2015-2016年山东省日照市莒县初三上学期期末数学试卷及参考答案

合集下载

2015—2016学年第一学期初三期末质量检测数学试卷附答案

2015—2016学年第一学期初三期末质量检测数学试卷附答案

2015—2016学年第一学期初三期末质量检测数学试卷考生须知1.本试卷共6页,共五道大题,29道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一.选择题(共有10个小题,每小题3分,共30分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过―存水‖增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为 A .812×106 B .81.2×107 C .8.12×108 D .8.12×1092. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,相反数最大是A .aB .bC .cD .d3. 如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =2,DB =4,则AEAC的值为 A .12B .13C .14D .164. 若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为A .1:2B . 2:1C .1:4D .4:1 5. 二次函数y =(x ﹣1)2+2的最小值为( )A .1B . -1C .2D .-2 6. 将抛物线2=-y x 向上平移2个单位,则得到的抛物线表达式为A .2y=-(x+2) B .2y=-(x-2) C .2y=-x -2 D .2y=-x +2 7. 已知Rt △ABC 中,∠C=90°,AC=3,BC=4,则cosA 的值为( ) A .34B . 43C . 35D . 458. 如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为–3–2–1012345–4c b a d 2题图EDCB A 3题图B A O骨柄长的34长:243cm宽:21cm 青铜展馆A .43米B .65米C .125米D . 24米9. 如图,⊙O 是△ABC 的外接圆,∠ACO =45°,则∠B 的度数为( )A.30°B. 35°C. 40°D. 45°10.小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB 是骨柄长OA 的34,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为243cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB 为( )A . 21cmB .20 cmC .19cmD . 18cm二、填空题(本题共6个小题,每小题3分,共18分) 11.4的平方根是 .12.不等式组⎪⎩⎪⎨⎧->+≥-1230211x x 的正整数解是 .13.如图,tan ∠ABC= .14.写出一个抛物线开口向上,与y 轴交于(0,2)点的函数表达式 .15. 已知⊙O 的半径2,则其内接正三角形的面积为 .16. 学校组织社会大课堂活动去首都博物馆参观,明明提前上网做了功课,查到了下面的一段文字:首都博物馆建筑本身是一座融古典美和现代美于一体的建筑艺术品,既具有浓郁的民族特色,又呈现鲜明的现代感.首都博物馆建筑物(地面以上)东西长152米、南北宽66米左右,建筑高度41米.建筑内部分为三栋独立的建筑,即:矩形展馆,椭圆形专题展馆,条形的办公科研楼.椭圆形的青铜展馆斜出墙面寓意古代文物破土而出,散发着浓郁的历史气息. 明明对首都博物馆建筑物产生了浓厚的兴趣,站到首都博物馆北广场,他被眼前这座建筑物震撼了.整个建筑宏大壮13题图CB A30︒10题图1 10题图2观,斜出的青铜展馆和北墙面交出一条抛物线,抛物线与外立面之间和谐、统一,明明走到过街天桥上照了一张照片(如图所示).明明想了想,算了算,对旁边的文文说:―我猜想这条抛物线的顶点到地面的距离应是15.7米左右.‖ 文文反问:―你猜想的理由是什么‖?明明说:―我的理由是‖. 明明又说:―不过这只是我的猜想,这次准备不充分,下次来我要用学过的数学知识准确的测测这个高度,我想用学到的知识, 我要带等测量工具‖.三、解答题(本题共72分,第17—25题,每小题5分,第26题8分,第27题6分,第28题6分,第29题7分)17.计算:2012(3)3cos602π---+--︒.18.已知0362=--xx,求代数式()()311)3(2+-+--xxxx的值.19.已知如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的长.20.如图,一次函数y1=﹣x+2的图象与反比例函数y2=xk的图象相交于A,B两点,点B的坐标为(2m,-m).(1)求出m值并确定反比例函数的表达式;(2)请直接写出当x<m时,y2的取值范围.21.已知如图,在△ABC中,∠A=30°,∠C=105°,AC=32,求AB的长.22.已知如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接A C.若∠A=22.5°,CD=8cm,求⊙O的半径.23.如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,tan32°= 0.62)19题图20题图21题图22题图24. 如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE 垂直于PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E . (1)求证:AB =BE ;(2)若PA =2,cosB =,求⊙O 半径的长.25.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB=xm .(1)若花园的面积为192m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求x 取何值时,花园面积S 最大,并求出花园面积S 的最大值.26.在―解直角三角形‖一章我们学习到―锐角的正弦、余弦、正切都是锐角的函数,统称为锐角三角函数‖ .小力根据学习函数的经验,对锐角的正弦函数进行了探究. 下面是小力的探究过程,请补充完成:(1)函数的定义是:―一般地,在一个变化的过程中,有两个变量x 和y ,对于变量x 的每一个值,变量y 都有唯一确定的值和它对应,我们就把x 称为自变量,y 称为因变量,y 是x 的函数‖.由函数定义可知,锐角的正弦函数的自变量是 ,因变量是 ,自变量的取值范围是___________.(2)利用描点法画函数的图象. 小力先上网查到了整锐角的正弦值,如下:sin1°=0.01745240643728351 sin2°=0.03489949670250097 sin3°=0.05233595624294383 sin4°=0.0697564737441253 sin5°=0.08715574274765816 sin6°=0.10452846326765346 sin7°=0.12186934340514747 sin8°=0.13917310096006544 sin9°=0.15643446504023087 sin10°=0.17364817766693033 sin11°=0.1908089953765448 sin12°=0.20791169081775931 sin13°=0.22495105434386497 sin14°=0.24192189559966773 sin15°=0.25881904510252074 sin16°=0.27563735581699916 sin17°=0.2923717047227367 sin18°=0.3090169943749474 sin19°=0.3255681544571567 sin20°=0.3420201433256687 sin21°=0.35836794954530027 sin22°=0.374606593415912 sin23°=0.3907311284892737 sin24°=0.40673664307580015 sin25°=0.42261826174069944 sin26°=0.4383711467890774 sin27°=0.45399049973954675 sin28°=0.4694715627858908 sin29°=0.48480962024633706 sin30°=0.5000000000000000 sin31°=0.5150380749100542 sin32°=0.5299192642332049 sin33°=0.544639035015027 sin34°=0.5591929034707468 sin35°=0.573576436351046 sin36°=0.5877852522924731 sin37°=0.6018150231520483 sin38°=0.6156614753256583 sin39°=0.629320391049837523题图24题图xyOyxO–112345–1–2–3–4–512345sin40°=0.6427876096865392 sin41°=0.6560590289905073 sin42°=0.6691306063588582 sin43°=0.6819983600624985 sin44°=0.6946583704589972 sin45°=0.7071067811865475 sin46°=0.7193398003386511 sin47°=0.7313537016191705 sin48°=0.7431448254773941 sin49°=0.7547095802227719 sin50°=0.766044443118978 sin51°=0.7771459614569708 sin52°=0.7880107536067219 sin53°=0.7986355100472928 sin54°=0.8090169943749474 sin55°=0.8191520442889918 sin56°=0.8290375725550417 sin57°=0.8386705679454239 sin58°=0.848048096156426 sin59°=0.8571673007021122 sin60°=0.8660254037844386 sin61°=0.8746197071393957 sin62°=0.8829475928589269 sin63°=0.8910065241883678 sin64°=0.898794046299167 sin65°=0.9063077870366499 sin66°=0.9135454576426009 sin67°=0.9205048534524404 sin68°=0.9271838545667873 sin69°=0.9335804264972017 sin70°=0.9396926207859083 sin71°=0.9455185755993167 sin72°=0.9510565162951535 sin73°=0.9563047559630354 sin74°=0.9612616959383189 sin75°=0.9659258262890683 sin76°=0.9702957262759965 sin77°=0.9743700647852352 sin78°=0.9781476007338057 sin79°=0.981627183447664 sin80°=0.984807753012208 sin81°=0.9876883405951378 sin82°=0.9902680687415704 sin83°=0.992546151641322 sin84°=0.9945218953682733 sin85°=0.9961946980917455 sin86°=0.9975640502598242 sin87°=0.9986295347545738sin88°=0.9993908270190958 sin89°=0.9998476951563913 ①列表(小力选取了10对数值);x … …y … …②建立平面直角坐标系(两坐标轴可视数值需要分别选取不同长度做为单位长度); ③描点.在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点; ④连线. 根据描出的点,画出该函数的图象;(3)结合函数的图象,写出该函数的一条性质: .27.已知:抛物线3bx x y 21++=与x 轴分别交于点A(-3,0),B (m ,0).将y 1向右平移4个单位得到y 2.(1)求b 的值;(2)求抛物线y 2的表达式;(点(3)抛物线y 2与y 轴交于点D ,与x 轴交于点E 、F E 在点F 的左侧),记抛物线在D 、F 之间的部分为图象G (包含D 、F 两点),若直线1-+=k kx y 与图象G 有一个公共点,请结合函数图象,求直线1-+=k kx y 与抛物线y 2的对称轴交点的纵坐标t 的值或取值范围.28. 如图1,点O 在线段AB 上,AO=2,OB=1,OC 为射线,且∠BOC=60°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒. (1)当t=21秒时,则OP= ,S △ABP = ;(2)当△ABP 是直角三角形时,求t 的值;(3)如图2,当AP=AB 时,过点A 作AQ ∥BP ,并使得∠QOP=∠B ,求证:AQ·BP=3.为了证明AQ·BP=3,小华同学尝试过O 点作OE ∥AP 交BP 于点E.试利用小华同学给我们的启发补全图形并证明AQ·BP=3.29.如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C . (1)求抛物线的表达式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S P BQ CBK =△△:S ,求K 点坐标.2015—2016学年度第一学期期末初三质量检测28题图 128题备用图28题图2数学试卷答案及评分标准一、选择题(每小题有且只有一个选项是正确的,请把正确的选项前的序号填在相应的表格内. 本题共有10个小题,每小题3分,共30分)二、填空题(本题共6个小题,每小题3分,共18分) 11.2±. 12. 1,2. 13.33.14. a>0,c=2,答案不唯一. 15. 3. 16. 黄金分割,解直角三角形(答案不唯一),测角仪、皮尺(答案不唯一).三、解答题(本题共72分,第17—25题,每小题5分,第26题8分,第27题6分,第28题6分,第29题7分) 17.解:原式=11113422-+-⨯ ……………………………………………………4分 =2 ………………………………………………………………………5分 18.解:()()311)3(2+-+--x x x x=222613x x x --++ ……………………………………………………2分 =26x 4x -+. …………………………………………………………………3分 ∵0362=--x x , ∴263x x -=,∴原式=3+4=7. ………………………………………………………………… 5分 19.解:∵∠C=∠E ,∠ADC=∠BDE ,△ADC ∽△BDE ,………………………………………………… 2分 ∴BDAD DE DC =, 又∵AD :DE=3:5,AE=8, ∴AD=3,DE=5,…………………………………………………………………… 3分∵BD=4,……………………………………………………………………………… 4分 ∴435DC =, 题号 1 2 3 4 5 6 7 8 9 10答案 C A B C C D C B D D∴DC=415.……………………………………………………………………………… 5分 20.解:(1)∵据题意,点B 的坐标为(2m ,-m )且在一次函数y1=﹣x +2的图象上,代入得-m=-2m+2.∴m=2. ……………………………………………………… 1分 ∴B 点坐标为(4,-2)………………………………………… 2分 把B (4,﹣2)代入y 2=xk得k =4×(﹣2)=﹣8, ∴反比例函数表达式为y 2=﹣x8;…………………………………………………… 3分 (2)当x <4,y 2的取值范围为y 2>0或y 2<﹣2.……………………………… 5分 21.解:在△ABC 中,∠A=30°,∠C=105°∴∠B=45°,…………………………………………………… 1分 过C 作CD ⊥AB 于D , ∴∠ADC=∠BDC=90°, ∵∠B=45°, ∴∠BCD=∠B=45°,∴CD=BD ,…………………………………………………… 2分 ∵∠A=30°,AC=23,∴CD=3,…………………………………………………… 3分 ∴BD=CD=3,由勾股定理得:AD=22CD AC =3,…………………………………………………… 4分 ∴AB=AD+BD=3+3.…………………………………………………… 5分 22.解:连接OC ,………………………… 1分 ∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CE =DE =CD =4cm ,………………………… 2分∵∠A =22.5°,∴∠COE =45°,………………………… 3分∴△COE 为等腰直角三角形,………………………… 4分 ∴OC =2CE =42cm ,………………………… 5分23.解:过点B 作CD BE ⊥,垂足为E (如图),……………………………… 1分 在Rt △DEB 中,∠DEB= 90,22AC BE ==(米),BEDEtan32=……………………………… 2分 13.640.6222BEtan32DE =⨯≈=∴ (米)……………………………… 3分5.1==AB EC ……………………………… 4分15.115.1413.641.5ED CE CD ≈=+=+=∴(米)……………………… 5分答:旗杆CD 的高度为15.1米.24.解:(1)证明:连接OD ,……………………… 1分 ∵PD 切⊙O 于点D ,……………………… 2分 ∴OD ⊥PD , ∵BE ⊥PC , ∴OD ∥BE , ∴∠ADO=∠E ,∵OA=OD , ∴∠OAD=∠ADO , ∴∠OAD=∠E ,∴AB=BE ;……………………… 3分 (2)解:有(1)知,OD ∥BE , ∴∠POD=∠B ,……………………… 4分 ∴cos ∠POD=cosB=, 在Rt △POD 中,cos ∠POD=53=OP OD , ∵OD=OA ,PO=PA+OA=2+OA ,xy–1–2–3–4123456–1–2–3–412345DFO∴53=+OA 2OA ,∴OA=3,∴⊙O 半径为3.……………………… 5分 25.解:(1)∵AB=xm ,则BC=(28﹣x )m , ∴x (28﹣x )=192,解得:x 1=12,x 2=16,答:x 的值为12m 或16m ;……………………… 2分 (2)由题意可得出:⎩⎨⎧≥≥15x -286x ,………………… 3分解得:13x 6≤≤. 又S=x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2+196, ∴当x≤14时,S 随x 的增大而增大.∴x=13时,S 取到最大值为:S=﹣(13﹣14)2+196=195.……………………… 5分 答:x 为13m 时,花园面积S 最大,最大面积为195m 2.26.(1)锐角的角度;正弦值;大于0°且小于90°;…………………………………… 3分 (2)(3)答案不唯一. …………………………………… 8分 27.解:(1)把A (-3,0)代入3bx x y 21++= ∴b=4……………………………………2分 ∴y 1的表达式为:34x x y 21++= (2)将y 1变形得:y 1=(x+2)2-1 据题意y 2=(x+2-4)2-1=(x-2)2-1∴抛物线y 2的表达式为342+-=x x y …………………………………4分 (3)34x x y 22+-=的对称轴x=2 ∴顶点(2,-1)∵直线1-+=k kx y 过定点(-1,-1)当直线1-+=k kx y 与图像G 有一个公共点时1-=t …………………………………… 4分当直线过F (3,0)时,直线4341-=x y把x=2代入4341-=x y∴41-=y当直线过D (0,3)时,直线34+=x y 把x=2代入34+=x y ∴11=y即11=t∴结合图象可知1-=t 或1141≤<-t .…………………………………… 6分 28.解:(1)1,433;…………………………………… 2分 (2)①∵∠A<∠BOC=60°,∴∠A 不可能是直角.②当∠ABP=90°时,∵∠BOC=60°,∴∠OPB=30°.∴OP=2OB ,即2t=2.∴t =1. …………………………………… 3分③当∠APB=90°,如图,过点P 作PD ⊥AB 于点D ,则OP=2t ,OD=t ,PD=3t ,AD=2t +,DB=1t -. ∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B. ∴△APD ∽△PBD. ∴BD PD PD AD =,即2t 3t 1t 3t +=-,即24t t 20+-=,解得12133133t ,t 88-+--== (舍去). …………………………………… 4分(3)补全图形,如图∵AP=AB ,∴∠APB=∠B.∵OE ∥AP∴∠OEB=∠APB=∠B.∵AQ ∥BP ,∴∠QAB+∠B=180°.又∵∠3+∠OEB=180°,∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP ,∵∠B=∠QOP ,∴∠1=∠2.∴△QAO ∽△OEP. ∴EPAO EO AQ =,即AQ·EP=EO·AO. ∵OE ∥AP ,∴△OBE ∽△ABP. ∴31BA BO BP BE AP OE ===. ∴OE=31AP=1,BP=23EP. ∴AQ·BP=AQ·23EP=23AO·OE=23×2×1=3. …………………………………… 6分 29.解:(1)将A (-2,0),B (4,0)两点坐标分别代入y=ax 2+bx-3(a≠0),即⎩⎨⎧=-+=--034b 16a 032b 4a ,………………………… 1分 解得:⎪⎪⎩⎪⎪⎨⎧-==43b 83a ∴抛物线的表达式为:3x 43x 83y 2--=……………………………… 2分 (2)设运动时间为t 秒,由题意可知: 2t 0<< …………………………………… 3分 过点Q 作QD ⊥AB,垂直为D ,易证△OCB ∽△DQB, ∴BQBC DQ OC =…………………………………… 4分 OC=3,OB=4,BC=5,AP=3t,PB=6-3t,BQ=t ,t5DQ 3=∴t 53DQ =∴ ∴t 533t)(621DQ PB 21S ΔPBQ ⋅-=⋅=t59t 1092+-=对称轴1)(2t 10959=-⨯-=∴当运动1秒时,△PBQ 面积最大,10959109S ΔPBQ =+-=,最大为109. …………………………………… 5分(3)如图,设K(m,3m 43m 832--) 连接CK 、BK ,作KL ∥y 轴交BC 与L , 由(2)知:109S ΔPBQ =, 2:5S :S PBQ ΔCBK = ∴49S ΔCBK = 设直线BC 的表达式为y=kx+n3)C(0,B(4,0),-⎩⎨⎧-==+∴3n 0n 4k ,解得: ∴直线BC 的表达式为y=43x-3 ∴3)m 43L(m,- 2m 83m 23KL -= ΔKLB ΔKLC ΔCBK S S S += ∴m)(4)m 83m 23(21m )m 83m 23(2122-⋅-⋅+⋅-⋅= )m 83m 23(4212-⋅⋅= 即:49)m 83m 232(2=- 解得:31或m m ==∴K 坐标为(1,827-)或(3,815-)…………………………………… 7分⎪⎩⎪⎨⎧-==3n 43k。

2015-2016学年度第一学期九年级数学期末考试卷(定稿)

2015-2016学年度第一学期九年级数学期末考试卷(定稿)

2015-2016学年第一学期期末考试九年级数学试题(满分150分 考试时间120分钟)一、选择题(本题共有10小题,每小题4分,满分40分)1.下列函数是二次函数的是【 ▲ 】.A .13+=x yB .c bx ax y ++=2C .32+=x y D .22)1(x xy --= 2. 若反比例函数xk y 12+=的图象位于第一、三象限,则k 的取值可以是【 ▲ 】. A .-3 B .-2 C .-1 D .0 3.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是【 ▲ 】.A.平行四边形 B .矩形 C .正方形 D .菱形4.已知二次函数c x x y ++=2的图象与x 轴的一个交点为(2,0),则它与x 轴的另一个交点坐标是 【 ▲ 】.A .(1,0)B .(﹣1,0) C.(2,0) D .(﹣3,0) 5.已知Rt △ABC 中,∠C =90°,AB =tan A =12,则BC 的长是【 ▲ 】. A .2 B .8 C .2 D .46.抛物线22221,3,,23y x y x y x y x ==-=-=的图象开口最大的是【 ▲ 】. A. 231x y =B. 23x y -=C. 2x y -=D.22y x = 7.b 是c a ,的比例中项,且b a :=1:3,则c b :=【 ▲ 】.A .1:3B .3:1C .1:9D .9:18. 如图,⊙O 的直径AB =2,点C 在⊙O 上,弦AC =1,则∠D 的度数是【 ▲ 】. A .30° B .45° C .60° D .75° 9.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则BP AP +的最小值为【 ▲ 】.学校 班级 姓名 考号密 封 线 内 不 要 答 题A.1B.2 C.3 D.2210.已知函数{222(2)-68(2)x x x x x x y -≤+->=,若使y =【 ▲ 】.A .-1B .1二、填空题(本题共4小题,每小题5分,满分20分) 11. 抛物线5)1(22+-=x y 的顶点坐标是 ___ ____. 12.已知43=-b b a ,则=ba___ ____. 13.一只小虫由地面沿2:1=i 的坡面向上前进了10m ,则小虫距离地面的高度为_ ____m . 14.已知抛物线2221+-=x y 和直线222+=x y 的图象如图所示,当x 任取一值时,x 对应的函数值分别为21,y y .若21y y ≠,取21,y y 中的较小值记为M ;若21y y =,记21y y M ==,例如:当x =1时,1y =0,2y =4,12y y <,此时M =0.则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上.) ①当0x >时,12y y >;②使得M 大于2的x 值不存在; ③当0x <时,x 值越大,M 值越小; ④使得M =1的x 值是-12或2.第8题图第14题图三、(本题共两小题,每题8分,满分16分) 15.计算:6tan 230°-3sin60°-sin30°16. 如图,在ABC ∆中,90C∠= ,在AB 边上取一点D ,使B D B C =,过D 作DE AB⊥交AC 于E ,8AC =,6BC =.求DE 的长.四、(本题共两小题,每小题8分,满分16分)17.如图,二次函数m x y +-=2)2(的图象与y 轴交于点C ,点B 是点C 关于该函数图象对称轴对称的点,已知一次函数b kx y +=的图象经过该二次函数图象上的点1A (,0)及点B .(1)求二次函数的解析式; (2)求一次函数的解析式.第16题图第17题图18.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为-1A (,2),B (-3,4), -2C (,6).(1)画出ABC ∆绕点A 顺时针旋转90 后得到的111A B C ∆;(2)以原点O 为位似中心,画出将111A B C ∆三条边放大为原来的2倍后的222A B C ∆.五、(本题共两小题,每小题10分,满分20分)ABC第19题图20.如图所示,在合肥至黄山的高铁线路建设中需要确定某条隧道AB 的长度,已知在离地面2700米高度C 处的飞机上,测量人员测得正前方B A ,两点处的俯角分别是60 和30 ,求隧道AB 的长.(结果保留根号)六、(本题满分12分)七、(本题满分12分)第20题图(2)当CPQ ∆与ABC ∆第二次相似时,求点P 总共运动了多少秒.八、(本题满分14分)23.某水果经销商到大圩种植基地采购某种水果,经销商一次性采购某种水果的单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB →BC →CD 所示(不包括端点A ).(1)当100<x <200时,写出y 与x 之间的函数关系式;(2)该水果的种植成本为2元/千克,某经销商一次性采购该水果的量不超过200千克,当采购量是多少时,大圩种植基地获利最大,最大利润w 是多少?(3)在(2)的条件下,求经销商一次性采购的水果是多少千克时,大圩种植基地能获得418元的利润?第23题图第22题图。

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016 学年第一学期期末教学质量监测九年级数学试题2016.1亲爱的考生:欢迎参加考试!请你认真审题,积极思考,仔细答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共 6 页,满分 150 分,考试时间 120 分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效. 3.答题前,请认真阅读答题纸上的《注意事项》 按规定答题. 4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列函数的图象是双曲线的是( ▲ )A . y = 2 x - 1B . y =1C . y = xD . y = x 2x2.下列事件是随机事件的是( ▲ )A .火车开到月球上;B .抛出的石子会下落;C .明天临海会下雨;D .早晨的太阳从东方升起.3.二次函数 y =x 2+4x -5 的图象的对称轴为( ▲ )A .x =4B .x =﹣4C .x =2D .x =﹣24.如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A =50°,∠C =60°,则∠DOE =( ▲ )A .70°B .110°C .120°D .130°C B ′ CC ′E F OBD(第 4 题)A B(第 5 题)A△5.如图,把 ABC 绕着点 A 顺时针方向旋转 34°,得到△AB ′C ′,点 C 刚好落在边 B ′C ′上.则∠C ′=( ▲ )A .56°B .62°C .68°D .73°6.将抛物线 y =3x 2 先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ▲ )A .y =3(x +1)2+1B .y =3(x +1)2-1C .y =3(x -1)2+1D .y =3(x -1)2-17.小洋用一张半径为 24 cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计), 如果做成的圆锥形小丑帽子的底面半径为 10 cm ,那么这张扇形纸板的面积是( ▲ )A .120 π cm 2B .240 π cm 2C .260 π cm 2D .480 π cm 224 cmy A nA 4 A 3 A 2 A 1…B nB 4C 3C 2B 3B 2C 1B 1O(第 10 题)x4 (1 + k )2 = 1 B . k + k 2 = 1 4 4 (1 + k )2 = 1(x - 1)2 = ( 2 ) ,所以 x8.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的 k 倍(0<k <1).已知一个钉子受击 3 次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的 4 7,设铁钉的长度为 1,那么符合这一事实的方程是( ▲ )A .4 4 7 7 74 4 4 C . + k + k 2 = 1 D . + 7 7 7 7 79.利用平方根去根号可以构造一个整系数方程.例如: x =2 + 1 时,移项得 x - 1 = 2 ,两边平方得22 - 2 x + 1 = 2 ,即 x 2 - 2 x - 1 = 0 .仿照上述构造方法,当 x =6 - 1 2时,可以构造出一个整系数方程是( ▲ )A . 4 x 2 + 4 x + 5 = 0B . 4 x 2 + 4 x - 5 = 0C . x 2 + x + 1 = 0D . x 2 + x - 1 = 010.如图,在 y 轴正半轴上依次截取 OA 1=A 1A 2=A 2A 3=…=A n-1A n (n 为正整数),过 A 1,A 2,A 3,…,A n 分别作 x 轴的平行线,与反比例函数 y =2 x(x >0)交于点 B 1,B 2,B 3,…,B n ,如图所示的 Rt △B 1C 1B 2,△Rt B 2C 2B 3,△Rt B 3C 3B 4,…,△Rt B n-1C n-1B n 面积分别记为 S 1,S 2,S 3,…,S n-1,则 S 1+S 2+S 3+…+S n-1=( ▲ )A .1B .2C .1﹣1 1D .2﹣n n二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)11.点 A (1,19)与点 B 关于原点中心对称,则点 B 的坐标为▲ .12.如果反比例函数 y = m - 3x的图象在 x <0 的范围内,y 随 x 的增大而减小,那么 m 的取值范围是 ▲13.如图,点 O 是正五边形 ABCDE 的中心,则∠BAO 的度数为▲ .AyD CPBOEH GAOBC D(第 13 题)A E O FB x(第 15 题) (第 16 题)14.一个盒子中装有大小、形状一模一样的白色弹珠和黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是13.如果盒子中白色弹珠有4颗,则盒中有黑色弹珠▲颗.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为▲.2-1-c-n-j-y16.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=▲秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共8小题,第17题10分,第18题7分,第19题8分,第20题9分,第21题10分,第22题10分,第23题12分,第24题14分,共80分)17.解方程:(1)4x2-20=0;(2)x2+3x-1=0.18.动手画一画,请把下图补成以A为对称中心的中心对称图形.A19.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.D CB EOA20.已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)x=0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.同时从袋中各随机摸出 1 个球,并计算摸出的这 2 个小球上数字之和,记录后都将小球放回袋中搅匀,进行重21.一只不透明的袋子中装有 4 个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x .甲、乙两人每次..复试验.实验数据如下表:摸球总次数“和为 8”出现的频数102 2010 3013 6024 9030 12037 18058 24082 330110 450150“和为 8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为 8”的频率将稳定在它的概率附近.估计出现“和为 8” 的概率是▲;(2)当 x =7 时,请用列表法或树状图法计算“和为 8”的概率;并判断 x =7 是否可能.22.如图是一种新型娱乐设施的示意图,x 轴所在位置记为地面,平台 AB ∥x 轴,OA =6 米,AB =2 米, BC 是反比例函数 y = k x的图象的一部分,CD 是二次函数 y =﹣x 2+mx +n 图象的一部分,连接点 C 为抛物线的顶点,且 C点到地面的距离为 2 米, D 点是娱乐设施与地面的一个接触点.(1)试求 k ,m ,n 的值;(2)试求点 B 与点 D 的水平距离.yA BCOD x23.如图 1,正方形 ABCD 与正方形 AEFG 的边 AB ,AE (AB <AE )在一条直线上,正方形 AEFG 以点 A 为旋转中心逆时针旋转,设旋转角为 α.在旋转过程中,两个正方形只有点 A 重合,其它顶点均不重合,连接 BE ,DG .(1)当正方形 AEFG 旋转至如图 2 所示的位置时,求证:BE =DG ;(2)如图 3,如果 α=45°,AB =2,AE =3 2 .①求 BE 的长;②求点 A 到 BE 的距离;(3)当点 C 落在直线 BE 上时,连接 FC ,直接写出∠FCD 的度数.GGADGADB CBCFABDCFE(图 1)FE(图 2)E(图 3)24.定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,抛物线 y =x 2-2x -3 与 x 轴交于点 A ,B ,与 y 轴交于点 D ,以 AB 为直径,在 x 轴上方作半圆交 y 轴于点 C ,半圆的圆心记为 M ,此时这个半圆与这条抛物线 x 轴下方部分组成的图形就称为“蛋圆”.(1)直接写出点 A ,B ,C 的坐标及“蛋圆”弦 CD 的长;A▲ ,B ▲ ,C ▲ , CD = ▲ ;(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.①求经过点 C 的“蛋圆”切线的解析式;②求经过点 D 的“蛋圆”切线的解析式;(3)由(2)求得过点 D 的“蛋圆”切线与 x 轴交点记为 E ,点 F 是“蛋圆”上一动点,试问是否存在 S △CDE =△S CDF ,若存在请求出点 F 的坐标;若不存在,请说明理由;(4)点 P 是“蛋圆”外一点,且满足∠BPC =60°,当 BP 最大时,请直接写出点 P 的坐标.yC yCAO M B x A O M B xDD(备用图)9数学参考答案2016.1一、选择题(每小题4分,共40分)题号答案1B2C3D4B5D6A7B8C9B10C二、填空题(每小题 5 分,共 30 分)11.(﹣1,﹣19)12.m >3 13.54° 14.815. 2 5 - 216. 4914 22 32或 或 或9 9三、解答题(共 80 分)17.(10 分,每小题 5 分)(1)4x 2-20=0;(2)x 2+3x -1=0.4x 2=20a =1,b =3,c =﹣1x 2=5△=32-4×1×(﹣1)=13x = ± 5x =- 3 ± 13 218.(7 分)略(图形基本形状差不多就给分)19.(8 分)(1)∵AB 是⊙O 的直径∴∠C =90°∵OD ⊥BC∴∠OEB =∠C =90°∴OD ∥AC………4 分(2)令⊙O 的半径为 r ,根据垂径定理可得:r 2=42+(r -3)2,解得:r = 25 25,所以⊙O 的直径为 . ………8 分6 320.(9 分)(△1) =[2(k -1)]2-4(k 2-1)=﹣8k +8∵方程有两个不相等的实数根,∴﹣8k +8>0,解得:k <1.………4 分(2)把 x =0 代入方程得:k 2-1=0,解得:k =±1∵k <1 ∴k=﹣1 ∴x=0 可能是方程的一个根∴原方程为:x 2-4x =0 解得:x 1=0,x 2=4 ∴方程的另一个根为 4.………9 分21.(10 分)(1)13(或者 0.33) ………3 分(2)列表略,可得:P 和为 8= 2 1 1= ≠ ,所以 x 的值不可以取 7.………10 分12 6 322.(10 分)(1)把 B (2,6)代入 y =k 12,可得 y = . x x把 y =2 代入 y =12x, 可得 x =6,即 C 点坐标为(6,2).23.(12 分)(1)由题意可得: ⎨∠BAE = ∠DAG = a ⎪ A B = AD ⎩ y = x 2 - 2x - 3得: x 2-(2 +k)x =∵二次函数 y =﹣x 2+mx +n 的顶点为 C ,∴y =﹣(x -6)2+2,∴y =﹣x 2+12x -34. AE∴k =12,m =12,n =﹣34.………6 分C(2)把 y =0 代入 y =﹣(x -6)2+2,解得:x 1=6+ 2 ,x 2=6- 2 .点 B 与点 D 的距离为 6+ 2 -2=4+ 2 .………10 分ODB⎧ A E = AG ⎪⎩∴△ABE ≌△ADG (SAS )G∴BE =DG………4 分(2)①作 BN ⊥AE 于点 NANDF在△ABN 中可求得 AN =BN = 2 .在△BEN 中可求得 BE = 10 .………7 分MBCE(图 3)②作 AM ⊥BE 于点 M .S △ABE = 1 1⨯ AE ⨯ BN = ⨯ 3 2 ⨯ 2 =32 2又∵S △ABE = 1 1⨯ BE ⨯ AM = ⨯ 10 ⨯ AM2 21 3∴ ⨯ 10 ⨯ AM =3 ∴AM = 2 510即点 A 到 BE 的距离 3 510 .………10 分(3)∠FCD 的度数为 45°或 135°.………12 分(注:可以构造三垂直的基本图形求两个角度,也可用四点共圆求两个角度)24.(14 分)(1)A (﹣1,0),B (3,0),C (0,3 ),CD = 3+ 3………4 分(2)①如图 1,NC ⊥CM ,可求得 N (﹣3,0)yCN E A O M B x3∴经过点 C 的“蛋圆”切线的解析式为: y =x + 3 …7 分 3A②过点 D 的“蛋圆”切线的解析式为:y =kx -3D⎧ y = kx - 3 由 ⎨ ∵直线与抛物线只有一个交点,∴k =﹣2,(图 1) yCF 1∴经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3 .………10 分A EO M Q B x(3)如图 2∵经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3ADF 2,),F 2(, -).………12 分∴E 点坐标为( -∵S △CDE =S △CDF3 2,0),∴F 点的横坐标为 3 2,在 △Rt MQF 1 中可求得 F 1Q = 15 2,把 x = 3 15 代入 y =x 2-2x -3,可求得 y = - .2 4∴F 1( 3 2 2 2 4(4)如图 3,考虑到∠BPC =60°保持不变,因此点 P 在一圆弧上运动.yP此圆是以 K 为圆心(K 在 BC 的垂直 平分线上,且∠BKC =120°),BK 为半径. 当 BP 为直径时,BP 最大.在 △Rt PCR 中可求得 PR =1,RC = 3 . RC KA OM B x所以点 P 的坐标为(1,2 3 ).………14 分AD(图 3)。

人教版2015-2016年度九年级数学上学期期末考试试卷及答案

人教版2015-2016年度九年级数学上学期期末考试试卷及答案

人教版2015-2016年度九年级数学上学期期末考试试卷及答案时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题3分,共30分) 1.(2013?内江)若抛物线y=x 2﹣2x+c 与y 轴的交点为(0,﹣3),则下列说法2.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等 于( ) A .1B .2C .1或2D .03.三角形的两边长分别为3和6,第三边的长是方程2680x x -+=的一个根,则这个三角形的周长是( )A.9 B.11 C.13 D 、144.(2015?兰州)下列函数解析式中,一定为二次函数的是( )A . y =3x ﹣1B . y =ax 2+bx +cC . s =2t 2﹣2t +1D . y =x 2+5.(2010 内蒙古包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .256.(2013?荆门)在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为( )它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .248.如图,四边形ABCD 内接于⊙O ,BC 是直径,AD =DC ,∠ADB =20o ,则∠ACB ,∠DBC 分别 为( )A .15o 与30oB .20o 与35oC .20o 与40oD .30o 与35o9.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走。

山东省日照市莒县九年级(上)期末数学试卷(解析)

山东省日照市莒县九年级(上)期末数学试卷(解析)

山东省日照市莒县九年级(上)期末数学试卷一、选择题:(本大题共12小题,在每小题给出的四个选项中,只有一项是正 确的,请把正确的选项选出来•第 1-8小题每小题3分,第9-12小题每小题3分。

)1.(3分)如图,是由4个相同小正方体组合而成的几何体,它的主视图是( )A .不可能事件发生的概率为0 B.概率很小的事件不可能发生 C.随机事件发生的概率为D.概率很大的事件一定发生3. (3 分)如图,在△ ABC 中,/ C=90°,AB=5, BC=3,则 tanA 的值是( )4. (3分)如图,△ ABO 的面积为4,反比例函数 沪 (心0)的图象过B 点,A. 2B. 4C. - 8 D . 82. (3分)下列说法正确的是( C.D.)5. (3分)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1: 2,点A 的坐标为(1,0),则E 点的坐标为( )FC0)20米的A 处,则小明的影长为( )米.D . 7y=3x 2- 3向右平移3个单位长度,得到新抛物线的表达式为10. (4分)如图,在平面直角坐标系中M 与x 轴相切于点A (8,0),与y 轴分别交于点B (0,4)和点C (0,16),则圆心M 到坐标原点0的距离是( )A DA . (2, 0) B. (1,1) C. ( ", ") D . (2, 2)6. (3分)聪聪的文件夹里放了大小相同的试卷共 12页,其中语文6页,数学4 页,英语2页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概 率为( ) A !2 -3 〜6 — 127. (3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点 B. C. D . A . 2 y=3 (x - 3)(4分)如图,在?ABCD 中,E 为CD 上一点,连接AE 、BD,且AE 、BD 交于3 B. y=3x 2 C . y=3 (x+3) 2 - 3 D . y=3X 2- 6 (3分)抛物线 8. 9. D . 3: 2EC=()二、选择题(本大题共4小题,共16分.只要求填写最后结果,每小题填对得 4 分)13. (4 分)sin30 °an45 = ____ .14. _____________ (4分)如图,随机闭合开关K i 、屜、K B 中的两个,则能让两盏灯泡同时发 光的概率为 .12. (4分)已知二次函数 y= (b+c ) x 与反比例函数 y=ax 2+bx+c (a ^0)的图象如图所示,则正比例函数 y=「〔 在同一坐标系中的大致图象是(A .Z B=Z CB . DE=AB C.15. (4分)如图,D是厶ABC 的边BC上任一点,已知AB=4, AD=2, / DAC=Z B, 若厶ABD的面积为&,则厶ACD的面积为 _______ .16. (4分)在平面直角坐标系中,如果点P坐标为(m , n),向量讦可以用点P 的坐标表示为匚=(m, n),已知:■-(x i, y i), ;=(X2, y2),如果x i?x2+y i?y2=0,那么■与互相垂直,下列四组向量:①=(2, - 1), .= (- 1, 2);②帀=(cos30° tan45),丽二(-1, sin60 ° ;…X"③i= ( ' - 「,- 2) ,「:7= (' +「,亠);"④=(n, 2), ■= (2,-1).其中互相垂直的是________(填上所有正确答案的符号).三、解答题:(本大题共6小题,共64分,解答时要写出必要的文字说明、证明过程或演算步骤)17. (8分)如图是一个立体图形的三视图,根据图中数据,求该几何体的表面积.18. (10分)为了编撰祖国的优秀传统文化,某校组织了一次诗词大会”小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为山重水复疑无路”.(1)小明回答该问题时,对第二个字是选主视圍俯视图重”还是选穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是________ ;(2)小丽回答该问题时,对第二个字是选重”还是选穷”、第四个字是选富” 还是选复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宮格19. (10分)莒县某学校新建一教学楼,九年级数学兴趣小组想要测量其高度,在5米高的台子AB上A处,测得楼顶端E的仰角为30°他走下台阶到达C处, 测得楼顶端E的仰角为60°已知/ BCA=30,且A、B、C三点在同一直线上.(1)求/ ACE的度数;(2)求教学楼DE的高度.20. (12分)如图,在平面直角坐标系中,反比例函数y=[ (x>0,k M0)的图象与边长是6的正方形OABC的两边AB、BC分别相交于M、N两点,△ OMA的面积为6.(1)求反比例函数y=[ (k M0)的解析式;(2)若动点P在x轴上,求PM+PN的最小值.21. (12分“)如图,AC是。

2015-2016年九年级数学期末考试题及答案

2015-2016年九年级数学期末考试题及答案

)10(题第xy OABC2015-2016年九年级数学期末考试题及答案一、选择题1.下列是二次函数的是( ) A .2y ax bx c =++ B.21y x x=+ C.()227y x x =-+ D.()()121y x x =+-2.剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .3.将抛物线265y x x =-+向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A .()246y x =--B .()242y x =--C .()222y x =--D .()213y x =--4.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D '的坐标是( ) A .(2,10) B .(-2,0) C .(2,10)或(-2,0) D .(10,2)或(-2,0)5.某服装店进价为30元的内衣,以50元售出,平均每月能售出300件,经试销发现每件内衣每涨价10元,其月销售量就减少10件,为实现每月利润8700元,设定价为x 元,则可得方程( )A .300(30)8700x -=B .()508700x x -=C .()()30300508700x x ---=⎡⎤⎣⎦D .()()303008700x x --=6.如图,在Rt △ABC 中∠A CB=90°,AC=6,AB=10,CD 是斜边AB上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内 B.点P 在⊙O 上 C.点P 在⊙O 外 D.无法确定7.如果关于x 的方程()222110k x k x -++=有实数根,则k 的取值范围是( ) A.14k ≥-且0k ≠ B.14k ≤- C. 14k ≥- D. 14k ->且0k ≠8.点O 是△ABC 的外心,若∠BOC=80°,则∠BAC 的度数为( )A .40°B .100°C .40°或140°D .40°或100°9.若函数()21212y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( )A . 0B .0或2C .2或﹣2D .0,2或﹣210.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC .则下列结论:①0abc >②2404b ac a->;③10ac b -+=;④c OA OB a ⋅=-.其中正确结论的个数是( )A .4 B .3 C .2 D .1二、填空题11.方程2870x x ++=的根为12.关于x 的一元二次方程()221340a x x a a -+++-=有一个实数根是0x =,则a 的值为 13.若点()12,24P a a ---关于原点对称的点在第一象限内,则a 的整数解有 个 14.已知点())()1234,,,2,A y By C y -都在二次函数()22y x k =--+的图象上,则123,,y y y 的大小关系是15.16.三、解答题(1)213602x x --+= (2)()()7333x x x -=-18.请在同一坐标系中画出二次函数①221xy =;②2)2(21-=x y 的图象。

山东省日照市莒县2015届九年级上学期期末考试数学试题(扫描版)

山东省日照市莒县2015届九年级上学期期末考试数学试题(扫描版)

2014-2015学年度上学期日照市莒县期末质量检测九年级数学试题图片版及参考答案word版
2014—2015学年度(上)九年级教学质量检测
数学试题答案
一、选择题:第1-8小题每小题3分,第9-12小题每小题4分,共40分.
19.(本题满分10分)(其它解法,只要合理,酌情得分。


解:(1)∵C点坐标为(-1,2)且在直线y1=x+m上
∴2=-1+m
∴m=3
∴直线AB的解析式为y=x+3……………………………………2分
∵C点坐标为(-1,2)且在双曲线y2=k
x
(k<0)上
∴2=1k
-
∵k=-2
∴双曲线的解析式y=x 2
- …………………………………………………………4分
21.
(本
题满分12分)(其它解法,只要合理,酌情得分。


解: (1)将M (2, 2)代入1
(2)()y x x m m =-+-,得1
24(2)m m =-⨯-.解得m =4.…3分
(2)当m =4时,2111(2)(4)2442
y x x x x =-+-=-++ ∴E(0,2)
∴解0=-4
1(x+2)(x-4)得:x=-2,x=4 ∴B(-2,0)C(4,0) ∴S △BCE =
21×(2+4) ×2=6 所以△BCE 的面积为6; …………………………………………………………………7分
(3)如图,令E 关于对称轴x =1的对称点是E ´,则E ´(2,2),B E ´与对称轴的交点就是H 点,利用相似的知识可求得H(1,2
3) ……………………………………………12分。

2015-2016学年度上学期九年级期末考试数学试题

2015-2016学年度上学期九年级期末考试数学试题

OP ABC5题图2015~2016学年度上学期九年级期末考试数学试卷一、选择题(每空3分,共30分)1、已知关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为. ( ) A. 1 B. -1 C. 1或-1 D.21 2、已知关于x 的方程01)1(2=--+x k kx ,下列说法中正确的是( ) A .当0=k 时,方程无解 B .当1-=k 时,方程有两个相等的实数解 C .当1=k 时,方程有一个实数解 D .当0≠k 时,方程总有两个不相等的实数解3、下列图形中既是轴对称图形又是中心对称图形的是( )A B C D4、端午节吃粽子是中华民族的传统习惯,妈妈买了4只红豆粽、2只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是( )A.111 B.41 C.114 D.51 5、如图,在圆O 中,半径OC ⊥弦AB 于P ,且P 为OC 的中点,则∠BAC 的度数是( ) A.45° B.60°C.25°D.30°6、把抛物线22x y =向左平移2个单位,再向上平移1个单位,所得到的抛物线的解析式为( )A.1)2(22++=x yB.1)2(22-+=x yC.1)2(22--=x yD.1)2(22+-=x y7、如图,当半径为30cm 的转动轮转过120°角时,传送带上的物体A 平移的距离为( ) A . 10πcmB . 20πcmC . 30πcmD . 40πcm8、抛物线y =﹣x 2+bx +c 的部分图象如图所示,要使y >0,则x 的取值范围是( ) A .﹣4<x <1 B .﹣3<x <1 C .x <﹣4或x >1D .x <﹣3或x >19、如图,已知反比例函数)0(<=k xky 的图象经过Rt △OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(-6,4),则△BOC 的面积为 ( ) A 、4B 、3C 、2D 、110、一副三角板按图1所示的位置摆放,将△DEF 绕点A(F)逆时针旋转60°后(图2),测得CG =10cm ,则两个三角形重叠(阴影)部分的面积为( ) A .75cm 2 ;B .(25+253)cm 2;C .(25+3325)cm 2 ; D .(25+3350)cm 2二、填空题(每空3分,共18分)第7题 A (F )C DBE BF )图1 第10题 图2y 题16题11、已知m 、n 是方程032=--x x 的两个根,则代数式2221n m -121-+-n m 的值为 .12、如图,在平面直角坐标系中,以坐标原点为圆心,半径为1的⊙O与x 轴交于A 、B 两点,与y 轴交于C 、D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数关系式为 .13、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则弓形OAB 的面积为 cm 2. 14、如图已知函数xy 3-=与)0,0(2>>+=b a bx ax y 的图象交于点P ,点P 的纵坐标为1.则关于x 的方程032=++xbx ax 的解是_______________15、若△ABC 的三边为a ,b ,c ,且点A (|c -2|,1)与点关于原点对称,|a -4|=0,则△ABC 是______三角形. 16.如图,函数x y -=与函数xy 4-=的图象交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,点D .则四边形ACBD 的面积为 .三、简答题(共72分)17、(每小题5分)解方程:(1) (x -3)2+4x (x -3)=0.(2)x (x ﹣1)=2﹣2xyABC18、(6分)已知关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2﹣1,求k 的值.19、(7分)学校举办“我爱我校”征文活动,小明为此次活动设计了一个以三座山为背景的图标(如图),现用红、黄两种颜色对图标中的A 、B 、C 三块三角形区域分别涂色,一块区域只涂一种颜色。

2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案

2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案

2015~2016学年度第一学期期末教学质量检测九年级数学试卷说明:1、全卷共4页,五道大题。

2、考试时间100分钟,满分120分。

一、单项选择题(共10小题,每小题3分,共30分)1、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D2、下列事件是必然事件的是()A、明天太阳从西边升起B、掷出一枚硬币,正面朝上C、打开电视机,正在播放“新闻联播”D、任意画一个三角形,它的内角和等于180°3、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋里随机摸出一个球,摸出的球是红色的概率是()A 、B 、 C、D 、4、在半径为6的⊙O中,60°圆心角所对的弧长是()A、 B、2 C、4 D、65、用配方法解方程x2+10x+9=0,配方后可得()A、(x+5)2=16B、(x+5)1=1C、(x+10)2=91D、(x+10)2=1096、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A、-1B、-2C、-3D、-47、如图,∠O =30°,C为OB上的一点,且OC=6,以点C为圆心、半径为3的圆与OA的位置关系是()A、相离B、相交C、相切D、以上三种情况均有可能8、如图,在⊙O中直径垂直于弦AB,若∠C=25°则∠BOD的度数是()A、25°B、30°C、40°D、50°9、某校准备修建一个面积为180平方米的矩形活动场所,它的长比宽多11米,设场地的宽为x米,则可列出的方程为()A、x(x-11)=180B、2x+2(x-11)=180C、x(x+11)=180D、2x+2(x+11)=18010、二次函数y=ax2+bx+c(a≠0)的大致图像见如图,关于该函数的说法错误的是()A、函数有最小值第7题图第8B 、对称轴是直线x=1/2C 、当x ﹤1/2,y 随x 增大而减小D 、当-1﹤x ﹤2时,y ﹥0二、填空题(共6小题,每小题4分,共24分)11、如图,将△ABC 绕点A 按顺时针方向旋转60°,得△ADE ,则∠BAD= 度。

【解析版】山东省日照市莒县2015届九年级上期末数学试卷

【解析版】山东省日照市莒县2015届九年级上期末数学试卷

)
A.传送带传送货物
B.螺旋桨的运动
C.风车风轮的运动
D.自行车车轮的运动
2.数学考试中的选择题一般都是单项选择,即在 A、B个答案,正确的概率是(
)
A.1
B.
C.
D.
3.下列图形中,既是轴对称图形又是中心对称图形的是(
)
A.角
B.线段
C.等边三角形
A.2πcm
B.2cm
C.4cm
D.4πcm
11.下列命题中正确的是(
)
①三边对应成比例的两个三角形相似
②二边对应成比例且一个角对应相等的两个三角形相似
③一个锐角对应相等的两个直角三角形相似
三、解答题:(本大题共 6 小题,共 64 分,解答时要写出必要的文字说明、证明过程和 演算步骤.) 17.快过春节了,小芳的爸爸出差回来给她买了一身蓝色的衣服,由于小芳特别爱学习, 妈妈又给她买了一身花色的衣服,奶奶又给她买了一件红色的上衣,哥哥为了考考小芳 问:“你这三件上衣和两条裤子一共可以配成多少套不同的衣服?如果任意拿出 1 件上衣和 1 条上裤,正好配成颜色一样的概率是多少?”(用树形图解答)
D.平行四边形
4.如图,过反比例函数 y= (x>0)的图象上任意两点 A、B 分别作 x 轴的垂线,垂足分
别为 C、D,连接 OA、OB,设△AOC 和△BOD 的面积分别是 S1、S2,比较它们的大小,
可得(
)
A.S1>S2 C.S1>S2
B.S =S D.大1 小2关系不能确定
5.如图是由 4 个相同的小正方形搭成的一个几何体,则它的俯视图是(
(x<0)分
20.如图,在△ABC 中,D、E 分别是 AB、AC 上的点,DC 交 BE 于 F,且 AD:AB=1: 3,AE= EC,求证:

2015-2016学年第一学期期末考试九年级数学附答案

2015-2016学年第一学期期末考试九年级数学附答案
14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x,根据题意可列方程为▲.
15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)

2015-2016学年度第一学期期末考试九年级数学试题附答案

2015-2016学年度第一学期期末考试九年级数学试题附答案

2015-2016学年度第一学期期末考试九年级数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x 2﹣9=0的解是( )A . x=3B . x=﹣3C . x 1=3,x 2=﹣3D . x 1=9,x 2=﹣9 2.如图,下列几何体的左视图不是矩形的是( )3.下列函数中,图象经过点(2,﹣3)的反比例函数关系式是 ( )A.3y x =- B.2y x = C.6y x = D.6y x=-4.如图,四边形ABCD 内接于⊙O ,已知∠A BC =35°,则∠AOC 的大小是( ) A.80° B.70° C. 60° D.50°5.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .32D .336.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平形的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形7.三角形两边长分别为3和6,第三边是方程x 2-13x+36=0的根,则三角形的周长为( ) A .13 B .15 C .18 D .13或188.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C .AP AB AB AC = D .AB ACBP CB=9. 二次函数y= -x 2+2x+4的最大值为( )A .3B .4C .5D .610.经过某十字路口的汽车,可能直行,也可能左转或者右转。

2015-2016学年第一学期期末测试卷初三数学附答案

2015-2016学年第一学期期末测试卷初三数学附答案

E DCBA2015-2016学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为A . y =21x 2+ 2x + 1B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论: ① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有A. 2个B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个 D . 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小.这样的二次函数的表达式可以是 .16. 如图,正方形OABC ,点F 在AB 上,点B 、若阴影部分的面积为是 . 三、解答题(本题共7229题8分)17. 4sin3018.如图:在Rt △ABC 19. 已知反比例函数x1k y -=图象的两个分支分别位于第一、第三象限.(1)求k 的取值范围;(2)取一个你认为符合条件的K 值,写出反比例函数的表达式,并求出当x =﹣6时反比例函数y 的值;20. 已知圆内接正三角形边心距为2cm ,求它的边长.23. 如图,AB 是⊙O 的直径,CB 是弦,OD ⊥CB 于E ,交劣弧CB 于D ,连接AC . (1)请写出两个不同的正确结论; (2)若CB =8,ED =2,求⊙O 的半径.24. 密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标; (2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,()求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cmAB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问: (1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.图 3D29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的―闭函数‖.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的―闭函数‖.(1)反比例函数y =x2016是闭区间[1,2016]上的―闭函数‖吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的―闭函数‖,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的―闭函数‖,求此函数的表达式(用含 m ,n 的代数式表示).参考答案初三数学 2016.1阅卷说明:本试卷72分及格,102分优秀. 一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin3060︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;--------------------- 5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分B∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分 21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △P AD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S A BC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

【小初高学习】九年级数学上学期期末质量检测试题(扫描版) 新人教版

【小初高学习】九年级数学上学期期末质量检测试题(扫描版) 新人教版

山东省日照市莒县2016届九年级数学上学期期末质量检测试题2015-2016学年度上学期期末教学质量检测九年级数学试题答案(满分120分,考试用时90分钟)第Ⅰ卷选择题(共40分)一、选择题:(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.)1~5:DACBC 6~10:BBBDD 11~12:BA第Ⅱ卷(非选择题80分)二、填空题:(本大题共4小题,共16分;只要求填写最后结果,每小题填对得4分。

)三、解答题:(本大题共6小题,共64分.解答时要写出必要的文字说明、证明过程或演算步骤.)17.(本题满分10分)(只要步骤合理,酌情给分.)解:(1)………………3分(2)根据题意,可以画出如下树状图:…………6分从树状图或表格(表格略)可以看出,共16种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学,一个是国外大学的结果有(A,C),(A,D),(B,C),(B,D),(C,A),(C,B),(D,A),(D,B)共 8种.一个国内大学和一个国外大学)=10分18. (本题满分10分)(只要步骤合理,酌情给分.)解: (1) 由题意可知:BD=60米,DF=120米,EF=2AB=16米.∵ AB=8,tan∠∴BG=3AB=24米;……………………………………………………………………………………………………3分∵,,,∴,∴∴∴CD=28米, ……………………………………………………………………………………………………………………8分18题图∴ CD-EF=28-16=12米,所以两人的观测点到地面的距离的差为12米.……………………………………………………………10分19. (本题满分10分)(只要步骤合理,酌情给分.) 解:(1)作P 1E 、P 2F 分别垂直x 轴于点E 、F ,∵△OP 1A 1、△A 1P 2A 2都是等腰直角三角形,∴P 1E=OE=EA 1,P 2F=A 1F=FA 2,∴m=∴………………………………………………4分(2)设直线P 1P 2的解析式为)0(≠+=k b kx y ,根据题意得:∴直线P 1P 2的解析式:8分(3)2<x x >2 . …………………………………………………10分20. (本题满分10分)(只要步骤合理,酌情给分.)(1)证明:∵∠AEC=∠B+∠BAE ,∠B=∠AEF ,∴∠BAE=∠FEC .又 ,∴∠ABE=∠ECF ,∴△ABE ∽△ECF , (3)分 ∴AC ·CF=CE ·BE ; ………………………………………………………………………20题图……………5分(2)解: ∵EF ∥AB ,∴∠BAE=∠AEF ,∵∠B=∠AEF .∴∠B=∠BAE ,∵AB=AC ,∴∠B=∠C,∴∠C=∠BAE ,又∵∠ABC=∠EBA,∴△ABC ∽△EBA, …………………………………………………………………………8分, ∵AB=8,BC=12,∴……………………………………………………………………………………10分21.(本题满分12分)(只要步骤合理,酌情给分.)(1) 如图,连接 , .∵点 是劣弧 的中点,∴ ,∴ .又∵ ,∴ .在△ABD 中,∵ , ∴ ,∴ ,∴ 是 的直径.…………………………………………………………………6分(2) 如图,由(1)可知, 是 的直径,∴∵ 的直径为6,AC=2,∴ 的面积为9π, .…………………………8分在 中, ,∴①.…………………………10分 2429-π. .…………………………12分 22. (本题满分12分)(只要步骤合理,酌情给分.)(1) 连结 ,∵△ABC 是边长为4的等边三角形,点B(-1,0),∴,∵ ,∴;……………………………………………………………………………………………………………3分(2)A 、E , ∴5分,∴抛物线的解析式为7分 (3)先作点 关于 的对称点 ´ ,连结 ´ 交 于点 ,作D ´H ⊥x 轴,垂足为H,则与 的和取最小值,即△PBD 的周长 取最小值.∵DD ´⊥AC∴∠D ´DC=30°,´∴D ´的坐标为 ,∵B(-1,0),∴直线 ,∵直线的解析式为: ,∴直线 ´ 与 的交点 的坐标小初高教育K12资源…………………………………………………10分∴ 的最小周长为 . …………………………………………………11分∴把点成立,所以此时点 在抛物线上.………………………………………………………………………………………………………………………12分。

山东省日照市莒县九年级数学上学期期末质量检测试题(扫描版) 新人教版

山东省日照市莒县九年级数学上学期期末质量检测试题(扫描版) 新人教版

山东省日照市莒县2016届九年级数学上学期期末质量检测试题2015-2016学年度上学期期末教学质量检测九年级数学试题答案(满分120分,考试用时90分钟) 第Ⅰ卷 选择题(共40分) 一、选择题:(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.)1~5:DACBC 6~10:BBBDD 11~12:BA第Ⅱ卷(非选择题80分)二、填空题:(本大题共4小题,共16分;只要求填写最后结果,每小题填对得4分。

)13. 16; 14. 20; 15. 74; 16. ()16+n n . 三、解答题:(本大题共6小题,共64分.解答时要写出必要的文字说明、证明过程或演算步骤.)17.(本题满分10分)(只要步骤合理,酌情给分.)解:(1) 41; ……………………………………………………………………………………………………3分(2)根据题意,可以画出如下树状图:…………6分从树状图或表格(表格略)可以看出,共16种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学,一个是国外大学的结果有(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(D ,A ),(D ,B )共 8种.∴P(一个国内大学和一个国外大学)= 168=21. ……………………………………………………………10分 18. (本题满分10分)(只要步骤合理,酌情给分.)解: (1) 由题意可知:BD=60米,DF=120米,EF=2AB=16米.∵ AB=8,tan ∠AGB=31, ∴BG=3AB=24米; ……………………………………………………………………………………………………3分∵,,,∴, ∴ ∴18题图∴CD=28米, ……………………………………………………………………………………………………………………8分∴ CD-EF=28-16=12米,所以两人的观测点到地面的距离的差为12米.……………………………………………………………10分 19. (本题满分10分)(只要步骤合理,酌情给分.) 解:(1)作P 1E 、P 2F 分别垂直x 轴于点E 、F ,∵△OP 1A 1、△A 1P 2A 2都是等腰直角三角形,∴P 1E=OE=EA 1,P 2F=A 1F=FA 2,∴设P 1(m ,m ),P 2(2m + n ,n ),(m >0,n >0)∴m m 4=,nm n +=24, ∴m=2, 2-22=n ,∴P 1(2,2),P 2(222+,2-22). ………………………………………………4分(2)设直线P 1P 2的解析式为)0(≠+=k b kx y ,根据题意得:()⎩⎨⎧++=+=b k b k 2222-22,22 解得:⎩⎨⎧==.22,2-1b k∴直线P 1P 2的解析式:()222-1+=x y . …………………………………………………………………8分(3)2<x <222+或222+> x >2 . …………………………………………………10分20. (本题满分10分)(只要步骤合理,酌情给分.)(1)证明:∵∠AEC=∠B+∠BAE ,∠B=∠AEF ,∴∠BAE=∠FEC .又 , ∴∠ABE=∠ECF ,∴△ABE ∽△ECF , ………………………………………… (3)分∴CFBE CE AB = 20题图∴CF BE CE AC = ∴AC ·CF=CE ·BE ; ……………………………………………………………………………………5分(2)解: ∵EF ∥AB ,∴∠BAE=∠AEF ,∵∠B=∠AEF .∴∠B=∠BAE ,∵AB=AC ,∴∠B=∠C,∴∠C=∠BAE ,又∵∠ABC=∠EBA,∴△ABC ∽△EBA, …………………………………………………………………………8分∴BCAB AB BE = ∴BCAB BE 2= , ∵AB=8,BC=12,∴31612642===BC AB BE . ……………………………………………………………………………………10分21.(本题满分12分)(只要步骤合理,酌情给分.)(1) 如图,连接,. ∵点 是劣弧的中点,∴, ∴. 又∵, ∴. 在△ABD 中,∵ , ①∴, ∴, ∴ 是 的直径.…………………………………………………………………6分(2) 如图,由(1)可知,是 的直径, ∴∵的直径为6,AC=2, ∴的面积为9π, .…………………………8分 在 中,,由勾股定理,得24262222=-=-=AC AE CE , ∴242422121=⨯⨯=•=∆CE AC S ACE , .…………………………10分 ∴S 阴影24292492121-=-⨯=-=∆ΘππACE O S S . .…………………………12分 22. (本题满分12分)(只要步骤合理,酌情给分.)(1) 连结 ,∵△ABC 是边长为4的等边三角形,点B(-1,0),∴ ,∵,∴ ;……………………………………………………………………………………………………………3分(2) ∵抛物线c bx x y ++=2736-过点 A 、E , ∴⎪⎪⎩⎪⎪⎨⎧+⨯+⨯-=+⨯+⨯-=c b c b 007363117363222 ………………………………………………11 5分 ∴解得:⎪⎩⎪⎨⎧==.3,7313c b , ∴抛物线的解析式为37313736-2++=x x y ;………………………………………………7分 (3)先作点关于的对称点´ ,连结 ´ 交 于点 ,作D ´H ⊥x 轴,垂足为H,则 与 的和取最小值,即△PBD 的周长 取最小值.∵DD ´⊥AC∴∠D ´DC=30°,DF=3, DD ´=32,∴D ´的坐标为, ∵B(-1,0),∴直线´的解析式为:5353+=x y , ∵直线 的解析式为:, ∴直线 ´ 与 的交点 的坐标)33237(,, …………………………………………………10分∴()72352222=+='+='H D BH D B , ∴ 的最小周长 为 . …………………………………………………11分∴把点 的坐标代入37313736-2++=x x y 成立,所以此时点 在抛物线上.………………………………………………………………………………………………………………………12分。

九年级数学上学期期末试题(含解析)新人教版4

九年级数学上学期期末试题(含解析)新人教版4

2015-2016学年山东省临沂市沂水县九年级(上)期末数学试卷一、选择题(本题14个小题,每小题3分,共42分,每题中只有一个答案符合要求)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图象”是随机事件B.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次C.“概率为0.0001的事件”是不可能事件D.“任意画出一个平行四边形,它是中心对称图形”是必然事件2.如同,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是()A. = B. = C.∠ADE=∠C D.∠AED=∠B3.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是()A.B.C.D.4.在平面直角坐标系中,若点P(m,m﹣n)与点Q(2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80° B.100°C.110°D.130°6.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小7.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.58.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小9.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.1010.已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)11.已知正三角形的边心距为1,则这个三角形的面积为()A.6 B.4 C.3 D.212.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.13.如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2 C.3 D.214.如图,△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A.B.12 C.14 D.21二、填空题(本题5个小题,每小题3分,共15分)15.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为.16.如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.17.如图,在△ABC中,DE∥BC, =,△ADE的面积是8,则△ABC的面积为.18.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB 的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为m(结果保留根号)19.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.三、解答题(本题共7小题,共63分)20.育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.21.如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.23.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)24.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.25.如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.26.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2015-2016学年山东省临沂市沂水县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题14个小题,每小题3分,共42分,每题中只有一个答案符合要求)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图象”是随机事件B.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次C.“概率为0.0001的事件”是不可能事件D.“任意画出一个平行四边形,它是中心对称图形”是必然事件【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:“任意画出一个等边三角形,它是轴对称图象”是必然事件,A错误;任意掷一枚质地均匀的硬币10次,正面向上的不一定是5次,B错误;“概率为0.0001的事件”是随机事件,C错误;“任意画出一个平行四边形,它是中心对称图形”是必然事件,D正确,故选:D.2.如同,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是()A. = B. = C.∠ADE=∠C D.∠AED=∠B【考点】相似三角形的判定.【分析】根据相似三角形的判定定理进行判定即可.【解答】解:∵∠DAE=∠CAB,∴当∠AED=∠B或∠ADE=∠C时,△ABC∽△AED;当=即=时,△ABC∽△AED.故选:A.3.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是()A.B.C.D.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(a,b)在函数y=图象上的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,点(a,b)在函数y=图象上的有(3,4),(4,3);∴点(a,b)在函数y=图象上的概率是: =.故选D.4.在平面直角坐标系中,若点P(m,m﹣n)与点Q(2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于原点对称的点的坐标.【分析】根据平面直角坐标系内两点关于原点的对称点时,横、纵坐标都变成原数的相反数求出m和n的值,即可得出答案.【解答】解:根据两个点关于原点对称,则横、纵坐标都是原数的相反数,得m=﹣2,m﹣n=﹣3,∴n=1.∴点M(m,n)在第二象限;故选:B.5.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80° B.100°C.110°D.130°【考点】圆周角定理.【分析】连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A的度数.【解答】解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选:D.6.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小【考点】二次函数的性质;二次函数的图象.【分析】A、将x=0代入y=x2﹣2x﹣3,求出y=﹣3,得出函数图象与y轴的交点坐标,即可判断;B、将一般式化为顶点式,求出顶点坐标,即可判断;C、将y=0代入y=x2﹣2x﹣3,求出x的值,得到函数图象与x轴的交点坐标,即可判断;D、利用二次函数的增减性即可判断.【解答】解:A、∵y=x2﹣2x﹣3,∴x=0时,y=﹣3,∴函数图象与y轴的交点坐标是(0,﹣3),故本选项说法正确;B、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标是(1,﹣4),故本选项说法错误;C、∵y=x2﹣2x﹣3,∴y=0时,x2﹣2x﹣3=0,解得x=3或﹣1,∴函数图象与x轴的交点坐标是(3,0)、(﹣1,0),故本选项说法正确;D、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x <1时,y 随x 的增大而减小,∴x <0时,y 随x 的增大而减小,故本选项说法正确;故选B .7.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( )A .4B .4.5C .5D .5.5【考点】平行线分线段成比例.【分析】直接根据平行线分线段成比例定理即可得出结论.【解答】解:∵直线a ∥b ∥c ,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选B .8.对于函数y=,下列说法错误的是( )A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小【考点】反比例函数的性质.【分析】根据反比例函数的性质:对于反比例函数y=,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A 正确;图象既是轴对称图形又是中心对称图形,B 正确;当x >0时,y 随x 的增大而减小,C 错误;当x <0时,y 随x 的增大而减小,D 正确,由于该题选择错误的,故选:C .9.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣4x+3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .10【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.【解答】解:解方程x2﹣4x+3=0,(x﹣1)(x﹣3)=0解得x1=3,x2=1;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选:B.10.已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】先根据点(2,3),在反比例函数y=的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k=2×3=6,A、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B、∵1×6=6,∴此点在反比例函数图象上;C、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上.故选:B.11.已知正三角形的边心距为1,则这个三角形的面积为()A.6 B.4 C.3 D.2【考点】正多边形和圆.【分析】作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,由等边三角形的性质得出BD=CD,∠OBD=∠ABC=30°,得出OA=OB=2OD,求出AD、BC,△ABC的面积=BC•AD,即可得出结果.【解答】解:如图所示:作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,∵△ABC是等边三角形,∴BD=CD,∠OBD=∠ABC=30°,∴OA=OB=2OD=2,∴AD=3,BD=,∴AB==2,∴BC=2,∴△ABC的面积=BC•AD=×2×3=3;故选:C.12.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理;勾股定理的逆定理.【分析】过B点作BD⊥AC,得AB的长,AD的长,利用锐角三角函数得结果.【解答】解:过B点作BD⊥AC,如图,由勾股定理得,AB==,AD==2cosA===,故选:D.13.如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2 C.3 D.2【考点】二次函数的应用.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(﹣2,0),得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,故选:B.14.如图,△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A.B.12 C.14 D.21【考点】解直角三角形.【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【解答】解:过点A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,则△ABC的面积是:×AD×BC=×3×(3+4)=.故选A.二、填空题(本题5个小题,每小题3分,共15分)15.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为2(1+x)+2(1+x)2=8 .【考点】由实际问题抽象出一元二次方程.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果该校这两年购买的实验器材的投资年平均增长率为x,根据题意可得出的方程.【解答】解:设该校这两年购买的实验器材的投资年平均增长率为x,今年的投资金额为:2(1+x);明年的投资金额为:2(1+x)2;所以根据题意可得出的方程:2(1+x)+2(1+x)2=8.故答案为:2(1+x)+2(1+x)2=8.16.如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是6.【考点】圆锥的计算.【分析】根据弧长求得圆锥的底面半径和扇形的半径,利用勾股定理求得圆锥的高即可.【解答】解:∵弧长为6π,∴底面半径为6π÷2π=3,∵圆心角为120°,∴=6π,解得:R=9,∴圆锥的高为=6,故答案为:6.17.如图,在△ABC中,DE∥BC, =,△ADE的面积是8,则△ABC的面积为18 .【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定,可得△ADE∽△ABC,根据相似三角形的性质,可得答案.【解答】解;∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵=,∴=()2=,,∴S△ABC=18,故答案为:18.18.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为(5+5)m(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】作CE⊥AB于点E,则△BCE和△BCD都是直角三角形,即可求得CE,BE的长,然后在Rt△ACE中利用三角函数求得AE的长,进而求得AB的长,即为大树的高度.【解答】解:作CE⊥AB于点E,在Rt△BCE中,BE=CD=5m,CE==5m,在Rt△ACE中,AE=CE•tan45°=5m,AB=BE+AE=(5+5)m.故答案为:(5+5).19.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10 .【考点】反比例函数系数k的几何意义.【分析】设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.【解答】解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.三、解答题(本题共7小题,共63分)20.育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.【考点】列表法与树状图法;可能性的大小.【分析】(1)根据概率的意义解答即可;(2)画出树状图,然后根据概率的意义列式计算即可得解.【解答】解:(1)不同意他的说法.理由如下:∵有2名男生和1名女生,∴主持人是男生的概率=,主持人是女生的概率=;(2)画出树状图如下:一共有6种情况,恰好是1名男生和1名女生的有4种情况,所以,P(恰好是1名男生和1名女生)==.21.如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)【考点】解直角三角形的应用-方向角问题.【分析】过点C作CD⊥AB于点D,则若该船继续向西航行至离灯塔距离最近的位置为CD的长度,利用锐角三角函数关系进行求解即可.【解答】解:如图,过点C作CD⊥AB于点D,AB=20×1=20(海里),∵∠CAF=60°,∠CBE=30°,∴∠CBA=∠CBE+∠EBA=120°,∠CAB=90°﹣∠CAF=30°,∴∠C=180°﹣∠CBA﹣∠CAB=30°,∴∠C=∠CAB,∴BC=BA=20(海里),∠CBD=90°﹣∠CBE=60°,∴CD=BC•sin∠CBD=≈17(海里).22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.23.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)求出DE,解直角三角形求出OC,分别求出△ACO的面积和扇形COD的面积,即可得出答案.【解答】(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,∴S阴影=×2×2﹣=2﹣.24.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE 的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.25.如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A(1,a)代入y=2x,求出a=2,再把A(1,2)代入y=,即可求出k 的值;(2)过B作BC⊥x轴于点C.在Rt△BOC中,由tanα=,可设B(2h,h).将B(2h,h)代入y=,求出h的值,即可得到点B的坐标;(3)由A(1,2),B(2,1),利用待定系数法求出直线AB的解析式为y=﹣x+3,那么直线AB与x轴交点D的坐标为(3,0).根据△PAB的面积为2列出方程|3﹣m|×(2﹣1)=2,解方程即可求出m的值.【解答】解:(1)把点A(1,a)代入y=2x,得a=2,则A(1,2).把A(1,2)代入y=,得k=1×2=2;(2)过B作BC⊥x轴于点C.∵在Rt△BOC中,tanα=,∴可设B(2h,h).∵B(2h,h)在反比例函数y=的图象上,∴2h2=2,解得h=±1,∵h>0,∴h=1,∴B(2,1);(3)∵A(1,2),B(2,1),∴直线AB的解析式为y=﹣x+3,设直线AB与x轴交于点D,则D(3,0).∵S△PAB=S△PAD﹣S△PBD=2,点P(m,0),∴|3﹣m|×(2﹣1)=2,解得m1=﹣1,m2=7.26.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.【考点】二次函数综合题.【分析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,﹣x2﹣2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出x 的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D 点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.。

山东省日照市莒县2016届九年级上期末数学试卷含答案解析

山东省日照市莒县2016届九年级上期末数学试卷含答案解析

A.3 个 B.4 个 C.5 个 D.6 个 5.在 Rt△ABC中,∠C=90°,各边都扩大 2 倍,则锐角 A 的正弦值( ) A.扩大 2 倍 B.缩小 C.不变 D.无法确定 6.如图,有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子.若每 边每条绳子被选中的机会相等,则两人选到同一条绳子的机率为( )
A.
B.
C.
D.
3.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不 可能出现的投影是( ) A.三角形 B.线段 C.矩形 D.平行四边形 4.小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均为如图,则构 成该几何体的小立方块的个数有( )
A.y=﹣ (x﹣2)2﹣2 B.y=﹣ (x+2)2+2 C.y= (x﹣2)2﹣2 D.y= (x+2)2﹣2
第 2 页(共 25 页)
19.如图,△OP1A1、△A P1 A2 2都是等腰直角三角形,点 P 、1 P 在函数 y =1 (x>0)的图象上,斜边
2
OA1 ,A A 都在 x 轴上)期末数学试卷
一、选择题(本题共 12 小题,1-8 小题,每小题 3 分,第 9-12 小题,每小题 3 分) 1.天气台预报明天下雨的概率为 90%,则下列理解正确的是( ) A.明天 90%的地区会下雨 B.明天 90%的时间会下雨 C.明天出行不带雨伞一定会被淋湿 D.明天出行不带雨伞被淋湿的可能性很大 2.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )
A.3 B.﹣3 C.6 D.﹣6 9.一个圆锥的主视图和左视图是两个全等正三角形,则这个圆锥的侧面展开图的圆心角等于( ) A.60° B.90° C.120° D.180° 10.如图所示,已知抛物线 C1、C2 关于 x 轴对称,抛物线 C1,C3 关于 y 轴对称,如果抛物线 C2 的解析式 是 y=﹣ (x﹣2)2+2,那么抛物线3C 的解析式是( )

莒县初三数学期末试卷答案

莒县初三数学期末试卷答案

一、选择题(每题4分,共40分)1. 若m^2 - 3m + 2 = 0,则m的值为()A. 1B. 2C. 3D. 4答案:B2. 下列各数中,属于有理数的是()A. √2B. πC. 0.101001…D. -√3答案:C3. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:D4. 若|a| = 3,则a的值为()A. ±3B. 3C. -3D. 0答案:A5. 下列函数中,定义域为全体实数的是()A. y = √(x - 2)B. y = 1/xC. y = √(x^2 - 4)D. y = |x|答案:D6. 下列各式中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x - y)^2 = x^2 - 2xy + y^2C. (x + y)^2 = x^2 - 2xy + y^2D. (x - y)^2 = x^2 + 2xy + y^2答案:B7. 若x^2 + 2x + 1 = 0,则x的值为()A. -1B. 1C. -2D. 2答案:A8. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = √x答案:B9. 下列等式中,正确的是()A. a^2 = |a|B. a^2 = -|a|C. a^2 = |a| + aD. a^2 = |a| - a答案:A10. 下列各数中,属于无理数的是()A. √2B. πC. 0.101001…D. -√3答案:B二、填空题(每题4分,共40分)11. 若a + b = 5,ab = 6,则a^2 + b^2的值为______。

答案:3712. 若sin α = 1/2,则cos α的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年山东省日照市莒县初三上学期期末数学试卷一、选择题(本题共12小题,1-8小题,每小题3分,第9-12小题,每小题3分)1.(3分)天气台预报明天下雨的概率为90%,则下列理解正确的是()A.明天90%的地区会下雨B.明天90%的时间会下雨C.明天出行不带雨伞一定会被淋湿D.明天出行不带雨伞被淋湿的可能性很大2.(3分)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.3.(3分)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形4.(3分)小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A.3个B.4个C.5个D.6个5.(3分)在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的正弦值()A.扩大2倍B.缩小C.不变D.无法确定6.(3分)如图,有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子.若每边每条绳子被选中的机会相等,则两人选到同一条绳子的机率为()A.B.C.D.7.(3分)△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定8.(3分)如图,直线y=mx(m≠0)与双曲线y=(k≠0)交于A,B两点,过=3,则k的值为()点A作AM垂直x轴,垂足为点M,连接BM,若S△AMBA.3B.﹣3C.6D.﹣69.(4分)一个圆锥的主视图和左视图是两个全等正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120°D.180°10.(4分)如图所示,已知抛物线C1、C2关于x轴对称,抛物线C1,C3关于y 轴对称,如果抛物线C2的解析式是y=﹣(x﹣2)2+2,那么抛物线C3的解析式是()A.y=﹣(x﹣2)2﹣2B.y=﹣(x+2)2+2C.y=(x﹣2)2﹣2D.y=(x+2)2﹣211.(4分)在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.42米,则树高为()A.6.93米B.8米C.11.8米D.12米12.(4分)将边长为4厘米的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是()A.(4π+8π)cm B.B、(2π+4π)cmC.(4π+4π)cm D.(2π+8π)cm二、填空题(本题共4小题共16分)13.(4分)如图,河堤横断面迎水坡AB的坡度(即:BC:CA)是1:,堤高BC=8m,则坡面AB的长度是.14.(4分)已知,如图,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE、BD,∠ABD=35°,则∠C=度.15.(4分)如图,在△ABC中,D为边BC上一点,已知=,E为AD的中点,延长BE交AC于F,则的值是.16.(4分)如图,在函数y=(x>0)的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S n=.(用含n的代数式表示)三、解答题(本题共6小题,共64分)17.(10分)小强将中国的北京大学、清华大学、美国的哈佛大学及美国的剑桥大学的图片分别贴在4张完全相同的不透明的硬纸板上,制成名校卡片,如图,小强将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1)小强第一次抽取的卡片上的图片是北京大学的概率是多少?(请直接写出结果)(2)请你用列表法或画树状图法,帮助小强求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)18.(10分)如图,某中学两座教学楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示.根据实际情况画出平面图形如图②,CD⊥DF,AB⊥DF,EF⊥DF,甲从点C可以看到点G处,乙从点E恰巧可以看到点D处,点B是DF的中点,路灯AB高8米,DF=120米,tan∠AGB=,求甲、乙两人的观测点到地面的距离的差.19.(10分)如图,△OP1A1、△A1P2A2都是等腰直角三角形,点P1、P2在函数y1=(x>0)的图象上,斜边OA1,A1A2都在x轴上.(1)请求出P1、P2的坐标;(2)求直线P1P2的解析式;(3)利用图象直接写出当x在什么范围内取值时,y2>y1(y2是直线P1P2的函数值)20.(10分)如图,在△ABC中,AB=AC,点E、F分别是BC,AC边上的点,且∠B=∠AEF.(1)求证:AC•CF=CE•BE;(2)若AB=8,BC=12,当EF∥AB时,求BE的长.21.(12分)如图1,已知在⊙O中,点C为劣弧AB的中点连接AC并延长至D,使CD=CA,连接DB并延长交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O直径为6,AC的长为2,求阴影部分的面积之和.(结果保留π与根号)22.(12分)已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(﹣1,0),P是AC上的一个动点(P与点A、C不重合).(1)求点A、E的坐标;(2)若过A、E,求抛物线的解析式;(3)连结PB、PD,设l是△PBD的周长,当l取最小值时,求点P的坐标及l 的最小值并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.2015-2016学年山东省日照市莒县初三上学期期末数学试卷参考答案与试题解析一、选择题(本题共12小题,1-8小题,每小题3分,第9-12小题,每小题3分)1.(3分)天气台预报明天下雨的概率为90%,则下列理解正确的是()A.明天90%的地区会下雨B.明天90%的时间会下雨C.明天出行不带雨伞一定会被淋湿D.明天出行不带雨伞被淋湿的可能性很大【解答】解:天气台预报明天下雨的概率为90%,说明明天出行不带雨伞被淋湿的可能性很大,故选:D.2.(3分)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.【解答】解:∵直径所对的圆周角等于直角,∴从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选:B.3.(3分)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形【解答】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:A.4.(3分)小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A.3个B.4个C.5个D.6个【解答】解:从俯视图发现有3个立方体,从左视图发现第二层最多有1个立方块,则构成该几何体的小立方块的个数有4个;故选:B.5.(3分)在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的正弦值()A.扩大2倍B.缩小C.不变D.无法确定【解答】解:设Rt△ABC的三边长为a,b,c,则sinA=,如果各边长都扩大5倍,∴sinA==,故∠A的正弦值大小不变.故选:C.6.(3分)如图,有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子.若每边每条绳子被选中的机会相等,则两人选到同一条绳子的机率为()A.B.C.D.【解答】解:将三条绳子记作1,2,3,则列表得:(1,3)(2,3)(3,3)(1,2)(2,2)(3,2)(1,1)(2,1)(3,1)可得共有9种情况,两人选到同一条绳子的有3种情况,∴两人选到同一条绳子的机率为=.故选:B.7.(3分)△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定【解答】解:∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=30°.∴∠C=180°﹣∠A﹣∠B=180°﹣30°﹣30°=120°.故选:B.8.(3分)如图,直线y=mx(m≠0)与双曲线y=(k≠0)交于A,B两点,过=3,则k的值为()点A作AM垂直x轴,垂足为点M,连接BM,若S△AMBA.3B.﹣3C.6D.﹣6【解答】解:∵直线y=mx与双曲线y=交于A,B两点,∴点A与点B关于原点中心对称,=S△OBM,∴S△OAM=3,而S△ABM∴S=,△OAM∴|k|=,∵反比例函数图象在第二、四象限,∴k<0,∴k=﹣3.故选:B.9.(4分)一个圆锥的主视图和左视图是两个全等正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120°D.180°【解答】解:∵左视图是等边三角形,∴底面直径=圆锥的母线.故设底面圆的半径为r,则圆锥的母线长为2r,底面周长=2πr,侧面展开图是个扇形,弧长=2πr=,所以n=180°.故选:D.10.(4分)如图所示,已知抛物线C1、C2关于x轴对称,抛物线C1,C3关于y 轴对称,如果抛物线C2的解析式是y=﹣(x﹣2)2+2,那么抛物线C3的解析式是()A.y=﹣(x﹣2)2﹣2B.y=﹣(x+2)2+2C.y=(x﹣2)2﹣2D.y=(x+2)2﹣2【解答】解:∵抛物线C1、C2关于x轴对称,且抛物线C2的解析式是y=﹣(x ﹣2)2+2,∴抛物线C1的解析式是y=(x﹣2)2﹣2,∵抛物线C1,C3关于y轴对称,∴抛物线C3的解析式是y=(﹣x﹣2)2﹣2=(x+2)2﹣2.故选:D.11.(4分)在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.42米,则树高为()A.6.93米B.8米C.11.8米D.12米【解答】解:如图,∵=,∴EH=0.3×0.6=0.18,∴AF=AE+EH+HF=4.42+0.18+0.2=4.8,∵=,∴AB==8(米).故选:B.12.(4分)将边长为4厘米的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是()A.(4π+8π)cm B.B、(2π+4π)cmC.(4π+4π)cm D.(2π+8π)cm【解答】解:第一次旋转是以点C为圆心,AC为半径,旋转角度是90度,所以弧长==2π;第二次旋转是以点D为圆心,AD为半径,角度是90度,所以弧长==2π;第三次旋转是以点A为圆心,所以没有路程;第四次是以点B为圆心,AB为半径,角度是90度,所以弧长=2π;所以旋转一周的弧长共=2π+4π.所以正方形滚动两周正方形的顶点A所经过的路线的长是4π+8π.故选:A.二、填空题(本题共4小题共16分)13.(4分)如图,河堤横断面迎水坡AB的坡度(即:BC:CA)是1:,堤高BC=8m,则坡面AB的长度是16m.【解答】解:Rt△ABC中,BC=8m,tanA=1:;∴AC=BC÷tanA=8m,∴AB==16m.故答案为:16m.14.(4分)已知,如图,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE、BD,∠ABD=35°,则∠C= 20度.【解答】解:∵OB=OD,∴∠OBD=∠ODB=35°,∴∠AOC=∠OBD+∠ODB=70°,∵CA是⊙O切线,∴∠OAC=90°,∴∠C=90°﹣∠AOC=20°,故答案为20;15.(4分)如图,在△ABC中,D为边BC上一点,已知=,E为AD的中点,延长BE交AC于F,则的值是.【解答】证明:作EH∥AC交BC于H,如图所示:∵E为AD的中点,∴DH=HC,EH=AC,∵EH∥AC,=,∴==,∴==.16.(4分)如图,在函数y=(x>0)的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S n=.(用含n的代数式表示)【解答】解:∵P1的坐标为(2,3),P2的坐标为(4,),P3的坐标为(6,1),P n的坐标为(2n,),P n+1的坐标为(2n+2,),∴S n=(﹣)×2=.故答案为:.三、解答题(本题共6小题,共64分)17.(10分)小强将中国的北京大学、清华大学、美国的哈佛大学及美国的剑桥大学的图片分别贴在4张完全相同的不透明的硬纸板上,制成名校卡片,如图,小强将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1)小强第一次抽取的卡片上的图片是北京大学的概率是多少?(请直接写出结果)(2)请你用列表法或画树状图法,帮助小强求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)【解答】解:(1)∵小强将中国的北京大学、清华大学、美国的哈佛大学及美国的剑桥大学的图片分别贴在4张完全相同的不透明的硬纸板上,∴小强第一次抽取的卡片上的图片是北京大学的概率是:;(2)根据题意,可以画出如下树状图:∵从树状图或表格(表格略)可以看出,共16种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学,一个是国外大学的结果有(A,C),(A,D),(B,C),(B,D),(C,A),(C,B),(D,A),(D,B)共8种.∴P(一个国内大学和一个国外大学)==.18.(10分)如图,某中学两座教学楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示.根据实际情况画出平面图形如图②,CD⊥DF,AB⊥DF,EF⊥DF,甲从点C可以看到点G处,乙从点E恰巧可以看到点D处,点B是DF的中点,路灯AB高8米,DF=120米,tan∠AGB=,求甲、乙两人的观测点到地面的距离的差.【解答】解:由题意可知:BD=60米,DF=120米,∴DG=60米,EF=2AB=16,∵AB=8,tan∠AGB=,∴BG=3AB=24米;∵CD⊥DF,AB⊥DF,EF⊥DF,∴AB∥CD∥EF,∴△ABG∽△CDG,∴∴CD=28米,∴CD﹣EF=28﹣16=12米,所以两人的观测点到地面的距离的差为12米.19.(10分)如图,△OP1A1、△A1P2A2都是等腰直角三角形,点P1、P2在函数y1=(x>0)的图象上,斜边OA1,A1A2都在x轴上.(1)请求出P1、P2的坐标;(2)求直线P1P2的解析式;(3)利用图象直接写出当x在什么范围内取值时,y2>y1(y2是直线P1P2的函数值)【解答】解:(1)作P1E、P2F分别垂直x轴于点E、F,如图所示.∵△OP1A1、△A1P2A2都是等腰直角三角形,∴P1E=OE=EA1,P2F=A1F=FA2,∴设P1(m,m),P2(2m+n,n)(m>0,n>0),∴m=,n=,∴m=2,n=2﹣2,经检验m=2,n=2﹣2是分式方程的解.∴P1(2,2),P2(2+2,2﹣2).(2)设直线P1P2的解析式为y=kx+b(k≠0),根据题意得:,解得:,∴直线P1P2的解析式为y=(1﹣)x+2.(3)观察函数图象,发现:当2<x<2+时,一次函数图象在反比例函数图象的上方,故当2<x<2+时,y2>y1.20.(10分)如图,在△ABC中,AB=AC,点E、F分别是BC,AC边上的点,且∠B=∠AEF.(1)求证:AC•CF=CE•BE;(2)若AB=8,BC=12,当EF∥AB时,求BE的长.【解答】(1)证明:∵∠AEC=∠B+∠BAE=∠AEF+∠FEC,∠B=∠AEF,∴∠BAE=∠FEC,∴∠DPC=∠PAB.又∵AB=AC,∴∠B=∠C∴△ABE∽△ECF,∴AB:CE=BE:CF,∵AB=AC,∴AC•CF=CE•BE;(2)解:如图:∵EF∥AB,∴∠BAE=∠AEF,∵∠B=∠AEF.∴∠B=∠BAE,∵AB=AC,∴∠B=∠C,∴∠C=∠BAE,又∵∠ABC=∠EBA,∴△ABC∽△EBA,∴BE:AB=AB:BC,∵AB=8,BC=12,∴BE===.21.(12分)如图1,已知在⊙O中,点C为劣弧AB的中点连接AC并延长至D,使CD=CA,连接DB并延长交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O直径为6,AC的长为2,求阴影部分的面积之和.(结果保留π与根号)【解答】解:(1)如图,连接AB,BC,∵点 C 是劣弧AB 的中点,∴=,∴CA=CB.又∵CD=CA,∴CB=CD=CA.在△ABD中,∵,∴∠ABD=90°,∴∠ABE=90°,∴AE 是⊙O 的直径;(2)如图,由(1)可知,AE 是⊙O 的直径,∴∠ACE=90°,∵⊙O 的直径为6,AC=2,∴⊙O 的面积为9π,在Rt△ACE 中,∠ACE=90°,由勾股定理,得CE==4,=×AC×CE=4,∴S△AEC∴阴影部分的面积之和为:﹣4.22.(12分)已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(﹣1,0),P是AC上的一个动点(P与点A、C不重合).(1)求点A、E的坐标;(2)若过A、E,求抛物线的解析式;(3)连结PB、PD,设l是△PBD的周长,当l取最小值时,求点P的坐标及l 的最小值并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.【解答】解:(1)连接AD,∵△ABC是边长为4的等边三角形,又B的坐标为(﹣1,0),BC在x轴上,A 在第一象限,∴点C在x轴的正半轴上,∴C的坐标为(3,0),由中点坐标公式,得:D的坐标为(1,0).显然AD⊥BC且AD=2,∴A的坐标是(1,2).OE=AD,得E(0,);(2)因为抛物线y=x2+bx+c过点A(1,2)、E(0,),把A、E分别代入得:,解得:c=,b=,抛物线的解析式为y=;(3)先作点D关于AC的对称点D′,连接BD′交AC于点P,则PB与PD的和取最小值,即△PBD的周长L取最小值.∵D、D′关于直线AC对称,∴DD′⊥AC,即∠D′DC=30°,DF=,DD′=2,求得点D′的坐标为(4,),直线BD′的解析式为:x +,直线AC的解析式为:,求直线BD′与AC的交点可得点P 的坐标(,).此时BD′===2,所以△PBD的最小周长L为2+2,把点P的坐标代入y=成立,所以此时点P在抛物线上.第21页(共21页)。

相关文档
最新文档