【3套试卷】八年级下册数学期中考试试题及答案

合集下载

【三套打包】沈阳市八年级下学期期中数学试题含答案(3)

【三套打包】沈阳市八年级下学期期中数学试题含答案(3)

人教版数学八年级下册期中考试试题(含答案)人教版八年级下学期期中数学试卷数学试卷一.选择题(本大题共12小题,每小题 3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在直角三角形中,若勾为3,股为4,则弦为 (A)5 (B)5 (C) 7 (D) 82.若3-x 在实数范围内有意义,则x 的取值范围是 (A)X ≤3 (B)X<3 (C)X ≥3 (D)X>33.下列计算正确的是(A)2+3=5 (B)532=⋅ (C)2223-=1 (D)212÷=2 4.下列二次根式中,是最简二次根式的是 (A)24 (B)73(C) 3-x (D)b a 25.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB=100°,则∠OAB 的度数是 (A)100° (B)80°(C) 50°(D) 40°6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AC=1,则BC 的长等于 (A)21(B)33 (C)3 (D)27.以下各组线段为边,能组成直角三角形的是 (A)6cm,12cm,13cm (B)45cm,1cm,32cm (C)8cm,6cm,9cm (D)1.5cm,2cm,2.5cm 8.下列条件不能判断四边形为正方形的是(A)对角线互相垂直且相等的平行四边形 (B)对角线互相垂直的矩形 (C)对角线互相垂直且相等的四边形 (D)对角线相等的菱形9.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是(A)平行四边形 (B)矩形 (C)菱形 (D)正方形10.如图,四边形ABCD ,∠D=∠C=90°,CD=2,点E 在边AB ,且AD=AE,BE=BC,则AE •BE 的值为(A)2 (B)1 (C)22 (D)2111. 如图,正方形ABCD 的边长为4,点E 对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为点F ,则EF 的长为(A)1 (B)4-22 (C)22 (D)23-412. 如图,在菱形ABCD 中,∠BAD=120°,点E ,F 分别在边AB ,BC上,将菱形沿EF 折叠,点B 恰好落在AD 边上的点G 处,且EG ⊥AC ,若CD=8,则FG 的长为(A)6 (B)34 (C) 8 (D) 26二.填空题(本大题共6小题,每小题3分,共18分) 13. 计算:(25)(=__________;252)(=_______________; 494⨯=___________;14. 计算:224c ba =________;a28=___________;xy x 313⋅=_________; 15. 如图,在平行四边形ABCD 中,添加一个条件________使平行四边形ABCD 是菱形.16. 观察下列各式:311+=231,412+=413,513+=514,…请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是____________.17. 如图,四边形AOBC 是正方形,OA=4,动点P 从点O 出发,沿折线OACB 方向以 1个单位/秒的速度匀速运动, 另一个点Q 从O 出发,沿折线OBCA 方向以 2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时停止运动,当以A 、P 、B 、Q 四点为顶点的四边形为平行四边形时, t 的值为__________。

八年级下学期数学期中考试试卷含答案(共5套,人教版)

八年级下学期数学期中考试试卷含答案(共5套,人教版)

人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)一.单选题。

(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。

(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。

12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。

人教版数学八年级下册期中测试卷4套(含答案解析)

人教版数学八年级下册期中测试卷4套(含答案解析)

人教版数学八年级下册期中测试卷一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠2.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.203.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列计算错误的是()A.B.C.D.5.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3B.C.D.6.下列根式中,是最简二次根式的是()A.B.C.D.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16C.8D.89.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4B.8C.16D.无法计算10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.11.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.7612.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3二、填空题13.已知,则x+y=.14.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.15.写出同时具备下列两个条件的一次函数表达式:(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(0,﹣3).16.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.三、解答题19.计算:2×3++|﹣1|﹣π0+()﹣1.20.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.21.先化简,后计算:,其中a=,b=.22.已知一次函数的图象a过点M(﹣1,﹣4.5),N(1,﹣1.5)(1)求此函数解析式,并画出图象;(2)求出此函数图象与x轴、y轴的交点A、B的坐标;(3)若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标.23.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.求△ABE的面积.24.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.25.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【考点】二次根式有意义的条件;分式有意义的条件.【专题】选择题.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.20【考点】勾股定理.【专题】选择题.【分析】因为知道两个直角边长,根据勾股定理可求出斜边长.【解答】解:∵三角形的两直角边长为12和16,∴斜边长为:=20.故选D.【点评】本题考查勾股定理的应用,根据两直角边长可求出斜边长.3.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【专题】选择题.【分析】根据一次函数y=﹣x+1中k=﹣<0,b=1>0,判断出函数图象经过的象限,即可判断出一次函数y=﹣x+1的图象不经过的象限是哪个.【解答】解:∵一次函数y=﹣x+1中k=﹣<0,b=1>0,∴此函数的图象经过第一、二、四象限,∴一次函数y=﹣x+1的图象不经过的象限是第三象限.故选C.【点评】此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b <0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.4.下列计算错误的是()A.B.C.D.【考点】二次根式的加减法.【专题】选择题.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.5.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3B.C.D.【考点】勾股定理;坐标与图形性质.【专题】选择题.【分析】连接PO,在直角坐标系中,根据点P的坐标是(,),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【解答】解:连接PO,∵点P的坐标是(,),∴点P到原点的距离==3.故选A.【点评】此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.6.下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【专题】选择题.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.【专题】选择题.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16C.8D.8【考点】菱形的性质.【专题】选择题.【分析】首先由四边形ABCD是菱形,求得AC⊥BD,OA=AC,∠BAC=∠BAD,然后在直角三角形AOB中,利用30°角所对的直角边等于斜边的一半与勾股定理即可求得OB的长,然后由菱形的面积等于其对角线积的一半,即可求得该菱形的面积.【解答】解:如图∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°,∴AC=4,∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,OB=2,∴BD=2OB=4,∴该菱形的面积是:AC•BD=×4×4=8.故选C.【点评】此题考查了菱形的性质,直角三角形的性质.解题的关键是注意数形结合与方程思想的应用,注意菱形的面积等于其对角线积的一半.9.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4B.8C.16D.无法计算【考点】正方形的性质;全等三角形的判定与性质.【专题】选择题.【分析】由正方形ABCD中,FA=AE,易证得Rt△ABF≌Rt△ADE(HL),即可得S四边形AFCE =S正方形ABCD,求得答案.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠D=90°,AB=AD,即∠ABF=∠D=90°,在Rt△ABF和Rt△ADE中,,∴Rt△ABF≌Rt△ADE(HL),∴S Rt△ABF=S Rt△ADE,∴S Rt△ABF+S四边形ABCE=S Rt△ADE+S四边形ABCE,∴S四边形AFCE =S正方形ABCD=16.故选C.【点评】此题考查了正方形的性质以及全等三角形的判定与性质.注意证得Rt △ABF≌Rt△ADE是关键.10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.【考点】正方形的判定.【专题】选择题.【分析】运用割补法把原四边形转化为正方形,求出BE的长.【解答】解:过B点作BF⊥CD,与DC的延长线交于F点,则有△BCF≌△BAE(ASA),则BE=BF,S四边形ABCD =S正方形BEDF=8,∴BE==.故选C.【点评】本题运用割补法把原四边形转化为正方形,其面积保持不变,所求BE 就是正方形的边长了;也可以看作将三角形ABE绕B点逆时针旋转90°后的图形.11.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.76【考点】函数解析式.【专题】选择题.【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【解答】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点评】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n (n+1).12.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3【考点】一次函数与一元一次不等式;一次函数的性质.【专题】选择题.【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b 看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【解答】解:①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③两函数图象的交点横坐标为3,∴当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④.故选D.【点评】此题主要考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.13.已知,则x+y=.【考点】二次根式的性质.【专题】填空题.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵,∴,解得,则x+y=﹣1+2=1,故答案为1.【点评】本题考查了非负数的性质,利用该性质建立关于x、y的方程组是解题的关键.14.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.【考点】勾股定理的逆定理;直角三角形斜边上的中线.【专题】填空题.【分析】由勾股定理的逆定理,判断三角形为直角三角形,再根据直角三角形的性质直接求解.【解答】解:∵AB=5cm,BC=12cm,AC=13cm,由勾股定理的逆定理得,△ABC 是直角三角形,∴BD=AC=cm.【点评】解决此题的关键是熟练运用勾股定理的逆定理判定直角三角形,明确了直角三角形斜边上的中线等于斜边上的一半之后此题就不难了.15.写出同时具备下列两个条件的一次函数表达式:(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(0,﹣3).【考点】一次函数的性质.【专题】填空题.【分析】设一次函数的解析式为y=kx+b(k≠0),再根据y随着x的增大而减小得出k的取值范围,把点(0,﹣3)代入函数解析式得出k+b的值,写出符合条件的解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵y随着x的增大而减小,∴k<0,∵图象过点(0,﹣3),∴b=﹣3,∴符合条件的解析式可以为:y=﹣x﹣3.故答案为:y=﹣x﹣3(答案不唯一).【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k <0时,y随x的增大而减小是解答此题的关键.16.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为.【考点】勾股定理.【专题】填空题.【分析】利用勾股定理列式求出AB,再根据阴影部分的面积等于阴影部分所在的两个半圆的面积加上△ABC的面积减去大半圆的面积,列式计算即可得解.【解答】解:∵AC=12,BC=5,∴AB===13,∴阴影部分的面积=π()2+π()2+×12×5﹣π()2=π+π+30﹣π=30.故答案为:30.【点评】本题考查了勾股定理,半圆的面积,熟记定理并观察图象表示出阴影部分的面积是解题的关键.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.【考点】正方形的性质;全等三角形的判定与性质.【专题】填空题.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.【考点】函数图象的实际应用.【专题】填空题.【分析】根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.【解答】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=3,纵坐标为120﹣60×=75,(故③正确);④设快递车从乙地返回时的速度为y千米/时,则(y+60)(4﹣3)=75,y=90,(故④正确).故答案为;①③④.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.19.计算:2×3++|﹣1|﹣π0+()﹣1.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【专题】解答题.【分析】根据二次根式分混合运算的法则,零指数的性质,负整数指数幂的性质计算即可.【解答】解:2×3++|﹣1|﹣π0+()﹣1=×3+2+﹣1﹣1+2=6+3.【点评】本题考查了二次根式分混合运算的法则,零指数的性质,负整数指数幂的性质,熟记运算法则是解题的关键,20.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.【考点】平行四边形的性质;平行线的性质;全等三角形的判定与性质.【专题】解答题.【分析】根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠DAE=∠BCF.【点评】本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE和△CBF全等的三个条件,主要考查学生的推理能力.21.先化简,后计算:,其中a=,b=.【考点】二次根式的混合运算.【专题】解答题.【分析】先通分、化简,然后代入求值.【解答】解:,=,=,=.∵a=,b=,∴ab=•==1,a+b==,∴==.即:=.【点评】本题考查了分式的化简求值.解答此题的关键是把分式化到最简,然后代值计算.22.已知一次函数的图象a过点M(﹣1,﹣4.5),N(1,﹣1.5)(1)求此函数解析式,并画出图象;(2)求出此函数图象与x轴、y轴的交点A、B的坐标;(3)若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标.【考点】用待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【专题】解答题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)在解析式中令x=0求得y,即可求得与y轴的交点坐标,在解析式中令y=0,求得x的值,即可求得与x轴的交点坐标;(3)C的坐标是m,利用三角形的面积公式即可得到关于m的方程,即可求解.【解答】解:(1)设函数的解析式是y=kx+b,根据题意得:,解得:,则函数的解析式是:y=1.5x﹣3;(2)在y=1.5x﹣3中,令x=0,解得y=﹣3;当y=0时,x=2,则A(2,0)B(0,﹣3);(3)在y=1.5x﹣3中,令x=4,解得:y=3,则P的坐标是:(4,3),设C的坐标是m,则|m﹣2|×3=6,解得:m=﹣2或6.则C的坐标是:(﹣2,0)或(6,0).【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.23.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.求△ABE的面积.【考点】翻折变换(折叠问题);勾股定理.【专题】解答题.【分析】首先设BE=xcm,由折叠的性质可得:DE=BE=xcm,即可得AE=9﹣x(cm),然后在Rt△ABE中,由勾股定理BE2=AE2+AB2,可得方程x2=(9﹣x)2+32,解此方程即可求得DE的长,继而可得AE的长,则可求得△ABE的面积.【解答】解:∵四边形ABCD是长方形,∴∠A=90°,设BE=xcm,由折叠的性质可得:DE=BE=xcm,∴AE=AD﹣DE=9﹣x(cm),在Rt△ABE中,BE2=AE2+AB2,∴x2=(9﹣x)2+32,解得:x=5,∴DE=BE=5cm,AE=9﹣x=4(cm),∴S=AB•AE=×3×4=6(cm2).△ABE【点评】此题考查了折叠的性质、长方形的性质以及勾股定理.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.24.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理;矩形的判定.【专题】解答题.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点评】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.25.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【考点】正方形的性质;正方形的判定.【专题】解答题.【分析】(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q 分别为AE,EF,FD,AD的中点,即可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.【解答】解:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠CDE=∠DAF,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.【点评】此题属于四边形的综合题,考查了正方形的判定与性质、全等三角形的判定与性质以及三角形中位线的性质.注意证得△ADF≌△DCE(SAS),掌握三角形中位线的性质是关键.人教版数学八年级下册期中测试卷一、选择题1.要使二次根式有意义,字母x的取值必须满足()A.x≥0B.C.D.2.下列运算错误的是()A.+=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1B.1C.3D.﹣36.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4B.3C.5D.4.57.若直角三角形两边分别是3和4,则第三边是()A.5B.C.5或D.无法确定8.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24B.12C.6D.89.若,则x的值等于()A.4B.±2C.2D.±410.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.3二、填空题11.已知一直角三角形,两边长为3和4,则斜边上的中线长为.12.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=.13.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)14.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.15.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、解答题16.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.17.若x,y为实数,且|x+2|+=0,求()2011.18.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.19.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.20.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.21.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.22.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.23.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C 的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE 为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.答案1.要使二次根式有意义,字母x的取值必须满足()A.x≥0B.C.D.【考点】二次根式有意义的条件.【专题】选择题.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.下列运算错误的是()A.+=B.•=C.÷=D.(﹣)2=2【考点】二次根式的加减法;二次根式的乘除法.【专题】选择题.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.【点评】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,3【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm2【考点】勾股定理;等边三角形的性质.【专题】选择题.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.【点评】求高是关键,把三角形转化为解直角三角形问题就很易求出.5.若x=﹣3,则等于()A.﹣1B.1C.3D.﹣3【考点】二次根式的性质.【专题】选择题.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

八年级(下册)期中数学试卷+参考答案与试题解析(苏科版)

八年级(下册)期中数学试卷+参考答案与试题解析(苏科版)

八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中只有一个选项是符合题目要求的,将此选项的代号填入答题纸上.)1.下列调查中,适宜采用普查方式的是()A.调查市场上牛奶的质量情况B.调查全国中小学生的视力情况C.调查某品牌灯泡的使用寿命D.调查航天飞机零部件是否合格2.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形 B.正方形C.等腰直角三角形D.平行四边形3.下列命题中,真命题是()A.连接矩形各边中点的四边形是菱形B.对角线垂直的四边形是菱形C.三个角相等的四边形是矩形D.两条对角线相等的四边形是矩形4.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤25.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是()A.①④B.②③C.②④D.①③6.下列运算正确的是()A.=B.=C.=D.=7.分式﹣可变形为()A.﹣B. C.﹣D.8.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为()A.6 B.4 C.3 D.29.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()A.①B.②C.③D.④10.一副三角板按图1所示的位置摆放,将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为()A.16+16cm2B.16+cm2 C.16+cm2 D.48cm2二、填空题(本大题共10小题,每空2分,共24分,答案填入答题纸上)11.已知分式无意义,则x_________;当x_________时,分式的值为零.12.□ABCD中,∠A+∠C=100゜,则∠B=_________.13.若分式的值是负数,则x的取值范围是_________.14.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有_________个数.15.已知菱形两条对角线的长分别为12和16,则这个菱形的周长为_________,面积为_________.16.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=_________度.17.若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为_________.18.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是_________平方厘米.19.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为_________.20.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有_________次.三、解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)21.计算或化简(1)(2)计算:﹣.22.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x 值代入求值.23.已知3x+2y=0,求(1+)(1﹣)的值.24.中学生骑电动车上学的现象越来越受到社会的关注.某市记者随机调查了一些家长对这种现象的态度(A:无所谓;B:反对;C:赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,C部分所占扇形的圆心角度数为_________°;选择图①进行统计的优点是_________;(2)将图②补充完整;(3)根据抽样调查结果,请你估计该市50000名中学生家长中有多少名家长持赞成态度?25.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.26.如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.27.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中只有一个选项是符合题目要求的,将此选项的代号填入答题纸上.)1.下列调查中,适宜采用普查方式的是()A.调查市场上牛奶的质量情况B.调查全国中小学生的视力情况C.调查某品牌灯泡的使用寿命D.调查航天飞机零部件是否合格【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:调查市场上牛奶的质量情况适宜采用抽样调查方式,A错误;调查全国中小学生的视力情况适宜采用抽样调查方式,B错误;调查某品牌灯泡的使用寿命适宜采用抽样调查方式,C错误;调查航天飞机零部件是否合格适宜采用普查方式,D正确,故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形 B.正方形C.等腰直角三角形D.平行四边形【考点】中心对称图形;轴对称图形.【分析】根据正多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.【点评】此题主要考查了轴对称图形与中心对称图形.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.下列命题中,真命题是()A.连接矩形各边中点的四边形是菱形B.对角线垂直的四边形是菱形C.三个角相等的四边形是矩形D.两条对角线相等的四边形是矩形【考点】命题与定理.【分析】根据三角形中位线性质、矩形的性质和菱形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据矩形的判定方法对C、D进行判断.【解答】解:A、连接矩形各边中点的四边形是菱形,所以A正确;B、对角线垂直的平行四边形是菱形,所以B错误;C、四个角相等的四边形是矩形,所以C错误;D、两条对角线相等的平行四边形是矩形,所以D错误.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是()A.①④B.②③C.②④D.①③【考点】概率的意义.【分析】分别利用概率的意义分析得出答案.【解答】解:①“明天下雨的概率是90%”表示明天下雨的可能性很大;正确;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;错误;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;错误;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确.故选:A.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.6.下列运算正确的是()A.=B.=C.=D.=【考点】约分.【分析】根据分式的约分,先把分子与分母因式分解,再约分,进行选择即可.【解答】解:A、=,故A选项错误;B、==,故B选项错误;C、==﹣,故C选项错误;D、==,个D选项正确,故选D.【点评】本题考查了分式的约分,是中考常见题型,因式分解是解题的关键.7.分式﹣可变形为()A.﹣B. C.﹣D.【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:把分式和分式的分母同时乘以﹣1得,(﹣1)×(﹣)=.故选D.【点评】本题考查的是分式的基本性质,熟知分子、分母、分式本身同时改变两处的符号,分式的值不变是解答此题的关键.8.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为()A.6 B.4 C.3 D.2【考点】三角形中位线定理;平行四边形的性质.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB 的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故选C.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.9.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()A.①B.②C.③D.④【考点】平行四边形的判定.【分析】一组对边平行,一组对角相等可推出两组对角分别相等,可判定为平行四边形一组对边平行,一条对角线被另一条对角线平分,可利用全等得出这组对边也相等,可判定为平行四边形一组对边相等,一条对角线被另一条对角线平分,所在的三角形不能得出一定全等,所以能判定为平行四边形.【解答】解:根据平行四边形的判定,能满足是平行四边形条件的有:①,②、④,而③无法判定.故选:C.【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.10.一副三角板按图1所示的位置摆放,将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为()A.16+16cm2B.16+cm2 C.16+cm2 D.48cm2【考点】解直角三角形.【分析】过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=8cm,先在Rt△GCH 中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.【解答】解:过G点作GH⊥AC于H,如图,∠GAC=60°,∠GCA=45°,GC=8cm,在Rt△GCH中,GH=CH=GC=4cm,在Rt△AGH中,AH=GH=cm,∴AC=AH+CH=+4(cm).∴两个三角形重叠(阴影)部分的面积=AC•GH=×(+4)×4=16+cm2故选:B.【点评】本题考查了解直角三角形:求直角三角形中未知的边和角的过程叫解直角三角形.也考查了含30°的直角三角形和等腰直角三角形三边的关系以及旋转的性质.二、填空题(本大题共10小题,每空2分,共24分,答案填入答题纸上)11.已知分式无意义,则x=﹣1;当x=2时,分式的值为零.【考点】分式的值为零的条件;分式有意义的条件.【分析】直接利用分式无意义则其分母为0,再利用分式的值为0,则其分子为零,进而求出答案.【解答】解:分式无意义,则x=﹣1;当x=2时,分式的值为零故答案为:=﹣1,=2.【点评】此题主要考查了分式的值为0以及分式分式有无意义,正确把握相关定义是解题关键.12.□ABCD中,∠A+∠C=100゜,则∠B=130°.【考点】平行四边形的性质.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.13.若分式的值是负数,则x的取值范围是x>.【考点】分式的值.【专题】计算题.【分析】根据分式的分母的最小值为1,值为负数,即为分子为负数,列出关于x的不等式,求出不等式的解集即可得到x的范围.【解答】解:∵<0,x2+1≥1>0,∴2﹣3x<0,解得:x>.故答案为:x>【点评】此题考查了分式的值,涉及的知识有:非负数的性质,以及解一元一次不等式,列出关于x的方程是解本题的关键.14.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有200个数.【考点】频数与频率.【分析】根据频数=频率×数据总和求解即可.【解答】解:数据总和==200.故答案为;200.【点评】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.15.已知菱形两条对角线的长分别为12和16,则这个菱形的周长为40,面积为96.【考点】菱形的性质.【分析】如图四边形ABCD是菱形,AC=12,BD=16,利用菱形的性质先求出AB,根据菱形的面积公式即可解决问题.【解答】解:如图四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,AO=AC=6,BO=BD=8,∴AB===10,∴菱形的周长为40,菱形的面积为×12×16=96.故答案分别为40,96.【点评】本题考查菱形的性质、解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直,属于中考常考题型.16.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=20度.【考点】旋转的性质.【分析】根据旋转的性质找到对应点、对应角进行解答.【解答】解:∵△ABC绕点A逆时针旋转85°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC﹣∠BAB′=20°.故答案是:20.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣﹣旋转中心;②旋转方向;③旋转角度.17.若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为对角线垂直.【考点】中点四边形;矩形的性质.【分析】这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】解:顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为对角线垂直,理由:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,则AC⊥BD,故四边形ABCD满足的条件为对角线垂直.故答案为:对角线垂直.【点评】此题考查了矩形的性质、三角形的中位线定理以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.18.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是48平方厘米.【考点】矩形的性质;三角形的面积;全等三角形的判定与性质.【专题】计算题.【分析】延长DF交BC于G,证出△DEF≌△GCF,根据全等得出DE=CG=BG,DF=GF,=4S△BDG,代入求出即可.即可求出S△BDG=2S△BDF,S长方形ABCD【解答】解:延长DF交BC于G,∵E是AD的中点,F是CE的中点,∴EF=FC,AE=DE,∵四边形ABCD是长方形,∴BC=AD=2DE,AD∥BC,∴∠DEF=∠FCG,在△DEF和△GCF中∴△DEF≌△GCF(ASA),∴DE=CG=BG,DF=GF,∴S△BDG=2S△BDF=12平方厘米,=4S△BDG=48平方厘米,∴S长方形ABCD∴长方形ABCD的面积是48平方厘米.故答案为:48.【点评】本题主要考查了矩形的性质,全等三角形的性质和判定,三角形的面积等知识点,根据求出△DEF≌△GCF是解此题的关键.19.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为1或5.【考点】旋转的性质;正方形的性质.【专题】压轴题.【分析】题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC上的点”,所以有两种情况,即一个是逆时针旋转,一个顺时针旋转,根据旋转的性质可知.【解答】解:旋转得到F1点,∵AE=AF1,AD=AB,∠D=∠ABC=90°,∴△ADE≌△ABF1,∴F1C=1;旋转得到F2点,同理可得△ABF2≌△ADE,∴F2B=DE=2,F2C=F2B+BC=5.【点评】本题主要考查了旋转的性质.20.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次.【考点】平行四边形的判定与性质.【专题】动点型.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.【点评】此题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.三、解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)21.计算或化简(1)(2)计算:﹣.【考点】分式的混合运算.【专题】计算题;分式.【分析】(1)原式通分并利用同分母分式的加法法则计算,约分即可得到结果;(2)原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式=+===;(2)原式=•﹣=﹣=.【点评】此题考查了分式的混合运算,以及分式的加减,熟练掌握运算法则是解本题的关键.22.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x 值代入求值.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4(x≠﹣1,0,1).【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.已知3x+2y=0,求(1+)(1﹣)的值.【考点】分式的化简求值.【专题】计算题.【分析】先括号内通分化简,再计算乘法,由条件得出3x=﹣2y,设x=﹣2k,y=3k代入即可解决问题.【解答】解:原式=•=由3x+2y=0得出3x=﹣2y,设x=﹣2k,y=3k则原式==13.【点评】本题考查分式的化简求值,熟练掌握分式的混合运算法则是解决问题的关键,学会设参数解决问题,属于中考常考题型.24.中学生骑电动车上学的现象越来越受到社会的关注.某市记者随机调查了一些家长对这种现象的态度(A:无所谓;B:反对;C:赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,C部分所占扇形的圆心角度数为54°;选择图①进行统计的优点是扇形统计图能够清晰的反映出各部分占总数的百分比;(2)将图②补充完整;(3)根据抽样调查结果,请你估计该市50000名中学生家长中有多少名家长持赞成态度?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)由家长反对的人数除以所占的百分比求出调查的总人数,求出家长赞成占得百分比,乘以360即可求出C部分占得度数;选择图①进行统计的优点是扇形统计图能够清晰的反映出各部分占总数的百分比;(2)求出家长无所谓的人数,补全统计图即可;(3)由样本中家长赞成的百分比乘以50000即可得到结果.【解答】解:(1)由题意得:C部分所占扇形的圆心角度数为36÷(144÷60%)×360°=54°;选择图①进行统计的优点是扇形统计图能够清晰的反映出各部分占总数的百分比;(2)家长无所谓的人数为144÷60%﹣144﹣36=60(人),补全统计图如下:(3)根据题意得:50000×=7500(人),则该市50000名中学生家长中约有7500名家长持赞成态度.故答案为:(1)54;扇形统计图能够清晰的反映出各部分占总数的百分比【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.25.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.【考点】坐标与图形性质;平行四边形的性质.【分析】(1)本题应从BC为对角线、AC为对角线、AB为对角线三种情况入手讨论,即可得出第四个点的坐标.(2)解本题时应将三角形进行分化,化为几个直角三角形的和,解出面积和,乘以2即为平行四边形的面积.【解答】解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5).(2)图中△ABC面积=3×3﹣(1×3+1×3+2×2)=4,所以平行四边形面积=2×△ABC 面积=8.【点评】此题主要考查了平行四边形的性质和判定,难易程度适中.26.如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.【考点】平行四边形的判定与性质;全等三角形的判定与性质;矩形的判定.【专题】证明题.【分析】(1)先由已知平行四边形ABCD得出AB∥DC,AB=DC,⇒∠ABF=∠ECF,从而证得△ABF≌△ECF;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠ABF=∠ECF,∵EC=DC,∴AB=EC,在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF(AAS).(2)∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴FA=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点评】此题考查的知识点是平行四边形的判定与性质,全等三角形的判定和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.27.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.。

八年级数学(下)期中试卷含答案

八年级数学(下)期中试卷含答案

八年级数学(下)期中试卷一、选择题(共10小题,每小题2分,满分20分)1.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤22.下列二次根式中的最简二次根式是()A. B. C.D.3.若m=×(﹣2),则有()A.0<m<1 B.﹣1<m<0 C.﹣2<m<﹣1 D.﹣3<m<﹣24.下列哪一个选项中的等式不成立?()A.=34 B.=(﹣5)3C.=32×55D.=(﹣3)2×(﹣5)45.下列命题的逆命题不正确的是()A.菱形的四条边都相等B.两直线平行,内错角相等C.等腰三角形的两个底角相等 D.全等三角形的对应角相等6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+18.三角形的三边长分别为6,8,10,那它最短边上的高为()A.4.8 B.5 C.6 D.89.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④10.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10二、填空题(共6小题,每小题3分,满分18分)11.计算=.12.命题“如果两个实数相等,那么它们的平方相等”的逆命题是,成立吗.13.已知点D是Rt△ABC斜边AB上的中点,∠B=65°,那么∠ACD=度.14.一个长方形的长为cm,宽为cm,则它的周长是cm.15.如图,菱形ABCD的周长为16,∠B=60°,则以AC为边长的正方形ACEF的周长为.16.如图△ABC中,点D为BC的中点,AB=5,AC=3,AD=2,则CD长为.三、解答题(共8小题,满分62分)17.计算:÷﹣×+(﹣)﹣1.18.已知x=﹣1,y=+1,求代数式x2+xy+y2的值.19.已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.20.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.21.如图,在正方形ABCD中,E是BC上的一点,BE=BC,F是DC的中点,连接AE,EF.求证:∠AEF=∠DAE.22.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.24.如图1,在▱ABCD中,∠ABC的平分线BF交AD于点E,交CD的延长线于点F.(1)判断DE和DF的数量关系,并证明结论;探究发现:(2)如图2,若∠ABC=90°,G是EF的中点,求∠ACG的度数;(3)如图3,若∠ABC=60°,FG∥DE,FG=DE,分别连接AC,CG.求∠ACG的度数.2017-2018学年山西省阳泉市平定县八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤2【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:x﹣2≥0,解得x≥2.故选:C.2.下列二次根式中的最简二次根式是()A. B. C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A3.若m=×(﹣2),则有()A.0<m<1 B.﹣1<m<0 C.﹣2<m<﹣1 D.﹣3<m<﹣2【分析】先把m化简,再估算大小,即可解答.【解答】解;m=×(﹣2)=,∵,∴,故选:C.4.下列哪一个选项中的等式不成立?()A.=34 B.=(﹣5)3C.=32×55D.=(﹣3)2×(﹣5)4【分析】分别利用二次根式的性质化简求出即可.【解答】解:A、=34,正确,不合题意;B、=53,故此选项错误,符合题意;C、=32×55,正确,不合题意;D、=(﹣3)2×(﹣5)4,正确,不合题意;故选:B.5.下列命题的逆命题不正确的是()A.菱形的四条边都相等B.两直线平行,内错角相等C.等腰三角形的两个底角相等 D.全等三角形的对应角相等【分析】分别写出各个命题的逆命题后判断即可.【解答】解:A、逆命题为:四条边都相等的四边形是菱形,正确,不符合题意;B、逆命题为:内错角相等,两直线平行,正确,不符合题意;C、逆命题为:两角相等的三角形是等腰三角形,正确,不符合题意;D、逆命题为:对应角相等的三角形是全等三角形,错误,符合题意.故选D.6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=AM=1.2km.故选D.7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+1【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.8.三角形的三边长分别为6,8,10,那它最短边上的高为()A.4.8 B.5 C.6 D.8【分析】根据勾股定理的逆定理可以判断这个三角形是直角三角形,根据三角形的高的概念解答即可.【解答】解:∵62+82=102,∴这个三角形是直角三角形,这个三角形的最短边是6,则最短边上的高为8,故选:D.9.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【分析】利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.【解答】解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.10.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.二、填空题(共6小题,每小题3分,满分18分)11.计算=2.【分析】先把各根式化为最减二次根式,再合并同类项即可.【解答】解:原式=3﹣=2.故答案为:2.12.命题“如果两个实数相等,那么它们的平方相等”的逆命题是如果两个实数平方相等,那么这两个实数相等,成立吗不成立.【分析】把原命题的题设和结论交换即可得到其逆命题.【解答】解:因为“如果两个实数相等,那么它们的平方相等”它的逆命题是“如果两个实数平方相等,那么这两个实数相等”,如两个互为相反数的数平方相等,但这两个数不相等,故不成立.13.已知点D是Rt△ABC斜边AB上的中点,∠B=65°,那么∠ACD=25度.【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质得到DA=DC,根据等腰三角形的性质得到答案.【解答】解:如图,在Rt△ABC中,∠B=65°,则∠A=25°,∵点D是Rt△ABC斜边AB上的中点,∴DA=DC,∴∠ACD=∠A=25°,故答案为:25.14.一个长方形的长为cm,宽为cm,则它的周长是10cm.【分析】根据长方形的周长=2(长+宽),利用二次根式的加减,即可解答.【解答】解:长方形的周长为:2()=2()=10(cm),故答案为:10.15.如图,菱形ABCD的周长为16,∠B=60°,则以AC为边长的正方形ACEF的周长为16.【分析】根据菱形的性质得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=16÷4=4,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故答案为:16.16.如图△ABC中,点D为BC的中点,AB=5,AC=3,AD=2,则CD长为.【分析】延长AD至E,使AD=DE,连接BE,根据SAS证出△ADC≌△BDE,得出BE=AC=3,根据勾股定理的逆定理证出△ABE为RT△,AE⊥BE,再根据勾股定理求出BD,最后根据D为BC 的中点,得出BD=CD,从而求出CD.【解答】解:延长AD至E,使AD=DE,连接BE,在△ADC和△BDE中,,∴△ADC≌△BDE(SAS),∴BE=AC=3,∵AE=4,AB=5,32+42=52,∴△ABE为RT△,AE⊥BE,∴BD===,∵D为BC的中点,∴BD=CD,∴CD=.故答案为:.三、解答题(共8小题,满分62分)17.计算:÷﹣×+(﹣)﹣1.【分析】根据二次根式的乘除法法则和负整数指数幂进行解答即可.【解答】解:÷﹣×+(﹣)﹣1.==4﹣=.18.已知x=﹣1,y=+1,求代数式x2+xy+y2的值.【分析】由x=﹣1,y=+1,得出x+y=2,xy=4,进一步把代数式x2+xy+y2分解因式代入求得答案即可.【解答】解:∵x=﹣1,y=+1,∴x+y=2,xy=4,∴x2+xy+y2=(x+y)2﹣xy=20﹣4=16.19.已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.【分析】连接AC,在Rt△ACD中,AD=4,CD=3,可求AC;在△ABC中,由勾股定理的逆定理可证△ABC为直角三角形,利用两个直角三角形的面积差求图形的面积.【解答】解:连接AC,在Rt△ACD中,AD=4,CD=3,∴AC==5,在△ABC中,∵AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形;∴图形面积为:S△ABC﹣S△ACD=×5×12﹣×3×4=24.20.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.【分析】(1)直接利用勾股定理得出BD的长即可;(2)利用平行线分线段成比例定理得出BD=AE,进而求出即可.【解答】解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3;(2)延长CB,过点A作A E⊥CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=AE,∴AE=6,即BC边上高的长为6.21.如图,在正方形ABCD中,E是BC上的一点,BE=BC,F是DC的中点,连接AE,EF.求证:∠AEF=∠DAE.【分析】延长EF交AD的延长线于G,由△DFG≌△CFE得DG=CE,FG=EF,设正方形边长为6k,则DG=CE=4k,DF=CF=3k,AD=6k,求出AG,EG,即可解决问题.【解答】证明:延长EF交AD的延长线于G,∵四边形ABCD是正方形,∴∠ADF=∠C=90°=∠FDG,∵F是DC中点,∴DF=FC,在△DFG和△CFE中,,∴△DFG≌△CFE,∴DG=CE,FG=EF,设正方形边长为6k,则DG=CE=4k,DF=CF=3k,AD=6k,在RT△DFG中,FG==5k,∴EF=FG=5k,∴AG=AD+DG=10k,EG=EF+FG=10k,∴∠AEF=∠DAE.22.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)【分析】首先利用两个直角三角形求得AB的长,然后除以时间即可得到速度.【解答】解:由题意知:PO=100米,∠AP O=60°,∠BPO=45°,在直角三角形BPO中,∵∠BPO=45°,∴BO=PO=100m在直角三角形APO中,∵∠APO=60°,∴AO=PO•tan60°=100m,∴A B=AO﹣BO=(100﹣100)≈73(米),∵从A处行驶到B处所用的时间为3秒,∴速度为73÷3≈24.3米/秒=87.6千米/时>80千米/时,答:此车超过每小时80千米的限制速度.23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)根据AAS证△AFE≌△DBE;(2)利用①中全等三角形的对应边相等得到AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形,由“直角三角形斜边的中线等于斜边的一半”得到AD=DC,从而得出结论;(3)由直角三角形ABC与菱形有相同的高,根据等积变形求出这个高,代入菱形面积公式可求出结论.【解答】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.24.如图1,在▱ABCD中,∠ABC的平分线BF交AD于点E,交CD的延长线于点F.(1)判断DE和DF的数量关系,并证明结论;探究发现:(2)如图2,若∠ABC=90°,G是EF的中点,求∠ACG的度数;(3)如图3,若∠ABC=60°,FG∥DE,FG=DE,分别连接AC,CG.求∠ACG的度数.【分析】(1)由BF平分∠ABC,得到∠ABF=∠FBC,根据平行线的性质得到∠FED=∠FBC,∠F=∠ABF,等量代换得到∠FED=∠F,根据等腰三角形的判定即可得到结论;(2)如图2,根据已知条件得到四边形ABCD是矩形,由BF平分∠ABC,得到∠ABF=∠FBC=45°,推出△EDF是等腰直角三角形,证得△AEG≌△CDG,根据全等三角形的性质得到AG=CG,推出△AGC是等腰直角三角形,根据等腰直角三角形的性质即可得到结论;(3)如图3,延长BA,FG交于H,连接HC,得到四边形AHFD是平行四边形,证得△CBF是等腰三角形,根据等腰三角形的性质得到BC=CF,于是得到平行四边形BCFH是菱形,通过△AHC≌△GFC,得到∠ACH=∠GCF,即可得到结论.【解答】解:(1)DE=DF,理由:∵BF平分∠ABC,∴∠ABF=∠FBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠FED=∠FBC,∠F=∠ABF,∴∠FED=∠F,∴DE=DF;(2)证明:如图2,连接AG,DG,∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∵BF平分∠ABC,∴∠ABF=∠FBC=45°,∵∠ADC=90°,CF∥AB,∴∠F=45°,∠EDF=90°,∴△EDF是等腰直角三角形,∵G为EF的中点,∴EG=DG=FG,DG⊥EF,∵△ABE是等腰直角三角形,AB=DC,∴AE=DC,∵∠DEF=∠GDF=45°,∴∠AEG=∠CDG=135°,在△AEG与△CDG中,,∴△AEG≌△CDG,∴AG=CG,∵DG⊥EF,∴∠DGC﹣∠CGB=90°,∵∠DGC=∠EGA,∴∠EGA+∠CGB=90°,∴△AGC是等腰直角三角形,∴∠ACG=45°;(3)解:如图3,延长BA,FG交于H,连接HC,∵AD∥GF,AB∥DF,∴四边形AHFD是平行四边形,∴DF=AH,∵∠ABC=60°,BF平分∠ABC,∴∠CBF=30°,∠BCD=120°,∴∠CFB=30°,∴△CBF是等腰三角形,∴BC=CF,∴平行四边形BCFH是菱形,∵∠ABC=60°,∴△BCH,△CHF全等的等边三角形,∴CH=CF,∠CHA=∠CFG=60°,∵DE=AH,FG=DE,DF=AH,∴AH=GF,在△AHC与△GFC中,,∴△AHC≌△GFC,∴∠ACH=∠GCF,∴∠ACG=∠ACH+∠HCG=∠GCF+∠HCG=∠HCF=60°.。

八年级下学期期中考试数学试卷(共3套,最新人教版,含答案)

八年级下学期期中考试数学试卷(共3套,最新人教版,含答案)

八年级第二学期期中考试数学试卷本试卷分卷和卷两部分:卷为选择题,卷为非选择题。

本试卷满分120分,考试时间为120分钟。

卷(选择题,共41分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。

考试结束,监考人员将试卷和答题卡一并收回。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

答在试卷上无效。

3.卷学生自己保存。

一、选择题.(本大题共个16小题,1-7题每小题2分,8-16题每小题3分,共41分,在每小题给出的四个选项中,只有一个选项符合题意)1、下图中是中心对称图形的是()2、已知a<b,则下列不等式一定成立的是()A.a+3>b+3B.2a>2bC.-a<-bD.a-b<03、等腰三角形的一边为3,另一边为8,则这个三角形的周长为()A.11B.14C.19D.14或194、如图,用不等式表示数轴上所示的解集,正确的是()-10123A.x<-1或x≥3B.x≤-1或x>3C.-1≤x<3D.-1<x≤35、下列四组线段中,可以构成直角三角形的是()A.6,7,8B.1,2,5C.6,8,10D.5,23,156、已知三角形三边长分别为3,1-2a,8,则a的取值范围是()A.5<a<11B.4<a<10C.-5<a<-2D.-2<a<-57、在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点a a -1 0 1 3 x2.58、如果不等式(1+a )x >1+a 的解集为 x <1,那么 a 的取值范围是( )A. a >0B. <0C. >-1D. a <-19、不等式组x4x m的解集是 x 4 ,那么 m 的取值范围是 ( )A.m ≥4B.m ≤4C. 3≤x <4D. 3< x ≤410、已知,如图,在△ABC 中,OB 和 OC 分别平分∠ABC 和∠ACB ,过 O 作 DE ∥BC ,分别交 AB 、AC 于点 D 、E ,若 BD+CE =5,则线段 DE 的长为()A . 5B . 6C .7D .810 题图y-3 2 411、如图,已知一次函数 y =kx+b ,观察图象回答问题: 当 kx+b>0,x 的取值范围是()A. x >2.5B .x <2.5C. x >-5D. x <-51-1 -2 -3 -4 -511 题图12、小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,楼梯宽2 米,其侧面如图所示 (单位: 米),则小明至少要买( )平方米的地毯。

(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)

(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)

(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)(一共4套)苏教版八年级下册期中数学考试题+详细答案系列(第3套)一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.44.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%15.已知关于x的方程=3无解,则m的值为______.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为______.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.六、解答题(共5小题,满分46分)21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.22.(10分)(2017春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.参考答案与试题解析一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.4【考点】反比例函数的性质.【分析】根据反比例函数的性质可知“当k<0时,函数图象位于第二、四象限”,结合四个选项即可得出结论.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k<0.结合4个选项可知k=﹣1.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,结合函数图象所在的象限找出k值的取值范围是关键.4.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒【考点】利用频率估计概率.【分析】根据图表可求得指针落在铅笔区域的概率,另外概率是多次实验的结果,因此不能说转动转盘10次,一定有3次获得文具盒.【解答】解:A、频率稳定在0.7左右,故用频率估计概率,指针落在“铅笔”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得铅笔的概率大约是0.70,故B选项正确;C、指针落在“文具盒”区域的概率为0.30,转动转盘2000次,指针落在“文具盒”区域的次数大约有2000×0.3=600次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选:D.【点评】本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.5.已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.【解答】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.【点评】本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%B.甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20%C.乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20%D.乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20%【考点】由实际问题抽象出分式方程.【分析】方程﹣=20中,表示乙单位人均捐款额,(1+20%)x表示甲单位的人数比乙单位的人数多20%,则表示甲单位人均捐款额,所以方程表示的等量关系为:乙单位比甲单位人均多捐20元,由此得出题中用“…”表示的缺失的条件.【解答】解:设乙单位有x人,那么当甲单位的人数比乙单位的人数多20%时,甲单位有(1+20%)x人.如果乙单位比甲单位人均多捐20元,那么可列出﹣=20.故选C.【点评】本题考查了由实际问题抽象出分式方程的逆应用,根据所设未知数以及方程逆推缺少的条件.本题难度适中.二.填空题(共有10小题,每小题2分,共20分)7.计算=2.【考点】二次根式的性质与化简.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的性质与化简,注意算术平方根的求法,是解此题的关键.8.分式,的最简公分母是6x3(x﹣y).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是2x3、6x2(x﹣y),故最简公分母是6x3(x﹣y);故答案为6x3(x﹣y).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.9.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.【点评】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是30°.【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣15°=30°,故答案是:30°.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.11.如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB 的中点M,N,测得MN=32m,则A,B两点间的距离是64m.【考点】三角形中位线定理.【分析】根据M、N是OA、OB的中点,即MN是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【解答】解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,∴MN=AB,∴AB=2MN=2×32=64(m).故答案为:64.【点评】本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.12.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m<n (填“>”“<”或“=”号).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.【解答】解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.某工厂原计划a天生产b件产品,现要提前2天完成,则现在每天要比原来多生产产品件.【考点】列代数式(分式).【分析】根据题意知原来每天生产件,现在每天生产件,继而列式即可表示现在每天要比原来多生产产品件数.【解答】解:根据题意,原来每天生产件,现在每天生产件,则现在每天要比原来多生产产品﹣=件,故答案为:.【点评】本题主要考查根据实际问题列代数式,根据题意表示出原来和现在每天生产的件数是关键.14.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5°.【考点】正方形的性质.【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为:22.5°.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.15.已知关于x的方程=3无解,则m的值为﹣4.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,根据分式方程无解得到x﹣2=0,求出x=2,代入整式方程即可求出m的值.【解答】解:分式方程去分母得:2x+m=3x﹣6,由分式方程无解得到x﹣2=0,即x=2,代入整式方程得:4+m=0,即m=﹣4.故答案为:﹣4【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为3.【考点】反比例函数系数k的几何意义.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故答案是:3.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.【考点】分式的加减法.【分析】(1)原式变形后,利用同分母分式的减法法则计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式=﹣==a+b;(2)原式=﹣=.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得,(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得,6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),解得,x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,根据x2﹣4x﹣1=0得出x2﹣4x=1,代入原式进行计算即可.【解答】解:原式=[﹣]•=•=•==,∵x2﹣4x﹣1=0,∴x2﹣4x=1∴原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.六、解答题(共5小题,满分46分)20.(10分)(2014•兴化市二模)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数频率卡通画 a 0.45时文杂志 b 0.16武侠小说50 c文学名著 d e(1)这次随机调查了200名学生,统计表中d=28;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是90°;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?【考点】频数(率)分布表;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,根据频率=频数÷总数,即可求出调查的学生数,进而求出d的值;(2)算出喜欢武侠小说的频率,乘以360°即可;(3)由(1)可知喜欢文学名著类书籍人数所占的频率,即可求出该校1500名学生中有多少名同学最喜欢文学名著类书籍.【解答】解:(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,所以这次随机调查的学生人数为:=200名学生,所以a=200×0.45=90,b=200×0.16=32,∴d=200﹣90﹣32﹣50=28;(2)武侠小说对应的圆心角是360°×=90°;(3)该校1500名学生中最喜欢文学名著类书籍的同学有1500×=210名;【点评】此题主要考查了条形图的应用以及用样本估计总体和频数分布直方图,根据图表得出正确信息是解决问题的关键.21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.【考点】反比例函数的应用.【分析】(1)设函数解析式为P=,把V=1.5m3时,p=16kPa代入函数解析式求出k值,即可求出函数关系式;(2)p=40代入求得v值后利用反比例函数的性质确定正确的答案即可.【解答】(1)解:设p与V的函数表达式为p=(k为常数).把p=16、V=1.5代入,得k=24即p与V的函数表达式为;(2)把p=40代入,得V=0.6根据反比例函数的性质,p随V的增加而减少,因此为确保气球不爆炸,气球的体积应不小于0.6m3.【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.22.(10分)(2016春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?【考点】分式方程的应用.【分析】(1)利用总工作量为1,分别表示出甲、乙完成的工作量进而得出等式求出答案;(2)分别求出甲、乙单独完成的费用以及求出甲、乙合作的费用,进而求出符合题意的答案.【解答】解:(1)设甲单独完成全部工程所用的时间为x天,则乙单独完成全部工程所用的时间为(x+6)天,根据题意得,+=1,解得,x=12,经检验,x=12是原方程的解,答:甲单独完成全部工程所用的时间为12天;(2)根据题意得上述3个方案都在20天内.甲单独完成的费用:12×4.5=54万元,乙单独完成的费用:18×2.5=45万元,甲乙合做完成的费用:12×2.5+4×4.5=48万元,即乙单独完成既能按时完工,又能使工程费用最少.【点评】此题主要考查了分式方程的应用,根据题意利用总工作量为1得出等式是解题关键.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【考点】菱形的性质;勾股定理.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.【点评】本题考查了菱形的性质和勾股定理.解题时充分利用了菱形的对角线互相垂直平分、矩形的对角线相等的性质.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.【考点】反比例函数综合题.【分析】(1)由直线与双曲线交于A、B两点,A点横坐标为4,代入正比例函数,可求得点A的坐标,继而求得k值;(2)首先根据对称性,可求得点B的坐标,结合图象,即可求得关于x的不等式的解集;(3)首先过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC,又由双曲线上有一点C的纵坐标为8,可求得点C 的坐标,继而求得答案;(4)由当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,根据平移的性质,即可求得答案.【解答】解:(1)∵直线与双曲线交于A、B两点,A点横坐标为4,∴点A的纵坐标为:y=×4=2,∴点A(4,2),∴2=,∴k=8;(2)∵直线与双曲线交于A、B两点,∴B(﹣4,﹣2),∴关于x的不等式的解集为:﹣4≤x<0或x≥4;(3)过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵双曲线上有一点C的纵坐标为8,∴把y=8代入y=得:x=1,∴点C(1,8),∴S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+8)×(4﹣1)=15;(4)如图,当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,∵点A(4,2),点C(1,8),∴根据平移的性质可得:M(3,0),N(0,6)或M′(﹣3,0),N′(0,﹣6).【点评】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。

八年级数学(下)期中试卷(含答案)

八年级数学(下)期中试卷(含答案)

八年级数学(下)期中试卷(含答案)一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或23.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣47.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.11.若分式方程=有增根,则这个增根是x=.12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(0,2)13.直线y=﹣2x+6与两坐标轴围成的三角形面积是.14.点P(﹣5,﹣4)到x轴的距离是单位长度.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.17.先化简,再求值:(﹣)×,其中x=2.18.解方程(1)(2)+=.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360乙车320 x(2)求甲、乙两车的速度.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?参考答案与试题解析一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个【分析】依据分式的定义进行判断即可.【解答】解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选;B.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或2【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0解得:x=±2.当x=2时分母x2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x2﹣2x=4+4=8≠0.所以x=﹣2.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形【分析】根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.【解答】解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.故选C.【点评】本题考查的是命题与定理,熟知平行四边形的性质是解答此题的关键.5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)【分析】根据第四象限内点的横坐标是正数,纵坐标是负数以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵第四象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是5,纵坐标是﹣4,∴点P的坐标为(5,﹣4).故选D.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4【分析】分式方程两边乘以最简公分母x(x﹣2)即可得到结果.【解答】解:去分母得:x﹣2=2x,故选:A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内【分析】根据反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:函数y=(k>0),图象是双曲线,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.故选:C.【点评】此题主要考查了反比例函数的性质,关键是熟练掌握性质.8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,﹣k<0,然后,判断一次函数y=﹣kx+k的图象经过象限即可.【解答】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴﹣k<0,∴一次函数y=﹣kx+k的图象经过一、二、四象限;故选A【点评】本题主要考查了一次函数的图象,掌握一次函数y=kx+b,当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2【分析】先把点(m,n)代入函数y=2x+1求出2m﹣n的值,再代入所求代数式进行计算即可.【解答】解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1,∴4m﹣2n+1=2(2m﹣n)+1=2×(﹣1)+1=﹣1.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分子除以(a﹣2),分母也除以(a﹣2),得=,故答案为:a﹣2.【点评】本题考查了分式的性质,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.11.若分式方程=有增根,则这个增根是x=2.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.【解答】解:∵分式方程=有增根,∴x﹣2=0∴原方程增根为x=2,故答案为2.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)y=﹣x+2(1)y随x的增大而减小;(2)图象经过点(0,2)【分析】设一次函数的解析式为y=kx+b,由一次函数的单调性即可得出k的取值范围,随便选取一个k值,再将点(0,2)代入一次函数解析式求出b值即可.【解答】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k<0.令k=﹣1,则函数解析式为y=﹣x+b,又∵点(0,2)在一次函数y=﹣x+b的图象上,∴2=b,∴一次函数的解析式为y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查了待定系数法求函数解析式以及一次函数的性质,解题的关键是由点的坐标利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的单调性求出一次项系数k的取值范围是关键.13.直线y=﹣2x+6与两坐标轴围成的三角形面积是9.【分析】首先求出直线y=﹣2x+6与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.【解答】解:∵直线y=﹣2x+6中,﹣=﹣=3,b=6,∴直线与x轴、y轴的交点的坐标分别为A(3,0),B(0,6),∴故S△AOB=×3×6=9.故答案为:9.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b与x轴的交点为(﹣,0),与y轴的交点为(0,b).14.点P(﹣5,﹣4)到x轴的距离是4单位长度.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离.【解答】解:∵|﹣4|=4,∴P点到x轴的距离是4,故答案为4.【点评】此题主要考查点的坐标;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为y=﹣(x<0).【分析】设比例函数的解析式为y=(k≠0),再根据反比例函数的图象在第二象限判断出k的符号,由反比例函数系数k的几何意义求出k的值即可.【解答】解:设比例函数的解析式为y=(k≠0),∵反比例函数的图象在第二象限,∴k<0,∵PA⊥x轴,S△PAO=3,∴=3,即k=﹣6,∴该反比例函数在第二象限的表达式为:y=﹣(x<0).故答案为:y=﹣(x<0).【点评】本题考查的是反比例函数系数k的几何意义,即反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.【分析】(1)先通分,然后进行通分母的减法运算;(2)先进行乘方运算,然后把除法运算化为乘法运算,再约分即可.【解答】解:(1)原式=﹣=;(2)原式=÷==.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.先化简,再求值:(﹣)×,其中x=2.【分析】先把括号内根据分式的通分法则进行计算,根据约分法则把原式化简,代入已知数据计算即可.【解答】解:原式=×=×=,当x=2时,原式=1.【点评】本题考查的是分式的化简求值,掌握分式的通分法则和约分法则是解题的关键.18.解方程(1)(2)+=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣3x=x2﹣8x+12,解得:x=,经检验x=是分式方程的解;(2)去分母得:6+3(x+1)=x+1,去括号得:6+3x+3=x+1,移项合并得:2x=﹣8,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?【分析】(1)设出反比例函数关系式,利用代定系数法把P(﹣2,1)代入函数解析式即可.由于Q点也在反比例函数图象上,所以把Q点坐标代入反比例函数解析式中即可得到Q点坐标,求出m的值,利用待定系数法求一次函数解析式;(2)根据图象可得到答案,注意反比例函数图象与y轴无交点,所以分开看.【解答】解:(1)设反比例函数的解析式为y=∵反比例函数经过点P(﹣2,1),∴a=﹣2×1,∴a=﹣2,∴反比例函数的解析式为y=﹣,∵Q(1,m)在反比例函数图象上,∴m=﹣2,设一次函数的解析式为y=kx+b∵P(﹣2,1),Q(1,﹣2)在一次函数图象上∴,∴,∴一次函数的解析式为y=﹣x﹣1;(2)如图所示:由图可知:当0<x<1或x<﹣2时一次函数的值大于反比例函数的值.【点评】此题主要考查了利用待定系数法求反比例函数解析式与一次函数解析式,画函数图象,正确的识别图形是解题的关键.20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.【分析】把分式的分子分母因式分解,再约分,根据分式有意义的条件,选择x的值,再计算即可.【解答】解:原式=+1=+1=x,∵2x≠0且x(x﹣2)≠0,∴x≠0,2,∴x=1,∴原式=×1=.【点评】本题考查了分式的化简求值,以及分式有意义的条件:分母不为0,掌握分式的通分和约分是解题的关键.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【分析】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【解答】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【点评】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)求甲、乙两车的速度.【分析】(1)设乙的速度是x千米/时,那么甲的速度是(x+10)千米/时,根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道,且同时到达,可以时间做为等量关系列方程求解.【解答】解:(1)甲的速度是(x+10)千米/时,甲车所需时间是,乙车所需时间是;行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)乙的速度是x千米/时,甲的速度是(x+10)千米/时,依题意得:=,解得x=80,经检验:x=80是原方程的解,x+10=90,答:甲的速度是90千米/时,乙的速度是80千米/时.【点评】本题考查理解题意能力,关键是以时间做为等量关系,根据时间=,列方程求解.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣t+12=t,解得t=当t=时,S=×=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.。

【三套打包】杭州市采荷实验中学八年级下学期期中数学试题

【三套打包】杭州市采荷实验中学八年级下学期期中数学试题

八年级下册数学期中考试试题【答案】一、选择题(每题3分,共30分)1.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为( ).A .120︒B .60︒C .30︒D .15︒【答案】B【解析】在平行四边形ABCD 中,2180A B A A ∠+∠=∠+∠=︒∴60A ∠=︒,60C A ∠=∠=︒.2.一次函数21y x =-的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】∵一次函数21y x =-中,20k =>,10b =-<,∴经过一、三、四象限,即不经过第二象限.3.下列根式中,最简二次根式是( ).AB C D【答案】A==4.下列各组数据中能作为直角三角形的三边长的是( ).A .1,2,2B .1,1C .12D .4,5,6【答案】C【解析】A .222122+≠,不可能构成直角三角形,故错误.B .22211+≠,不可能构成直角三角形,故错误.C .22212+=,能构成直角三角形,故正确.D .222456+≠,不可能构成直角三角形,故错误.5.如图,在一次实践活动课上,小刚为了测量池塘B 、C 两点间的距离,他先在池塘的一侧选定一点A ,然后测量出AB 、AC 的中点D 、E ,且10DE =,于是可以计算出池塘B、C两点间的距离是().A.5mB.10mC.15mD.20m【答案】D【解析】∵D,E分别是AB和AC的中点,∴12DE BC=.又∵10mDE=,∴20mBC=.6.下列计算正确的是().A.29=B2-C6=D2=【答案】D【解析】23=,2=2=.二、填空题(除第16题外,每题3分,第16题4分,共25分)11x的取值范围是______最新人教版八年级第二学期下册期中模拟数学试卷及答案一、选择题.(本题共10小题每小题3分,共30分)1、下列二次根式中,属于最简二次根式的是()A. B. C. D.2、如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5 B.6 C. 7 D.253、下列计算错误的是()A .27714=⨯B .23060=÷C .a a a 8259=+;D .3223=-4、菱形具有而矩形不具有的性质是( )A .对角线互相平分;B .四条边都相等C .对角相等D .邻角互补5、如图,在▱ABCD 中,AB=4,BC=6,∠B=30°,则此平行四边形的面积是( )A .6B .12C .18D .246、如图,菱形ABCD 的周长为8cm ,高AE 长为3cm ,则对角线AC 长和BD 长之比为( )A. 1:2B. 1:3C. 1:2D. 1:37、在矩形ABCD 中,AD =3AB ,点G 、H 分别在AD 、BC 上,连BG 、DH ,且BG ∥DH .当ADAG =( )时,四边形BHDG 为菱形 A .94 B .83 C .54 D .53 8、的算术平方根是( )A .2B .±2C .D .± 9、一直角三角形的三边分别为2、3、x ,那么x 为( )A .B .C .或D .无法确定10、如图,菱形ABCD 中,对角线AC =6,BD =8,M 、N 分别是BC 、CD 上的动点,P 是线段BD 上的一个动点,则PM +PN 的最小值是( )A .59B .512C .516D .524 二、填空题(本题共6小题,每小题3分,共18分)11、在△ABC 中,∠B=90度,BC=6,AC=8,则AB= .12、计算:2)252(+=__________13、如图,已知矩形ABCD 的对角线长为8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 的周长等于 cm .14、如图,在□ABCD 中,E 为CD 上一点,将△ADE 沿AE 折叠至△AD ′E 处,AD ′与CE 交于点F .若∠B =52°,∠DAE =20°,则∠FED ′的度数为__________15、如图,AC 是正方形ABCD 的对角线,AE 平分BAC ∠,EF ⊥AC 交AC 于点F ,若BE=2,则正方形边长为 。

八年级下册期中数学试卷含答案(共3套)

八年级下册期中数学试卷含答案(共3套)

2B、xA、xA.x2-1=(x+1)(x-1)B.x2-6x+9=(x-3)2C.x2+x=x(x+1)D.x+12=(x+1)2x5x x x5x5xD.120 A.120八年级(下册)期中考试数学试题(友情提醒:全卷满分120分,考试时间120分钟)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.把符合题目要求的选项前的字母填在题后的括号内.)1.(2011重庆江津区)下列式子是分式的是()xC、yx12D、x2.下列因式分解错误的是()23.实数a、b、c在数轴上对应的点位置如图所示,下列式子正确的是()①b+c>0②a+b>a+c③bc<ac④ab>acA.1个B.2个C.3个D.4个4.(2011浙江丽水)计算1aa1a1的结果为()a1aA、B、C、﹣1a1a1D、25.关x的分式方程mx51,下列说法正确的是()A.m<一5时,方程的解为负数B.方程的解是x=m+5C.m>一5时,方科的解是正数D.无法确定x84x16.将不等式13的解集在数轴上表示出米,正确的是()x8x227.已知线段AB等于2个单位长,C是线段AB的黄金分割点,则AC的长度为()A.51B.35C.51或35D.以上结论都不对8.“5·12”滚川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x米,所列方程正确的是()1201201201201201204B.4C.4x x549.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤.价格为每斤y元.后来他以每斤x2y元的价格卖完后,结果发现自己赔了钱,其原因是()A.x<y B.x>y C.x≤y D.x≥y15.若关于 x 的分式方程 无解,则m 的值为___________10.在盒子里放有三张分别写有整式 a +1、 a +2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ).A .1 6B .1 3C . 2 3D .3 411.如图,一张矩形报纸ABCD 的长AB= x cm ,BC= y cm ,E 、F 分别是AB 、CD 的中点,将这张报纸沿着直 线 EF对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则 x : y 等于( )A . 2 :1B .1: 2C . 3 :1D .1: 32x 3 x 3 112.关 x 的不等式组 3x 2 有四个整数解,则 a 的取值范同是( )x a4A .11 511 5 11 5 11 5a B . a C . a D . a 4 2 4 2 4 2 4 2二、填空题(本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分)13 . 在 比 例 尺 为 1 : 2000 的 地 图 上 测 得 AB 两 地 间 的 图 上 距 离 为 5cm , 则 AB 两 地 间 的 实 际 距 离 为_____________m 。

八年级(下)期中数学试卷含答案

八年级(下)期中数学试卷含答案

八年级(下)期中数学试卷一、选择题:(本题满分30分,共有10道小题,每小题3分,请把唯一正确答案的字母标号涂在答题卡的相应位置)1.若x>y,则下列各式变形正确的是()A.x﹣6<y﹣6 B.<C.2x+1>2y+1 D.﹣x>﹣y2.下面是由一个等边三角形经过平移或旋转得到的图形,其中既是轴对称图形,又是中心对称图形的是()A. B.C.D.3.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=27°,则∠BOC 的度数是()A.18°B.27°C.45°D.72°4.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点5.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30°B.40°C.50°D.70°6.如图表示的是不等式组()的解集.A.B.C.D.7.在平面直角坐标系中,已知点A(﹣1,0),B(1,2),将线段AB平移后得线段CD,若点A的对应点C的坐标为(1,﹣2),则点B的对应点D的坐标为()A.(3,0) B.(3,﹣1)C.(3,﹣3)D.(﹣1,3)8.如图,OC是∠AOB的角平分线.D,E分别是OA,OB上的点,则下列条件中不能判定△OCD与△OCE全等的是()A.∠OCD=∠OCE B.CD⊥OA,CE⊥OB C.OD=OE D.CD=CE9.如图,在△ABC中,AB=AC,∠A=30°,AC的垂直平分线分别交AB,AC于D,E.连接CD,若CD=1cm,则BD的长为()A.1cm B.(﹣1)cm C.cm D.cm10.已知一根火腿肠2元,一盒方便面3元,小明外出时想用不超过15元来购买这两种食品,且至少购买一根火腿肠和一盒方便面,那么他可以采用的不同的购买方案有()A.12种B.13种C.14种D.15种二、填空题:(本题满分24分,共有8道小题,每小题3分,请把正确答案填写在答题卡的相应位置)11.不等式(x﹣1)<x+1的负整数解是.12.如图,△ABC中,∠ACB=90°,D在AB上,若AD=AC,且∠A=50°,则∠DCB 的度数为°.13.已知关于x的不等式x﹣a≥﹣2的解集在数轴上表示如图,则a的值为.14.若等腰三角形一腰上的高与另一腰的夹角为48°,则其顶角度数为°.15.如图,△ABC中,∠CAB=70°,将△ABC绕点A旋转得到△ADE,连接CE,若AB∥EC,则∠CAD的度数为°.16.如图,将Rt△ABC绕点C顺时针旋转90°得到△DCE,连接AE,若∠AED=10°,则∠B的度数为°.17.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6cm,将△ABC沿着AC方向平移2cm得△DEF,DE交BC于点G,则四边形CGEF的面积为cm2.18.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,若AC=3cm,AB=5cm,则DE=cm.三、解答题:(本题满分66分,共有8道小题)19.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:△ABC.求作:点P,使PB=PC,且P到边AB,AC的距离相等.20.已知,△ABC在方格纸(每个小方格的边长为1个单位长度)中的位置如图,将△ABC绕点A旋转90°,再向右平移3个单位长度得△DEF,请在方格纸中画出△DEF.21.解答下列各题:(1)解不等式6(x﹣1)≥3+4x(2)解不等式<(3)解不等式+1>x﹣3,请把它的解集表示在数轴上(4)解不等式组,并求出它的整数解.22.某次国学知识竞赛初赛共20道题,(满分100分),评分办法是:答对1道题得5分,答错或不答倒扣2分,选手至少答对多少题才能得到70分以上(含70分)?23.已知:如图,∠A=∠D=90°,AC=BD求证:△AOB≌△DOC.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线BF交AD 于点E,交AC于点F,FH⊥BC于点H,求证:AE=FH.25.已知:如图,等边三角形△ABC的周长为3,D为AB的中点,E在CB的延长线上,且BE=BD,连接DE.求:DE的长.26.“六一儿童节”即将结束,某幼儿园计划采购一批市场价为20元/件的益智玩具,甲、乙两家工厂给出了不同的优惠方案,方案如下:甲工厂:采购金额超过500元后,超过的部分按九折付款;乙工厂:采购金额超过1000元后,超过的部分按八折付款.(1)如果幼儿园采购的数量超过了50件,应该到哪家工厂进行采购更合算?(2)如果幼儿园选择到乙工厂进行采购,那么幼儿园至少应该采购多少件,才能使每件玩具的平均价格不超过18元?2017-2018学年山东省青岛市胶州市八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本题满分30分,共有10道小题,每小题3分,请把唯一正确答案的字母标号涂在答题卡的相应位置)1.若x>y,则下列各式变形正确的是()A.x﹣6<y﹣6 B.<C.2x+1>2y+1 D.﹣x>﹣y【考点】C2:不等式的性质.【分析】根据不等式的性质求解即可.【解答】解:A、两边都减6,不等号的方向不变,故A不符合题意;B、两边都除以2,不等号的方向不变,故B不符合题意;C、两边都乘以2,两边都加1,不等号的方向不变,故C符合题意;D、两边都乘以﹣1,不等号的方向改变,故D不符合题意;故选:C.2.下面是由一个等边三角形经过平移或旋转得到的图形,其中既是轴对称图形,又是中心对称图形的是()A. B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是轴对称图形,不是中心对称的图形,不合题意;C、既是轴对称图形又是中心对称图形,故C符合题意;D都只是轴对称图形,故D不符合题意;故选:C.3.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=27°,则∠BOC 的度数是()A.18°B.27°C.45°D.72°【考点】R2:旋转的性质.【分析】如图,首先运用旋转变换的性质求出∠AOC的度数,结合∠AOB=27°,即可解决问题.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=21°,∴∠BOC=45°﹣27°=18°,故选A,4.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点【考点】KG:线段垂直平分线的性质.【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【解答】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.5.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30°B.40°C.50°D.70°【考点】KH:等腰三角形的性质;JA:平行线的性质.【分析】根据平行线的性质求出∠C,根据等腰三角形的性质得出∠B=∠C=70°,根据三角形内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,∵AD∥BC,∠1=70°,∴∠C=∠1=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣70°=40°,故选B.6.如图表示的是不等式组()的解集.A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】先求出每个不等式组的解集,再在数轴上表示出来,最后判断即可.【解答】解:A、的解集是x<﹣2,在数轴上表示为:,故本选项不符合题意;B、的解集是﹣2<x≤1,在数轴上表示为:,故本选项符合题意;C、的解集是空集,在数轴上表示为:,故本选项不符合题意;D、的解集是x≥1,在数轴上表示为:,故本选项不符合题意;故选B.7.在平面直角坐标系中,已知点A(﹣1,0),B(1,2),将线段AB平移后得线段CD,若点A的对应点C的坐标为(1,﹣2),则点B的对应点D的坐标为()A.(3,0) B.(3,﹣1)C.(3,﹣3)D.(﹣1,3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据点A、C的坐标确定出平移规律,再根据平移规律解答即可.【解答】解:∵点A(﹣1,0)的对应点C的坐标为(1,﹣2),∴平移规律为向右平移2个单位,向下平移2个单位,∴B(1,2)的对应点D的坐标为(3,0).故选A.8.如图,OC是∠AOB的角平分线.D,E分别是OA,OB上的点,则下列条件中不能判定△OCD与△OCE全等的是()A.∠OCD=∠OCE B.CD⊥OA,CE⊥OB C.OD=OE D.CD=CE【考点】KF:角平分线的性质;KB:全等三角形的判定.【分析】利用全等三角形的判定定理解答即可.【解答】解:,∴△OCD≌△OCE(ASA),A能判定△OCD与△OCE全等;当CD⊥OA,CE⊥OB时,由AAS得到△OCD≌△OCE,B能判定△OCD与△OCE 全等;当OD=OE时,由SAS得到△OCD≌△OCE,C能判定△OCD与△OCE全等;D不能判定△OCD与△OCE全等;故选:D.9.如图,在△ABC中,AB=AC,∠A=30°,AC的垂直平分线分别交AB,AC于D,E.连接CD,若CD=1cm,则BD的长为()A.1cm B.(﹣1)cm C.cm D.cm【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线的性质得到AD=CD,∠ACD=∠A=30°,DE⊥AC,解直角三角形即可得到结论.【解答】解:∵AC的垂直平分线分别交AB、AC于D、E,∴AD=CD,∠ACD=∠A=30°,DE⊥AC,∵CD=1,∴AC=2CE=,∴AB=,∴BD=AB﹣AD=﹣1.故选:B.10.已知一根火腿肠2元,一盒方便面3元,小明外出时想用不超过15元来购买这两种食品,且至少购买一根火腿肠和一盒方便面,那么他可以采用的不同的购买方案有()A.12种B.13种C.14种D.15种【考点】95:二元一次方程的应用.【分析】根据题意列出不等式组,求出不等式组的整数解即可.【解答】解:设小明一根火腿肠x根,一盒方便面y盒,则解得:1≤y≤,1≤x≤7.5,当y=1时,x只能为6、5、4、3、2、1,共6个,当y=2时,x只能为4、3、2、1,共4个,当y=3时,x只能为3、2、1,共3个,当y=4时,x只能为1,共1个,∴6+4+3+1=14,故选C.二、填空题:(本题满分24分,共有8道小题,每小题3分,请把正确答案填写在答题卡的相应位置)11.不等式(x﹣1)<x+1的负整数解是﹣1,﹣2.【考点】C7:一元一次不等式的整数解.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得不等式的解集,继而可得其负整数解.【解答】解:去分母,得:x﹣1<2x+2,移项,得:x﹣2x<2+1,合并同类项,得:﹣x<3,系数化为1,得:x>﹣3,则该不等式的负整数解为﹣1、﹣2,故答案为:﹣1,﹣2.12.如图,△ABC中,∠ACB=90°,D在AB上,若AD=AC,且∠A=50°,则∠DCB 的度数为25°.【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ACD=∠ADC=65°,根据角的和差即可得到结论.【解答】解:∵AD=AC,且∠A=50°,∴∠ACD=∠ADC=65°,∵∠ACB=90°,∴∠DCB=90°﹣65°=25°,故答案为:25.13.已知关于x的不等式x﹣a≥﹣2的解集在数轴上表示如图,则a的值为1.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】直接利用已知不等式的解集得出关于a的等式进而得出答案.【解答】解:∵x﹣a≥﹣2的解集在数轴上为:x≥﹣1,则x≥a﹣2,故a﹣2=﹣1,解得:a=1.故答案为1.14.若等腰三角形一腰上的高与另一腰的夹角为48°,则其顶角度数为42或132°.【考点】KH:等腰三角形的性质.【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.【解答】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+42°=132°;②如图1,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣48°=42°.故答案为:42或132.15.如图,△ABC中,∠CAB=70°,将△ABC绕点A旋转得到△ADE,连接CE,若AB∥EC,则∠CAD的度数为30°.【考点】R2:旋转的性质;JA:平行线的性质.【分析】根据旋转的性质得AE=AC,∠CAB=∠EAD=70°,再根据等腰三角形的性质得∠AEC=∠ACE,然后根据平行线的性质由CE∥AB得∠ACE=∠CAB=70°,则∠AEC=∠ACE=70°,再根据三角形内角和计算出∠CAE=40°,所以∠CAD=30°【解答】解:∵△ABC绕点A逆时针旋转到△AED的位置,∴AE=AC,∠CAB=∠EAD=70°,∴∠ACE=∠AEC,∵CE∥AB,∴∠ACE=∠CAB=70°,∴∠AEC=∠ACE=70°,∴∠CAE=180°﹣2×70°=40°,∴∠CAD=∠EAD﹣∠EAC=30°故答案为:30.16.如图,将Rt△ABC绕点C顺时针旋转90°得到△DCE,连接AE,若∠AED=10°,则∠B的度数为55°.【考点】R2:旋转的性质.【分析】根据旋转的性质可得AC=EC,然后判断出△ACE是等腰直角三角形,根据等腰直角三角形的性质可得∠CAE=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CDE,然后根据旋转的性质可得∠B=∠CDE.【解答】解:∵将Rt△ABC绕点C顺时针旋转90°得到△DCE,∴AC=AE,∴△ACE是等腰直角三角形,∴∠CAE=45°,∴∠CDE=∠AED+∠CAE=10°+45°=55°,由旋转的性质得∠B=∠CDE=55°.故答案为:55.17.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6cm,将△ABC沿着AC方向平移2cm得△DEF,DE交BC于点G,则四边形CGEF的面积为10cm2.【考点】Q2:平移的性质.【分析】根据直角三角形两锐角互余求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AB,再利用勾股定理列式求出BC,然后求出△ABC 的面积,从而得到△DEF的面积,再求出CD,同理求出DG、CG,然后求出△CDG 的面积,最后根据S四边形CGEF=S△DEF﹣S△CDG列式计算即可得解.【解答】解:∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AB=2AC=2×6=12cm,在Rt△ABC中,根据勾股定理得,BC===6cm,∴S△ABC=×6×6=18cm2,∵△ABC沿着AC方向平移2cm得△DEF,∴S△DEF=S△ABC=18cm2,由平移得,AD=2cm,所以,CD=6﹣2=4cm,同理可得,DG=2CD=8cm,CG=4cm,所以,S△CDG=×4×4=8cm2,所以,S四边形CGEF =S△DEF﹣S△CDG=18﹣8=10cm2.故答案为:10.18.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,若AC=3cm,AB=5cm,则DE=cm.【考点】KQ:勾股定理;KF:角平分线的性质.【分析】根据勾股定理求出BC,得到△ABC的面积,根据角平分线的性质得到DE=DC,根据三角形的面积公式计算即可.【解答】解:∵∠ACB=90°,AC=3cm,AB=5cm,∴BC==4,∴Rt△ABC的面积为:×3×4=6,∵AD平分∠BAC,DE⊥AB,∠ACB=90°,∴DE=DC,∴×AC×CD+×AB×DE=6,解得,DE=cm,故答案为:.三、解答题:(本题满分66分,共有8道小题)19.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:△ABC.求作:点P,使PB=PC,且P到边AB,AC的距离相等.【考点】N3:作图—复杂作图;KF:角平分线的性质;KG:线段垂直平分线的性质.【分析】分别作线段BC的垂直平分线与∠A的角平分线,两直线的交点即为P点.【解答】解:如图,点P即为所求.20.已知,△ABC在方格纸(每个小方格的边长为1个单位长度)中的位置如图,将△ABC绕点A旋转90°,再向右平移3个单位长度得△DEF,请在方格纸中画出△DEF.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】先作出△ABC绕点A旋转90°后所得图形,再向右平移3个单位长度得△DEF.【解答】解:如图,△DEF即为所求.21.解答下列各题:(1)解不等式6(x﹣1)≥3+4x(2)解不等式<(3)解不等式+1>x﹣3,请把它的解集表示在数轴上(4)解不等式组,并求出它的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)先求出不等式组的解集,再求出整数解即可.【解答】解:(1)6(x﹣1)≥3+4x,6x﹣6≥3+4x,6x﹣4x≥3+6,2x≥9,x≥4.5;(2)<,3(x﹣2)<2(7﹣x),3x﹣6<14﹣2x,3x+2x<14+6,5x<20,x<4;(3)+1>x﹣3,x﹣5+2>2x﹣6,x﹣2x>﹣6+5﹣2,﹣x>﹣3,x<3,在数轴上表示为:;(4)∵解不等式①得:x<2,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2,∴不等式组的整数解为﹣1,0,1.22.某次国学知识竞赛初赛共20道题,(满分100分),评分办法是:答对1道题得5分,答错或不答倒扣2分,选手至少答对多少题才能得到70分以上(含70分)?【考点】C9:一元一次不等式的应用.【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式5x﹣2(20﹣x)≥70,求解即可.【解答】解:设答对x道,依题意有5x﹣2(20﹣x)≥70,解得:x≥15.故至少要答对16道题才能得到70分以上(含70分).23.已知:如图,∠A=∠D=90°,AC=BD求证:△AOB≌△DOC.【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:∵∠A=∠D=90°,在Rt△BAC与Rt△CDB中,,∴Rt△BAC≌Rt△CDB(HL),∴AB=CD,在△AOB与△DOC中,,∴△AOB≌△DOC.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线BF交AD 于点E,交AC于点F,FH⊥BC于点H,求证:AE=FH.【考点】KF:角平分线的性质.【分析】根据角平分线上的点到两边的距离相等可得:FH=FA;则只要在确定FA 与AE的关系即可确定AE与FH之间的关系;在直角三角形AFB中∠AFB+∠ABF=90°,在直角三角形BDE中,∠DEB+∠EBD=90°,根据角平分线的性质可知:∠ABF=∠DBE,则∠AFB=∠DEB,又知∠AEF=∠DEB,则∠AFB=∠AEF,所以AE=FA,则AE=FH.【解答】证明:∵BF平分∠ABC,FA⊥AB,FH⊥BC,∴FH=FA,∵∠AFB+∠ABF=90°,∠DEB+∠EBD=90°,且∠ABF=∠EBD,∴∠AFB=∠DEB,∵∠AEF=∠DECB,∴∠AFB=∠AEF,∴AE=FA,∴AE=FH.25.已知:如图,等边三角形△ABC的周长为3,D为AB的中点,E在CB的延长线上,且BE=BD,连接DE.求:DE的长.【考点】KK:等边三角形的性质;KQ:勾股定理.【分析】根据等边三角形的性质得到AB=AC=BC=1,∠A=∠ABC=∠ACB=60°,CD ⊥AB,AD=AB=,根据勾股定理得到CD==,于是得到结论.【解答】解:∵△ABC是等边三角形,且周长为3,∴AB=AC=BC=1,∠A=∠ABC=∠ACB=60°,∵D为AB的中点,∴CD⊥AB,AD=AB=,∠DCA=∠DCB=ACB=30°,∴CD==,∵BE=BD,∠ABC=∠E+∠BDE,∴∠E=∠BDE=ACB=30°=∠DCB,∴CD=DE=.26.“六一儿童节”即将结束,某幼儿园计划采购一批市场价为20元/件的益智玩具,甲、乙两家工厂给出了不同的优惠方案,方案如下:甲工厂:采购金额超过500元后,超过的部分按九折付款;乙工厂:采购金额超过1000元后,超过的部分按八折付款.(1)如果幼儿园采购的数量超过了50件,应该到哪家工厂进行采购更合算?(2)如果幼儿园选择到乙工厂进行采购,那么幼儿园至少应该采购多少件,才能使每件玩具的平均价格不超过18元?【考点】C9:一元一次不等式的应用.【分析】(1)设幼儿园计划采购益智玩具x件,选择甲工厂时费用为y1,选择乙工厂时费用为y2,由采购的优惠条件分别得到y1=18x+50,y2=16x+200.分三种情况讨论:甲=乙,甲>乙,甲<乙;(2)设幼儿园到乙工厂采购益智玩具x件,由题意得16x+200≤18x,解该不等式即可.【解答】解:(1)∵20×50=1000(元),∴幼儿园到两家工厂采购均可得到优惠.设幼儿园计划采购益智玩具x件,选择甲工厂时费用为y1,选择乙工厂时费用为y2,由题意得y1=500+0.9(20x﹣500)=18x+50.y2=1000+0.8(20x﹣1000)=16x+200.由y1=y2,得18x+50=16x+200,解得x=75.由y1<y2,得18x+50<16x+200,解得x<75.由y1>y2,得18x+50>16x+200,解得x>75.∵采购的数量超过了50件,∴当采购的数量为50<x<75时,选择甲工厂时费用较低.当采购的数量为75件时,选择两家工厂的费用一样.当采购的数量为x>75时,选择乙工厂时费用较低.(2)设幼儿园到乙工厂采购益智玩具x件,由题意得16x+200≤18x,解得x≥100.所以,该幼儿园到乙工厂至少采购100件时,才能能使每件玩具的平均价格不超过18元.。

八年级下册期中数学试题附答案

八年级下册期中数学试题附答案

八年级(下)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12.下列二次根式是最简二次根式的是()A.B.C.D.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 125.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 137.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是488.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤二、填空题(共8小题,每小题2分,满分16分)9.= .10.计算:= .11.若是整数,则正整数n的最小值是.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 时∠ACB=90°.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|18.计算:﹣÷+(3﹣)(3).四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥A B,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠1考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.解答:解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.点评:考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.下列二次根式是最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含分母,不是最简二次根式;C是最简二次根式;D、=2,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a考点:二次根式的性质与化简.分析:分别利用二次根式的性质化简求出即可.解答:解:A、﹣=﹣=﹣6,故此选项正确;B、(﹣)2=3,故此选项错误;C、=16,故此选项错误;D、=|a|,故此选项错误;故选:A.点评:此题主要考查了二次根式的化简,正确利用二次根式的性质得出是解题关键.4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 12考点:勾股定理.分析:可先设AB=5x,BC=3x,在该三角形中,由勾股定理可求出AC关于x的代数式,由于直角三角形ABC的周长=AC+AB+BC=24,据此列出方程求出x的值,代入AC的关于x的代数式中,即可求出AC的值.解答:解:设AB=5x,BC=3x,在Rt△ACB中,由勾股定理得:AC2=AB2﹣BC2,AC===4x,直角三角形ABC的周长为:5x+4x+3x=24,x=2,所以,AC=2×4=8,故选B.点评:本题主要考查了勾股定理的运用,关键在于用含有x的式子分别表示出三边的值,代入周长公式求解,属于常考的考点.5.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形考点:命题与定理.分析:根据矩形的判定方法对A进行判断;根据正方形的判定方法对B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直平分且相等的四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分的四边形是菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 13考点:勾股定理;直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.解答:解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.7.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是48考点:平行四边形的性质.分析:利用平行四边形的性质结合勾股定理和平行四边形的面积求法分别分析得出即可.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=8,∴选项A正确,不合题意;∵AB=10,BC=8,AC⊥BC,∴AC=6,故选项C正确,不合题意,故▱ABCD的面积是:6×8=48,AC与BD相交于点O,∴AO=CO=3,∴BO==,∴BD=2,故选项B错误,符合题意;故选:B.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用勾股定理得出AC的长是解题关键.8.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:由①得对角线相等的平行四边形是矩形,加上④得,有一组邻边相等的矩形是正方形,故选C.点评:本题考查了正方形的判定方法,是基础知识较简单.二、填空题(共8小题,每小题2分,满分16分)9.= 2.考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可.解答:解:原式===2.故答案为:2.点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键.10.计算:= .考点:分母有理化.专题:计算题.分析:根据﹣1的有理化因式为+1,进行计算即可.解答:解:原式=,=+1,故答案为+1.点评:主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.11.若是整数,则正整数n的最小值是 3 .考点:二次根式的定义.分析:首先化简二次根式,进而得出n的最小值.解答:解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.点评:此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 16 时∠ACB=90°.考点:勾股定理的逆定理.分析:先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.解答:解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.点评:本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为10 .考点:矩形的性质.分析:根据四边形ABCD是矩形,得到OA=OC,OB=OD,AC=BD,推出OA=OB,再由两条对角线的夹角是60°,得出△OAB是等边三角形,即可求对角线长.解答:解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,∴AC=BD=2×5=10.故答案为:10.点评:本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键,题型较好,难度适中.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是6cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:可先依据题意作出简单的图形,进而结合图形,由题中数据可得三角形是一直角三角形,进而再由中位线的性质即可求解.解答:解:由题中数据可得三角形是一直角三角形,如图,设BC=6cm,AB=8cm,AC=10cm,∵DE、EF、DF分别是三角形的中位线,∴DE=3cm,EF=4cm,DF=5cm,∵DE2+EF2=DF2,故△DEF是直角三角形,S△DEF=DE×EF=6c m2.故答案为:6cm2.点评:本题主要考查了中位线的性质以及勾股定理的运用,要求同学们熟练掌握中位线的性质及勾股定理的逆定理.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=22.5 度.考点:正方形的性质;等腰三角形的性质.分析:连接BD,根据正方形的对角线平分一组对角可得∠ABD=45°,再根据正方形的对角线相等可得AC=BD,然后求出BD=BE,再根据等边对等角可得∠BDE=∠BED,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解答:解:如图,连接BD,∵四边形ABCD是正方形,∴∠ABD=45°,AC=BD,∵BE=AC,∴BD=BE,∴∠BDE=∠BED,根据三角形的外角性质,∠ABD=∠BDE+∠BED,∴∠BED=∠ABD=×45°=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,正方形的对角线相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为 6 cm.考点:翻折变换(折叠问题).专题:计算题.分析:在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=12,DE=DC,∠AED=∠C=90°,所以BE=AB﹣AE=8,设CD=x,则BD=16﹣x,然后在Rt△BDE中利用勾股定理得到82+x2=(16﹣x)2,再解方程求出x即可.解答:解:在Rt△ABC中,∵AC=12,BC=16,∴AB==20,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=12,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=20﹣12=8,设CD=x,则BD=16﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴82+x2=(16﹣x)2,解得x=6,即CD的长为6cm.故答案为6.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|考点:二次根式的加减法.分析:先把各根式化为最减二次根式,再合并同类项即可.解答:解:原式=﹣2+﹣1=﹣1.点评:本题考查的是二次根式的加减,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.18.计算:﹣÷+(3﹣)(3).考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的除法运算,再利用平方差公式进行乘法运算,然后把各二次根式化为最简二次根式后合并即可.解答:解:原式=4﹣+9﹣3=4﹣3+6=+6.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.考点:分式的化简求值.专题:计算题.分析:由a与b的值,求出a+b与ab的值,原式变形后代入计算即可求出值.解答:解:∵a=+1,b=﹣1,∴a+b=2,ab=1,则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?考点:函数的图象.分析:(1)由于骑摩托车前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.解答:解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟;(2)依题意得:王老师吃早餐用了10分钟;(3)吃早餐以前的速度为:5÷10=0.5km/分钟,吃完早餐以后的速度为:(10﹣5)÷(25﹣20)=1km/分钟=60km/小时,∴王老师吃完早餐以后速度快,最快时速达到60km/小时.点评:此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.专题:证明题;几何综合题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.解答:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)考点:勾股定理的应用.分析:首先过C作CD⊥AB交AB延长线于点D,然后可得∠BCD=30°,再根据直角三角形的性质可得BD=10米,然后利用勾股定理计算出CD长,再次利用勾股定理计算出AC长即可.解答:解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.点评:此题主要考查了勾股定理的应用,关键是正确掌握直角三角形中,两直角边的平方和等于斜边的平方.23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;勾股定理;菱形的判定与性质.专题:几何综合题;开放型.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥A B,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。

八年级数学下册期中考试题及答案【完整】

八年级数学下册期中考试题及答案【完整】

八年级数学下册期中考试题及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.化简二次根式 )A B C D4是同类二次根式的是( )A B C D 5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .439.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +二、填空题(本大题共6小题,每小题3分,共18分)116________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n=________.5.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.6.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是______元.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、B6、A7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、03、14、255.5、656、15.3三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、112x-;15.3、(1)略(2)1或24、(1)略;(2)10.5、略.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

【三套打包】北京海淀区尚丽外国语学校八年级下学期期中数学试题及答案

【三套打包】北京海淀区尚丽外国语学校八年级下学期期中数学试题及答案

人教版八年级第二学期下册期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.(3分)如图,在平行四边形ABCD中,∠A=40°,则∠C大小为()A.40°B.80°C.140°D.180°2.(3分)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B.C.3D.53.(3分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.4.(3分)已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定5.(3分)函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角7.(3分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.(3分)在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形9.(3分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1610.(3分)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(每小题3分,共30分)11.(3分)将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是.12.(3分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是.13.(3分)如图,∠B=∠ACD=90°,BC=3,AB=4,CD=12,则AD=.14.(3分)在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,CD垂直于AB,垂足为点D,则DC=,AD=.15.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为.16.(3分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED =1cm,则平行四边形ABCD的周长是.17.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将纸片折叠使直角边落在斜边AB上且与AE重合,折痕为AD.则CD=.18.(3分)四边形ABCD中,已知∠A=∠B=∠C=90°,再添加一个条件,使得四边形ABCD为正方形,可添加的条件是.19.(3分)如图,在点A测得某岛C在北偏东60°方向上,且距A点18海里,某船以每小时36海里的速度从点A向正东方向航行,航行半小时后到达B点,此时测得岛C 在北偏东30°方向上,已知该岛周围16海里内有暗礁.B点与C岛的距离是B点暗礁区域(填内或外)20.(3分)弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为.三、解答题(共8小题,满分40分)21.(5分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)分别求出图象与x轴,与y轴交点坐标.22.(5分)如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF,求证:四边形BFDE是平行四边形.23.(5分)如图,在△MBN中,已知BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,(1)求证:四边形ABCD是平行四边形(2)四边形ABCD的周长为(直接写出答案).24.(5分)已知:如图,E是正方形ABCD对角线AC上一点,且AE=AB,EF⊥AC,交BC于F.求证:BF=EC.25.(5分)已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.26.(5分)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式并写出自变量取值范围;(2)求蜡烛从点燃到燃尽所用的时间.27.(5分)(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:命题:两条平行线中,一条上的两点与另一条上任一点所构成的三角形面积相等.如图1,AD∥BC,连接AB,AC,BD,CD,则S△ABC=S△BCD.证明:分别过点A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因为S△ABC=×BC×AF,S△BCD=.所以S△ABC=S△BCD所以此命题为真(2)应用拓展:如图2,将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是cm2.请直接写出答案并用(1)中的命题结论说明理由28.(5分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F 在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.附加题(5分)(答对计入总分100分封顶,答错或不答不扣分)29.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.2016-2017学年北京四十一中八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵四边形ABCD 是平行四边形,∴∠C =∠A =40°.故选:A .2.【解答】解:∵四边形ABCD 是矩形,∴OA =AC ,OB =人教版数学八年级下册期中考试试题(含答案)人教版八年级下学期期中数学试卷数学试卷一.选择题(本大题共12小题,每小题 3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在直角三角形中,若勾为3,股为4,则弦为(A)5 (B)5 (C) 7 (D) 82.若3-x 在实数范围内有意义,则x 的取值范围是(A)X ≤3 (B)X<3 (C)X ≥3 (D)X>33.下列计算正确的是 (A)2+3=5 (B)532=⋅ (C)2223-=1 (D)212÷=2 4.下列二次根式中,是最简二次根式的是(A)24 (B)73 (C) 3-x (D)b a 25.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB=100°,则∠OAB 的度数是(A)100° (B)80°(C) 50°(D) 40°6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AC=1,则BC 的长等于 (A)21 (B)33 (C)3 (D)2 7.以下各组线段为边,能组成直角三角形的是(A)6cm,12cm,13cm (B)45cm,1cm,32cm (C)8cm,6cm,9cm (D)1.5cm,2cm,2.5cm 8.下列条件不能判断四边形为正方形的是(A)对角线互相垂直且相等的平行四边形 (B)对角线互相垂直的矩形(C)对角线互相垂直且相等的四边形 (D)对角线相等的菱形9.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是(A)平行四边形 (B)矩形 (C)菱形 (D)正方形10.如图,四边形ABCD ,∠D=∠C=90°,CD=2,点E 在边AB ,且AD=AE,BE=BC,则AE •BE 的值为 (A)2 (B)1 (C)22 (D)2111. 如图,正方形ABCD 的边长为4,点E 对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为点F ,则EF 的长为(A)1 (B)4-22 (C)22 (D)23-412. 如图,在菱形ABCD 中,∠BAD=120°,点E ,F 分别在边AB ,BC上,将菱形沿EF 折叠,点B 恰好落在AD 边上的点G 处,且EG ⊥AC ,若CD=8,则FG 的长为(A)6 (B)34 (C) 8 (D) 26二.填空题(本大题共6小题,每小题3分,共18分)13. 计算:(25)(=__________;252)(=_______________; 494⨯=___________; 14. 计算:224c b a =________; a28=___________;xy x 313⋅=_________; 15. 如图,在平行四边形ABCD 中,添加一个条件________使平行四边形ABCD 是菱形.16. 观察下列各式: 311+=231,412+=413,513+=514,…请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是____________.17. 如图,四边形AOBC 是正方形,OA=4,动点P 从点O 出发,沿折线OACB 方向以 1个单位/秒的速度匀速运动, 另一个点Q 从O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时停止运动,当以A 、P 、B 、Q 四点为顶点的四边形为平行四边形时,t 的值为__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学期中考试试题及答案一.选择题(共10小题,满分30分,每小题3分)1.如图,在平行四边形ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm2.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于E,若∠EAO=15°,则∠BOE的度数为()A.85°B.80°C.75°D.70°3.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF 与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8B.8C.4D.64.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3>y1>y2 5.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<06.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6B.5C.8D.77.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.8.已知下列命题①一组对边平行且相等的四边形是平行四边形;②两条对角线互相垂直且相等的四边形是正方形;③一组对边平行且两条对角线相等的四边形是矩形;④两条对角线互相垂直的平行四边形是菱形.其中正确的命题的个数是()A.0B.1C.2D.39.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD =6,则平行四边形ABCD的面积是()A.6B.8C.10D.1210.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二.填空题(共10小题,满分30分,每小题3分)11.将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.12.如图,已知直线y=ax+b和直线y=kx交于点P,则关于x,y的二元一次方程组的解是.13.在△ABC中,AB=13,BC=10,BC边上的中线AD=12.则AC的长为.14.在△ABC中,∠ABC=90°,D是BC边延长线上一点,并且CD=CA=2cm,∠ADC =15°,则BC=cm.15.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.16.在平行四边形ABCD中,AE平分∠BAD交边BC于E,DF⊥AE,交边BC于F,若AD =10,EF=4,则AB=.17.如图的三角形纸片中,AB=6,AC=7,BC=5,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长为.18.菱形ABCD中,对角线AC,BD相交于点O,请你添加一个条件,使得菱形ABCD成为正方形,这个条件可以是.(写出一种情况即可)19.如图,在一条东西方向笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A的北偏东60°方向、在码头B的北偏西45°方向,AC=4千米.那么码头A、B之间的距离等于千米.(结果保留根号)20.如图所示的计算程序中,y与x之间的函数关系式为.三.解答题(共8小题,满分40分,每小题5分)21.平行四边形如图,直线过A(﹣1,5),P(2,a),B(3,﹣3).(1)求直线AB的解析式和a的值;(2)求△AOP的面积.22.平行四边形如图,在平行四边形ABCD中,点E在AD上,连接BE,DF∥BE交BC 于点F,AF与BE交于点M,CE与DF交于点N.(1)求证:DE=BF;(2)求证:四边形MFNE是平行四边形.23.平行四边形如图,在平行四边形ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.24.平行四边形如图,在正方形ABCD中,点E、F分别是AB、BC上的点,且AE=BF.求证:AF⊥DE.25.平行四边形在一节数学课上,老师布置了一个任务:如图①,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图②,他向同学们分享了作法:①分别以点A、C为圆心,大于AC长为半径画弧,两弧分别交于点E、F,连结EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连结AD、CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”阅读上面的材料,请写出小亮的作图依据.26.平行四边形甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?27.平行四边形定义:我们把对角线相等的四边形叫做和美四边形.(1)请举出一种你所学过的特殊四边形中是和美四边形的例子.(2)如图1,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;(3)如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,∠AOB=60°,E、F分别是AD、BC的中点,请探索EF与AC之间的数量关系,并证明你的结论.28.平行四边形已知:如图,在菱形ABCD中,E是AB上一点,线段DE与菱形对角线AC 交于点F,点O是AC的中点,EO的延长线交边DC于点G(1)求证:∠AED=∠FBC;(2)求证:四边形DEBG是平行四边形.四.解答题(共1小题)29.如图,在正方形ABCD的外侧,作等边三角形BCE,连接AE,DE.(1)求证:AE=DE(2)过点D作DF⊥AE,垂足为F,若AB=2cm,求DF的长.2018-2019学年北京四十一中八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.2.【分析】由矩形的性质得出OA=OB,再由角平分线得出△ABE是等腰直角三角形,得出AB=BE,证明△AOB是等边三角形,得出∠ABO=60°,OB=AB,得出OB=BE,由三角形内角和定理和等腰三角形的性质即可得出结果.【解答】解:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠EAO=15°,∴∠BAO=45°+15°=60°,∴△AOB是等边三角形,∴∠ABO=60°,OB=AB,∴∠OBE=90﹣60°=30°,OB=BE,∴∠BOE=(180°﹣30°)=75°.故选:C.【点评】本题考查了矩形的性质、等腰直角三角形的判定与性质、等边三角形的判定与性质、三角形内角和定理;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.3.【分析】连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】解:如图,连接BO,∵四边形ABCD是矩形,∴DC∥AB,∠DCB=90°∴∠FCO=∠EAO,在△AOE和△COF中,,∴△AOE≌△COF,∴OE=OF,OA=OC,∵BF=BE,∴BO⊥EF,∠BOF=90°,∵∠FEB=2∠CAB=∠CAB+∠AOE,∴∠EAO=∠EOA,∴EA=EO=OF=FC=2,在RT△BFO和RT△BFC中,,∴RT△BFO≌RT△BFC,∴BO=BC,在RT△ABC中,∵AO=OC,∴BO=AO=OC=BC,∴△BOC是等边三角形,∴∠BCO=60°,∠BAC=30°,∴∠FEB=2∠CAB=60°,∵BE=BF,∴△BEF是等边三角形,∴EB=EF=4,∴AB=AE+EB=2+4=6.故选:D.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.4.【分析】先根据直线y=﹣x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=﹣x+b,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.【点评】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y 随x的增大而增大;当k<0,y随x的增大而减小.5.【分析】根据一次函数的性质,依次分析选项可得答案.【解答】解:根据一次函数的性质,依次分析可得,A、x=﹣2时,y=﹣2×﹣2+1=5,故图象必经过(﹣2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=﹣2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选:D.【点评】本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系.6.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成(n﹣2)个三角形.【解答】解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选:B.【点评】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n﹣2)个三角形.7.【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.8.【分析】(1)本题根据平行四边形的判定方法即可得出结论.(2)本题根据对角线互相平分的四边形是平行四边形.(3)本题根据矩形的判定方法得出结论.(4)本题根据菱形的判定方法得出结论.【解答】解:(1)∵一组对边平行且相等的四边形是平行四边形;∴故本选项正确.(2)∵两条对角线互相垂直且相等的四边形不一定是平行四边形,∴故本选项错误.(3)∵一组对边平行且两条对角线相等的四边形可能是等腰梯形.∴故本选项错误.④∵两条对角线互相垂直的平行四边形是菱形.∴故本选项正确.故选:C .【点评】本题主要考查了正方形的判定,解题时要注意判定方法的综合应用. 9.【分析】先过点D 作DE ⊥AC 于点E ,由在平行四边形ABCD 中,AC =8,BD =6,可求得OD 的长,又由对角线AC 、BD 相交成的锐角α为30°,求得DE 的长,△ACD 的面积,则可求得答案.【解答】解:过点D 作DE ⊥AC 于点E ,∵在平行四边形ABCD 中,AC =8,BD =6,∴OD =BD =3,∵∠α=30°,∴DE =OD •sin ∠α=3×=1.5,∴S △ACD =AC •DE =×8×1.5=6,∴S 平行四边形ABCD =2S △ACD =12.故选:D .【点评】此题考查了平行四边形的性质以及三角函数的知识.注意准确作出辅助线是解此题的关键.10.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C和D不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项B正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二.填空题(共10小题,满分30分,每小题3分)11.【分析】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【解答】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为:y=3x﹣2.【点评】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k 和b的值的变化.12.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=kx交点P的坐标为(1,2),∴关于x,y的二元一次方程组的解为.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.13.【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【解答】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5,∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.故答案为:13.【点评】本题考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD⊥BC.14.【分析】利用等腰三角形的性质可得∠CDA=∠D=15°,推出∠ACD=30°即可解决问题;【解答】解:∵CA=CD,∴∠CAD=∠D=15°,∴∠ACB=∠CAD+∠D=30°,∵∠ABC=90°,AD=2cm,∴AB=AC=1cm,∴BC===cm,故答案为.【点评】本题考查解直角三角形,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【分析】由菱形及菱形一个内角为120°,易得△ABC与△ACD为等边三角形.CE⊥AD可由三线合一得CE平分∠ACD,即求得∠ACE的度数.再由CE=BC等腰三角形把∠E度数求出,用三角形内角和即能去∠EFC.【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°【点评】本题考查了菱形的性质,等腰三角形及三线合一,三角形内角和.按照题目给的条件逐步综合信息即能求出答案.16.【分析】根据平行线的性质得到∠ADF=∠DFC,根据角平分线的定义得到∠BAE=∠DAE,推出AB=BE,根据已知条件推出∠ADF=∠ADC,得到∠DFC=∠CDF,推出CF=CD,于是得到结论.【解答】解:①如图1,在平行四边形ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE+CF﹣EF=2AB﹣EF=2AB﹣4=10,∴AB=7;②如图2,在平行四边形ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE++EF+CF=2AB+EF=2AB+4=10,∴AB=3;综上所述:AB的长为7或3.故答案为:7或3.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出AB=BE=CF=CD.17.【分析】由题意可得:CD=DE,BC=BE=5,即可求AE=1,则可求△AED的周长.【解答】解:∵折叠∴CD=DE,BC=BE=5∵AE=AB﹣BE∴AE=6﹣5=1∴△AED的周长=AD+DE+AE=AD+DC+1=AC+1=7+1=8故答案为:8【点评】本题考查折叠问题,熟练掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.【分析】知道四边形ABCD是菱形和菱形的对角线,要在菱形的对角线的性质的基础上加上合适的条件使菱形成为正方形,再结合正方形的对角线的性质就可以得出需要添加的条件.【解答】解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:∠ABC=90°;故添加的条件为:AC=BD或∠ABC=90°.故答案为AC=BD或∠ABC=90°.【点评】本题是一道条件开放性试题,考查了菱形的性质的运用,正方形的性质的运用,解答时熟悉正方形的判定方法是关键.19.【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD、AD的长,然后在Rt△BCD中求得BD的长,即可得到码头A、B之间的距离.【解答】解:如图,作CD⊥AB于点D.∵在Rt △ACD 中,∠CAD =90°﹣60°=30°,∴CD =AC •sin ∠CAD =4×=2(km ),AD =AC •cos30°=4×=2(km ), ∵Rt △BCD 中,∠CDB =90°,∠CBD =45°,∴BD =CD =2(km ),∴AB =AD +BD =2(km ),故答案是:(2+2).【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得CD 的长是关键.20.【分析】根据运算程序,可得函数关系式.【解答】解:由运算程序,得y =3x ﹣5,故答案为:y =3x ﹣5.【点评】本题考查了函数关系式,利用运算程序得出y 与x 的关系是解题关键.三.解答题(共8小题,满分40分,每小题5分)21.【分析】(1)根据点A ,B 的坐标,利用待定系数法即可求出直线AB 的解析式,再利用二次函数图象上点的坐标特征即可求出a 的值;(2)设直线AB 与y 轴交于点D ,连接OA ,OP ,利用一次函数图象上点的坐标特征可求出点D 的坐标,根据三角形的面积公式及S △AOP =S △AOD +S △POD 可求出△AOP 的面积.【解答】解:(1)设直线AB 的解析式为y =kx +b (k ≠0),将A (﹣1,5),B (3,﹣3)代入y =kx +b ,得:,解得:, ∴直线AB 的解析式为y =﹣2x +3.当x =2时,y =﹣2x +3=﹣1,∴点P 的坐标为(2,﹣1),即a 的值为﹣1.(2)设直线AB 与y 轴交于点D ,连接OA ,OP ,如图所示.当x =0时,y =﹣2x +3=3,∴点D 的坐标为(0,3).S △AOP =S △AOD +S △POD =OD •|x A |+OD •|x P |=×3×1+×3×2=.【点评】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出直线AB 的解析式;(2)利用分割图形求面积法,求出△AOP 的面积.22.【分析】(1)根据平行四边形对边平行可得AD ∥BC ,然后求出四边形BFDE 是平行四边形,根据平行四边形对边相等证明即可;(2)求出AE =CF ,然后根据一组对边平行且相等的四边形是平行四边形得到四边形AFCE 是平行四边形,根据平行四边形对边平行可得AF ∥CE ,最后根据平行四边形的定义证明即可.【解答】证明:(1)在平行四边形ABCD 中,AD ∥BC ,∵DF ∥BE ,∴四边形BFDE 是平行四边形,∴DE =BF ;(2)在平行四边形ABCD 中,AD ∥BC 且AD =BC ,∵DE =BF ,∴AD ﹣DE =BC ﹣BF ,即AE =CF ,∴四边形AFCE 是平行四边形,∴AF ∥CE ,∵四边形BFDE 是平行四边形,∴DF ∥BE ,∴四边形MFNE是平行四边形.【点评】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的性质以及平行四边形的判定方法是解题的关键.23.【分析】(1)只要证明DN∥BM,DM∥BN即可;(2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四边形BMDN是平行四边形;(2)解:∵四边形BMDN是平行四边形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN,∴FN=EM=5,在Rt△AFN中,AN===13.【点评】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【分析】直接利用正方形的性质结合全等三角形的判定与性质得出∠ADE=∠BAF,进而得出∠AGE=90°.【解答】证明:∵四边形ABCD为正方形,∴DA=AB,∠DAE=∠ABF=90°,在△DAE和△ABF中,∴△DAE≌△ABF(SAS),∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠FAE+∠AED=90°,∴∠AGE=90°,∴AF⊥DE.【点评】此题主要考查了正方形的性质以及全等三角形的判定与性质,正确得出△DAE ≌△ABF是解题关键.25.【分析】根据到线段两端距离相等的点在线段的垂直平分线上可判断EF垂直平分AC,再根据直角三角形斜边上的中线等于斜边的一半得到BO=OA=OC,则由OD=OB得到BO=OA=OC=OD,从而根据矩形的判定方法可判断四边形ABCD就是所求作的矩形.【解答】解:由作法得EF垂直平分AC,则OA=OC,则BO为Rt△ABC斜边上的中线,所以BO=OA=OC,因为OD=OB,所以BO=OA=OC=OD,所以四边形ABCD为矩形.所以小亮的作图依据为:到线段两端距离相等的点在线段的垂直平分线上;直角三角形斜边上的中线等于斜边的一半;对角线互相平分且相等是矩形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定.26.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x 的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=70,得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【点评】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.27.【分析】(1)根据矩形的对角线相等解答;(2)根据三角形的中位线定理得;EH=BD=FG,EF=AC=HG,由菱形EFGH四边相等可得:AC=BD,所以四边形ABCD是和美四边形;(3)作辅助线,构建平行四边形MABD,再证明△AMC是等边三角形,根据三角形中位线定理得:EF=CM=AC.【解答】解:(1)∵矩形的对角线相等,∴矩形是和美四边形;(2)如图1,连接AC、BD,∵E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,∴EH=BD=FG,EF=AC=HG,∵四边形EFGH是菱形,∴EH=EF=FG=GH,∴AC=BD,∴四边形ABCD是和美四边形;(3)EF=AC,证明:如图2,连接BE并延长至M,使BE=EM,连接DM、AM、CM,∵AE=ED,∴四边形MABD是平行四边形,∴BD=AM,BD∥AM,∴∠MAC=∠AOB=60°,∴△AMC是等边三角形,∴CM=AC,△BMC中,∵BE=EM,BF=FC,∴EF=CM=AC.【点评】本题考查的是和美四边形的定义、三角形的中位线定理、平行四边形的判定和性质、矩形和菱形的性质,正确理解和美四边形的定义、作辅助线是解题的关键.28.【分析】(1)首先证明△CBF≌△CDF,从而得到∠FBC=∠FDC,然后由平行线的性质可知∠FDC=∠AED,从而可证得∠AED=∠FBC;(2)连接BD,由菱形的性质可知;OB=OD,然后再证明OG=OE,从而可证得四边形DEBG是平行四边形.【解答】证明:(1)∵四边形ABCD是菱形,∴∠DCF=∠BCF,DC=BC.在△DCF和△BCF中,,∴△DCF≌△BCF,∴∠FBC=∠FDC.∵DC∥AB,∴∠FDC=∠AED.∴∠AED=∠FBC.(2)如图,连接BD.∵四边形ABCD是菱形,O是AC的中点,∴OD=OB.∵DC∥AB,∴∠GCO=∠EAO.在△GCO和△EAO中,,∴△GCO≌△EAO,∴OE=OG.∴四边形DEBG是平行四边形.【点评】本题主要考查的是菱形的性质、平行四边形的判定、全等三角形的判定和性质,证得OG=OE是解题的关键.四.解答题(共1小题)29.【分析】(1)证明△ABE≌△DCE,可得结论;(2)作辅助线,构建直角三角形,根据等腰三角形的性质得∠BCG=30°,∠DEF=30°,利用正方形的边长计算DE的长,从而得DF的长.【解答】(1)证明:∵四边形ABCD是正方形,(1分)∴AB=CD,∠ABC=∠DCB=90°,∵△BCE是等边三角形,∴BE=CE,∠EBC=∠ECB=60°,(2分)即∠ABE=∠DCE=150°,∴△ABE≌△DCE,∴AE=DE;平行四边形(2)解:过点E作EG⊥CD于G,(6分)∵DC=CE,∠DCE=150°,∴∠CDE=∠CED=15°,∴∠ECG=30°,(7分)∵CB=CD=AB=2,∴EG=1,CG=,(8分)在Rt△DGE中,DE===+,(9分)在Rt△DEF中,∠EDA=∠DAE=90°﹣15°=75°∴∠DEF=30°,∴DF=DE=(cm).(10分)【点评】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定和性质、等腰三角形的判定和性质,题目的综合性很好,难度不大.人教版八年级(下)期中模拟数学试卷【含答案】一.选择题:(每小题3分,共30分) 1.下列式子中,是二次根式的是( )A B D2.要使式子有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤2 3.下列二次根式中,是最简二次根式的是( )A.xy 2B.2ab C.21 D. 4.下列二次根式,不能与12合并的是( ) A.48 B.18 C.311 D.75- 5.下列运算正确的是( )=123= C =2D =6.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( ) A .2,4,8 B.4,8,10 C.6,8,10 D.8,10,12 7.不能判定四边形ABCD 为平行四边形的条件是( ) A. AB ∥CD ,AD=BC B. AB ∥CD ,∠A=∠C C. AD ∥BC ,AD=BC D. ∠A=∠C ,∠B=∠D8. 如下页图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm , 现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )(A )4 cm (B )5 cm (C )6 cm (D )10 cm9.如下图所示:是一段楼梯,高BC 是3m ,斜边AC 是5m ,如果在楼梯上铺地毯,那么至少需要地毯( ) A.5m B.6m C.7m D.8m10.如下图,在底面周长为12,高为8的圆柱体上有A,B 两点,则AB 之间的最短距离是( ) A .10 B .8 C .5 D .4二、填空题(每小题4分,共20分)11.在ABCD 中,∠A=︒50,则∠B= 度,∠C= 度,∠D= 度.12.如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm 13.化简= ;0,0)x y >> = . 14.,则它的斜边长为 cm ,面积为2cm .15.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为 . 三、解答题(共50分)16.计算:(每小题4分,共8分)()1()2-17.(7分)如图,利用尺规,在△ABC 的边AC 上方作∠CAE=∠ACB,在射线AE 上截取AD=BC ,连接CD ,并证明CD ∥AB 。

相关文档
最新文档