭⎝⎭11cos sin 4426x x x πωωω⎛⎫=+=+ ⎪⎝⎭,再根据相邻两对称轴之间距离为2π,可得ω从而求出()f x ;选择条件②:()f x 11cos sin 426x x x πωωω⎛⎫=+=+ ⎪⎝⎭,相邻两对称轴之间距离为2π,可得ω,从而求出()f x ; 选择条件③:()f x 相邻两对称轴之间距离为2π,求出ω,对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立,则()f x 的图象关于5,012π⎛⎫ ⎪⎝⎭对称,可求出ϕ,从而得出()f x ;(1)由于选择哪种情况,都有1()sin 226f x x π⎛⎫=+ ⎪⎝⎭,代入3f π⎛⎫⎪⎝⎭可得答案. (2)分别根据正弦函数的单调递增区间、对称中心、对称轴可得答案. 【详解】选择条件①:依题意,()1cos sin 2264f x x x ωωπ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,即有:()11cos cos22224f x x x x ωωω⎫⎛⎫=+-⎪⎪⎪⎝⎭⎝⎭,化简得:211()cos cos 22224f x x x x ωωω⎛⎫=+- ⎪⎝⎭,即有:11()cos sin 4426f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又因为()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭ ;选择条件②:依题意,()1cos cos 224f x x x x ωωω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,即有:11()cos sin 4426f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又因为()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭; 选择条件③:依题意,()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立, 则()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称,则5212k πϕπ⨯+=,k Z ∈,由||2ϕπ<知6π=ϕ,从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭; (1)由于选择哪种情况,都有1()sin 226f x x π⎛⎫=+ ⎪⎝⎭,所以11sin 233264f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.(2)1()sin 226f x x π⎛⎫=+ ⎪⎝⎭, 单调递增区间为2222621,k x k k z πππππ-≤+≤+∈, 解得,,36x k k k Z ππππ⎡⎤∈-+∈⎢⎥⎣⎦,从而()f x 的单调增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 又由2,6x k k Z ππ+=∈,所以212k x k Z ππ=-∈,, 得()f x 的对称中心的坐标为,0,212k k Z ππ⎛⎫-∈⎪⎝⎭, ()f x 的对称轴为直线2,62x k k Z πππ+=+∈,即26k x ππ=+,k Z ∈. 【点睛】 关键点点睛:本题考查了三角函数解析式的化简,以及三角函数的图象与性质的应用,其中解答中利用三角恒等变换的公式,化简函数的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.23.(1)()sin 26f x x π⎛⎫=+⎪⎝⎭;(2)310. 【分析】(1)根据最大值求出A ,根据周期求出ω,根据极大值点求出ϕ(2)根据角的范围求出4cos 265x π⎛⎫+= ⎪⎝⎭,将cos2x 写成cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和与差的余弦公式展开,求解即可. 【详解】(1)由图知121,,2362A T πππ==-= ,2πω∴==T 又22,,62k k Z ππϕπ⨯+=+∈26k πϕπ∴=+ 又||2πϕ<,,()sin 266f x x ππϕ⎛⎫∴==+ ⎪⎝⎭ (2)3()5f x =- 所以3sin 265x π⎛⎫+=- ⎪⎝⎭,,236262x x πππππ-<<-<+<, 又因为34sin 2,cos 26565x x ππ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭,所以 cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ cos 2cos sin 2sin 6666x x ππππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭431552=-⨯=【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ. (2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.24.(1)0(2)2【分析】(1)利用诱导公式化简,即可求解; (2)先利用二倍角公式化简1cos 202sin 20︒︒+,由切化弦化1tan 5tan 5︒︒-, 通分后利用两角差的正弦公式展开即可化简求值.【详解】利用(1)原式cos(3180)tan 45cos30sin 60110;22︒︒︒=⨯︒+-+=-+-+= (2)原式=22cos 10cos5sin 5sin10()4sin10cos10sin 5cos5︒︒︒=-︒-︒︒︒︒ 22cos10cos 5sin 5cos10cos10cos10sin10sin102cos1012sin10sin 5cos52sin102sin10sin102︒︒-︒︒︒︒=-︒=-︒⋅=-︒︒︒︒︒︒︒cos102sin 20cos102sin(3010)2sin102sin10︒-︒︒-︒-︒==︒︒1cos102(cos10)222sin10︒︒︒︒-=== 【点睛】关键点点睛:三角函数化简求值,需要根据式子的结构特征选择合适的公式,并且要注意公式的正用、逆用,特别是复杂式子的灵活运用,属于难题.25.3365- 【分析】 利用已知求出1213m =和45n =,再利用差角的正弦公式求解. 【详解】锐角α和β的顶点都在坐标原点始边都与x 轴非负半轴重合, 且终边与单位圆交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫ ⎪⎝⎭, cos 0m α∴=>,5sin 13α=,2251169m +=,3cos 5β=,sin 0n β=>,29125n +=, 求得1213m =,45n =, 5312433sin()sin cos cos sin 13513565αβαβαβ∴-=-=⨯-⨯=-. 【点睛】结论点睛:三角函数的坐标定义:点(,)P x y 是角α终边上的任意的一点(原点除外),r代表点到原点的距离,r =sin α=y r , cos α=x r ,tan α=y x . 26.(1)2,单调增区间5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)11,2⎛⎫-- ⎪⎝⎭. 【分析】(1)根据三角恒等变换化简函数()f x ,代值求3f π⎛⎫⎪⎝⎭,用整体代换法求单调递增区间; (2)求出函数在,122ππ⎡⎤⎢⎥⎣⎦上的值域,原不等式等价于函数()f x 在,122ππ⎡⎤⎢⎥⎣⎦上的值域是(),2m m +的子集,列出不等式组化简即可.【详解】解:(1))21()sin (cos )sin 22sin 1222f x x x x x x =+-=+-1sin 22sin 2223x x x π⎛⎫=-=- ⎪⎝⎭所以sin 2s 3in 333f ππππ⎛⎛⎫= ⎫⎛⎫⨯-== ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭ 由222()232k x k k Z πππππ-≤-≤+∈得5()1212k x k k Z ππππ-≤≤+∈, 故函数的单调增区间为5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,22,363x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1(),12f x ⎡⎤∈-⎢⎥⎣⎦, 因为,122x ππ⎡⎤∀∈⎢⎥⎣⎦不等式()2m f x m <<+恒成立 所以1112212m m m ⎧<-⎪⇒-<<-⎨⎪<+⎩ 所以实数m 的取值集合11,2⎛⎫--⎪⎝⎭. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课——三角恒等变换公式的综合应
用
课后篇巩固探究
1.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )
A.3
B.4
C.±3
D.±4 解析∵θ为第二象限角,∴θ2为第一、三象限角.
∴cos θ
2的值有两个.
由sin(π-θ)=24
25,可知sin θ=2425,∴cos θ=-725. ∴2cos 2θ2=cos θ+1=1825.∴cos θ2=±35. ★答案★C 2.2cos10°-sin20°sin70°
的值是( ) A.12
B.√32
C.√3
D.√2 解析原式=
2cos (30°-20°)-sin20°sin70° =2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70° =√3cos20°=√3.
★答案★C
3.若sin (π6-α)=13,则cos (2π3+2α)=( ) A.29
B.-29
C.79
D.-79 解析∵sin (π6-α)=13,∴sin [π2-(π3+α)]=13, ∴cos (π3+α)=1
3,
∴cos (2π+2α)=2cos 2(π+α)-1
=2×19-1=-79,选D .
★答案★D
4.函数y=cos 2(x +π4)的图像沿x 轴向右平移a 个单位(a>0)后,所得图像关于y 轴对称,则a 的最小值为( )
A.π
B.3π4
C.π2
D.π4
y=cos 2(x +π4
)=1+cos (2x+π2)
2=-12sin 2x+12,将y=-12sin 2x+12向右平移a 个单位后得到y=-12sin(2x-2a )+12,又根据其图像关于y 轴对称,则2a=k π+π2,k ∈Z ,∴a min =π4.
5.关于函数f (x )=2(sin x-cos x )cos x 的四个结论:
P 1:最大值为√2;
P 2:把函数g (x )=√2sin 2x-1的图像向右平移π4个单位后可得到函数f (x )=2(sin x-cos x )cos x 的图像;
P 3:单调递增区间为[kπ+7π8,kπ+11π8],k ∈Z ;
P 4:图像的对称中心为(k 2π+π8,-1),k ∈Z .
其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
f (x )=2sin x cos x-2cos 2x=sin 2x-cos 2x-1=√2sin (2x -π4)-1,所以最大值为√2-1,所以P 1错
误.
将g (x )=√2sin 2x-1的图像向右平移π4个单位后得到h (x )=√2·sin 2(x -π4)-1=√2sin (2x -π2)-1的图像,所以P 2错误.
由-π2+2k π≤2x-π4≤π2+2k π,k ∈Z ,
解得-π8+k π≤x ≤3π8+k π,k ∈Z ,即增区间为[-π8+kπ,
3π8+kπ],k ∈Z ,所以P 3正确.
由2x-π4=k π,k ∈Z ,得x=k 2π+π8,k ∈Z ,
所以图像的对称中心为(k 2π+π8
,-1),k ∈Z ,所以P 4正确,所以选B .
6.若sin α2=√1+sinα−√1-sinα,0≤α≤π,则tan α的值是 . √1+sinα−√1-sinα=|sin α+cos α|−|sin α-cos α|.∵0≤α≤π,∴0≤α≤π.
当0≤α2≤π4时,cos α2≥sin α2,∴原式=2sin α2.
又原式=sin α2,∴sin α2=0,∴tan α2=0,
∴tan α=
2tan α21-tan 2α2=0. 当π4<α≤π2时,cos α2<sin α2, ∴原式=2cos α2.
又原式=sin α2,∴tan α2=2, ∴tan α=-43.
或-43
7.函数f (x )=4cos 2x 2cos (π2-x)-2sin x-|ln(x+1)|的零点个数为 .
f (x )=4·1+cosx 2·sin x-2sin x-|ln(x+1)|=sin 2x-|ln(x+1)|=0,即sin 2x=|ln(x+1)|,在同一坐标系作出y=sin 2x 与y=|ln(x+1)|的图像.
由图像知共2个交点,故f (x )的零点个数为2.
8.已知tan α=2.
(1)求tan (α+π4
)的值; (2)求sin2αsin 2α+sinαcosα-cos2α-1的值.
(α+π4)=tanα+tan π41-tanαtan π4 =tanα+1
1-tanα=2+11-2
=-3. (2)
sin2αsin 2α+sinαcosα-cos2α-1 =2sinαcosαsin 2α+sinαcosα-(2cos 2α-1)-1
=2sinαcosαsin 2α+sinαcosα-2cos 2α
=2tanαtan 2α+tanα-2=2×2
22+2-2=1. 导学号93774100已知5sin β=sin(2α+β),求证:2tan(α+β)=3tan α.
β=5sin[(α+β)-α]
=5sin(α+β)cos α-5cos(α+β)sin α,
sin(2α+β)=sin[(α+β)+α]
=sin(α+β)cos α+cos(α+β)sin α.
∵5sin β=sin(2α+β),∴5sin(α+β)cos α-5cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,∴4sin(α+β)cos α=6cos(α+β)sin α,∴2tan(α+β)=3tan α.
10.导学号93774101已知向量a =(cos x ,sin x ),b =(-cos x ,cos x ),c =(-1,0).
(1)若x=π6,求向量a ,c 的夹角;
(2)当x ∈[π2,9π8]时,求函数f (x )=2a ·b +1的最大值.
∵a =(cos x ,sin x ),c =(-1,0), ∴|a |=√cos 2x +sin 2x =1,|c |=√(-1)2+02=1.
当x=π6时,a =(cos π6,sin π6)=(√32,12), a ·c =√32×(-1)+12×0=-√32,cos <a ,c >=a ·c |a |·|c |=-√32.∵0≤<a ,c >≤π,∴<a ,c >=5π6
. (2)f (x )=2a ·b +1=2(-cos 2x+sin x cos x )+1
=2sin x cos x-(2cos 2x-1)=sin 2x-cos 2x
=√2sin (2x -π
4). ∵x ∈[π2,9π8],∴2x-π4
∈[
3π4,2π], ∴sin (2x -π4)∈[-1,
√22], ∴当2x-π4=3π4,即x=π
2
时,f (x )max =1.。