北师大版初三数学上册2.6《应用一元二次方程》教学设计
九年级数学(北师大版)上册教案:2.6应用一元二次方程(1)
第二章一元二次方程2.6 应用一元二次方程(一)教学目标:1、掌握列出一元二次方程解应用题;并能根据具体问题的实际意义,检验结果的合理性;2、理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题。
教学过程:一、情境问题问题1、一根长22cm的铁丝。
(1)能否围成面积是30cm2的矩形?(2)能否围成面积是32 cm2的矩形?并说明理由。
分析:如果设这根铁丝围成的矩形的长是xcm,那么矩形的宽是__________。
根据相等关系:矩形的长×矩形的宽=矩形的面积,可以列出方程求解。
解:问题2、如图,在矩形ABCD中,AB=6cm,BC=3cm。
点P沿边AB从点A开始向点B以2cm/s的速度移动,点Q沿边DA从点D开始向点A以1cm/s 的速度移动。
如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤3)。
那么,当t为何值时,△QAP的面积等于2cm2解:PQBC AD1 / 32 / 3二、练一练1、用长为100 cm 的金属丝制作一个矩形框子。
框子各边多长时,框子的面积是600 cm 2能制成面积是800 cm 2的矩形框子吗? 解:2、如图,在矩形ABCD 中,AB=6 cm ,BC=12 cm ,点P 从点A 沿边AB 向点B 以1cm/s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2cm/s 的速度移动,几秒后△PBQ 的面积等于8 cm 2? 解:三、课后自测:1、如图,A 、B 、C 、D 为矩形的四个顶点,AB=16cm ,BC=6cm ,动点P 、Q 分别从点A 、C 出发,点P 以3cm/s 的速度向点B 移动,一直到达B 为止;点Q 以2cm/s 的速度向点D 移动。
经过多长时间P 、Q 两点之间的距离是10cm ?2、如图,在Rt △ABC 中,AB=BC=12cm ,点D 从点A 开始沿边ABPQCBAD Q PCB A DEFD C BA3 / 3以2cm/s 的速度向点B 移动,移动过程中始终保持DE ∥BC ,DF ∥AC ,问点D 出发几秒后四边形DFCE 的面积为20cm 2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置O 点的正北方向10海里外的A 点有一走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。
初三数学上册(北师大版)《2.6应用一元二次方程(2)》【教案匹配版】最新中小学课程
(2900-50x-2500)×(8+4x)=5000
解得 x1=x2=3 2900-50×3=2750
答:每台冰箱的定价为2750元.
例题讲解
变换设未知数的方法
进价 售价 销量 每台利润 总利润
降价前 2500 2900
8
2900-2500 (2900-2500)×8
降价后 2500 292090-05-0xx
解得x1=x2=2750
答:每台冰箱的定价为2750元.
巩固练习
某商场将进货价为30元的台灯以40元售出,
平均每月能售出600个。调查发现:售价在40元 至60元范围内,这种台灯的售价每上涨1元,其 销售量就将减少10个。为了实现平均每月10000 元的销售利润,这种台灯的售价应定为多少? 这时应进台灯多少个?请利用方程解决这一问题。
本题的主要等量关系:
每个台灯的利润×每月的销量=10000元 解:设售价上涨x元 ,由题意得
(40+x-30)×(600-10x)=10000
解得x1=10,x2=40(不合题意,舍去) 则40+10=50,600-10×10=500
答:每个台灯的售价为50元,进货量为500个。
问题变式
例:新华商场销售某种冰箱,每台进货价为2500元,
问题引入
例:新华商场销售某种冰箱,每台进货价 为2500元,售价为2900元。 (1)求利润率;
利润率=
利润 成本
×100%
利润=售价-成本
解:
2900-2500 2500
×100%
=
16%
答:利润率为16%
问题引入
例:新华商场销售某种冰箱,每台进货价 为2500元,售价为2900元。
2.6 应用一元二次方程(第2课时)北师大版九年级数学上册教学详案
第二章一元二次方程6 应用一元二次方程第2课时 销售及变化率问题教学目标教学反思1.会用列一元二次方程的方法解决营销问题及平均变化率问题.2.进一步培养学生化实际问题为数学问题的能力和分析问题、解决问题的能力,培养学生应用数学的意识.教学重难点重点:会用列一元二次方程的方法解决营销问题及平均变化率问题.难点:如何找出等量关系.教学过程导入新课某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?探究新知一、温故知新1.某商人将进价为每件8元的某种商品按每件10元出售,则1件的利润是_____;若每天可售出100件,则1天的总利润是_________.2.利润问题的两个主要等量关系:1件的利润=1件的售价-1件的进价;总利润=每件的利润×销售总件数.二、知识讲解1.销售问题与一元二次方程例1 新华商场销售某种冰箱,每台进货价为2 500元.调查发现,当销售价为2 900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5 000元,每台冰箱的定价应为多少元?分析:本题的主要等量关系是:每台冰箱的销售利润×平均每天销售冰箱的数量=5 000元.如果设每台冰箱降价x元,那么每台冰箱的定价就是(2 900-x)元,每台冰箱的销售利润为(2 900-x-2 500)元,平均每天销售冰箱的数量为台.这样就可以列出一个方程,从而使问题得到解决.解:设每台冰箱降价x元. 根据题意,得.整理,得x2- 300x + 22 500 =0.解这个方程,得x1=x2=150.教学反思2 900-150 =2 750.所以,每台冰箱应定价为2 750元.总结:利润问题常见关系式:(1)利润=售价-________;(2)利润率;(3)总利润=____________×销量.2.平均变化率问题与一元二次方程例2 某公司1 月份的生产成本是400 万元,由于改进生产技术,生产成本逐月下降,3 月份的生产成本是361 万元. 假设该公司2,3,4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率.(2)请你预测4 月份该公司的生产成本.解:(1)设该公司每个月生产成本的下降率为x,根据题意,得400(1-x)2= 361.解得x1=5%,x2=1.95>1(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1-5%)= 342.95(万元).答:预测4 月份该公司的生产成本为342.95 万元.总结:若平均增长(或降低)的百分率为x,增长(或降低)前的量是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(其中增长取“+”,降低取“-”).三、练习巩固,拓展提高1.某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8 000元的利润,且尽量减少库存,售价应为多少?分析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8 000,即x2-40x+300=0.解得x1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.2.某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.分析:设3,4月份销售额的月平均增长率为x ,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x )万元,4月份的销售额为60(1-10%)(1+x )2万元.解:设3,4月份销售额的月平均增长率为x .根据题意,得60(1-10%)(1+x )2=121.5,则(1+x )2=2.25,解得x 1=0.5,x 2=-2.5(不合题意,舍去).答:3,4月份销售额的月平均增长率为50%.课堂练习1.某地一月份发生禽流感的养鸡场有100家,后来二、 三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月发生禽流感的养鸡场的增长率为x ,依题意列出的方程是( )A.100(1+x )2=250B.100(1+x )+100(1+x )2=250C.100(1-x )2=250D.100(1+x )2+100=2502.某商店将进价为每件8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,若设每件售价为x 元,销售量可表示为( )A.×10 B. 200-×10 C. 200-×10 D. 200-0.5(x -10)×103.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低( )元.A. 0.2或0.3B. 0.4C. 0.3D. 0.24.一件上衣原价为每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?参考答案1.B2.B3.C4.解:设第一次降价的百分率为x ,则第二次降价的百分率为2x ,根据题意得500(1-x )(1-2x )=240,解得x 1=0.2=20%,x 2=1.3=130%(舍去).答:第一次降价的百分率为20%,第二次降价的百分率为40%.课堂小结(学生总结,老师点评)营销问题中的数量关系:(1)单件商品利润=单件商品售价-单件商品进价;教学反思(2)利润率=利润进价=售价―进价进价;(3)售价=进价×(1+利润率);(4)总利润=每件商品的利润×商品的销量.布置作业课本习题2.10板书设计6 应用一元二次方程第2课时 销售及变化率问题。
北师大版九年级数学上2.6 应用一元二次方程
解:设2015年12月31日至2017年12月31日我
国计算机上网总台数的年平均增长率为x,由题
意得 892(1+x)2=2083
(1+x)2= 2083
892
x 2083 1
892
解这个方程,得:x1=1, x2=2 经检验,x1=1,x2=2都是方程的解,且符合题意. 答:要使每盆的盈利达到10元,每盆应植入4株或5株.
练一练:
已知两个连续正奇数的积是63,利用一 元二次方程求这两个数.
鲜花为你盛开,你一定行!
谈谈你这节课的收获
列方程解应用题的基本步骤怎样?
(1)读题: 1、审题; 2、找出题中的量,分清有哪些已知量、未知量,哪 些是要求的未知量;
设基数为a,平均增长率为x,则一次增长后的值为 二次增长后的值为
依次类推n次增长后的值为
a (1 x) a (1 x)2 a (1 x)n
(2)降低率问题
设基数为a,平均降低率为x,则一次降低后的值为 二次降低后的值为
依次类推n次降低后的值为
a (1 x) a (1 x)2 a (1 x)n
问题:截止到2014年12月31日,我国的上网计算机总数为 892万台;截止到2016年12月31日,我国的上网计算机总 数以达2083万台. (1)求2014年12月31日至2016年12月31日我国的上网计 算机台数的年平均增长率(精确到0.1%).
思考:(1)若设年平均增
长率为x,你能用x的代 上网计算
3、找出所涉及的基本数量关系.例如,速度×时间=路程; 销售数量×销售单价=销售收入
北师大版数学九年级上册2.6.2用一元二次方程解决销售问题教案
我也注意到,在小组讨论环节,有些学生表现得比较被动,可能是因为他们对问题的理解不够深入,或者是在小组合作中缺乏自信。在未来的教学中,我需要更多地关注这部分学生,鼓励他们积极参与,提供更多的支持和引导。
-例如:在解决商品打折问题时,学生需理解原价、折扣和折后价格之间的关系,并能正确列出方程。
(2)熟练运用一元二次方程的求解方法,包括直接开平方法、因式分解法、配方法等。
-如在例题中,指导学生如何将实际问题转化为方程,并选择合适的求解方法。
(3)理解一元二次方程解的实际意义,能将数值解与实际问题中的情境对应起来。
今天的学习,我们了解了一元二次方程在解决销售问题中的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了一元二次方程在销售问题中的应用。我发现,学生在理解方程的实际意义和求解方法上存在一些挑战。首先,将现实生活中的销售问题转化为数学方程对学生来说并不容易,他们需要更多具体的例子和引导来理解这一点。例如,商品打折的问题,如何将打折的百分比转化为方程中的系数,这一点对学生来说是个难点。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生运用数学知识解决实际问题的能力,让学生在实际情境中发现数学规律,提高数学抽象和建模的核心素养。
2.强化学生逻辑推理和数学运算的能力,通过列出并求解一元二次方程,使学生掌握数学工具,提高解决实际问题的效率。
初中数学北师大版九年级上册《26应用一元二次方程(1)》教学设计
北师大版数学九年级上 2.6 应用一元二次方程(1) 教学设计同学们,这些天我们学习了一元二次方程的相关知识,下面请回答:问题:还记得本章开始时梯子下滑的问题吗?如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米?提示:如果设梯子底端滑动x m ,那么你能列出怎样的方程?解:(x +6)2+72=10212651,651x x =-+=--(舍)(1)在这个问题中,梯子顶端下滑1m 时,梯子底端滑动的距离大于1m ,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?解:设梯子顶端下滑x 米时,顶端滑动距离与梯子底端滑动的距离相等.梯子底端原来离墙的距离:例1:如图,某海军基地位于A处,在其正南方向200 n mile 处有一重要目标B,在B的正东方向200 n mile处有一重要目标C.小岛D位于AC的中点,岛上有一补给码头;小岛F位于BC的中点.一艘军舰从A出发,经B到C 匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(结果精确到0.1 n mile)解:连接DF.∵AD=CD,BF=CF,∴DF是△ABC的中位线.解:设经x秒二人在B处相遇,这时乙共行AB=3x,甲共行AC+BC=7x,∵AC=10,∴BC=7x−10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x−10)2=102+(3x)2,∴x=0(舍去)或x=3.5,∴AB=3x=10.5,AC+BC=7x=24.5,答:甲走了24.5步,乙走了10.5步.1.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地,若耕地面积需要551平方米,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米答案:A2.在一块长为35m,宽为26m的矩形绿地上有宽度相同的两条路,如图所示,其中绿地面积为850m2,求小路的宽.解:设小路的宽为x m,则(26-x)(35-x)=850,x2-61x+60=0,解得:x1=1,x2=60(舍去).答:小路的宽为1m.3.如图是由三个边长分别为6,9和x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或6答案:D某种品牌的手机经过四、五月份连续两次降价,每部售价。
2.6《应用一元二次方程第1课时》北师大版九年级数学上册教案
第二章一元二次方程6 应用一元二次方程第1课时一、教学目标1.利用一元二次方程解决简单的行程问题和几何问题.2.经历分析具体问题中的数量关系、建立方程模型并解决问题的过程.3.在列方程解决实际问题的过程中,认识方程模型的重要性,并总结运用方程解决实际问题的般步骤.4.能根据具体问题的实际意义检验结果的合理性,增强数学应用意识和能力.二、教学重难点重点:利用一元二次方程解决简单的行程问题和几何问题.难点:分析具体问题中的数量关系、建立方程模型解决问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一知识回顾【复习回顾】教师活动:学生已学过列一元一次方程解应用题,通过想一想环节让学生说出列方程解应用题的一般步骤,再选用“梯子下滑”的问题作为情境,引入新课的学习.想一想:列方程解应用题的一般步骤是什么?预设:①审:审题,分清题意,明确题目要求,弄清已知数、未知数以及它们之间的关系;②设:设未知数,设未知数的方法有直接设未知数和间接设未知数两种;③列:根据题中的等量关系列方程;④解:求出所列方程的解;思考并举手回答.复习回顾已学知识,并为新课的学习做准备.⑤验:“检验”,即验证是否符合题意;⑥答:回答题目中要解决的问题.【情境导入】你还记得本章开始时梯子下滑的问题吗?原题:如图,一个长为10 m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m.如果梯子的顶端下滑 1 m,那么梯子的底端滑动多少米?(1) 在这个问题中,梯子顶端下滑1 米时,梯子底端滑动的距离大于 1 米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?预设:设梯子顶端下滑x米,底端滑动x米.(8-x)2+(6+x)2 =102.x2-2x = 0.x1= 0(舍),x2 = 2.因此,梯子底端下滑2米时,梯子底端滑动的距离和它相等.(2) 如果梯子长度是13 m,梯子顶端与地面的垂直距离为12 m,那么梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?预设:尝试列方程,独立解决选用“梯子下滑”的问题作为情境,引入用一元二次方程解决实际问题的内容.设梯子顶端下滑x 米,底端滑动x米.(12-x)2+(5+x)2 =132.x2-7x = 0.x1= 0(舍),x2= 7.因此,梯子顶端下滑的距离与梯子底端滑动的距离相等为7m.环节二典例探究【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1如图,某海军基地位于 A 处,在其正南方向200 n mile 处有一重要目标B,在 B 的正东方向200 n mile 处有一重要目标C.小岛D 位于AC 的中点,岛上有一补给码头;小岛F 位于BC 中点.一艘军舰从 A 出发,经 B到 C 匀速巡航,一艘补给船同时从 D 出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给船的 2 倍,军舰在由B到C的途中与补给船相遇于点E,那么相遇时补给船航行了多少海里?(结果精确到0.1 nmile)分析:明确例题的做法在例题的教学中,引导学生关注列方程解应用题的三个重要环节:其一是整体(1)要求DE 的长,需要如何设未知数?预设:一般求什么设什么,可设DE的长为x n mile.(2)怎样建立含DE 未知数的等量关系?预设:根据已知条件,可考虑利用勾股定理建立等量关系.(3)利用勾股定理建立等量关系,如何构造直角三角形?预设:连接DF,由三角形中位线得AB∥DF,从而DF⊥EF,构造出Rt△DEF.(4)构造出Rt△DEF 后,三条边长DE,DF,EF 分别是多少?预设:DF=100 n mile,DE=x n mile,EF=AB+BF-(AB+BE)=(300-2x) n mile.解:连接DF.∵AD = CD,BF = CF,∴DF是△ABC的中位线.∴DF∥AB,且DF =12AB.∵AB⊥BC,AB=BC= 200 n mile,∴DF⊥BC,DF = 100 n mile,BF = 100 n mile.设相遇时补给船航行了x n mile,那么DE = x nmile,AB + BE = 2x n mile,地、系统地弄懂题意;其二是把握问题中的等量关系;其三是正确求解方程并检验解的合理性.EF = AB + BF -(AB + BE)=(300-2x) n mile.在Rt△DEF中,根据勾股定理可得方程x2 = 1002 + (300-2x)2,整理,得3x2 -1200x + 100 000 = 0.解这个方程,得x1=200-10063≈118.4,x2=200+10063(不合题意).所以,相遇时补给船大约航行了118.4 n mile.例2 如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,那么几秒后五边形APQCD的面积为64cm2?分析:设t秒后五边形APQCD的面积为64cm2,则AP=t cm,BQ=2t cm,所以PB=(6-t)cm由S五边形APQCD =S矩形ABCD- S△PBQ,可得:64 = 6×12 - 2t(6-t) ÷2.从而求得满足条件的解即可.解:设t秒后五边形APQCD的面积为64cm2,根据题意,得64=6×12-2t(6-t) ÷2整理得t2- 6t+8 = 0.解方程,得t1= 2 ,t2 =4 .因此,在第2秒和第4秒时五边形的面积都是64cm2. 尝试用式子表示边的关系,并找到等量关系环节三总结归纳【方法归纳】通过上述两个例题,让学生先独立思考,然后再小组交流探讨,列一元二次方程解实际问题的一般步骤.想一想:运用一元二次方程模型解决实际问题的步骤有哪些?注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求.独立思考,交流讨论明确列一元二次方程解决实际问题的步骤,培养学生的总结概括能力.环节四巩固练习教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙行各几何.”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为 3.乙一直向东走,甲先向南走了10 步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?2.有这样一道阿拉伯古算题:有两笔钱,一多一少,其和等于20,积等于96,多的一笔钱被许诺赏给赛义德,那么赛义德得到多少钱?3.如图:在Rt△ACB中,∠C = 90°,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是 1 m/s,几秒后△PCQ的面积为Rt△ACB面积的一半?自主完成练习,然后集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.4.如图,一条水渠的断面为梯形,已知断面的面积为 0.78 m 2,上口比渠底宽 0.6 m ,渠深比渠底少 0.4 m ,求渠深.答案:1.解:如图所示,甲、乙二人同时从点O 出发,在点B 处相遇.设甲乙两人走的时间为x ,则甲走的路程为3x ,乙走的路程为7x ,依题意得:102+(3x )2=(7x -10)2解得:x 1=72,x 2=0(舍去)所以,相遇时,甲走了10.5步,乙走了24.5步.2.解: 设较多的钱为 x ,则较少的为20-x .由题意,可得 x (20- x )=96,解得 x 1=12,x 2=8 (舍去).所以,赛义德得到的钱数为12.3.解: 设经过 t s ,△PCQ 面积为 Rt △ACB 面积的一半.根据题意,得12(8-t )(6-t )=12×6×8×12 ,解方程,得 t 1=2,t 2=12 (舍去).所以,2s 后△PCQ 面积为Rt △ACB 面积的一半.4.解:设渠深为 x m ,则渠底为 (x +0.4) m .S =12[(x +0.4+0.6+x +0.4)]x = 0.78,解得 x 1=-1.3(舍去),x 2=0.6.所以,渠深 0.6 m .环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试归纳总结本节所学内容及收获.回顾知识点形成知识体系,养成回顾梳理知识的习惯.环节六布置作业教科书第55页习题2.9 第4题.学生课后自主完成.加深认识,深化提高.。
北师大课标版初中数学初三上册第二章应用一元二次方程教学设计分析
北师大课标版初中数学初三上册第二章22.6 一元二次方程在几何问题中应用(一)一、学生知识状况分析学生在在学习完一元二次方程的相关知识后,具备了熟练求解方程的能力,然而关于一元二次方程在实际中的应用把握的还不是专门好,鉴于此教学中设计了三节一元二次方程的应用探究和练习。
其中上节课学习了增长和减少问题以及薄利多销问题。
本节课要紧进行一元二次方程在几何问题中的应用,并依照课程进度适当的引入了动点问题的研究。
二、教学任务分析本节课要紧培养学生分析问题、归纳方法建立模型的能力,设置教学目标及重难点如下:学会分析利用一元二次方程解决面积问题的步骤和策略。
通过整理面积问题的题型,建构解决面积问题的数学模型。
3、学会利用一元二次方程解决动点几何题,并探究解决动点问题的策略。
三、教学过程分析本节课设计了四个题型:花园修路求路宽问题、画加边框问题、围栏问题、动点问题第一环节书接上回引入新课内容:活动1:说一说看一看做一做通过批改学生前置性作业,发觉值得探究的问题来和学生进行探讨,然后观看教学微课,通过观看微课总结方法、提升思维,建立模型。
做一做环节学生完成学习笔记中的变式应用,通过练习熟练解题方法和技巧。
目的:通过说一说环节,让学生探讨几种解决花园修路求路宽问题的常用方法,然后进行比较研究,发觉最优解法。
通过洋葱数学微课的动态演示使学生再一次体会探究成果,并能够对该题型进行全面的认识,从而归纳解决这类问题的方法。
建立数学模型,激发转化思想的数学方法。
最后通过做一做检验学习成果。
第二环节题型类比对比探究内容:说一说想一想辩一辩说一说该类试题的解题策略,想一想与花园修路的区别与联系,小组内分析一下这两个问题是否能够互通。
目的:通过学生交流解决此类题型的方法,教师不断提出问题,学生通过摸索发觉该类问题与花园修路问题的区别和联系,通过对比探究更好的把握以及对两种题型的灵活转化。
第三环节题型递进转换思维内容:想一想列一列学生通过分析问题,列出方程,分析解决该类问题的关键点。
北师大版九上应用一元二次方程说课稿
北师大版九年级上册第二章第6 节《应用一元二次方程》第一课时说课稿宜黄二中洪友平尊敬的各位评委:大家好!我是来自宜黄二中的洪友平,今天我说课的课题是北师大版九年级上册第二章第6 节《应用一元二次方程》的第一课时。
下面我将从以下六个方面对本节课的设计加以阐述:一、教材分析1、本节课的地位与作用一元二次方程是初中数学的重要内容。
它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用,是研究现实世界数量关系和变化规律的重要数学模型。
本节课是一元二次方程的应用中有关图形的问题,下一节课主要是销售与利润问题。
2、本节课的教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构、心理特征,制定如下目标:①知识技能目标:建立方程解决问题的模型,体会一元二次方程是刻画现实世界中数量关系的一个有效数学方法。
②解决问题目标:认识方程模型的重要性,学会运用方程解决实际问题,进一步提高分折问题、解决问题的能力,能根据具体问题的实际意义检验结果的合理性,对所得到的解进行取舍。
③情感态度目标:通过探究用一元二次方程解决身边的问题,体会数学知识的应用价值,激发学生学习数学的兴趣,了解数学对促进社会进步和人类发展作用。
3、本节课的教学重点与难点本节课的教学重点是学会用列方程的方法解决有关图形的问题,培养学生运用一元二次方程分析和解决实际问题的能力,学习数学建模思想;教学难点是将同类题对比探究,学会数学的分类讨论方法,对数学实际问题的变式迁移。
二、学情分析整章从第一节开始就涉及到一些简单的应用题,所以学生现在已经有了一定的方程应用能力,再通过这节课让学生建立数学模型,同时兼顾不同层次的学生,让他们都有所提高和发展。
三、教法与学法为了突出重点,突破难点,实现教学目标。
教学过程中采用多媒体辅助教学,使抽像问题形像化,提高课堂效率。
教法:创设情境一一引导探究一一变式迁移一一鼓励创新。
学法:自主探索一一合作交流一一反思归纳一一乐于创新。
北师大版九年级数学上册说课稿:2.6 应用一元二次方程
北师大版九年级数学上册说课稿:2.6应用一元二次方程一. 教材分析北师大版九年级数学上册第2.6节“应用一元二次方程”是学生在学习了二元一次方程组、一元一次方程和一元二次方程的基础上进行学习的。
这一节的主要内容是通过实例让学生了解并掌握一元二次方程的应用,培养学生的实际问题解决能力。
教材中提供了丰富的例题和练习题,旨在帮助学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程和一元二次方程有了初步的了解。
但是,学生在解决实际问题时,往往会将数学知识与实际问题脱节,不能很好地将数学知识应用于解决实际问题。
因此,在教学过程中,教师需要引导学生将数学知识与实际问题相结合,提高学生的问题解决能力。
三. 说教学目标1.知识与技能目标:使学生了解一元二次方程在实际问题中的应用,掌握一元二次方程的解法,提高学生解决实际问题的能力。
2.过程与方法目标:通过实例分析,培养学生将实际问题转化为数学模型的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极解决问题的态度,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:一元二次方程在实际问题中的应用,一元二次方程的解法。
2.教学难点:将实际问题转化为一元二次方程,灵活运用一元二次方程解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实例引导学生自主探究,合作交流,发现并总结一元二次方程的解法及其在实际问题中的应用。
2.教学手段:利用多媒体课件辅助教学,通过动画演示和实例分析,帮助学生更好地理解一元二次方程的应用。
六. 说教学过程1.导入:通过一个简单的实际问题引出一元二次方程,激发学生的学习兴趣。
2.新课讲解:讲解一元二次方程的定义、解法及其在实际问题中的应用。
通过丰富的例题和练习题,让学生在实践中掌握一元二次方程的解法。
3.课堂练习:让学生在课堂上独立完成练习题,巩固所学知识。
2.6应用一元二次方程(第2课时)-北师大版九年级数学上册教学案
北师大版数学九年级上册第二章第6节应用一元二次方程(第2课时)教学案【教学目标】1.经历分析具体问题中的数量关系、建立方程模型并解决问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.2.在列方程解决实际问题的过程中,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤,进一步提高分析问题、解决问题的能力.3.能根据具体问题的实际意义检验结果的合理性,增强数学应用意识和能力.重点:列出一元二次方程解决:①销售利润问题、②动点问题难点:寻找实际问题中的相等关系.【教学过程】【例1】某商场销售一批衬衫,平均每天售出20件,每件盈利40元,为减少库存,尽快收回成本,商场决定降价销售.经调查发现,售价每降低一元,每天平均可多售出2件.若商场平均每天要盈利1200元,则每件衬衫应降价多少元?【例2】某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40~60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?[例3]如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB边向点B以1cm/s 的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经几秒钟△PBQ的面积等于8cm2?[跟踪练习1]1.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了获得1120元的利润,每床每晚应提高多少元?2.某商场将进价为2000元的冰箱以2400元售出,平均每天售出8台。
经调查发现:这种冰箱的售价每降50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800元,同时又使顾客尽可能多的得到实惠,每台冰箱应降价多少元?3.如图所示,A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/S的速度向D移动.(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?4.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B两点同时出发,经过几秒钟,△PBQ的面积等于8cm2?(2)几秒钟后,P,Q两点之间的距离等于42cm?答案例1解:设每件衬衫应降价x元.根据题意,得(40﹣x)(20+2x)=1200整理,得x2﹣30x+200=0解得:x1=10,x2=20.∵要求每件盈利不低于25元,∴x1=20应略去,解得:x=10.答:每件衬衫应降价10元.例2解:设售价定为x元,[600﹣10(x﹣40)](x﹣30)=10000,整理,得x2﹣130x+4000=0,解得:x1=50,x2=80(舍去).600﹣10(x﹣40)=600﹣10×(50﹣40)=500(个).答:台灯的定价定为50元,这时应进台灯500个.例3解:根据题意,知BP=AB﹣AP=6﹣t,BQ=2t.(1)根据三角形的面积公式,得12PB•BQ=8,t (6﹣t )=8,t 2﹣6t +8=0,解得t =2或4.故经过2或4秒钟,△PBQ 的面积等于8cm 2;(2)根据勾股定理,得PQ 2=BP 2+BQ 2=(6﹣t )2+(2t )2=32,5t 2﹣12t +4=0,解得t 1=2,x 2=25. 故2或25秒钟后,P ,Q 两点之间的距离等于42cm .跟踪练习:1.解:假设每床的收费每晚应提高x 元,由题意得:(100﹣x 2×10)(10+x )=1120 解得:x 1=4,x 2=6(不合题意舍去)答:每床的收费每晚应提高4元.2.解:设每台冰箱应降价x 元,每件冰箱的利润是:(2400﹣2000﹣x )元,卖(8+x 50×4)件, 列方程得,(2400﹣2000﹣x )(8+x 50×4)=4800, x 2﹣300x +20000=0,解得x 1=200,x 2=100;要使百姓得到实惠,只能取x =200,答:每台冰箱应降价200元.3.解:当运动时间为t 秒时,PB =(16﹣3t )cm ,CQ =2tcm .(1)依题意,得: 12×(16﹣3t +2t )×6=33, 解得:t =5.答:P ,Q 两点从出发开始到5秒时,四边形PBCQ 的面积为33cm 2.(2)过点Q 作QM ⊥AB 于点M ,如图所示.∵PM =PB ﹣CQ =|16﹣5t |cm ,QM =6cm ,∴PQ 2=PM 2+QM 2,即102=(16﹣5t )2+62,解得:t 1=85,t 2=245(不合题意,舍去). 答:P ,Q 两点从出发开始到85秒时,点P 和点Q 的距离第一次是10cm .4.解:根据题意,知BP =AB ﹣AP =6﹣t ,BQ =2t .(1)根据三角形的面积公式,得12PB •BQ =8, t (6﹣t )=8,t 2﹣6t +8=0,解得t =2或4.故经过2或4秒钟,△PBQ 的面积等于8cm 2;(2)根据勾股定理,得PQ 2=BP 2+BQ 2=(6﹣t )2+(2t )2=32,5t 2﹣12t +4=0,解得t 1=2,x 2=25. 故2或25秒钟后,P ,Q 两点之间的距离等于42cm .。
北师大版九年级数学上册教案: 应用一元二次方程
2.6 应用一元二次方程第1课时 利用一元二次方程解决几何问题1.经历分析具体问题中的数量关系、建立方程模型并解决问题的过程.2.在列方程解决实际问题的过程中,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤.(重点)3.能根据具体问题的实际意义检验结果的合理性.(重点)阅读教材P52~53,完成下列问题:(一)知识探究1.列方程解应用题的一般步骤:(1)“审”:读懂题目,审清题意,明确哪些是已知量,哪些是未知量以及它们之间的相等关系;(2)“设”:设元,也就是设________;(3)“________”:列方程,找出题中的等量关系,再根据这个关系列出含有未知数的等式,即方程;(4)“解”:求出所列方程的________;(5)“验”检验方程的解能否保证实际问题________;(6)“答”:就是写出答案.2.解决与几何图形有关的一元二次方程的应用题时,关键是把实际问题数学化,把实际问题中的已知条件与未知条件归结到某一个几何图形中,然后用几何原理来寻找它们之间的关系,从而列出有关的一元二次方程,使问题得以解决.(二)自学反馈要为一幅长29 cm ,宽22 cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的四分之一,镜框边的宽度应是多少厘米? 利用一元二次方程解决实际问题的关键是寻找等量关系,此题是利用矩形的面积公式作为相等关系列方程.活动1 小组讨论例 如图,某海军基地位于A 处,在其正南方向200海里处有一重要目标B ,在B 的正东方向200海里处有一重要目标C.小岛D 位于AC 的中点,岛上有一补给码头;小岛F 位于BC 的中点.一艘军舰从A 出发,经B 到C 匀速巡航,一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给船的2倍,军舰在由B 到C 的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)解:连接DF.∵AD =CD ,BF =CF ,∴DF 是△ABC 的中位线.∴DF ∥AB ,且DF =12AB. ∵AB ⊥BC ,AB =BC =200海里,∴DF ⊥BC ,DF =100海里,BF =100海里.设相遇时补给船航行x 海里,那么DE =x 海里,AB +BE =2x 海里,EF =AB +BF -(AB +BE)=(300-2x)海里.在Rt △DEF 中,根据勾股定理可得x 2=1002+(300-2x)2,整理,得3x 2-1 200x +100 000=0.解这个方程,得x 1=200-10063≈118.4,x 2=200+10063(不合题意,舍去). 所以,相遇时补给船大约航行了118.4海里. 解本题的关键是找到等量关系,利用勾股定理列方程求解.活动2 跟踪训练 1.从正方形铁片上截去2 cm 宽的一条长方形,余下的矩形的面积是48 cm 2,则原来的正方形铁片的面积是( )A .8 cmB .64 cmC .8 cm 2D .64 cm 22.将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m ,另一边减少了3 m ,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是( )A .7 mB .8 mC .9 mD .10 m3.用一根长40 cm 的铁丝围成一个长方形,要求长方形的面积为75 cm 2.(1)求此长方形的宽是多少?(2)能围成一个面积为101 cm 2的长方形吗?如果能,说明围法.4.如图,某小区规划在一个长为40米、宽为26米的矩形场地ABCD 上修建三条同样宽度的马路,使其中两条与AB平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都是144 m 2,求马路的宽.这类修路问题,通常采用平移方法,使剩余部分为一完整矩形.活动3 课堂小结用一元二次方程解决的特殊图形问题时,通常要先画出图形,利用图形的面积找相等关系列方程.【预习导学】(一)知识探究1.(2)未知数 (3)列 (4)解 (5)有意义(二)自学反馈设镜框边的宽度为x cm ,则有(29+2x)(22+2x)=(14+1)×(29×22),即4x 2+102x -159.5=0,解得x 1=1.48,. 【合作探究】活动2 跟踪训练1.D 2.A 3.(1)设此长方形的宽为.根据题意,得x(20-x)=75,解得x 1=5,.(2)不能.理由:由题意,得x(20-x)=101,即x 2-20x +101=0.∵Δ=202-4×101=-4<0,∴此方程无实数解,故不能围成一个面积为101 cm2的长方形.4.假设三条马路修在如图所示位置.设马路宽为x ,则有(40-2x)(26-x)=144×6,化简,得x 2-46x +88=0,解得x 1=2,x 2=44.由题意,知40-2x >0,26-x >0,则x <20.故x 2=44不合题意,应舍去,∴.第2课时 利用一元二次方程解决营销问题会用列一元二次方程的方法解决有关商品的销售问题.(重点)阅读教材P54~55,完成下列问题: (一)知识探究 1.单件商品利润=________-________.2.利润率=利润进价=售价-进价进价. 3.售价=进价×(1+________)4.总利润=每件商品的________×商品的________.(二)自学反馈某种服装,平均每天可销售20件,每件盈利44元.在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件.如果每天盈利1 600元,每件应降价多少元?活动1 小组讨论例 新华商场销售某种冰箱,每台进货价为2 500元.调查发现,当销售价为2 900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5 000元,每台冰箱的定价应为多少元?分析:本题的主要等量关系是:每台冰箱的销售利润×平均每天销售冰箱的数量=5 000元.如果设每台冰箱降价x 元,那么每台冰箱的定价就是(2 900-x)元,每台冰箱的销售利润为(2 900-x -2 500)元,平均每天销售冰箱的数量为(8+4×x 50)台.这样就可以列出一个方程,从而使问题得到解决. 解:设每台冰箱降价x 元,根据题意,得(2 900-x -2 500)(8+4×x 50)=5 000. 解这个方程,得x 1=x 2=150.2 900-150=2 750.所以,每台冰箱应定价为2 750元.利用一元二次方程解决实际问题时,要根据具体问题的实际意义检验结果的合理性.活动2 跟踪训练1.某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6 125元,每件商品应降价( )A .3元B .2.5元C .2元D .5元2.某县为大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新.县政府已投资5亿元人民币,若每年投资的增长率相同,预计投资7.2亿元人民币,那么每年投资的增长率为( )A .20%或-220%B .40%C .-220%D .20%3.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.据此规律计算:每件商品降价________元时,商场日盈利可达到2 100元.4.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?活动3 课堂小结找准题目中的等量关系,会用列一元二次方程的方法解决有关商品的销售问题.【预习导学】(一)知识探究1.售价进价 3.利润率 4.利润销量(二)自学反馈设每件应降价x元,根据题意,得(44-x)(20+5x)=1 600.整理得x2-40x+144=0.解这个方程,得x1=4,x2=36(不合题意,舍去).答:每件服装应降价4元.【合作探究】活动2跟踪训练1.B 2.D 3.204.设每件降价x元,则每件销售价为(60-x)元,每星期销量为(300+20x)件,根据题意,得(60-x-40)(300+20x)=6 080,解得x1=1,x2=4.因为在顾客得实惠的前提下进行降价,所以取x=4.所以定价为60-x=56(元).答:应将销售单价定为56元.。
2023-2024学年北师大版九年级数学上册教案:2.6 应用一元二次方程
2023-2024学年北师大版九年级数学上册教案:2.6应用一元二次方程一. 教材分析《2.6 应用一元二次方程》是北师大版九年级数学上册的教学内容。
这部分内容主要让学生学会运用一元二次方程解决实际问题,培养学生的数学应用能力。
教材通过引入实际问题,让学生理解一元二次方程的建模过程,掌握求解一元二次方程的方法,并能够运用到实际问题中。
二. 学情分析九年级的学生已经学习过一元二次方程的理论知识,对一元二次方程的解法有一定的了解。
但部分学生可能对理论知识的运用还不够熟练,解决实际问题的能力有待提高。
此外,学生在学习过程中可能存在对公式记忆不牢、解题思路不清晰等问题。
三. 教学目标1.让学生理解一元二次方程在实际问题中的应用,培养学生的数学应用意识。
2.让学生掌握一元二次方程的解法,提高学生解决实际问题的能力。
3.通过对实际问题的分析,让学生体会数学与生活的紧密联系,激发学生学习数学的兴趣。
四. 教学重难点1.教学重点:运用一元二次方程解决实际问题,掌握一元二次方程的解法。
2.教学难点:对实际问题进行分析,找出关键信息,建立一元二次方程。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动参与课堂讨论,提高学生的思考能力。
2.利用案例分析,让学生通过实际问题理解一元二次方程的应用。
3.采用分组合作学习,培养学生的团队协作能力。
4.运用数形结合思想,帮助学生直观地理解一元二次方程的解法。
六. 教学准备1.准备相关的实际问题案例,用于教学演示。
2.准备一元二次方程的解法教程,以便学生课堂练习时参考。
3.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如抛物线与坐标轴的交点问题、物体运动问题等,引导学生思考如何利用一元二次方程解决这些问题。
2.呈现(10分钟)呈现一个实际问题,如:已知一颗抛物线的顶点坐标为(3,-2),求该抛物线与x轴的交点坐标。
引导学生分析问题,找出关键信息,然后根据一元二次方程的定义,建立方程。
北师大版九年级数学上册2.6应用一元二次方程 教 案
第二章一元二次方程2. 6 应用一元二次方程本节课的主题是发展学生的应用意识,这也是方程教学的重要任务.但学生应用意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力.因此,本节教学中需要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及方程观的初步形成.显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力.1.通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程.2.经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;3.在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力.【教学重点】能够利用一元二次方程解决有关实际问题.【教学难点】分析和建模的过程.课件.一、复习回顾(一)回忆:用配方法解一元二次方程的步骤:1. 化1:把二次项系数化为1(方程两边都除以二次项系数);2. 移项:把常数项移到方程的右边;3. 配方:方程两边都加上一次项系数绝对值一半的平方;◆教学重难点◆◆教学目标◆教材分析◆课前准备◆◆教学过程4. 变形:方程左边配方,右边合并同类项;5. 开方:根据平方根意义,方程两边开平方;6. 求解:解一元一次方程;7. 定解:写出原方程的解.(二)一般地,对于一元二次方程 ax 2+bx+c=0(a≠0)240,:b ac -≥当时它的根是)2402b x b ac a -±=-≥。
上面这个式子称为一元二次方程的求根公式.用求根公式解一元二次方程的方法称为公式法.二、合作交流,探究新知(一)认识黄金分割如图,点C 把线段AB 分成两条线段AC 和BC,如果,AC BC AB AC=那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比称为黄金比.其实,黄金分割就是三条能构成比例线段的特殊线段AB,AC 和BC.其中线段AC 是线段AB 和线段BC 的比例中项,也可写成AC 2=AB ·BC.,20.6181AC BC AB AC ==≈学习一元二次方程之后我们可以求得如何求得黄金分割?2:,AC CB AC AB CB AB AC==⋅解由得 1,,1AB AC x CB x ===-设则()211,x x ∴=⨯-210x x +-=即,解这个方程得12x -±∴=1215215(,)x x -+∴=--=不合题意舍去 150.618AC AB -+∴=≈黄金比。
2.6应用一元二次方程(第1课时)-北师大版九年级数学上册教说课稿
2.6 应用一元二次方程(第1课时)- 北师大版九年级数学上册教说课稿1. 引言本说课稿是针对北师大版九年级数学上册第2.6课时的教学内容进行讲述。
本课时的主要内容是应用一元二次方程,通过实际问题的分析和解决,培养学生运用一元二次方程解决实际问题的能力。
2. 教学目标•知识与能力目标:掌握一元二次方程在实际问题中的应用方法,能够运用一元二次方程解决实际问题。
•过程与方法目标:通过引导学生合作探究、自主学习的方式,培养学生的发现和解决问题的能力。
•情感态度价值观目标:培养学生的数学兴趣,提高学生的数学学习能力和解决实际问题的能力。
3. 教学准备•板书准备:预先准备好板书,包括本课的标题和重点内容。
•教具准备:课本、笔记本、黑板、粉笔、计算器等。
4. 教学过程步骤一:引入新课1.引导学生回顾一元二次方程的定义和基本概念,并提醒学生一元二次方程的解法。
2.提出一个实际问题:一个矩形的长是宽的3倍,周长为28米,请问这个矩形的长和宽各是多少?并引导学生思考如何用一元二次方程解决这个问题。
步骤二:小组探究1.将学生分为小组,每个小组由3-4名学生组成。
2.每个小组从课本上选取一个应用一元二次方程解决实际问题的例子,并让小组成员在讨论中尝试解决问题。
3.每个小组选派一名代表,向全班介绍所选题目,并阐述他们的解题思路。
步骤三:整合讨论1.引导学生对各组解题思路进行讨论和比较。
2.汇总各小组的解题思路,并引导学生发现其中的共性和特点。
3.通过整合讨论的过程,引导学生总结出应用一元二次方程解决实际问题的一般方法。
步骤四:讲解解题方法1.通过引导学生总结,讲解应用一元二次方程解决实际问题的一般步骤。
2.结合具体例子,逐步讲解如何将实际问题转化为一元二次方程,并解答学生关于解题过程中的疑惑。
步骤五:练习和拓展1.提供一些练习题给学生进行课堂练习,巩固所学内容。
2.鼓励学生尝试更复杂的实际问题,并引导他们运用所学知识解决。
2019秋北师大版九年级数学上册第二章一元二次方程6应用一元二次方程学案
2.6 应用一元二次方程第1课时利用一元二次方程解决几何问题及数字问题【课标要求】1、能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。
2、能根据具体问题的实际意义,检验方程的解是否合理。
【学习目标】1.经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤。
2.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。
【重点】掌握运用方程解决实际问题的方法。
【难点】构建数学模型解决实际问题。
课前预习纲要请同学们回顾七年级列一元一次方程解决实际问题的步骤,想一想,与同桌共同完成下列各题:1.一个三位数,百位上是a,十位上是b,个位上是c,则这个三位数是().A.abc B.a+b+c C.100a+10b+c D.cba2.一个两位数,十位数字与个位数字之和是6,•把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.设原来这个两位数的个位数字为x,则十位字为:。
;则列方程得:。
3、用22cm长的铁丝,折成一个面积为32cm2的矩形。
求这个矩形的长与宽。
设这个矩形的长为xcm,则宽为。
根据题意得方程:。
4、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?若设每条道路的宽度为xm,可列方课堂学习探究纲要一、创设情境导入新课(1分钟)问题导入:1、填空:56=5× + ;246=2× +4× + ;2、若一个两位数,个位数字为a,十位数字为b,则这个两位数为:。
二、明确学习目标(略30秒)三、预习检测:预习纲要四、自主探究合作释疑【自主学习】:请同学们结合课本31页,图2-2梯子下滑的问题所列的方程,选择适合你的解法求出梯子下滑的距离。
九年级数学上册 第二章 一元二次方程 2.6 应用一元二次方程教案 (新版)北师大版
课题:2.6应用一元二次方程●教学目标:一、知识与技能目标:通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。
二、过程与方法目标:经历分析具体问题中的数量关系、建立方程模型并解决问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,从中感受到数学学习的意义。
三、情感态度与价值观目标:在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。
●重点:能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。
●难点:利用数学语言进行有条理的表达。
●教学流程:一、导入新课1、列方程解应用题的一般步骤要做一个高是8cm,底面的长比宽多5cm,体积是528cm3的长方体木箱,问底面的长和宽各是多少?列方程解应用题的一般步骤:(1)“审”,即审题,分清题意,明确题目要求,弄清已知数、未知数以及它们之间的关系;(2)“设”,即设 _______,设未知数的方法有直接设未知数和间接设未知数两种;(3)“列”,即根据题中的______关系列方程;(4)“解”,即求出所列方程的解;(5)“检验”,即验证是否符合题意;(6)“答”,即回答题目中要解决的问题.2、还记得本章开始时梯子下滑的问题吗?(1)在这个问题中,梯子顶端下滑1米时,梯子低端下滑的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离与它相等呢?(2)如果梯子的长度是13米,梯子顶端与地面的垂直距离是12米,那么梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?二、 新课讲解1、例题解析例1:如图2-8,某海军基地位于点A 处,在其正南方向200海里处有一重要目标B,在B 的正东方向200海里处有一重要目标C.小岛D 位于AC 的中点,岛上有一补给码头;小岛F 位于BC 上且恰好处于小岛D 的正南方向.一艘军舰从A 出发,经B 到C 匀速巡航,一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.(1) 小岛D 和小岛F 相距多少海里?(2) 已知军舰的速度是补给船的2倍,军舰在由B 到C 的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里,例2、新华商场销售某种冰箱,每台进价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销价每降低50元时,平均每天能多售4台.商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?三、学以致用如图,一艘巡洋舰从点A 出发,沿正南方向航行了半小时到达点B ,再沿南偏西60°方向航行了半小时到达点C ,此时测得码头D 在C 的正东方向,该巡洋舰的速度为80海里/时.(1)求点B 、D 之间的距离;(2)试判断CD 与AC 的数量关系.2.449利群商场销售某种洗衣机,每台进价为2500元,市场调研表明,当售价为2900元时,平均每天能售出16台,而当售价每降低50元时,平均每天就能多售出8台,商场要想使这种洗衣机的销售利润平均每天达到10000元,每台洗衣机的定价应为多少元?四、课堂小结本节课选取了一些几何和现实生活中的题材,让同学们经历列一元二次方程解决问题的过程.当我们在建构方程数学模型,刻画现实世界、解决实际问题时,应注意哪些重要环节?1、整体地、系统地审清问题2、把握问题中的等量关系3、正确求解方程并检验解的合理性你还有哪些新的、有价值的收获吗?五、课堂拓展某省为解决农村用水问题,省财政部共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2009年,A市在省财政补助的基础上再投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2011年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程的年平均增长率;(2)从2009年到2011年,A市三年共投资“改水工程”多少万元?六、达标测评1、(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15D.(x+1)(4﹣0.5x)=152.有这样一道阿拉伯古算题:有两笔钱,一多一少,其和等于20,积等于96,多的一笔被许诺赏给赛义德,那么赛义德得到多少钱3.如图,在△ABC 中,∠ACB=90°,AC=8cm ,BC=6cm ,若点P 从A 点出发,沿射线AC 方向以2cm/s 的速度匀速移动,点Q 从点B 出发沿射线BC 方向以1cm/s 的速度匀速移动,问几秒后,△PCQ 的面积为△ABC 的面积的4. 如图,某花园小区,准备在一块长为22m ,宽为17m 的矩形地面上,修建同样宽的两条互相垂直的人行小路(两条小路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300m2,求要修建的小路宽为多少米5. 如图,在Rt △ABC 中,∠C=90°,AC=9cm ,BC=7cm ,动点P 从点C 出发,沿CA 方向运动,动点Q 从点B 出发,沿BC 方向运动,如果点P ,Q 的运动速度均为1cm/s .那么运动几秒时,它们相距5cm ?七、布置作业教材55页习题第1、2题。
北师大版九年级上册2.6应用一元二次方程(教案)
此外,在课堂总结环节,我强调了掌握一元二次方程的重要性,并提醒学生们遇到疑问时要主动提问。然而,我也意识到在课堂上,对于一些学生提出的疑问,我的解答可能还不够详细和耐心。为了提高教学效果,我决定在课后抽出更多时间,针对学生的疑问进行一对一辅导,确保他们真正理解并掌握一元二次方程的应用。
b.在求解一元二次方程时,选择合适的方法。学生需要根据方程的特点,灵活选用ห้องสมุดไป่ตู้方法、公式法或因式分解法求解;
c.将数学解答还原为实际问题的答案。学生在求出数学解答后,需要将其与实际问题相结合,得出合理的实际意义。
-举例:在解决几何中的面积和长度问题时,学生需要理解几何图形之间的相互关系,找到对应的数量关系,建立一元二次方程。此外,在求解过程中,学生可能对如何选择合适的求解方法感到困惑,需要教师在教学中给予指导。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是形如ax^2+bx+c=0的方程,它可以帮助我们解决许多实际问题。它在物理学、几何学、经济学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,了解一元二次方程在实际问题中的建立和求解过程。
b.熟练运用配方法、公式法及因式分解法求解一元二次方程;
c.能够将实际问题转化为数学问题,进而解决问题。
-举例:在解决物理中的匀加速直线运动问题时,学生需要根据速度、时间和位移之间的关系建立一元二次方程,然后运用所学求解方法解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6《应用一元二次方程》教学设计
李长冬
一、教材分析
节课是“应用一元二次方程”,教材内容以现实生活中的问题为背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用方程表示出数量关系,最终解决问题。
让学生体会数学在现实生活中的运用。
本节课的主题是发展学生的应用意识,这也是方程教学的重要任务。
但学生应用意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力。
因此,本节教学中需要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及方程观的初步形成。
显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力。
二、学情分析
学生已经学习了一元二次方程及其解法,对于方程的解及解方程并不陌生,对于实际问题的应用,虽然在七、八年级学生已经进行了有关的训练,但还是有一定的难度。
由于本节内容针对的学习者是九年级上学期的学生,已经具备了一定的生活经验和初步的解一元二次方程的经验,乐意并能够与同伴进行合作交流。
三、学习目标
知识目标:
通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。
能力目标:
1.经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;
2.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;
四、教学过程
情境引入:
如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8
米,如果梯子顶端下滑的距离与梯子底端滑动的距离相等,那么这个距离是多少?
活动目的:以学生所熟悉的梯子下滑问题为素材,以前面所学的勾股定理中
边长的关系为切入点,用熟悉的情境激发学生解决问题的欲望,用学生已有的知识
为支点,进一步让学生体会数形结合的思想。
探究新知
活动一:见课本P53页例1:
如图:某海军基地位于A处,在其正南方向200海里处有一重要目
标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,
岛上有一补给码头。
小岛F位于BC中点。
一艘军舰从A出发,经B到C
匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将
一批物品送达军舰。
已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相
遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)
解决实际应用问题的关键是审清题意,因此教学中老师要给学生充分的时间去审清题意,让学生自己反复审题,弄清各量之间的关系,分析题目中的已知条件和要求解的问题,并在这个前提下抓住图形中各条线段所表示的量,弄清它们之间的关系。
该部分是学习中的难点,在教学中要给学生充分的时间去审清题意,分析各量之间的关系,不能粗线条解决。
在讲解过程中可设计如下问题串,引导学生分析,逐步弄清楚题意,探究解体途径。
(1)由题意可知,△ABC是三角形,DF是△ABC的,DF= ,BF= 。
(2)设相遇时补给船所走路程DE为x海里,则军舰所走路程AB+BE的长为
海里,AB+BF的长为海里,由此可将EF表示为海里。
(3)在Rt△DFE中,三条边DE、DF、EF满足定理,即DF2+EF2=DE2,由此可列方程
为:。
归纳总结:通过例1的分析讲解引导学生归纳总结出列方程解应用题的一般步骤为:审、设、列、解、验、答。
活动二:如图:在Rt△ACB中,∠C=90°,AC=8cm,BC=6cm,点P、Q
同时由A、B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是
1cm/s,几秒后△PCQ的面积为Rt△ACB面积的一半?
(1)Rt△ACB的面积是;
(2)若设x秒后△PCQ的面积为Rt△ACB面积的一半,此时AP的长为
cm,CP的长为 cm,BQ的长为 cm,CQ的长为 cm。
(3)根据题意列方程得:。
请你写出完整的解答过程
此例的讲解通过微课的形式展现给大家,让学生体验到多媒体教学的多样性和趣味性。
同时设计了问题串,以此为抓手引领学生分析该例,让学生观看微课后独立完成。
巩固练习:
如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C
出发,沿CA方向运动,速度是2cm/s;动点Q从点B出发,沿BC方向
运动,速度是1cm/s,几秒后P,Q两点相距25cm?
(1)若设x秒后P、Q两点相距25cm,则此时BQ的长为 cm,CQ
的长 cm,CP的长为 cm。
(2)Rt△PCQ的三边PC、QC、PQ满足关系式:。
根据题意列方程得:。
活动目的:通过问题串的设立,将比较复杂、难以理解的题目分成多个小的题目去理解,使学生在不知不觉中克服困难,体会到列方程解应用题的三个重要环节:整体系统的审清题意;寻找等量关系;正确求解并检验解的合理性。
收获与感悟:
让学生在学习小组中进行回顾与反思后,进行组间交流发言。
活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,还有什么疑难问题希望得到解决,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中;通过对三个问题的解决,加深学生利用方程解决实际问题的意识和提高解题的能力;并且通过学生间的合作学习帮助不同层次的孩子解决实际困难,增强孩子学好数学的信心。
布置作业:
课本53页问题解决第1题、第3题。