七上有理数的有关概念练习题一(含答案苏教版)
苏教版初一数学上册第一章有理数复习练习卷及答案
第一章 有理数复习练习(时间:100分钟 满分:100分)一、选择题(每题2分,计20分)1.如果□+2=0,那么“□”内应填的数是( ). A .-2 B .-21 C .21D . 2 2.如果一个数的立方等于它的倒数,那么这个数一定是( ).A .0 B. 1 C. –1 D. 1或-13.在下列各数:— (—3),— (—32),—|—3|,(—3)2,—(—3)2中,负数的个数为( ). A.1 B.2 C.3 D.44.现将1000元人民币,存入年利率为m 的某银行,两年后本息共计( )元(不计利息税). A .1000 B .1000+m C .1000(1+m) D .1000(1+2m) 5.若a -(2b -3c)=a+( )成立,则括号应填入( ).A. 2b -3cB. 2b+3cC. -2b+3cD. -2b -3c 6.下列计算错误的是( ).A .31122112)3121(12⨯-⨯=-⨯B .71)35()51()35()35()7151(⨯-+-⨯-=-⨯+-C .1199112211)9922(÷+÷=÷+D .31182118)3121(18÷-÷=-÷ 7.在(-1)5,(-1)10,-22,(-3)2这四个数中,最大的数比最小的数要大( ).A. 8B. 10C. 13D. 5 8.绝对值小于4的非负整数有( )个 A .2B .3C .4D .59.若有理数a 、b 满足ab >0,且a + b <0,则下列说法正确的是( ) A .a 、b 可能一正一负 B .a 、b 都是正数C .a 、b 都是负数D . a 、b 中可能有一个为010.为了比较两个有理数的大小,现提出了4种新方法:(1)倒数大的反而小;(2)绝对值大的反而小;(3)平方后大的数较大;(4)把两数求商,若商大于1,则被除数较大;商等于1,则两数相等;商小于1,则除数较大.这4种方法( ).A .都正确B .都不正确C .只有一个正确D .有两个正确 二、填空题(每题3分,计24分)11.有一组数:5-2,10-2,15-2,20-2,…第20个数为 .12.据生物学统计,一个健康的成年女子体内的血量一般不低于4000毫升,每毫升血液中红细胞的数量约有4.19610⨯个,因此,一个健康的成年女子体内的红细胞数量一般不低于______个(保留三个有效数字).13.在数轴上,-4与-6之间的距离是____________________. 14.在下面等式的內填数,O 内填运算符号,使等式成立(两个式子中的运算符号不能相同):6=-O,6=-O.15.北京与巴黎两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数),如果现在北京时间是7∶00,那么巴黎的时间是 .16.用“ 、 ”定义新运算:对于任意实数a ,b ,都有a b =a 和a b =b .例如.3 2=3,3 2=2,则(2006 2005) (2004 2003)= . 17.当x 的值为-3时,式子-3x 2 + a x -7的值是-2,则当x =-1时,这个式子的值为 .18.小明得到智慧老人给的钥匙后(如图),便去闯智慧屋.小明到屋前, 大门紧锁.锁上刻着“LH ”两个字母,门边上有26个英文字母的按键. 聪明的小明按了两个字母键,门立即开了.小明按的字母键分别是 . 三、解答题(共56分)19.(4分)动手做一做.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数之积为6,则填在A 、B 、C 内的三个数依次是多少?20.(4分)在所给数轴上画出表示数-3,-1,2-的点,并比较它们的大小.21.(6分)34)3(3161)211(1-+÷⨯---.22.(6分)小虫从某点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程(单位:厘米)依次为:+ 5、– 3、+ 10、– 8、– 6、+ 12、– 10.(1)通过计算说明小虫是否回到起点;(2)如果小虫爬行的速度为0.5厘米/秒,小虫共爬行了多少时间? 23.(6分)先化简,再求值.已知x-y=3,求式子-4(y-x )-3x+3y+5的值.24.(6分)人在运动时心跳速率通常和人的年龄有关,用a 表示一个人的年龄,用b 表示正常情况下,这个人在运动时承受的每分钟心跳的最高次数,则0.8(220)b a =- (1)正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是多少? (2)一个45岁的人运动时,10秒钟心跳的次数为22次,请问他有危险吗?为什么? 25.(6分)按照下列步骤做一做: (1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,得到一个新数; (3)求这两个两位数的和.再写几个两位数重复上面的过程,这些和有什么规律?这个规律对任意一个两位数都成立吗?为什么?26.(6分)下表是小明记录的10月份某一周内每天中午12时的气温的变化情况(气温比(1)若上周日中午12时的气温为10ºC,那么本周每天的实际气温是多少?(请完成上表)(2)本周的最高气温与最低气温相差多少摄氏度?(3)请你用折线统计图表示该周的气温变化情况.27.(6分)按如图所示的方式摆放桌子和椅子(1)2(2)8张大桌子,共可坐人.(3)在(2)中,改成每8张桌子拼成1张大桌子,则共可坐人.28.(6分)下面是同学们玩过的“锤子、剪子、布”的游戏.规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”,现在我们约定:“布”赢“锤子”得9分,同时出“锤子”者得−9分;“锤子”赢“剪子”得5分,同时出“剪子”者得−5分;“剪子”赢“布”得2分,同时出“布”者得−2分,其余不得分.在玩此游戏过程中,小明和小亮的游戏结果如下表:第一章 有理数复习一、选择题1.A 2.D 3.B 4.D 5.C 6.D 7.C 8.C 9.C 10.B 二、填空题11. 100—2 12.1.68×1010 13.2 14.略 15.0:00 16.2005 17.3218.OK 三、解答题19.A :—2,B :3,C :6 20.312->->- 21.122.(1)5—3+10—8—6+12—10=0,回到起点;(2)108秒 23.原式=x —y+5=8 24.(1)164;(2)没有 25.10x+y+10y+x=11(x+y),是11的倍数 26.(1)13,11,16,14,13,17,16;(2)6℃;(3)略 27.(1)8,10,12,2n+4;(2)(2×5+4)×8=112;(3)(2×8+4)×5=100 28.小明得分为:6×5+5×2+8×(—2)+10×(—9)=—66, 小亮得分为:6×(—5)+5×(—2)+8×2+10×9=66。
苏教版七年级数学有理数知识点及习题
根据有理数的定义,有理数可以进行如下的分类
正整数
整数 零
有理数
负整数
正分数 分数
负分数
正整数 正有理数
正分数 或 有理数 零
负整数 负有理数
负分数
无理数 问一问:是不是所有的数都是有理数呢? ※ 如果大正方形的边长为 a,那么 a2= 2.a 是有理数吗?
无理数定义 : 无限不循环小数叫做无理数.
3、用“<”或“>”填空:
(1) 12.3
12 ; (2) ( 2.75)
( 2.67) ;
(3)} 8
8;
(4) 0.4
( 0.4) .
五、有理数的加法与减法 1、有理数的加法 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,绝对值相等时,和为 0;绝对值不等时,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数.
(1) (-23)+(+ 58)+(- 17)
(2)(- 2.8)+(- 3.6)+(- 1.5)+3.6
(3) 1+ - 2 + - 5 + + 5
6
7
6
7
2、有理数的减法 如果某天最高气温是 5℃,最低气温是- 3℃,那么这天的日温差记作 [5-(- 3)]℃,怎样计算 [5-(- 3) ] 呢?
例 2 化简:-(+ 2),-(+ 2. 7),-(- 3),-(- 3). 4
练一练: 1.写出下列各数的相反数:
0,58,-4,3.14,- 2. 3
2.在数轴上画出表示下列各数以及它们的相反数的点: -4,0.5 ,3,-2.
3.填空: (1) ( 7) 是_____的相反数, ( 7) =_______; (2) ( 4) 是_____的相反数, ( 4) =______.
七年级苏教版数学复习要点考点专题一:有理数有关概念专题测试(教师用,附答案分析)
七年级苏教版数学复习要点考点专题一:有理数有关概念专题测试姓名:___________班级:___________一、选择题(共8小题,每题5分,共计40分)1.一袋面粉的质量标识为“1000.25±千克”,则下列面粉质量中合格的是( )A .100.30千克B .99.51千克C .99.80千克D .100.70千克【解答】解:“1000.25±千克”的意义为一袋面粉的质量在1000.2599.75-=千克与1000.25100.25+=千克之间均为合格的,故选:C .2.下列各数是无理数的是( )A .2-B .23C .0.010010001D .π【解答】解:A 、2-是有理数,不合题意;B 、23是有理数,不合题意; C 、0.010010001是有理数,不合题意;D 、π是无理数,符合题意;故选:D .3.无论x 取什么值,下列代数式中值一定是正数的是( )A .2(21)x +B .|21|x +C .221x +D .221x -【解答】解:2(21)0x +;|21|0x +;2211x +;2211x --;故选:C .4.如果||a a =,则( )A .a 是正数B .a 是负数C .a 是零D .a 是正数或零【解答】解:根据绝对值的意义,若一个数的绝对值等于它本身,则这个数是非负数,即a 是正数或零. 故选:D .5.若(3)a +的值与4互为相反数,则a 的值为( )A .7-B .72-C .5-D .12【解答】解:(3)a +的值与4互为相反数,340a ∴++=,解得:7a =-.故选:A .6.数轴上,点A 、B 分别表示1-、7,则线段AB 的中点C 表示的数是( )A .2B .3C .4D .5【解答】解:线段AB 的中点C 表示的数为:1732-+=,故选:B . 7.已知,a ,b 是不为0的有理数,且||a a =-,||b b =,||||a b >,那么用数轴上的点来表示a ,b 时,正确的是( )A .B .C .D .【解答】解:||a a =-,||b b =,0a ∴,0b ,||||a b >,∴表示数a 的点到原点的距离比b 到原点的距离大,故选:C .8.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且6a b c d +++=,则点D 表示的数为( )A .2-B .0C .3D .5【解答】解:设点D 表示的数为x ,则点C 表示的数为3x -,点B 表示的数为4x -,点A 表示的数为7x -, 由题意得,(3)(4)(7)6x x x x +-+-+-=,解得,5x =,故选:D .二、填空题(共6小题,每小题5分,共计30分)9.比较大小:(8)-+ |9|--; 23- 34-(填“>”、“ <”、或“=”符号). 【解答】解:①(8)8-+=-,|9|9-=-,89->-,(8)|9|∴-+>-; ②228||3312-==,339||4412-==,891212<,2334∴->-.故答案为:>;>. 10.绝对值不等于3的非负整数有 .【解答】解:根据绝对值的意义,绝对值不等于3的非负整数有0,1,2,以及大于4正整数. 故答案为:0,1,2,以及大于4正整数.11.如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A 点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A 到达点A '的位置,则点A '表示的数是 .【解答】解:半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,OA ∴'之间的距离为圆的周长2π=,A '点在2的左边,A ∴'点对应的数是22π-.故答案是:22π-.12.若||4a -=,则a = ;若x x -=,则x = .【解答】解:因为||4a -=,则4a =±;因为x x -=,则0x =;故答案为:4±;0.13.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简||||||b c c a b -+--的结果是 .【解答】解:根据题意得:0a b c <<<,0b c ∴-<,0c a ->,则原式2c b c a b c a =-+-+=-. 故答案为:2c a -.14.在数轴上,点A 表示的数是4x +,点B 表示的数是22x -,且A ,B 两点的距离为8,则x = . 【解答】解:由题意得:|4(22)|8x x +--=|23|8x ∴+=238x ∴+=-或238x +=103x ∴=-或2x =故答案为:103-或2. 三、解答题(共3小题,每小题10分,共计30分)15.把下列各数填入相应的括号内.0.1515515551⋯,0,20||3--,0.4,2π-,24-, 5.6-. 正数集合:{ };无理数集合:{ };负分数集合:{ }.【解答】解:正数集合:{0.1515515551⋯,0.4,;无理数集合:{0.1515515551⋯,}2π-; 负分数集合:20{||3--, 5.6}-. 故答案为:0.1515515551⋯,0.4,0.1515515551⋯,2π-;20||3--, 5.6-. 16.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果乙球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:):10m +,2-,5+,12+,6-,9-,4+,14-.(假定开始计时时,守门员正好在球门线上) (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10m (不包括10)m ,则对方球员挑射极可能造成破门.问:在这一时间段内,对方球员有几次挑射破门的机会?简述理由.【解答】解:(1)根据题意得:102512694140-++--+-=,则守门员最后能回到球门线上;(2)10251225-++=,则守门员离开球门线的最远距离达25米;(3)根据题意得:10,8,13,25,19,10,14,0,则对方球员有4次挑射破门的机会.17.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为2-,点N所表示的数为4.①在点M和点N中间,数所表示的点是【M,N】的好点;②在数轴上,数和数所表示的点都是【N,M】的好点.【解答】解:①设所求数为x,由题意得--=-,解得2(2)2(4)x xx=;故答案为:2;②设所求的数是y,由题意得,2(2)4--=-,解得:0y=或8+=-或2(2)4y yy y-,故数0和数8-所表示的点都是【N,M】的好点.故答案为:0,8-.。
苏教版七年级数学上册第一章-有理数检测试卷(一)及答案
苏教版七年级数学上册第一章 有理数检测试卷(一)一、选择题1.下列说法中正确的是( )A.不带“-”的数都是正数B.不存在既不是正数,也不是负数的数C.如果a 是正数,那么a -一定是负数D.0C ︒表示没有温度2.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( )A.26-℃ B.22-℃ C.18-℃ D.16-℃3.a ,b 为有理数,且a >0,b<0,a <b ,则a ,b ,-a ,-b 的大小关系是( )A. b<-a <a <-bB. -a <a <b<-bC. -a <b<a <-bD. -b<-a <a <-b4.,451021)245321121(6-+-=+-⨯-这步运算运用了( ) A.加法结合律B.乘法结合律 5.绝对值大于2且不大于4的整数有( )A.3个B.4个C.5个6.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如,9:15记为-1,10:45记为1等等。
依此类推,上午7:45应记为( )A 、3B 、-3C D7.把四位数x 先四舍五入到十位,所得的数y ,再四舍五入到百位,所得的数z ,再四舍五入到千位,恰好是2000,则四位数的最小值、最大值分别是( )A .1500,2400B .1450,2440C .1445,2444D .1444,24458.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A ,B ,C ,D 对应的数分别是数a ,b ,c ,d ,且d-2a=10,那么数轴的原点应是( ) D C B AA.点AB.点BC.点C二、填空题1.水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第二次变化后的位置,其变化值是_________。
新苏教版七年级数学上册《有理数》单元测试卷(附答案)
《有理数》单元测试卷班级 姓名一、选择题1、若m 是有理数,则||m m +的值( )A 、可能是正数B 、一定是正数C 、不可能是负数D 、可能是正数,也可能是负数2、若m m m <-0,则||的值为( )A 、正数B 、负数C 、0D 、非正数3、如果0m n -=,m n 则与的关系是 ( )A 、互为相反数B 、 m =±n ,且n ≥0C 、相等且都不小于0D 、m 是n 的绝对值4、下列等式成立的是( )A 、0=-+a aB 、a a --=0C 、0=--a aD 、a --a =05、若230a b -++=,则a b +的值是( )A 、5B 、1C 、-1D 、-56、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( ) A.-3 B.-9 C.-3或-9 D.3或97、两个数的差为负数,这两个数 ( )A 、都是负数B 、两个数一正一负C 、减数大于被减数D 、减数小于被减数8、负数a 与它相反数的差的绝对值等于( )A 、 0B 、a 的2倍C 、-a 的2倍D 、不能确定9、下列语句中,正确的是( )A 、两个有理数的差一定小于被减数B 、两个有理数的和一定比这两个有理数的差大C 、绝对值相等的两数之差为零D 、零减去一个有理数等于这个有理数的相反数10、对于下列说法中正确的个数( )①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数④两个有理数的和可能等于0A 、1B 、2C 、3D 、411、有理数a ,b 在数轴上的对应点的位置如图所示,则( )A 、a +b =0B 、a +b >0C 、a -b <0 D 、a -b >0 12、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( ) -a bA 、a +b -c =a +b +cB 、a -b +c =a +b +cC 、a +b -c =a +(-b )+(-c )D 、a +b -c =a +b +(-c )13、若0a b c d <<<<,则以下四个结论中,正确的是( )A 、a b c d +++一定是正数B 、c d a b +--可能是负数C 、d c a b ---一定是正数D 、c d a b ---一定是正数14、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )A 、被减数a 为正数,减数b 为负数B 、a 与b 均为正数,且被减数a 大于减数bC 、a 与b 两数均为负数,且减数 b 的绝对值大D 、以上答案都可能15、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( )A 、-b <-a <b <aB 、-a <b <a <-bC 、b <-a <-b <aD 、b <-a <a <-b二、填空题1、小明与小刚规定了一种新运算*:若a 、b 是有理数,则a*b = b a 23-。
苏教版七年级数学上册 第二章《有理数》选择、填空专题练习(含答案)
第二章《有理数》选择、填空专题练习一.选择题1.下面几个数中,属于正数的是()A.3 B.﹣0.5 C.﹣10 D.02.上升5cm,记作+5cm,下降6cm,记作()A.6cm B.﹣6cm C.+6cm D.负6cm3.下列数是无理数的是()A.πB.C.D.04.如图,数轴上A,B两点之间表示的整数共有()A.5个B.6个C.7个D.8个5.﹣8的相反数是()A.﹣8 B.C.8 D.﹣6.﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣7.|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣8.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣19.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1 B.3 C.﹣1 D.﹣310.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和11.若a≠0,b≠0,则代数式的取值共有()A.2个B.3个C.4个D.5个12.若|a﹣b|=1,|b+c|=1,|a+c|=2,则|a+b+2c|等于()A.3 B.2 C.1 D.013.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣314.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)15.计算+++++……+的值为()A.B.C.D.16.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大17.﹣|﹣|的负倒数是()A.B.C.D.18.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×10619.遗爱湖有5400亩,15亩=10000平方米,用科学记数法表示遗爱湖面积为()A.8.1×105平方米B.8.1×106平方米C.3.6×105平方米D.3.6×106平方米20.已知某公司去年的营业额约为四千零七十万元,则此营业额可表示为()A.4.07×105元B.4.07×106元C.4.07×107元D.4.07×108元21.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F (n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4201822.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入﹣1,并将所显示的结果再次输入,这时显示的结果应当是()A.2 B.3 C.4 D.523.定义一种运算:C=,则C=()A.10 B.C.D.2024.定义运算a⊗b=a(1﹣b),则下面的结论正确的是()A.2⊗(﹣2)=﹣2 B.a⊗b=b⊗aC.若a+b=0,则(a⊗a)+(b⊗b)=2ab D.若a⊗b=0,则a=025.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元二.填空题26.如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.27.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.28.﹣2018的绝对值是.29.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.30.若x是实数,则y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为.31.设abcd是一个四位数,a、b、c、d是阿拉伯数字,且a≤b≤c≤d,则式子|a﹣b|+|b﹣c|+|c ﹣d|+|d﹣a|的最大值是.32.计算:|﹣3|﹣1=.33.计算1+4+9+16+25+…的前29项的和是.34.从1,4,7……295,298(隔3的自然数)中任选两个数相加,和的不同值有个.35.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.36.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为元.37.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为.38.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.39.按照如图的操作步骤,若输入x的值为2,则输出的值是.(用科学计算器计算或笔算)40.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.答案与解析一.选择题1.【分析】根据正数和负数的定义可直接解答.【解答】解:根据正数和负数的定义可知,四个选项中只有A符合题意.故选:A.【点评】此题考查的知识点是正数和负数,解答此题要熟知正数和负数的概念:大于0的数叫正数,小于0的数为负数,0既不是正数也不是负数.2.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可知上升为+,则下降为﹣,所以下降6cm,记作﹣6cm.故选答案B.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:、、0是有理数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【分析】首先正确估算﹣2和﹣2的范围,再进一步找到之间的整数.【解答】解:∵6<<7,∴4﹣2<5,∴数轴上点A和点B之间表示整数的点有﹣1,0,1,2,3,4共6个.故选:B.【点评】此题考查了无理数的估算以及数轴上的点和数之间的对应关系,关键是能够根据一个数的平方正确估算无理数的大小,结合数轴确定两点之间的整数.5.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.6.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.7.【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.8.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.9.【分析】根据绝对值的性质即可求出答案.【解答】解:由于a<0,ab<0,∴b>0,∴a﹣b﹣1<0,2+b﹣a>0,∴原式=﹣(a﹣b﹣1)﹣(2+b﹣a)=﹣a+b+1﹣2﹣b+a=﹣1故选:C.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.10.【分析】首先把|a+1|化为|a﹣(﹣1)|,然后根据数轴上的三点A、B、C,分别表示有理数a、1、﹣1,判断出|a+1|表示为A、C两点间的距离即可.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.【点评】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.11.【分析】本题可分4种情况分别讨论,解出此时的代数式的值,然后综合得到所求的值.【解答】解:由分析知:可分4种情况:①a>0,b>0,此时ab>0所以=1+1+1=3;②a>0,b<0,此时ab<0所以=1﹣1﹣1=﹣1;③a<0,b<0,此时ab>0所以=﹣1﹣1+1=﹣1;④a<0,b>0,此时ab<0所以=﹣1+1﹣1=﹣1;综合①②③④可知:代数式的值为3或﹣1.故选:A.【点评】本题主要考查了绝对值的运用,绝对值都为非负数.这一点必须牢记.12.【分析】把a+c写成a﹣b+b+c,然后根据绝对值的性质求出a﹣b、b+c,再求出a+c,然后代入代数式根据绝对值的性质解答即可.【解答】解:|a+c|=|a﹣b+b+c|=2,∵|a﹣b|=1,|b+c|=1,∴a﹣b=b+c=1或a﹣b=b+c=﹣1,①a﹣b=b+c=1时,a+c=2,所以,|a+b+2c|=|a+c+b+c|=|1+2|=3,②a﹣b=b+c=﹣1时,a+c=﹣2,所以,|a+b+2c|=|a+c+b+c|=|﹣1﹣2|=3,故|a+b+2c|=3.故选:A.【点评】本题考查了绝对值,熟记性质并观察已知条件的特征求出a﹣b=b+c=1或a﹣b=b+c=﹣1是解题的关键.13.【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.15.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.【点评】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.16.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.17.【分析】根据相反数,倒数的定义,负倒数是相反数的倒数.【解答】解:﹣|﹣|=﹣,﹣的负倒数是.故选:B.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.19.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5400÷15×10000=3600000=3.6×106,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:四千零七十万元,则此营业额可表示为4.07×107元,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.21.【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.22.【分析】先根据显示屏的结果总等于所输入有理数的平方与1之和这个条件,由此得出显示屏的结果,即可得出正确结论.【解答】解:∵当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,∴若输入﹣1,则显示屏的结果为(﹣1)2+1=2,再将2输入,则显示屏的结果为22+1=5.故选:D.【点评】本题主要考查了有理数的混合运算,在解题时要注意这个计算程序的条件.23.【分析】根据题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:==10,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.【分析】根据定义的运算方法逐一运算,【解答】解:A、2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,此选项不正确;B、a⊗b=a(1﹣b),b⊗a=b(1﹣a),a⊗b=b⊗a只有在a=b时成立,此选项不正确;C、a+b=0,a=﹣b,(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a+b﹣a2﹣b2=2ab,此选项正确;D、a⊗b=0,a(1﹣b)=0,a=0或b=1,此选项不正确.故选:C.【点评】此题主要考查了有理数的混合运算,理解和掌握新运算的计算方法是解决问题的关键.25.【分析】认真分析表格,弄清返购物券的标准与使用购物券的条件,从而确定最佳方案.【解答】解:∵买化妆品不返购物券,∴先购买鞋,利用所得购物券再买衣服,需要现金(280+220)元,得到200购物券,利用购物券,现金100元,购买化妆品即可.张阿姨购买这三件物品实际所付出的钱的总数为:280+220+100=600元.故选:B.【点评】此题为实际应用题,与生活比较接近,此类题目更能激发学生的学习兴趣.也是中考中的热点题型.二.填空题26.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.27.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.28.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:2018【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.29.【分析】分三种情况:x<﹣1;﹣1≤x≤4;x>4;去绝对值后解方程即可求解.【解答】解:x<﹣1时,﹣x﹣1﹣x+4=7,解得x=﹣2;﹣1≤x≤4时,x+1﹣x+4=7,方程无解;x>4时,x+1+x﹣4=7,解得x=5.故答案为:﹣2或5.【点评】考查了绝对值,注意分类思想的运用,是中档题型.30.【分析】分6个区域:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55;比较最小值,即可求得答案.【解答】解:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x,则x=1时,有最小值40;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x,则x=2时,有最小值27;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x,则x=3时,有最小值18;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x,则x=4时,有最小值15;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5,则y没有最小值;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55,则y没有最小值;故当x=4时,|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为15.故答案为:15.【点评】此题考查了绝对值的最值问题.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.31.【分析】若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,再代入计算即可求解.【解答】解:若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的最大值=0+0+8+8=16.故答案为:16.【点评】此题考查了绝对值,要使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1,再根据低位上的数字不小于高位上的数字解答.32.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.33.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n﹣1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n﹣1)n]=+{(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+[(n ﹣1)•n•(n+1)﹣(n﹣2)•(n﹣1)•n]}=+[(n﹣1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为8555.【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.34.【分析】两个数相加最小的和是1+4=5,最大的和是295+298=593,和也是隔3的自然数,根据等差数列通项公式求出项数即可求解.【解答】解:1+4=5,295+298=593,和是隔3的自然数,n=(593﹣5)÷3+1=588÷3+1=197.故答案为:197.【点评】考查了有理数的加法,等差数列通项公式,关键是求出两个数相加最小的和,以及最大的和.35.【分析】根据规定p!是从1,开始连续p个整数的积,即可.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4×…×(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∵1×2×3×4=24,∴m=4,故答案为:4.【点评】此题是有理数的乘法,主要考查了新定义的理解,理解新定义是解本题的关键.36.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:300亿元=3×1010元.故答案为:3×1010.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.37.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.38.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.【点评】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x 的一元一次方程是解题的关键.39.【分析】将x=2代入程序框图中计算即可得到结果.【解答】解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.40.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.。
初一数学上册《有理数》综合测试卷(苏教版)
初一数学上册《有理数》综合测试卷(苏教版)七上数学有理数单元综合测试题(带答案苏教版)1.判定题(24%)(1)没有最大的整数,也没有最小的负整数.()(2)任何有理数的平方差不多上正数.()(3)平方等于16的数是4.()(4)假如两个数的绝对值相等,那么这两个数一定相等.()(5)两个负数比较大小,绝对值大的反而小.()(6)任何两个互为相反数的商为-1.()(7)任何小于1的数,它的倒数一定大于1.()(8)由四舍五入得到的近似数0.0560有四个有效数字.()2.填空题(18%)(1)在-11,0,-2,3.14,12中最小的数是____.(2)比-小的数是_____.(3)绝对值小于4.2的正整数有_______.(4)-的倒数与-的相反数的和等于______.(5)比较大小:43____34,-(+)_____,|-|-0.33____-0.32.(6)数5.6784精确到千分位约等于_____.3.选择题(24%)(1)数零是()(A)整数(B)正整数(C)负整数(D)分数(2)大于-2.7而小于3.6的整数有()(A)7个(B)6个(C)5个(D)4个(3)假如一个数的相反数比它本身大,那么那个数为()(A)正数(B)负数(C)整数(D)不等于零的有理数(4)在有理数中,倒数等于本身的数有()(A)1个(B)2个(C)3个(D)许多个(5)下列各对数中,数值相等的是()(A)(-2)3和-2×3(B)54和45(C)(-2)3和-23(D)3×24和(3×2)4(6)一个有理数的偶数次幂是正数,那么那个有理数()(A)是正数(B)是负数(C)为正数或负数(D)任何有理数4.解下列各题(14%)(1)把下列各数填在相应的括号里:-,+1,4.7,-17,0,5,39,,5,-6①正整数集合:{,…}②整数集合:{,…}③分数集合:{,…}④有理数集合:{,…}(2)在数轴上表示下列各数,并按从大到小的顺序用“>”号连接起来.+5,-3,0,1,-45.运算(20%)(1)-23×(-3)2×(-1)11;(2)-1×[5÷(-)2-1]÷(-);(3)9×17;(4)(-+)×30;(5)-1-{+[-(-)]}.参考答案1.(1)√(2)×(3)×(4)×(5)√(6)×(7)×(8)×2.(1)-11(2)-(3)4,3,2,1(4)0(5)<,<,>(6)5. 6784(1)A(2)B(3)B(4)B(5)C(6)C4.(1)正整数集合:{+1,39,5,…}整数集合:{+1,-17,0,39,5,-6,…}分数集合{-,4,7,5,,…}有理数集合:{-,+1,4.7,-17,0,5,39,,5,-6,…}“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
苏科版七年级上册数学第二章《有理数》相关概念含答案
苏科版七年级上册数学第二章《有理数》相关概念含答案第二章《有理数》相关概念一、选择题1. 下列说法正确的是---------------------------------------------------------------------- ()A. a 表示一个正数 B .a 表示一个负数 C .a 表示一个整数 D. a 可以表示一个负数2. 一个数的相反数是非负数,这个数是 ---------------------------------------------- ()A.负数B.非负数C.正数D.非正数3. 下列各式中,正确的是 --------------------------------------------------------------- ()A.-|-16|>0B.|0.2|>|-0.2|C.-47>-57D. |-6|<0 4. 若|a|+|b|=0,则a 与b 的大小关系是 -------------------------------------------------- ()A.a=b=0B.a 与b 不相等C.a,b 异号D. a,b 互为相反数5. 绝对值等于其相反数的数一定是 ---------------------------------------------------- ()A.负数B. 正数C. 负数或零D. 正数或零6 下列叙述正确的是 --------------------------------------------------------------------- ()A.若|a|=|b|,则a=bB.若|a|>|b|,则a>bC.若a<b|,则|a|<|b|< bdsfid="102" p=""></b|,则|a|<|b|<>D.若|a|=|b|,则a=±b 7 绝对值大于2,而小于5的所有正整数之和为 ------------------------------------ ()A . 7 B.8 C .9 D.108. 下列说法① 如果a=-13,那么-a=13, ② 如果a=-1,那么-a=-1, ③ 如果a 是负数,那么-a 是正数, ④如果a 是负数,那么1+a 是正数, 其中正确的是 ---------- ()A.①③B. ①②C.②③D. ③④9.一个数的相反数小于它本身,这个数是--------------------------------------------- ()A.任意有理数B. 零C.负有理数D. 正有理数10. 4.有理数m,n 在数轴上对应的点如图所示,则下列关系式中,正确的是()A.m n <B.n m >-C.n m <D.m n <11.若x >x ,则x 一定是()A .零 B.负数 C.正数 D.负数或零12. 已知a 、b 在数轴上的位置如图,把a 、b 、a -、b -从小到大排列正确的是-------() a O bA.a b a b -<-<<B.a b b a <-<<-。
苏教版七年级上册数学练习
常青教育7年级数学(上)中期考试卷(1—3章)一、有理数有关概念的复习1. 绝对值最小的有理数是 ,最大的负整数是 ,最小的正整数是 ; 2. 在数轴上距离原点4个单位的数是 ,距离表示-1的点有3个单位的数是 ;3. 数轴上的点A 所对应的数是4,点B 所对应的数是-2,则A 、B 两点之间的距离是 .4. 写出所有比-5大的非正整数为 , 比5小的非负整数 ,到原点的距离不大于3的所有整数有 .5. 绝对值等于3的数有________ __;绝对值小于3的整数有_____ ________;绝对值不大于2的整数有_________;相反数大于-1但不大于3的整数有________ . 6. 一种零件的内径尺寸在图纸上是10±0.05(mm),表示零件标准尺寸为kmm,加工要求最大不超过_______,最小不超过___________. 7. 按要求填空:-11 4.8 73 -2.761-8.12 -43 -π 0 正数集合( )、负数集合( )、正分数集合( ) 整数集合( )、非负数集合( )、负分数集合( ) 8. 已知a >0,b <0,且a <b ,试在数轴上表示出a ,b ,-a ,-b ,并用“〈”连结.9. 已知|a|=3,|b|=2,则a+b 的值为 .10.⑴已知|x -5|=x -5,求x 的取值范围; ⑵已知|a -3|=3-a ,求a 的取值范围. 11.已知1<x<3,化简|x -1|+|x -3|的值.二、有理数的乘法 1、计算(1)、(—5)×(—2)×10 (2)、(—12—13+34)×(—60)(3)、3×5—(—5)×5+(—1)×5 (4)、(—13)×(—15)×0×(—901)(5)、3×(-5)×(-7)×4 (6)、53()(1)245-⨯-(7)、17() 2.5()(8)516-⨯⨯-⨯- (8)、1(8)()4⎡⎤-⨯--⎢⎥⎣⎦2.判断:(1)同号两数相乘,符号不变,再把绝对值相乘;( ) (2)异号两数相乘,取绝对值较大的因数的符号;( ) (3)两数相乘,如果积为正数,则这两个因数都是正数;( ) (4)0乘以任何数都得0;( )(5)几个不为0的数相乘,积的符号由负因数的个数确定。
江苏省苏州中学七年级数学上册第一章《有理数》经典习题(含答案解析)
1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( ) A .94分 B .85分C .98分D .96分D解析:D 【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断. 【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+-- 即五名学生的实际成绩分别为:94;81;96;78;85, 则这五名同学的实际成绩最高的应是96分. 故选D . 【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C 【分析】根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可. 【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ; 当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ; 当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确; 当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ; 故选C . 【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.3.已知n 为正整数,则()()2200111n-+-=( )A.-2 B.-1 C.0 D.2C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1.4.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为5⨯3.1810C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为5⨯,所以B选项正确;3.1810C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.5.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.7.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.8.下列正确的是()A.5465-<-B.()()2121--<+- C.1210823-->D.227733⎛⎫--=--⎪⎝⎭A解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】 解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A . 【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 9.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12C .56D .56A 解析:A 【分析】根据有理数加减法法则计算即可得答案. 【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A . 【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.10.下列运算正确的是( ) A .()22-2-21÷= B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D解析:D 【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D . 【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 11.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A .少5 B .少10C .多5D .多10D解析:D 【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10. 故选D . 12.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45=B 解析:B 【分析】根据计算器的使用方法,结合各项进行判断即可. 【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=, 故选:B . 【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.13.6-的相反数是()A.6 B.-6 C.16D.16- B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.14.某市11月4日至7日天气预报的最高气温与最低气温如表:日期11月4日11月5日11月6日11月7日最高气温(℃)1912209最低气温(℃)43-45其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日C 解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.15.计算-2的结果是()A.0 B.-2 C.-4 D.4A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法1.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.2.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.3.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:7⨯1.610【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.4.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.5.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.6.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可. 【详解】 (-4)×8×(-2.5)×(-125) =-4×8×2.5×125=-4×2.5×8×125(乘法交换律) =-(4×2.5)×(8×125)(乘法结合律) =-10×1000 =-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000. 【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.7.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可. 【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯ 168.58=- 7.42=(℃);答:此时泰山顶部的气温大约为7.42℃. 故答案为:7.42. 【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 8.下列各组式子:①a ﹣b 与﹣a ﹣b ,②a +b 与﹣a ﹣b ,③a +1与1﹣a ,④﹣a +b 与a ﹣b ,互为相反数的有__.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a -b 与-a-b=-(a+b )不是互为相反数②a+b 与-a-b 是互为相反数③a+1与1-a 不是相反数④-a+b 与a-b 是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.9.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.10.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.11.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?解析:(1)见解析;(2)4.5km;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km,再向西跑了4.5km,再向东跑了1km,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键. 2.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.3.计算:()22216232⎫⎛-⨯--⎪⎝⎭解析:2【分析】 原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 4.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。
苏科版七年级数学上册 有理数单元常考概念选择题练习(含答案)
有理数基本概念选择题一、有理数定义及运算法则1、在有理数中,不存在这样的数( )A . 既不是整数,也不是负数; B. 既不是正数,也不是负数;C .既是正数,又是负数; D. 既是分数,又是负数。
2、下列说法正确的是( )。
A .一个有理数不是正数就是负数; B .一个有理数不是整数就是分数;C . 整数是正整数和负整数的统称;D .有理数是指正有理数、负有理数、0、整数和分数这五类数。
3、a 为有理数,则下列说法正确的是( )。
A .a 为正数;B .a -为负数;C .a a -和一定有一个表示负数;D .a a -和是一对相反数。
4、若 a 是有理数, 则 4a 与 3a 的大小关系是( )。
A .4a > 3a B.4a = 3a C.4a < 3a D.不能确定5、若0a b •=,则有理数a b 、的关系是( )。
A .都是0;B .互为倒数;C .至少有一个数为0;D .一个是0,而另一个不是0。
6、如果a 是有理数,下列四种说法:(1)a 2和|a |都是正数;(2)|a |=-a ,那么a 一定是负数;(3) a 和-a 在数轴上的位置分别在原点的两侧;(4)实数a 的倒数是1a , 其中正确的个数是( )。
A. 0B. 1C.2D.37、有如下四个命题(结论):①两个符号相反的分数之间至少有一个正整数;②两个符号相反的分数之间至少有一个负整数;③两个符号相反的分数之间至少有一个整数;④两个符号相反的分数之间至少有一个有理数.其中真命题(正确结论)的个数为( )(A)1 (B)2 (C)3 (D)48、下列关于零的说法,正确的有()①自然数;②正数;③非正数;④有理数。
⑤最小的正数⑥最小的整数⑦最小的自然数⑧绝对值最小的数(A)4个(B)5个(C)6个(D)7个9、若两个有理数的和是正数,那么一定有结论()(A)两个加数都是正数;(B)两个加数有一个是正数;(C)一个加数正数,另一个加数为零;(D)两个加数不能同为负数10、若有两个有理数的积为正数,而它们的和为负数,则这两个数()。
苏教版七年级数学上册第2章 有理数单元测试(含答案)
苏教版七年级数学上册第2章 有理数单元测试(含答案)一、单选题1.下列各数中是负数的是( )A.|3|-B.﹣3C.(3)--D.132.下列说法正确的有( ).A .正数、负数统称为有理数B .正整数、负整数统称为有理数C .正有理数,负有理数和0统称有理数:D .0不是有理数3.下列四个数中,在-3到0之间的数是( )A .-1B .1C .-4D .34.以下是四位同学画的数轴,其中正确的是 ( )A .B .C .D .5.下列各对数中,互为相反数的是( )A .12-和0.2B .23和32C .-1.75和314D .2和()2--6.﹣5的相反数是( )A .﹣5B .5C .﹣15D .157.下列各组数从小到大排列正确的是( )A .-6﹤-5﹤3B .3﹤-6﹤-5C .-5﹤-6 ﹤3D .-6﹤3﹤-58.若|ab |=ab ,则必有( )A .a >0,b <0B .a <0,b <0C .ab >0D .ab ≥09.下列运算中正确的个数有( )(1)(-5)+5=0, (2)-10+(+7)=-3, (3)0+(-4)=-4,(4)(-27)-(+57)=-37, A .1个 B .2个 C .3个 D .4个10.如果一个数的倒数是它本身,那么这个数是( )A .1B .﹣1C .±1D .011.2019年春运前四日,全国铁路、道路、水路、民航共累计发送旅客约为275000000人次,275000000这个数用科学记数法表示为( )A.727.510⨯B.90.27510⨯C.82.7510⨯D.92.7510⨯12.已知 、 、 三个数在数轴上对应的点如图所示,下列结论错误的是( )A. B. C. D.二、填空题13.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有 个.14.计算22133⎛⎫-⨯- ⎪⎝⎭的结果为_________.15.(1—2)×(3—4)×(5—6)×…×(2017—2018)=_________.16.有理数3.6449精确到百分位的近似数为_____.三、解答题17.用四舍五入法按要求取近似数:(1)2367890(精确到十万位); (2)29524(精确到千位);(3)4.2046(精确到千分位); (4)3.102(精确到百分位).18.计算:(1)(14)5(12)(34)--+--- (2)313(8.5)424⎛⎫⎛⎫⎛⎫---++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭19.计算:(1)()222420.545⎛⎫-⨯--÷- ⎪⎝⎭(2)2125233⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭20.一个动点从点A 开始上下来回运动5次,规定向上为正,向下为负。
苏科版七年级上册数学 有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。
(2)根据题意分别列式求出第5次和第6次行进后相对A的位置,由此可得到第P和点Q到A的距离,即可作出判断。
(3)根据点B在原点的右侧,列式可求出n=100时,可得到点A在数轴上表示的数,再根据点B表示的数,就可求出AB的距离。
2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.我们知道,在数轴上,表示数表示的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点A、B,分别对应数a,b,那么A、B两点间的距离为:如图,点A在数轴上对应的数为a,点B对应的数为b,且a,b满足:(1)求a,b的值;(2)求线段AB的长;(3)如图①,点C在数轴上对应的数为x,且是方程的解,在数轴上是否存在点M使?若存在,求出点M对应的数;若不存在,说明理由. (4)如图②,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,当N在B的右侧运动时,请直接判断的值是不变的还是变化的,如果不变请直接写出其值,如果是变化的请说明理由.【答案】(1)解:,,且,解得,,;(2)解:(3)解:存在.设M点对应的数为m,解方程,得,点C对应的数为,,,即,①当时,有,解得,;②当时,有,此方程无解;③当时,有,解得, .综上,M点对应的数为:或4.(4)解:设点N对应的数为n,则,,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,,,,点Q对应的数为:,点P对应的数为:,,①当时,,此时的值随N点的运动而变化;②当时,,此时的值随N点的运动而不变化.【解析】【分析】(1)根据“若非负数和等于0,则非负数均为0”列出方程进行解答便可;(2)根据数轴上两点的距离公式进行计算便可;(3)根据已知线段的关系式,列出绝对值方程进行解答便可;(4)用N点表示的数n,列出关于n的代数式进行讨论解答便可.4.对于有理数,定义一种新运算“ ”,观察下列各式:,,.(1)计算: ________, ________.(2)若,则 ________ (填入“ ”或“ ”).(3)若有理数,在数轴上的对应点如图所示且,求的值.【答案】(1)19;(2)(3)解:由数轴可得,,,则,,∵,∴,∴,∴,∴.【解析】【解答】(1),;(2)∵,,,∴,或综上可知,【分析】(1)根据定义计算即可;(2)分别根据定义计算a b和b a,判断是否相等;(3)由定义计算得到|a+b|=5,再根据数轴上点的位置关系判断a+b<0,再计算[(a+b)(a+b)][a+b]5.如图,点A、B、C在数轴上表示的数分别是-3、1、5。
苏科版数学七年级上册 有理数单元复习练习(Word版 含答案)
程求解;
② 当点 P 在点 C 的右边时, 同理可求解.
2.如图,已知数轴上有 A、B 两点(点 A 在点 B 的左侧),且两点距离为 8 个单位长度,动 点 P 从点 A 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 t(t>0) 秒.
(1)图中如果点 A、B 表示的数是互为相反数,那么点 A 表示的数是________;
解得,t= , 当点 P 在线段 AB 的延长线上时,AP=2PB,即 2t=2(2t−8), 解得,t=8,
∴ 当 t= 或 8 秒时,点 P 到 A 的距离是点 P 到 B 的距离的 2 倍. 【解析】【解答】解:(1)设点 A 表示的数是 a,点 B 表示的数是 b, 则|a|+|b|=8,又|a|=|b|, ∴ |a|=4, ∴ a=−4, 则点 A 表示的数是−4; ( 2 )∵ P 从点 A 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动, ∴ 当 t=3 秒时,点 A 与点 P 之间的距离为 6 个单位长度; 【分析】(1)设点 A 表示的数是 a,点 B 表示的数是 b,两点间的距离是 8 及互为相反数 的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案; (2)根据路程等于速度乘以时间即可得出答案; (3)由点 A 表示的数结合 AP 的长度,即可得出点 P 表示的数; (4)分当点 P 在线段 AB 上时,AP=2t,BP=(8-2t),根据 AP=2PB 列出方程,求解即 可;当点 P 在线段 AB 的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解 即可,综上所述即可得出答案.
一、初一数学有理数解答题压轴题精选(难)
1.如图,已知数轴上的点 表示的数为 ,点 表示的数为
苏教版七年级上册数学有理数复习测试题及答案
有理数复习题一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A) 1.1 104( B) 1.1 105( C 11.4 103( D) 11.3 1032、大于-3.5,小于2.5的整数共有( )个。
(A) 6 ( B) 5 (C) 4 ( D) 33、已知数a,b在数轴上对应的点在原点两侧,并且到原点的位置相等;数x,y是互为倒数,那么2|a b| 2xy的值等于( )(A) 2 (B)- 2 ( C) 1 (D)- 14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )(A)同号,且均为负数(B)异号,且正数的绝对值比负数的绝对值大(C同号,且均为正数(D异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A、1 B 、2 C 、3 D 、46、如果一个数的相反数比它本身大,那么这个数为()A、正数B、负数C整数D不等于零的有理数7、下列说法正确的是()A 、几个有理数相乘,当因数有奇数个时,积为负;B几个有理数相乘,当正因数有奇数个时,积为负;C几个有理数相乘,当负因数有奇数个时,积为负;D几个有理数相乘,当积为负数时,负因数有奇数个;8、在有理数中,绝对值等于它本身的数有()A.1 个B.2 个C. 3 个D. 无穷多个9、下列计算正确的是()2 2 2 3A. —2 = —4B. —(—2)= 4C. (- 3)= 6D. (- 1)= 1 10、如果a<0, 那么a 和它的相反数的差的绝对值等于(二、填空题:(每题2分,共42 分)21、264。
2、小明与小刚规定了一种新运算 * :若a 、b 是有理数,则a*b = 3a 2b 。
小明计算出2*5=-4,请你帮小刚计算2*( -5)= _________3、若 x 6 y 5 0,贝9 x y= _________4、 大于—2而小于3的整数分别是 ___________________ 、5、 (一 3.2 ) 3中底数是 ____ ,乘方的结果符号为 ______ ,6、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大7、在数轴上表示两个数,的数总比 的大。
苏教版七年级数学上册 第二单元《有理数》单元复习含测试卷
七年级数学《有理数》单元复习题有理数有关概念复习✍ 一、知识小结:1. 学习了正数、负数的知识后,大的可以说成小,小的可以说成大。
支出可以说成 。
可以说成增加等。
如“弟弟比哥哥小3岁。
”可以说成是“弟弟比哥哥大 岁”。
又如,小明的爸爸做生意亏损5000元,可以说成是“小明的爸爸做生意盈利 元”。
2. 大于零的数叫 , 在正数前加一个“- ”号的数叫做 , 既不是正数,也不是负数.3. 和 统称为有理数. 有理数的分类为:特别注意:下面分类是否有错误?并请你指出错误的原因。
(1)0⎧⎪⎨⎪⎩正数有理数负数(2)0⎧⎪⎨⎪⎩整数有理数分数(3)⎧⎪⎨⎪⎩整数有理数小数分数 (4)⎧⎪⎨⎪⎩正有理数有理数负有理数4. 规定了 、 和 的直线叫数轴。
所有的有理数都可以用数轴上的 表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示 ,原点及原点右边的数表示 .在原点右边,越靠近原点的点表示的数越 (填“大”或“小”),在原点左边,越靠近原点的点表示的数越 (填“大”或“小”)。
5. 有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数 .⑵正数都 0,负数都 0,正数 一切负数; ⑶两个负数比较大小, .6. 数a 的相反数是 . 的相反数大于它本身, 的相反数小于它本身, 的相反数等于它本身. 的倒数等于它本身.7. 一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a>0,则|a| = ; ②一个负数的绝对值是 ;如果a<0,则|a| = ; ③0的绝对值是 . 如果a = 0,则|a| = .反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0. 二、练习:8. 绝对值最小的有理数是 ,最大的负整数是 ,最小的正整数 是 ;9. 在数轴上距离原点4个单位的数是 ,距离表示-1的点有3个单位的数是 ;10. 数轴上的点A 所对应的数是4,点B 所对应的数是-2,则A 、B 两点之间的距 离是 .11. 写出所有比-5大的非正整数为 , 比5小的非负整数 ,到原点的距离不大于3的所有整数有 .12. 绝对值等于3的数是 ;绝对值小于3的整数是 ;绝对值小于2011的所有整数的和等于 ;绝对值不大于100的所有整数的和等于 。
最新苏科版数学七年级上册 有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.点在数轴上分别表示有理数,两点间的距离表示为 .且 .(1)数轴上表示2和5的两点之间的距离是________,数轴上表示−2和−5的两点之间的距离是________,数轴上表示1和−3的两点之间的距离是________;(2)数轴上表示x和−1的两点A和B之间的距离是________,如果|AB|=2,那么x=________;(3)当代数式|x+1|+|x−2|取最小值时,相应x的取值范围是________.【答案】(1)3;3;4(2)1;-3(3)−1⩽x⩽2【解析】【解答】解:(1)、|2−5|=|−3|=3;|−2−(−5)|=|−2+5|=3;|1−(−3)|=|4|=4;( 2 )、|x−(−1)|=|x+1|,由|x+1|=2,得x+1=2或x+1=−2,所以x=1或x=−3;( 3 )、数形结合,若|x+1|+|x−2|取最小值,那么表示x的点在−1和2之间的线段上,所以−1⩽x⩽2.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可算出答案;(2)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值得出AB=,又 |AB|=2 ,从而列出方程,求解即可;(3)|x+1|+|x−2| 表示数x的点到-1的点距离与表示x的点到2的点距离和,根据两点之间线段最短得出当表示x的点在-1与2之间的时候,代数式|x+1|+|x−2|有最小值,从而得出x的取值范围.2.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.4.已知数轴上A,B两点对应数分别为-2和5,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点(把一条线段平均分成相等的三部分的两个点),求P点对应的数.(2)数轴上是否存在点P,使P点到A点,B点距离和为10?若存在,求出x值;若不存在,请说明理由.(3)若点A,点B和点P(P点在原点)同时向左运动,它们的速度分别为1,6,3个长度单位/分,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?【答案】(1)解:因数轴上A、B两点对应的数分别是﹣2和5,所以AB=7,又因P为线段AB的三等分点,所以 AP=7÷3= 或AP=7÷3×2= ,所以P点对应的数为或(2)解:若P在A点左侧,则﹣2﹣x+5﹣x=10,解得:x=﹣;若P在A点、B中间.∵AB=7,∴不存在这样的点P;若P在B点右侧,则x﹣5+x+2=10,解得:x=(3)解:设第x分钟时,点A的位置为:﹣2﹣x,点B的位置为:5﹣6x,点P的位置为:﹣3x,①当P为AB的中点,则5﹣6x+(﹣2﹣x)=2×(﹣3x),解得:x=3;②当A为BP中点时,则2×(﹣2﹣x)=5﹣6x﹣3x,解得:x= ;③当B为AP中点时,则2×(5﹣6x)=﹣2﹣x﹣3x,解得:x= .答:第分钟时,A为BP的中点;第分钟时,B为AP的中点;第3分钟时,P为AB的中点.【解析】【分析】(1)根据两点间的距离公式得出AB=7,又因P为线段AB的三等分点,所以 AP 或,进而再根据数轴上两点间的距离公式即可求出点P所表示的数;(2)分类讨论:若P在A点左侧,根据两点间的距离公式由PA+PB=10列出方程,求解算出x的值;若P在A点、B中间,由于PA+PB=AB=7,故不存在这样的点P;若P在B点右侧,根据两点间的距离公式由PA+PB=10列出方程,求解算出x的值,综上所述即可得出答案;(3)设第x分钟时,点A的位置为:﹣2﹣x,点B的位置为:5﹣6x,点P的位置为:﹣3x ,然后分类讨论:①当P为AB的中点,②当A为BP中点时,③当B为AP中点时三种情况根据线段的中点性质列出方程,求解即可。
初一数学《有理数的有关概念》测试题一(苏教版)
初一数学《有理数的有关看法》测试题一(苏教版)七上有理数的有关看法练习题一(含答案苏教版)一、填空题(1)_____________统称有理数。
整数包括 _____________ 。
(2)把以下各数填在相应的大括号内:27,,8.5,-14,, 0.05,-3.14, 0,6,。
正数会集: {} ;负数会集: {} ;正分数会集: {} ;负分数会集: {} ;整数会集: {} ;分数会集: {} ;有理数会集: {} 。
(3)是正数而不是整数的有理数是_________________________。
(4)是整数而不是正数的有理数是_________________________。
(5)既不是正数,也不是负数的有理数是_________________________。
(6)既不是分数,也不是零的有理数是_________________________。
第1页/共7页二、选择题(1)以下各组中,互为相反意义的量是()。
(A)节约 4 吨水与浪费 4 吨水(B)收入 95 元与盈利 95 元(C)向东走 2 千米与向北走 2 千米(D)温度是 -2℃与温度高升了 2℃(2)-3.782()。
(A)是负数,不是分数(B)不是分数,是有理数(C)是负数,也是分数(D)是分数,不是有理数(3)关于“零”,下面说法正确的个数是()①是整数,也是有理数②不是正数,也不是负数③不是整数,是有理数④是整数,不是自然数(A)4(B)3(C)2(D)1三、判断正误(正确的画“√”,错误的画“×”)(1)A 盆地海拔 -18 米, B 盆地海拔 -11 米, A 盆地地势较高。
()(2)-7 是负数,是整数,也是有理数。
(3)正整数会集与负整数会集合在一起是整数会集。
()(4)有最小的自然数,没有最小的整数和有理数。
()(5)自然数都是整数。
()(二)反响更正检测一、填空题(1)规定了 ___________ 的直线叫数轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七上有理数的有关概念练习题一(含答案苏教版)
一、填空题
(1)_____________统称有理数。
整数包括_____________。
(2)把下列各数填在相应的大括号内: 27,51
-,8.5,-14,432-,0.05,-3.14,0,6,74。
正数集合:{ };
负数集合:{ };
正分数集合:{ };
负分数集合:{ };
整数集合:{ };
分数集合:{ };
有理数集合:{ }。
(3)是正数而不是整数的有理数是_________________________。
(4)是整数而不是正数的有理数是_________________________。
(5)既不是正数,也不是负数的有理数是_________________________。
(6)既不是分数,也不是零的有理数是_________________________。
二、选择题
(1)下列各组中,互为相反意义的量是()。
(A )节约4吨水与浪费4吨水
(B )收入95元与盈利95元
(C )向东走2千米与向北走2千米
(D )温度是-2℃与温度升高了2℃
(2)-3.782()。
(A )是负数,不是分数
(B )不是分数,是有理数
(C )是负数,也是分数
(D )是分数,不是有理数
(3)关于“零”,下面说法正确的个数是()
①是整数,也是有理数
②不是正数,也不是负数
③不是整数,是有理数
④是整数,不是自然数
(A )4 (B )3
(C )2 (D )1
三、判断正误(正确的画“√”,错误的画“×”)
(1)A 盆地海拔-18米,B 盆地海拔-11米,A 盆地地势较高。
()
(2)-7是负数,是整数,也是有理数。
(3)正整数集合与负整数集合合在一起是整数集合。
()
(4)有最小的自然数,没有最小的整数和有理数。
()
(5)自然数都是整数。
()
(二)反馈矫正检测
一、填空题
(1)规定了___________的直线叫数轴。
(2)所有的有理数都可以用数轴上的_________来表示。
(3)数轴上的原点表示数_________,原点右边的点表示_________,原点左边的点表示_________。
(4)在数轴上的两个点,左边的点表示数比右边的点表示的数_________。
(5)所有大于-5,并小于2的整数是_________。
(6)到原点的距离等于3.5个单位的数是_________。
(7)比5
33-大的负整数是_________。
二、选择题
(1)如图,有理数a 、b 在数轴上对应的点如下,则有()。
(A )a >o >b (B )a >b >o
(C )a <o <b (D )a <b <0
(2)一个点从原点开始,先向右移动一个单位,再向左移动3个单位后到达终点,这个终点表示的数是()。
(A )3 (B )4
(C )2 (D )-2
三、解答题
1.利用数轴将下列条件变成算式并计算:
(1)一个点从原点开始向左移3个单位,再向右移2个单位,到达终点。
(2)一个点从原点开始向右移动7个单位,再向左移动4个单位,到达终点。
2.观察下图,判断下列各式的值是正数还是负数:
(1)2a
(2)b+c
3.比较下列每组数的大小,用“<”连接起来:
(1)65-,98-和12
11- (2)143-,296-,5912-,194-
答案与提示
(一)
一、(1)整数和分数;正整数、零和负整数
(2)正数集合:{27,8.5,0.05,6,74
}
负数集合:{51
-,-14,43
2-,-3.14}
正分数集合:{8.5,0.05,74
}
负分数集合:{51
-,43
2-,-3.14}
整数集合:{27,-14,0,6} 分数集合:{51
-,8.5,432-,0.05,-3.14,74
}
有理数集合:{27,51
-,8.5,-14,43
2-,0.05,-3.14,0,6,74
}
(3)正分数
(4)零和负整数
(5)零
(6)正整数、负整数
二、
(1)A ;
(2)C ;
(3)C .
三、
(1)×
(2)√
(3)×
(4)√
(5)√
(二)
一、
(1)原点、正方向和单位长度;
(2)点;
(3)零、正数、负数
(4)小;
(5)-4,-3,-2,-1,0,1;
(6)±3.5;
(7)-3,-2,-1
二、
(1)C
(2)D
三、
1.(1)-3+2=-1
(2)7+(-4)=3
2.(1)2a <0
(2)b+c >0
3.(1)6
5981211-<-<-
(2)5912296194143-<-<-<-。